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Avant-propos

Je suis un géomètre algébriste qui s’intéresse avant tout à l’étude des variétés algébriques munies
d’une action d’un groupe algébrique. Dans cette thèse d’habilitation à diriger des recherches,
j’ai choisi de mettre de côté mes travaux portant sur certains espaces de modules –les schémas
de Hilbert invariants ([Ter14a, Ter14b]) et les espaces de modules de constellations ([BT15,
TZ17])– et sur la théorie des déformations invariantes ([LT15]), ainsi que deux autres travaux
indépendants ([BLLT17, JLT19]), afin de porter toute mon attention sur trois autres axes de
recherche, sur lesquels mes coauteurs et moi-même avons travaillé au cours des six dernières
années.

Ce manuscrit est ainsi divisé en trois chapitres (essentiellement indépendants), chacun de ces
chapitres étant dédié à l’un de ces trois axes de recherche, et impliquant une famille spécifique
de variétés algébriques munies d’une action d’un groupe algébrique connexe. Plus précisément :
● Le contenu du premier chapitre est extrait de mes travaux en collaboration avec Jérémy

Blanc et Andrea Fanelli ([BFTa, BFTb]), dans lesquels nous étudions les groupes algébriques
connexes agissant sur des espaces fibrés de Mori rationnels en dimension 3, dans le but de
classifier les sous-groupes algébriques connexes maximaux du groupe de Cremona Bir(P3),
ainsi que les espaces fibrés de Mori sur lesquels ils agissent.

● Le contenu du deuxième chapitre est extrait de mes travaux en collaboration avec Lucy
Moser-Jauslin et Michael Bulois ([MJT21a, MJT21b, MJT, BMJT]), dans lesquels nous
étudions les k-formes et les données de descente pour les k-variétés presque homogènes (c’est-
à-dire les k-variétés avec une orbite ouverte dense) sous l’action d’un groupe algébrique
réductif, avec une attention particulière portée au cas où le corps de base parfait k est le
corps des nombres réels.

● Le contenu du troisième chapitre est extrait de mes travaux un peu plus anciens en collabora-
tion avec Kevin Langlois ([LT16, LT17]), dans lesquels nous obtenons de nouveaux résultats
concernant la géométrie des variétés horosphériques de complexité un ; celles-ci forment une
classe de variétés munies d’une action d’un groupe algébrique réductif pour lesquelles il existe
une description combinatoire assez similaire à celle des variétés toriques.

Les trois chapitres sont structurés de manière similaire : une première section fournit une
brève introduction au sujet étudié, suivie dans une deuxième section des préliminaires requis
pour pouvoir ensuite énoncer précisément, dans une troisième section, nos principaux résultats,
et enfin, dans une dernière section, je présente quelques travaux en cours et problèmes ouverts.

En plus de ces pistes de recherche, il y a d’autres directions que j’ai l’intention de com-
mencer/continuer d’explorer au cours des prochaines années. En particulier, j’ai l’intention
de poursuivre les travaux entamés dans [BLLT17], au sujet des réductions symplectiques pour
l’action linéaire d’un groupe algébrique réductif sur un espace vectoriel symplectique, ainsi que
mes travaux sur les schémas de Hilbert invariants et les espaces de modules de constellations
(par exemple déterminer de nouvelles familles d’exemples, étudier le cas où le corps de base est
de caractéristique positive, utiliser ces espaces de modules pour construire des désingularisations
non-commutatives des quotients catégoriques correspondants).

Je vous souhaite une bonne lecture !
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Foreword

I am an algebraic geometer interested primarily in the study of algebraic varieties endowed with
an algebraic group action. In this habilitation thesis, I chose to set aside my research work on
certain moduli spaces –the invariant Hilbert schemes ([Ter14a, Ter14b]) and the moduli spaces
of constellations ([BT15, TZ17])– and on invariant deformation theory ([LT15]), as well as two
other unrelated research works ([BLLT17, JLT19]), in order to focus on three other research
directions on which my coauthors and I have been working during the last six years.

This manuscript is therefore divided into three (mostly independent) chapters, each of them
dedicated to one of these three research directions and involving a specific family of algebraic
varieties endowed with a connected algebraic group action. More precisely:
● The contents of the first chapter are taken from my joint work with Jérémy Blanc and

Andrea Fanelli ([BFTa, BFTb]) in which we study the connected algebraic groups acting on
rational Mori fiber spaces in dimension 3 in order to classify the maximal connected algebraic
subgroups of the Cremona group Bir(P3) as well as all the Mori fiber spaces on which they
act.

● The contents of the second chapter are taken from my joint work with Lucy Moser-Jauslin
and Michael Bulois ([MJT21a, MJT21b, MJT, BMJT]) in which we study the k-forms and
descent data for almost homogeneous k-varieties (i.e. k-varieties with a dense open orbit)
under the action of a reductive algebraic group, with particular attention to the case where
the perfect base field k is the field of real numbers.

● The contents of the third chapter are taken from my earlier joint work with Kevin Langlois
([LT16, LT17]) in which we obtain new results concerning the geometry of complexity-one
horospherical varieties; these form a class of varieties endowed with a reductive algebraic
group action for which there is a combinatorial description quite similar to the one of toric
varieties .

The three chapters are structured in the same way: a first section provides a brief intro-
duction to the subject, then come in a second section the preliminaries required to state next
precisely in a third section our main results, and finally in a last section I present some works
in progress and open problems.

In addition to these lines of research, there are other directions I intend to start/continue
exploring during the next years. In particular, I intend to pursue the work started in [BLLT17]
on symplectic reductions for the linear action of a reductive algebraic group on a symplectic
vector space, and also my work on invariant Hilbert schemes and moduli spaces of constellations
(e.g. determining new families of examples, study the case when the base field has positive
characteristic, use these moduli spaces to construct non-commutative desingularizations of the
corresponding categorical quotients).

I wish you interesting reading!
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Chapter 1

Automorphism groups of Mori fiber
spaces and connected algebraic
subgroups of the Cremona group

In this first chapter we review the main results obtained with Jérémy Blanc and Andrea Fanelli
in [BFTa, BFTb]. These results concern mostly the study of the connected algebraic groups
acting on Mori fibrations X → Y with X a rational threefold and Y a surface or a curve.
More precisely, for such fiber spaces, we consider the neutral component of their automorphism
groups and study their equivariant birational geometry. This is done using, inter alia, minimal
model program and Sarkisov program. In the end, this study allows us to determine the maximal
connected algebraic subgroups of Bir(P3), recovering most of the classification results of Hiroshi
Umemura in the complex case (see [Ume80, Ume82a, Ume82b, Ume85, Ume88]).

1.1 Aims and scope

1.1.1 What was known

When k = C is the field of complex numbers, a classification of the maximal connected algebraic
subgroups of the Cremona group Bir(P3) has been stated by Enriques and Fano in [EF98] and
achieved by Umemura in a series of four papers [Ume80, Ume82a, Ume82b, Ume85]. In more
than 150 pages, detailed arguments are given and a finite list of families is precisely established.
The proof of Umemura uses a result of Lie that gives a classification of analytic actions on
complex threefolds (see [Ume80, Theorem 1.12]) to derive a finite list of algebraic groups acting
rationally on P3.

Umemura, together with Mukai, studied then in [MU83, Ume88] the minimal smooth ra-
tional projective threefolds (a smooth projective variety X is called minimal if any birational
morphism X → X ′ with X ′ smooth is an isomorphism). For each subgroup G ⊆ Bir(P3) of
the list of maximal connected algebraic subgroups of Bir(P3), they determine the minimal
smooth rational projective threefolds X such that ϕ−1Gϕ = Aut○(X) for some birational map
ϕ∶ X ⇢ P3; this gives a detailed story of 95 additional pages to Umemura’s classification.

1.1.2 What we did

Our approach did not use the long work of Umemura or any analytic method. We rather used
another strategy to recover both the maximal connected algebraic subgroups of Bir(P3) and
the minimal (possibly singular) rational projective threefolds on which they act, based on the
minimal model program (or MMP for short), as we now explain.
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1.1. Aims and scope

If G is a connected algebraic subgroup of Bir(P3), then the regularization theorem of Weil
(recalled in §1.2.6) gives the existence of a birational map ϕ∶ X ⇢ P3 (where X can be assumed
to be smooth) such that G ⊆ ϕAut○(X)ϕ−1. By [Sum74, Lemma 8] the variety X has an open
covering which consists of G-invariant quasi-projective open subsets of X. Replacing X by one
of these G-invariant quasi-projective open subsets, we can assume that X is quasi-projective.
Taking a G-equivariant compactification [Sum74, Theorem 1], we may also assume that X is
projective. Supposing moreover that the base field k is of characteristic zero, we may even
assume that X is smooth [Kol07, Proposition 3.9.1], and we can then run an MMP (which is
always Aut○(X)-equivariant; see Remark 1.2.7) to reduce to the case where X is a Mori fiber
space birational to P3 on which G acts faithfully (see Theorem 1.2.21).

This observation justifies our strategy: We start from a rational projective threefold, take
an equivariant desingularization if char(k) = 0 or assume it is smooth otherwise, apply an MMP,
and then study which of the possible outcomes X → Y (with 0 ≤ dim(Y ) < dim(X) = 3) provide
maximal connected algebraic subgroups in Bir(P3). We distinguish between three cases:

(i) If dim(Y ) = 2, then X → Y is a Mori conic bundle over a rational projective surface with
canonical singularities.

(ii) If dim(Y ) = 1, then X → Y = P1 is a Mori del Pezzo fibration over P1.
(iii) If dim(Y ) = 0, then X is a Q-factorial Fano threefold of Picard rank 1 with terminal

singularities.

When char(k) = 0, our results provide a full description of all the possible maximal con-
nected algebraic groups acting on rational three-dimensional Mori fiber spaces (and not just
the smooth models), except when the basis of the Mori fibration is trivial (i.e. dim(Y ) = 0); see
Theorem 1.3.8 for a precise statement. As a consequence of the classification we also prove that
each connected algebraic subgroup of Bir(P3) is contained into a maximal one (Corollary 1.3.12).
This fact seems difficult to prove without the classification, is unknown for Bir(Pn) when n ≥ 4,
and is false for Bir(P1 ×C) with C a non-rational curve (see the work of Fong in [Fon]).

It turns out that most of the connected algebraic subgroups of Bir(P3) are conjugate to
algebraic subgroups of automorphism groups of certain P1-bundles over minimal smooth pro-
jective rational surfaces. It is striking to see that, even though there are many rational Mori
fiber spaces in dimension 3, in the end, only very few of them give rise to maximal connected
algebraic subgroups of Bir(P3). This is for instance completely different from the dimension 2
case (recalled in the next section) where each Mori fibration X → Y , with X a minimal rational
surface, gives rise to a maximal connected algebraic subgroup of Bir(P2).

1.1.3 Connected algebraic subgroups of Bir(P2)
Our approach to classify the connected algebraic subgroups of Bir(P3) should be seen as the
analogue of the following way to understand the classification of connected algebraic subgroups
of Bir(P2). This classification was initiated by Enriques in [Enr93] and can nowadays be easily
recovered via the classification of smooth projective rational surfaces as we now explain.

As mentioned above, one can conjugate any connected algebraic subgroup of Bir(P2) to a
group of automorphisms of a smooth projective rational surface S (in dimension 2, an equivariant
desingularization always exists). Contracting all (−1)-curves of S, we can moreover assume that
S is a minimal surface, i.e. that S is isomorphic to the projective plane P2 or a Hirzebruch surface
Fa, with a ≥ 0, a /= 1. One then checks that the automorphism groups obtained are all maximal
and pairwise non-conjugate in Bir(P2), as these surfaces have no orbit of finite size (this forbids
the existence of equivariant birational maps towards other smooth projective rational surfaces).
Every connected algebraic subgroup of Bir(P2) is thus contained into a maximal connected
algebraic subgroup of Bir(P2), whose conjugacy class corresponds to the neutral component of

– 16 –



1.2. Preliminaries

the automorphism group of a minimal smooth rational surface.

(See also the work of Blanc in [Bla09] for the classification of the maximal –possibly
disconnected– algebraic subgroups of Bir(P2) with a similar approach.)

1.2 Preliminaries

1.2.1 Notation

We work over a fixed algebraically closed field k = k. To the extent possible, we make no
assumption on the characteristic of k. Each time a restriction on the characteristic of k is
required we write it down explicitly.

In this chapter, a variety is an integral separated scheme of finite type over a field; in
particular, varieties are always irreducible. An algebraic group is an arbitrary group scheme
over a field which is smooth, or equivalently, geometrically reduced. (In fact we will be mostly
concerned with linear algebraic groups; see Proposition 1.3.2.) By an algebraic subgroup, we
always mean a closed and reduced subgroup scheme. The neutral component of an algebraic
group G is the connected component containing the identity element, denoted as G○; this is a
normal subgroup scheme of G.

When the base field of our varieties, algebraic groups, rational maps is not specified, we
work over the fixed algebraically closed field k.

For us, a Pn-bundle is always assumed to be locally trivial for the Zariski topology; in
particular, it is the projectivization of a rank n + 1 vector bundle when working over a smooth
variety.

1.2.2 Mori fibrations and Blanchard’s lemma

In this section we recall some notions from the Mori theory / minimal model program (or MMP);
see [KM98, Mat02, Kol13] for more details. We also recall the famous Blanchard’s lemma
(Proposition 1.2.6) which implies that any MMP is equivariant for the action of a connected
algebraic group and allows us to make a dévissage of the neutral component of the automorphism
group of a given Mori fiber space.

Definition 1.2.1. A normal projective Gorenstein variety Z, defined over an arbitrary field,
is called Fano if the anticanonical bundle ω∨Z of Z is ample. A del Pezzo surface is a surface
which is a Fano variety.

Example 1.2.2. The smooth del Pezzo surfaces over an algebraically closed field are precisely
P1 × P1 (degree d = 8) and the blow-ups of a projective plane in 9 − d points (1 ≤ d ≤ 9) with no
three colinear, no six on a conic, and no eight of them on a cubic having a node at one of them.

Definition 1.2.3. Let π∶ X → Y be a dominant projective morphism of normal projective
varieties. Then π is called a Mori fibration, and the variety X a Mori fiber space, if the following
conditions are satisfied:

(a) π∗(OX) = OY and dim(Y ) < dim(X);
(b) X is Q-factorial with terminal singularities; and
(c) ω∨X is π-ample and the relative Picard number ρ(X/Y ) ∶= ρ(X) − ρ(Y ) is one.

Throughout [BFTa, BFTb], we are mostly interested in the case where X is a rational
threefold. The MMP for smooth projective threefolds has been established over a field of
characteristic zero by Mori in [Mor82] and recently over a field of characteristic ≥ 7 (see for
instance [HX15] by Hacon-Xu and [BW17] by Birkar-Waldron). Consequently, if X is a smooth

– 17 –
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projective rational threefold and char(k) = 0 or ≥ 7, then we can apply an MMP to produce a
Mori fibration. (For the MMP in low characteristic, we refer to the very recent works [HWb,
HWa] by Hacon-Witaszek.)

If X is a rational threefold and X → Y is a Mori fibration, then we distinguish between
three cases depending on the dimension of the basis Y .
● dim(Y ) = 2. The Mori fibration π is a conic bundle, that is, the generic fiber of π is a

(geometrically irreducible) rational curve. Also, in this case, the surface Y is rational with
only canonical singularities.

● dim(Y ) = 1. The Mori fibration π is a del Pezzo fibration, that is, the generic fiber of π is
a regular del Pezzo surface (which is smooth if char(k) = 0, but can be non-smooth in low
characteristic). Also, in this case, the curve Y is isomorphic to P1.

● dim(Y ) = 0. The Mori fibration is trivial and X is a rational Fano threefold with Picard
rank 1 and terminal singularities.
Let us note that a conic bundle (resp. a del Pezzo fibration) is not necessarily a Mori fibration

(because of the Picard rank condition).

Definition 1.2.4. A Mori conic bundle (resp. a Mori del Pezzo fibration) is a conic bundle
(resp. a del Pezzo fibration) which is also a Mori fibration.

Example 1.2.5. Let g ∈ k[u0, u1] be a homogeneous polynomial of degree 2n, for some n ≥ 0.
We denote by Qg the projective threefold defined by

{[x0 ∶ x1 ∶ x2 ∶ x3;u0 ∶ u1] ∈ P(O⊕3
P1 ⊕OP1(n)) ∣ x2

0 − x1x2 − g(u0, u1)x2
3 = 0},

where P(O⊕3
P1 ⊕OP1(n)) is the quotient of (A4 ∖ {0})× (A2 ∖ {0}) by the action of G2

m given by

((µ, ρ) ⋅ (x0, x1, x2, x3, u0, u1))↦ (µx0, µx1, µx2, ρ
−nµx3, ρu0, ρu1),

and we denote by πg ∶ Qg → P1 the projection [x0 ∶ x1 ∶ x2 ∶ x3;u0 ∶ u1]↦ [u0 ∶ u1].
If g is not a square, then πg ∶ Qg → P1 is a Mori quadric fibration (see [BFTb, § 4.4] for

details). In the following, we will call such a fibration an Umemura quadric fibration.

We now recall a result due to Blanchard [Bla56] in the setting of complex geometry, whose
proof has been adapted to the setting of algebraic geometry by Brion, Samuel, and Uma.

Proposition 1.2.6. ([BSU13, Proposition 4.2.1]) Let f ∶ X → Y be a proper morphism between
varieties such that f∗(OX) = OY . If a connected algebraic group G acts regularly on X, then
there exists a unique regular action of G on Y such that f is G-equivariant.

Remark 1.2.7. Let G be a connected algebraic group. It follows from Proposition 1.2.6 that
an MMP applied to a smooth projective G-variety is automatically G-equivariant. Indeed, any
contraction morphism φ∶ X → Y associated to an extremal ray of NE(X)KX<0 satisfies the
assumptions of Proposition 1.2.6, hence is G-equivariant. Moreover, the finite type OY -algebra
A ∶= ⊕m≥0 φ∗OX(mKX) is canonically a G-equivariant sheaf (see [Sta21, Tag 03LE] for the
definition of equivariant sheaf), hence the variety X+ ∶= Proj(A) is endowed with a G-action
and the birational map X+ ⇢X is G-equivariant.

If X is a projective variety, then Aut○(X) is a connected algebraic group (see [MO67] by
Matsumura-Oort). Let now π∶ X → Y be a Mori fibration. By Proposition 1.2.6, the algebraic
group G ∶= Aut○(X) acts on Y and π is G-equivariant. To study G = Aut○(X), we can therefore
consider the exact sequence

(1.1) 1→ Aut○(X)Y → Aut○(X)→H → 1,
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where H is the image of the natural homomorphism G → Aut○(Y ), and Aut○(X)Y is the
(possibly disconnected) subgroup scheme of Aut○(X) which preserves every fiber of the Mori
fibration π.

Remark 1.2.8. The exact sequence (1.1) does not split in general. Consider for instance the
P1-bundle Fa → P1 with a = 1 or a ≥ 3, then Aut○(X) ≃ k[z0, z1]a ⋊GL2/µa and H ≃ PGL2.

1.2.3 Equivariant Sarkisov program for threefolds

In this section we recall some classical facts about the Sarkisov program. The latter is used to
factorize birational maps between Mori fibrations in easy links. We focus here on the three-
dimensional case, following the approach by Corti in [Cor95].

The following notion of isomorphism is often used implicitly in the literature. For instance,
in [Cor95, HM13], Corti and Hacon-McKernan consider linear systems instead of rational maps
and implicitly study Mori fibrations up to such isomorphisms.

Definition 1.2.9. Let π∶ X → Y and π′∶ X ′ → Y ′ be two Mori fibrations. An isomorphism
ϕ∶ X →X ′ is called isomorphism of Mori fibrations if there is a commutative diagram

X
ϕ //

π
��

X ′

π′��
Y

τ // Y ′

,

where τ ∶ Y → Y ′ is an isomorphism.

Definition 1.2.10. A birational map

X
ϕ //

π
��

X ′

π′��
Y Y ′

,

where π∶ X → Y and π′∶ X ′ → Y ′ are two Mori fibrations, is a Sarkisov link if it has one of the
following four forms:

(type I) W //
div

yy

X ′

π′��
X
π
��

ϕ
44

Y ′

ttY

(type III) X
ϕ

**

//

π
��

W ′
div

&&
Y

**

X ′

π′��
Y ′

(type II) W //
div

yy

W ′
div

&&
X

ϕ //

π
��

X ′

π′��
Y oo

≃ // Y ′

(type IV) X
ϕ //

π
��

X ′

π′��
Y

��

Y ′

��
Z

where:
● all varieties are normal;
● all arrows that are not horizontal are elementary contractions, i.e. contractions of one ex-

tremal ray, of relative Picard rank one;
● the morphisms marked with div are Mori divisorial contractions; and
● all the dotted arrows are small maps, i.e. compositions of Mori flips, flops and Mori anti-flips.
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● The birational map ϕ∶ X ⇢ X ′ is not an isomorphism of Mori fibrations (but can be an
isomorphism in the type IV case).

Remark 1.2.11. The composition of a Sarkisov link with an isomorphism of Mori fibrations is
again a Sarkisov link. From now on, we will identify two such links, and thus often say that
there is a unique link, or finitely many links, which means “up to composition at the target by
an isomorphism of Mori fibrations”.

Over an algebraically closed field of characteristic zero, the fact that every birational map
between Mori fibrations is a composition of elementary links as above (and of isomorphisms
of Mori fibrations) was proven by Corti in [Cor95, Theorem 3.7], and generalized by Hacon-
McKernan in [HM13, Theorem 1.1] to any dimension. We need an equivariant version of this
result for the action of a connected algebraic group. In dimension 3, this follows in fact from
the proof of [Cor95, Theorem 3.7] as every step turns to be equivariant. We refer to [Flo20,
Theorem 1.3], by Floris, for a complete proof of the validity of the equivariant Sarkisov program
in dimension ≥ 3.

Theorem 1.2.12. ([Cor95, Theorem 3.7], [HM13, Theorem 1.1], and [Flo20, Theorem 1.3].)
Assume that char(k) = 0. Let X → Y and X ′ → Y ′ be two terminal Mori fibrations and let
G = Aut○(X). Every G-equivariant birational map ϕ∶ X ⇢ X ′ factorizes into a product of
G-equivariant Sarkisov links and isomorphisms of Mori fibrations.

Explicit examples of (non-trivial) equivariant links between 3-dimensional Mori fibrations
will be given in Theorem 1.3.11.

1.2.4 Some families of P1-fibrations over rational surfaces

In this section we introduce certain families of P1-fibrations (i.e. of Mori conic bundles whose
generic fiber is isomorphic to P1) which will appear in the statements of our main results in
§ 1.3. They are in fact all P1-bundles, except the last one.

(i) Decomposable P2-bundles over P1. We recall that any vector bundle over P1 is split (see
e.g. [HM82]), and so a P2-bundle over P1 is isomorphic to

Rm,n = P(OP1(−m)⊕OP1(−n)⊕OP1) for some m,n ∈ Z.

The P2-bundle Rm,n identifies with the quotient of (A3 ∖ {0}) × (A2 ∖ {0}) by the action of
G2
m given by

G2
m × (A3 ∖ {0}) × (A2 ∖ {0}) → (A3 ∖ {0}) × (A2 ∖ {0})
((λ,µ), (x0, x1, x2, y0, y1)) ↦ (λµ−mx0, λµ

−nx1, λx2, µy0, µy1).

The class of (x0, x1, x2, y0, y1) is written [x0 ∶ x1 ∶ x2; y0 ∶ y1]. Then the structure morphism
Rm,n → P1 identifies with the projection [x0 ∶ x1 ∶ x2; y0 ∶ y1] ↦ [y0 ∶ y1]. Also, the permuta-
tions of x0, x1 and x1, x2 give isomorphisms of P2-bundles Rm,n ≃Rn,m and Rm,n ≃Rm−n,−n.
Hence, up to an isomorphism that permutes the coordinates x0, x1, x2, we may always assume
that m ≥ n ≥ 0.

(ii) Decomposable P1-bundles over P2. Let b ∈ Z. We define Pb to be the quotient of (A2 ∖{0})×
(A3 ∖ {0}) by the action of G2

m given by

G2
m × (A2 ∖ {0}) × (A3 ∖ {0}) → (A2 ∖ {0}) × (A3 ∖ {0})
((µ, ρ), (y0, y1; z0, z1, z2)) ↦ (µρ−by0, µy1;ρz0, ρz1, ρz2)
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The class of (y0, y1, z0, z1, z2) is written [y0 ∶ y1; z0 ∶ z1 ∶ z2]. The projection

Pb → P2, [y0 ∶ y1; z0 ∶ z1 ∶ z2]↦ [z0 ∶ z1 ∶ z2]

identifies Pb with
P(OP2(b)⊕OP2) ≃ P(OP2 ⊕OP2(−b))

as a P1-bundle over P2. As before, we get an isomorphism of P1-bundles Pb ≃ P−b by
exchanging y0 with y1, and we will therefore often assume that b ≥ 0 in the following.

(iii) Decomposable P1-bundles over Fa. Let a, b, c ∈ Z. We define Fb,ca to be the quotient of
(A2 ∖ {0})3 by the action of G3

m given by

G3
m × (A2 ∖ {0})3 → (A2 ∖ {0})3

((λ,µ, ρ), (x0, x1, y0, y1, z0, z1)) ↦ (λµ−bx0, λρ
−cx1, µρ

−ay0, µy1, ρz0, ρz1)

The class of (x0, x1, y0, y1, z0, z1) is written [x0 ∶ x1; y0 ∶ y1; z0 ∶ z1]. The projection

Fb,ca → Fa, [x0 ∶ x1; y0 ∶ y1; z0 ∶ z1]↦ [y0 ∶ y1; z0 ∶ z1]

identifies Fb,ca with

P(OFa(bsa)⊕OFa(cf)) ≃ P(OFa ⊕OFa(−bsa + cf))

as a P1-bundle over the Hirzebruch surface Fa, where sa resp. s−a is the section of self-
intersection a resp. −a given by y1 = 0 resp. y0 = 0, and f is a fiber of the structure morphism
Fa → P1 given by z1 = 0.

Moreover, every fiber of the composed morphism Fb,ca → Fa → P1, given by the z-projection,
is isomorphic to Fb, and the restriction of Fb,ca → Fa on the curves s−a and sa is isomorphic
to Fc and Fc−ab respectively.

As for Hirzebruch surfaces, one can reduce to the case a ≥ 0, without changing the isomor-
phism class, by exchanging y0 and y1. We then observe that the exchange of x0 and x1 yields
an isomorphism Fb,ca ≃ F−b,−ca . We will therefore assume most of the time a, b ≥ 0 in the
following. If b = 0, we can moreover assume that c ≤ 0.

(iv) Umemura P1-bundles over Fa. Let a, b ≥ 1 and c ≥ 2 be such that c = ak + 2 with 0 ≤ k ≤ b.
We call Umemura P1-bundle the P1-bundle Ub,ca → Fa obtained by the gluing of two copies
of Fb ×A1 along Fb × (A1 ∖ {0}) by the automorphism ν ∈ Aut(Fb × (A1 ∖ {0})) given by

ν∶ ([x0 ∶ x1; y0 ∶ y1], z) ↦ ([x0 ∶ x1z
c + x0y

k
0y

b−k
1 zc−1; y0z

a ∶ y1], 1
z
) ,

= ([x0 ∶ x1z
c−ab + x0y

k
0y

b−k
1 zc−ab−1; y0 ∶ y1z

−a], 1
z
) .

The structure morphism Ub,ca → Fa sends ([x0 ∶ x1; y0 ∶ y1], z) ∈ Fb × A1 onto respectively
[y0 ∶ y1; 1 ∶ z] ∈ Fa and [y0 ∶ y1; z ∶ 1] ∈ Fa on the two charts.

Let us mention that, according to [Ume88, § 10] (or [BFTa, § 3.4 and § 3.6]), the P1-bundle
Ub,ca coincides with the projectivization of the rank 2 vector bundle defined by the unique
(up to non-zero scalar) non-trivial extension

(1.2) 0→ OFa → Eb,ca → OFa(−bsa + cf)→ 0

which is equivariant under the natural SL2-action on Fa.
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(v) Let b ≥ 1. The P1-bundle Vb → P2 is obtained from Ub,21 → F1 by contracting the −1-section
F1 → P2. (The existence of the P1-bundle Vb → P2 follows therefore from the descent Lemma
obtained in [BFTa, § 2.3].) In particular, we have a commutative square

Ub,21
//

��

Vb
��

F1
// P2

and Aut(Vb) acts on P2 with two orbits: a fixed point (obtained by contracting the −1-section
in F1) and its open complement.

(vi) Schwarzenberger P1-bundles over P2. Let b ≥ −1, and let κ∶ P1 ×P1 → P2 be the (2 ∶ 1)-cover
defined by

κ∶ P1 × P1 → P2

([y0 ∶ y1], [z0 ∶ z1]) ↦ [y0z0 ∶ y0z1 + y1z0 ∶ y1z1],

whose ramification locus is the diagonal ∆ ⊆ P1 × P1, and whose branch locus is the smooth
conic Γ = {[X ∶ Y ∶ Z] ∣ Y 2 = 4XZ} ⊆ P2. The b-th Schwarzenberger P1-bundle Sb → P2 is the
P1-bundle defined by

Sb = P(κ∗OP1×P1(−b − 1,0))→ P2.

Note that Sb is the projectivization of the classical Schwarzenberger rank 2 vector bundle
κ∗OP1×P1(−b − 1,0) introduced by Schwarzenberger in [Sch61]. Moreover, the preimage of a
tangent line to Γ by Sb → P2 is isomorphic to Fb for each b ≥ 0 (see [BFTa, Lemma 4.2.5(1)]);
this explains the shift in the notation.

(vii) For each b ≥ 2, and when the field k has characteristic /= 2, we define the toric threefold Wb

as the quotient of (A2 ∖ {0}) × (A3 ∖ {0}) by the action of G2
m given by

G2
m × (A2 ∖ {0}) × (A3 ∖ {0}) → (A2 ∖ {0}) × (A3 ∖ {0})
((µ, ρ), (y0, y1; z0, z1, z2)) ↦ (µρ−(2b−1)y0, µy1;ρz0, ρz1, ρ

2z2)
.

The class of (y0, y1, z0, z1, z2) is written [y0 ∶ y1; z0 ∶ z1 ∶ z2]. The projection

Wb → P(1,1,2), [y0 ∶ y1; z0 ∶ z1 ∶ z2]↦ [z0 ∶ z1 ∶ z2]

yields a P1-fibration over the weighted projective space P(1,1,2) which is a P1-bundle over
P(1,1,2)∖[0 ∶ 0 ∶ 1]. Moreover, using tools from toric geometry (see e.g. [Mat02, Chapter 14]),
we can verify that Wb → P(1,1,2) is a Mori fibration.

In addition, we can verify that Wb has exactly two singular points, namely [1 ∶ 0; 0 ∶ 0 ∶ 1]
and [0 ∶ 1; 0 ∶ 0 ∶ 1], both located in the fiber over [0 ∶ 0 ∶ 1], and both having a neighborhood
isomorphic to A3/{±id}; in particular, Wb is Q-Gorenstein of index 2.

1.2.5 Maximality, stiffness, and superstiffness for P1-bundles

In this section we introduce the notions of maximality, stiffness, and superstiffness for P1-
bundles; this will be useful to state some of our main results in § 1.3.2.

These notions are analogous to the notions of equivariant birational rigidity / superrigidity
for Mori fiber spaces, but are not equivalent, since here we only consider P1-bundles. Moreover,
birational rigidity for Mori fiber spaces is always up to squares, while stiffness also detects
these birational maps; see [Cor00] and [Puk13] to know more about the notions of rigidity and
superrigidity for Mori fiber spaces.
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Definition 1.2.13. Let π∶ X → S and π′∶ X ′ → S′ be two P1-bundles over two smooth
projective rational surfaces S and S′ respectively. A birational map ϕ∶ X ⇢X ′ is said to be
● a square birational map (resp. a square isomorphism/square automorphism) if there exists

a birational map η∶ S ⇢ S′ such that π′ϕ = ηπ (and if ϕ is resp. an isomorphism/automor-
phism). We say in these cases that ϕ is above η;

● a birational map (resp. an isomorphism/automorphism) of P1-bundles if S = S′, π′ϕ = π
(and if ϕ is resp. an isomorphism/automorphism); and

● Aut○(X)-equivariant if ϕAut○(X)ϕ−1 ⊆ Aut○(X ′) (which is equivalent to the condition
ϕAut○(X)ϕ−1 ⊆ Aut(X ′)).

As this definition depends on π, π′, and not only on X,X ′, we will often write ϕ∶ (X,π) ⇢
(X ′, π′), and say that (X,π) and (X ′, π′) are resp. square birational / square isomorphic /
birational P1-bundles / isomorphic P1-bundles if ϕ satisfies the corresponding condition.

Remark 1.2.14. In the previous definition, every element of Aut○(X) yields a square automor-
phism by Proposition 1.2.6, but not necessarily a birational map of P1-bundles.

Definition 1.2.15. Let π∶ X → S be a P1-bundle over a smooth projective surface S. We say
that Aut○(X) is maximal if, for each Aut○(X)-equivariant square birational map ϕ∶ (X,π) ⇢
(X ′, π′), we have ϕAut○(X)ϕ−1 = Aut○(X ′). If we moreover have (X ′, π′) ≃ (X,π) (resp. ϕ
is an isomorphism of P1-bundles) for each such ϕ, we say that the P1-bundle (X,π) is stiff
(resp. superstiff ).

Remark 1.2.16. This definition depends on X and π, and not only on X. For instance, if we
take X = P1 × F1, and the two standard P1-bundle structures π∶ X → P1 × P1 and π′∶ X → F1,
then Aut○(X) is maximal with respect to π but not with respect to π′.

1.2.6 Algebraic subgroups of Bir(X) and regularization theorem

The group of birational transformations Bir(X) of a variety X has no structure of algebraic
group in general, but one can nevertheless define the notion of algebraic subgroups of Bir(X).

Definition 1.2.17. Let X be a variety and let A be a scheme.
● An A-family of birational transformations of X is a birational transformation ϕ∶ A ×X ⇢
A ×X such that there is a commutative diagram

A ×X ϕ //

p1
##

A ×X

p1
{{

A

where p1∶ A×X → A is the first projection, and which induces an isomorphism U ≃ V , where
U,V ⊆ A ×X are two dense open subsets such that p1(U(k)) = p1(V (k)) = A(k).

● Every A-family of birational transformations of X induces a map from A(k) to Bir(X); this
map ρ∶ A(k)→ Bir(X) is called a morphism from A(k) to Bir(X).

● If A is moreover an algebraic group and if ρ is a group homomorphism, the rational map
A ×X ⇢ X obtained by p2 ○ ϕ (where p2∶ A ×X → X is the second projection) is called
a rational action of A on X, the morphism ρ∶ A(k) → Bir(X) is called an algebraic group
homomorphism, and the image of A(k) by the morphism ρ is called an algebraic subgroup of
Bir(X).
If, in addition, the map ϕ is an automorphism, we say that the rational action of A on X is a
regular action, that the morphism ρ∶ A(k) → Aut(X) is an algebraic group homomorphism,
and that the image of A(k) by the morphism ρ is an algebraic subgroup of Aut(X).
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Example 1.2.18. Let n ≥ 2, d ≥ 1 be two integers and let X = An, A = Gd
a. The next

isomorphism corresponds to an A-family of birational transformations of X:

A ×X ≃ A ×X
((t1, . . . , td), (x1, . . . , xn)) ↦ ((t1, . . . , td), (x1, . . . , xn−1, xn +∑di=1 tix

i
1))

Since A = Gd
a is an algebraic group, and because the corresponding morphism A(k) → Aut(X)

is an injective group homomorphism, there is a regular action of A on X, and A is an algebraic
subgroup of Bir(X).

Remark 1.2.19. An algebraic group G such that G(k) ⊆ Bir(X) is not necessarily an algebraic
subgroup of Bir(X). For instance, the map (x, y) ↦ (x, y + p(x)), with p ∈ C[t], gives an
injective group homomorphism of Gn

a(C) in Bir(P2), for all n ≥ 1 (as C[t] ≃ Cn as Q-vector
spaces), but here Gn

a is not an algebraic subgroup of Bir(P2) as it is not of bounded degree (see
[BFTb, Lemma 2.3.10]).

There is a natural contravariant functor, say BirX , from the category of schemes to the
category of groups; it is defined at the level of objects by

BirX(A) = {morphisms from A(k) to Bir(X)},

where the group law on this set is given by pointwise multiplication. In the case where X is
rational, of dimension ≥ 2, this functor is not representable by an algebraic group; this is not
surprising and essentially follows from Example 1.2.18, as the dimension of the corresponding
algebraic group would be unbounded. In fact, this functor is not even representable by an ind-
variety (inductive limit of varieties) by [BF13, Theorem 1], and the same holds when replacing
ind-varieties by ind-stacks. However, the natural contravariant subfunctor, say AutX , from the
category of schemes to the category of groups, defined at the level of objects by

AutX(A) = AutA(X ×A),

is representable by a group scheme when X is proper [MO67].

The next result is known as the regularization theorem of Weil.

Theorem 1.2.20. ([Wei55, Theorem], see also [Zai95, Kra] for a modern proof) Let G be an
algebraic group acting rationally on a variety V . Then there exists a variety W birational to V
such that the rational action of G on W obtained by conjugation is regular.

Therefore, for every algebraic subgroup G ⊆ Bir(Pn), there exists a birational map Pn ⇢X,
where X is a smooth (otherwise remove the singular locus) rational variety, which conjugates
G to a subgroup of Aut(X) (and of Aut○(X) if moreover G is connected). Applying [Sum74,
Lemma 8 and Theorem 1], we can furthermore assume that X is projective. Finally, under the
extra assumption char(k) = 0, which ensures the existence of a G-equivariant desingularization
(see [Kol07, Proposition 3.9.1]), we have the following more precise result for threefolds.

Theorem 1.2.21. ([BFTb, Theorem 2.4.4]) Assume that char(k) = 0. Every connected alge-
braic subgroup G ⊆ Bir(P3) is conjugate to an algebraic subgroup of Aut○(X), where X is a
3-dimensional rational Mori fiber space.
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1.3 Main results

1.3.1 General results on automorphism groups of Mori fiber spaces

Our most general result on automorphism groups of Mori fiber spaces is the following.

Theorem 1.3.1. ([BFTb, Theorem A]) Assume that char(k) ∉ {2,3,5} and let X̂ be a smooth
rational projective threefold. Then there is an Aut○(X̂)-equivariant birational map X̂ ⇢ X,
where X is a Mori fiber space that satisfies one of the following conditions:

(i) X is a P1-bundle over P2, P1 × P1 or a Hirzebruch surface Fa with a ≥ 2; or
(ii) X is either a P2-bundle over P1 or a smooth Umemura quadric fibration Qg over P1 (see

Definition 1.2.5) with g ∈ k[u0, u1] a square-free homogeneous polynomial of degree 2n ≥ 2;
or

(iii) X is a rational Q-factorial Fano threefold of Picard rank 1 with terminal singularities.

Let us comment on the possible cases of Theorem 1.3.1:

(a) As mentioned in § 1.1, very few Mori fibrations appear in Theorem 1.3.1. In particular,
there is no conic bundle that is not a P1-bundle and no del Pezzo fibration of degree d ≤ 7
(see Theorems 1.3.3 and 1.3.4 for more details on these two cases).

(b) There are many distinct families of P1-bundles over P2 or over a Hirzebruch surface Fa. In
§ 1.3.2, we will focus on these and give a classification of the maximal ones when char(k) = 0.

(c) The Umemura quadric fibrations Qg → P1 are parametrized by classes of hyperelliptic
curves, and so they form an infinite dimensional family. Their automorphism groups are
however all isomorphic to PGL2 (or a product of PGL2 by Gm when deg(g) = 2, but in this
case Aut○(Qg) is conjugate to a strict subgroup of Aut○(Q) = PSO5 with Q ⊆ P4 a smooth
quadric hypersurface).

(d) The case of Fano threefolds with Picard rank 1 is less understood. There is for the moment
no complete classification of their automorphism groups, except in the smooth case and
over an algebraically closed field of characteristic zero (see [KPS18, Theorem 1.1.2]).

Along our way to prove Theorem 1.3.1, and then Theorems 1.3.8 and 1.3.11 below, we
prove the following three intermediate results (Proposition 1.3.2, whose proof is elementary and
certainly well-known from specialists but for which we could not find a suitable reference, and
Theorems 1.3.3 and 1.3.4), which we believe are interesting on their own.

Proposition 1.3.2. ([BFTb, Proposition B]) Let X be a rationally connected variety (i.e. two
general points of X are connected by a rational curve). Then every algebraic subgroup G ⊆
Bir(X) is a linear algebraic group.

Suppose moreover that char(k) = 0, dim(X) = 3, and X is not rational (for instance X is a
smooth projective cubic threefold). Then every connected algebraic subgroup of Bir(X) is trivial;
in particular, Aut○(X) is trivial.

The next two results concern automorphism groups of certain conic bundles over surfaces
and del Pezzo fibrations over P1; these are key-ingredients in the proof of Theorem 1.3.1.

Theorem 1.3.3. ([BFTb, Theorem C]) Assume that char(k) ≠ 2, let X be a normal rationally
connected threefold, and let π∶ X → S be a conic bundle.

(i) If the generic fiber of π is isomorphic to P1
k(S), then there is an Aut○(X)-equivariant com-

mutative diagram

X̂
ψ //

π̂ ��

X
π��

Ŝ
η // S
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where ψ and η are birational maps, Ŝ is a smooth projective surface with no (−1)-curve,
and the morphism π̂∶ X̂ → Ŝ is a P1-bundle.

(ii) If the generic fiber of π is not isomorphic to P1
k(S), then the action of Aut○(X) on S gives

an exact sequence (see §1.2.2 for the notation)

1→ Aut○(X)S → Aut○(X)→H → 1,

where H ⊆ Aut○(S) and Aut○(X)S is a finite group, isomorphic to (Z/2Z)r for some
r ∈ {0,1,2}. Moreover, the following hold:

(a) If S is rational, which is always true if char(k) = 0, then both H and Aut○(X) are tori
of dimension at most two.

(b) If X is rational, then S is rational and there is an Aut○(X)-equivariant birational map
ϕ∶ X ⇢ P3 such that ϕAut○(X)ϕ−1 ⊊ Aut(P3) = PGL4.

Theorem 1.3.4. ([BFTb, Theorem D]) Assume that char(k) ∉ {2,3,5}. Let πX ∶ X → P1 be
a Mori del Pezzo fibration of degree d ∈ {1, . . . ,9}. Then, a general fiber of πX cannot be P2

blown-up in one or two points, hence d ≠ 7, and the following hold.

(i) If d ≤ 5 (resp. d = 6), then Aut○(X) is a torus of dimension ≤ 1 (resp. ≤ 3).
(ii) If Aut○(X) is not isomorphic to a torus, there is an Aut○(X)-equivariant commutative

diagram

X
ψ //

πX ''

Y

πYwwP1

such that ψ is a birational map, Aut○(X) acts regularly on Y , and either

(a) d = 9 and πY ∶ Y → P1 is a P2-bundle; or
(b) d = 8 and there is a square-free homogeneous polynomial g ∈ k[u0, u1] of degree 2n (with

n ≥ 1) such that (Y,πY ) = (Qg, πg).

Moreover, in the last case, the group ψAut○(X)ψ−1 ⊆ Aut○(Qg) is either equal to PGL2 if
n ≥ 2 or to PGL2 ×Gm if n = 1.

Remark 1.3.5. The main reason for the restriction on the characteristic of k comes from the fact
that the generic fiber of a del Pezzo fibration X → P1 can be non-smooth in small characteristic
(see [BFTb, Lemma 4.1.2]).

1.3.2 Results on automorphism groups of P1-bundles in characteristic zero

In this section we assume that char(k) = 0 and we use the notation and terminology introduced
in §§ 1.2.4-1.2.5. The next two statements summarize most of our work in [BFTa].

Theorem 1.3.6. ([BFTa, Theorem A]) Assume that char(k) = 0. Let π∶ X → S be a P1-
bundle over a smooth projective rational surface S. Then, there exists an Aut○(X)-equivariant
square birational map (X,π) ⇢ (X ′, π′), such that Aut○(X ′) is maximal. Moreover, the group
Aut○(X) is maximal if and only if (X,π) is square isomorphic to one of the following:
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(a) a decomposable P1-bundle Fb,ca Ð→ Fa with a, b ≥ 0, a /= 1, c ∈ Z,
c ≤ 0 if b = 0,
and where a = 0 or b = c = 0
or −a < c < ab;

(b) a decomposable P1-bundle Pb Ð→ P2 for some b ≥ 0;

(c) an Umemura P1-bundle Ub,ca Ð→ Fa for some a, b ≥ 1, c ≥ 2,
with c − ab < 2 if a ≥ 2,
and c − ab < 1 if a = 1;

(d) a Schwarzenberger P1-bundle Sb Ð→ P2 for some b ≥ 1; or
(e) a P1-bundle Vb Ð→ P2 for some b ≥ 2.

Contrary to the 2-dimensional case (recalled in § 1.1.3), there are many P1-bundles X → S
with maximal Aut○(X) which are birationally conjugated. This means that the P1-bundles of
Theorem 1.3.6 are not always stiff. The next result describes all the possible equivariant links
between such P1-bundles.

Theorem 1.3.7. ([BFTa, Theorem B]) Assume that char(k) = 0. The P1-bundles of Theo-
rem 1.3.6 are superstiff only in the following cases:

(a) Fb,ca with a = 0 or b = c = 0;
(b) Pb for b ≥ 0; and
(c) S1 ≃ P(TP2).

Moreover, the P1-bundle Sb with b ≥ 2 is stiff but not superstiff. For all the other P1-bundles of
Theorem 1.3.6, the P1-bundles are not stiff, and the equivariant square birational maps between
them are given by compositions of square isomorphisms of P1-bundles and of birational maps
appearing in the following list.

(i) For all integers a, b ≥ 0, c ∈ Z with a /= 1, −a < c < 0, there is an infinite sequence of
equivariant birational maps of P1-bundles

Fb,ca ⇢ Fb+1,c+a
a ⇢ ⋯⇢ Fb+n,c+ana ⇢ ⋯

(ii) For all integers a, b ≥ 1 with (a, b) /= (1,1), there is an infinite sequence of equivariant
birational maps of P1-bundles

Ub,2a ⇢ Ub+1,2+a
a ⇢ ⋯⇢ Ub+n,2+ana ⇢⋯

(iii) For each b ≥ 2, there is an equivariant birational involution Sb ⇢ Sb.
(iv) For each b ≥ 2, there is an equivariant birational morphism Ub,21 → Vb obtained by contracting

the preimage of the (−1)-curve of F1 onto the fiber of a point of P2 in Vb.

Let a, b, c ∈ Z, with a ≥ 0, b ≥ 1 and c ≥ 2. Let us mention that, in [BFTa, § 3.3], we also
prove that the isomorphism classes of indecomposable P1-bundles P(E) → Fa with numerical
invariants (a, b, c), i.e. such that the rank 2 vector bundle E fits in an exact sequence like (1.2),
are parametrized by the projective space

Mb,c
a = P(

b

⊕
i=0

yi0y
b−i
1 ⋅ k[z]≤c−2−ai) ≃ P

1
2
(d+1)(2(c−1)−ad)−1,

where d is the biggest integer such that d ≤ b and ad ≤ c − 2. The natural action of Aut○(Fa)
on this parameter space is described explicitly in [BFTa, § 3.4]. It turns out that Mb,c

a has at
most one fixed point (when a, b ≥ 1 and c ≥ 2 is such that c = ak + 2 with 0 ≤ k ≤ b), in which
case this fixed point corresponds to the Umemura P1-bundle Ub,ca .
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1.3.3 Other results on automorphism groups of Mori fiber spaces in charac-
teristic zero

Once we have proven Theorem 1.3.1, and assuming that char(k) = 0, we can use the results
stated in § 1.3.2 together with the equivariant Sarkisov program (recalled in §1.2.3) to prove
the following results.

Theorem 1.3.8. ([BFTb, Theorem E]) Assume that char(k) = 0, and let X̂ be a rational
projective threefold. Then there is an Aut○(X̂)-equivariant birational map X̂ ⇢ X, where X is
one of the following Mori fiber spaces (see Example 1.2.5 and §1.2.4 for the notation).

(a) A decomposable P1-bundle Fb,ca Ð→ Fa with a, b ≥ 0, a /= 1, c ∈ Z, and
(a, b, c) = (0,1,−1); or
a = 0, c ≠ 1, b ≥ 2, b ≥ ∣c∣; or
−a < c < a(b − 1); or
b = c = 0.

(b) A decomposable P1-bundle Pb Ð→ P2 for some b ≥ 2.

(c) An Umemura P1-bundle Ub,ca Ð→ Fa for some a, b ≥ 1, c ≥ 2 with
c < b if a = 1; and
c − 2 < ab and c − 2 ≠ a(b − 1) if a ≥ 2.

(d) A Schwarzenberger P1-bundle Sb Ð→ P2 for some b = 1 or b ≥ 3.
(e) A P1-bundle Vb Ð→ P2 for some b ≥ 3.
(f) A singular P1-fibration Wb Ð→ P(1,1,2) for some b ≥ 2.
(g) A decomposable P2-bundle Rm,n Ð→ P1 for some m ≥ n ≥ 0,

with (m,n) ≠ (1,0) and
m = n or m > 2n.

(h) An Umemura quadric fibration Qg Ð→ P1 for some homogeneous
polynomial g ∈ k[u0, u1] of
even degree with at least
four roots of odd multiplicity.

(i) The weighted projective space P(1,1,1,2).
(j) The weighted projective space P(1,1,2,3).

(k) A rational Q-factorial Fano threefold of Picard rank 1 with terminal singularities.

Remark 1.3.9. In Theorem 1.3.8, families (a), (b), (c), (d), (e), (g) correspond to smooth
varieties. A variety Qg from family (h) is smooth if and only if the polynomial g is square-free.
Families (f), (i), and (j) correspond to singular varieties (those were not considered in the
work of Umemura and Mukai while they appear naturally in Mori theory).

Remark 1.3.10. A description of the automorphism groups of the Mori fiber spaces listed in
Theorem 1.3.8 can be found in [BFTa, § 3.1, § 3.6, § 4.1, and § 4.2] (for the P1-bundles) and in
[BFTb, § 4.4 and § 5.3] (for the other Mori fiber spaces). See also [Ume85, § 4].

Remark. A description of the automorphism groups of the Mori fibre spaces listed in Theo-
rem 1.3.8 can be found in [BFTa, § 3.1, § 3.6, § 4.1, and § 4.2] for the P1-bundles, in [BFTb,
§ 4.4] for the Umemura quadric fibrations, in [BFTb, § 5.3] for the P2-bundles over P1, in [BFTb,
Proposition 6.5.5] for the P1-fibrations Wb → P(1,1,2), and in [Al 89, § 8] for the weighted pro-
jective spaces. (See also [Ume85, § 4] for an alternative description of these automorphism
groups in the smooth cases.)

Theorem 1.3.11. ([BFTb, Theorem F]) Assume that char(k) = 0. Let X1 and X2 be two Mori
fiber spaces such that X1 belongs to one of the families (a)–(j) of Theorem 1.3.8. If there exists
an Aut○(X1)-equivariant birational map ϕ∶ X1 ⇢X2, then X2 also belongs to one of the families
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(a)–(j), and ϕAut○(X1)ϕ−1 = Aut○(X2). Moreover, ϕ is a composition of isomorphisms of Mori
fibrations and of the following equivariant Sarkisov links (or their inverses):

(S1) P1 × P1 × P1/(P1 × P1) ≃ P1 × P1 × P1/(P1 × P1) (exchange of factors);
(S2) P1 × P2/P1 ≃ P1 × P2/P2;
(S3) S1/P2 ≃ S1/P2 (automorphism of order 2 exchanging fibrations);
(S4) Fb,00 ≃ Fb × P1 ≃ F0,0

b for b ≥ 2 (isomorphism);
(S5) Sb ⇢ Sb for b ≥ 3 (birational involution);
(S6) P2 → P(1,1,1,2) (reduced blow-up of the singular point of P(1,1,1,2));
(S7) F1,−n

m−n →Rm,n for m = n ≥ 1 or m > 2n ≥ 2 (blow-up of a section);
(S8) R1,1 ⇢R1,1 (birational involution which is a flop);
(S9) P(1,1,2,3)⇢R3,1 (reduced blow-up of [0 ∶ 0 ∶ 1 ∶ 0] followed by a flip);

(S10) P(1,1,2,3)⇢W2 (weighted blow-up of [0 ∶ 0 ∶ 0 ∶ 1]);
(S11) Fb,ca ⇢ Fb+1,c+a

a for all a, b, c ∈ Z, a, b ≥ 0, a(c + a) > 0 and either ab > 0 or ac < 0;
(S12) Ub,ca ⇢ Ub+1,c+a

a for each Umemura bundle Ub,ca ;
(S13) Ub,21 → Vb for each b ≥ 3 (blow-up of a point);

(S14) Wb ⇢ Fb−1,−1
2 for each b ≥ 2 (blow-up of a singular point followed by a flip;

(S15) Wb ⇢ Fb,12 for each b ≥ 2 (blow-up of a singular point followed by a flip; and
(S16) Qg ⇢ Qgh2 for each g, h ∈ k[u0, u1] homogeneous polynomials of degree 2n ≥ 4 and 1 re-

spectively and such that g has at least three roots (blow-up of a singular point followed by a
divisorial contraction).

Finally, the next result follows readily from Theorems 1.3.8 and 1.3.11.

Corollary 1.3.12. ([BFTb, Corollary G]) Assume that char(k) = 0. Let G be a connected
algebraic subgroup of Bir(P3). Then there exists a birational map ϕ∶ X ⇢ P3 such that ϕ−1Gϕ ⊆
Aut○(X), where X is one of Mori fiber spaces listed in Theorem 1.3.8, and such that the
connected algebraic subgroup ϕAut○(X)ϕ−1 ⊆ Bir(P3) is maximal for the inclusion.

Moreover, for each variety Y that belongs to one of the families (a)-(j), and for each bi-
rational map ψ∶ Y ⇢ P3, the connected algebraic subgroup ψAut○(Y )ψ−1 ⊆ Bir(P3) is maximal
for the inclusion.

Remark 1.3.13. Let us note that the family (e) in Theorem 1.3.8 was overlooked in the work of
Umemura. These correspond to maximal connected algebraic subgroups of Bir(P3) by Theorem
1.3.11 and should therefore appear in [Ume88, § 10].

Remark 1.3.14. We conjecture that, for any rational Q-factorial Fano threefold X of Picard
rank 1 with terminal singularities (other than P(1,1,1,2) and P(1,1,2,3)), there is always an
Aut○(X)-equivariant birational map X ⇢ X ′ with X ′ either being a smooth rational Fano
threefold of Picard rank 1 or belonging to one of the families (a)–(j) of Theorem 1.3.8. (When
k = C, this is a consequence of the work of Umemura and of our study.) If we could prove this
conjecture using only birational geometry, then over an algebraically closed field of characteristic
zero we would recover the classification of Umemura thanks to the work of Kuznetsov-Prokhorov-
Shramov in [KPS18].

1.4 Lines of research

(α) It would be interesting, and could certainly be the subject of a PhD thesis, to
classify the maximal (possibly disconnected) algebraic subgroups of Bir(P3). With
our approach, this comes down to classify the rational 3-dimensional Mori fiber spaces X
whose automorphism group is maximal but possibly disconnected.
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In dimension 2, this was done by Blanc in [Bla09] over any algebraically closed field, and the
same strategy should apply in dimension 3. The key point will be to replace the classical
MMP by the equivariant MMP to deal with the group of connected components of Aut(X).
Even if a full classification of the maximal algebraic subgroups of Bir(P3) seems out of reach
in the near future (due to the high number of families of Mori fiber spaces to consider in
dimension 3), already a partial classification would be interesting.

(β) We could extend our main results over the field of real numbers. If the base field is
k = R, then we can consider real varieties as complex varieties endowed with an antiregular
involution µ (see the next chapter for details about this correspondence). Thus the real case
reduces somehow to the Z/2Z-equivariant complex case, but here the group Z/2Z does not
act via a C-automorphism, it is therefore necessary to be very cautious at each step.

The classification of the maximal infinite algebraic subgroups of Bir(P2
R), and their subgroups

of rational points, up to conjugacy by a birational map, was done by Robayo-Zimmermann in
[RZ18]. This classification has been later completed and extended by Schneider-Zimmermann
in [SZ] to the case of an arbitrary perfect base field.

In dimension 3, as in [BFTb], the first step will be to study the conic bundles over rational
surfaces and the neutral component of their automorphism groups. Analogously to what we
did in [BFTa], it is likely that we can reduce to the case where the base is a minimal smooth
rational surface. The next step will be then to describe the automorphism groups of the
conic bundles over these surfaces. Finally, we will have to study the automorphism groups of
del Pezzo fibrations over rational curves and of Picard rank 1 Fano threefolds, as in [BFTb].

(γ) We could also extend our main results over algebraically closed fields of positive
characteristic. If the base field k = k has positive characteristic p ≥ 7, then many of our
results obtained in [BFTb] are still valid, but several kinds of difficulties arise.

● It is not known whether there always exists an equivariant desingularization for threefolds,
which is essential in our approach (see Theorem 1.2.21).

● There is no complete classification of the rational Q-factorial (or even smooth) Fano
threefolds of Picard rank 1 and their automorphism groups in positive characteristic.

● The representation theory for reductive algebraic groups is much more complicated than
in characteristic zero (already for SL2). Moreover, the existence of the Frobenius endomor-
phism brings an extra obstacle when studying the maximal connected algebraic subgroups
of a given connected algebraic group. These two aspects of the theory of algebraic groups
play a central role in [BFTa] when proving Theorems 1.3.6 and 1.3.7.

Moreover, non-reduced group schemes do occur in positive characteristic, and so it would be
interesting to clarify the notion of (possibly non-reduced) subgroup scheme of the Cremona
group, and then classify the maximal connected subgroup schemes of Bir(P3).

(δ) Our approach through Mori theory to determine the maximal connected algebraic subgroups
of Bir(X), with X = P3, also works mutatis mutandis for non-rational threefolds. It is there-
fore tempting to use our approach to classify the maximal connected algebraic
subgroups of Bir(X) when X is any threefold.

The 2-dimensional case was handled by Fong in [Fon] who classified the maximal connected
algebraic subgroups of Bir(X) when X is any algebraic surface.

In the 3-dimensional case (where the MMP is still known to be valid), it would be interesting
to start by considering non-rational varieties with a lot of birational transformations. For
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instance we could take for X the product of an elliptic curve with a rational surface, in which
case Bir(X) is not an algebraic group but contains many algebraic subgroups which are not
necessarily affine nor anti-affine.

Moreover, the low dimension assumption should allow us to control the geometry of the
orbits of the Mori fiber spaces obtained from X, the Mori cone of the different blowing-ups,
and the possible equivariant Sarkisov links.

(ε) The automorphism groups of P1-bundles over minimal smooth rational surfaces correspond-
ing to maximal connected algebraic subgroups of Bir(P3) all act on the basis with a finite
number of orbits (see Theorem 1.3.8). This observation suggests that certain automorphism
groups of P1-bundles over rational Fano threefolds, acting on the basis with a finite number
of orbits, might correspond to maximal connected algebraic subgroups of Bir(P4). Hence, it
would be of interest to classify the P1-bundles over rational smooth Fano three-
folds (with small Picard number to start) whose automorphism group acts on the
basis with a dense open orbit, and then determine which ones of them correspond
to maximal connected algebraic subgroups of Bir(P4).
Since P1-bundles are projectivization of rank 2 vector bundles, and since the study of vector
bundles over the smooth Fano threefolds of Picard rank 1 is nowadays a classical topic of
complex algebraic geometry, we believe that undertaking such a classification is feasible
(though certainly challenging as there are very few recipes to produce vector bundles with a
lot of symmetries over smooth Fano threefolds).

Classifying all maximal connected algebraic subgroup of Bir(P4) is certainly a very difficult
and long-term project, but determining some non-trivial families would be an important first
step. Let us mention that the study of the automorphism groups of certain 4-dimensional
Fano fibrations over P1, started by Blanc-Floris in [BF], is also part of this project (as well
as the works [Flo20] by Floris and [BF21] by Boissière-Floris).

– 31 –



1.4. Lines of research

– 32 –



Chapter 2

Forms and descent data for almost
homogeneous varieties

In this second chapter we review the main results obtained with Lucy Moser-Jauslin and Michael
Bulois in [MJT21a, MJT21b, MJT, BMJT]. These results concern mostly the study of k-forms
of almost homogeneous varieties over k, discussing in particular the case k = R. We obtain
criteria for the existence of a k-form in the homogeneous case, and also a criterion (based on
Luna-Vust theory [LV83]) to determine whether a given k-form of the open orbit of an almost
homogeneous variety extends to the whole variety (generalizing results of Huruguen [Hur11]
for spherical embeddings). We illustrate our results by determining the real forms for certain
families of complex almost homogeneous varieties: horospherical varieties, symmetric spaces,
almost homogeneous SL2-threefolds, and nilpotent orbit closures in semisimple Lie algebras.

2.1 Aims and scope

Let k be a perfect field, let k be a fixed algebraic closure of k, and let Γ = Gal(k/k) be the
absolute Galois group of k. A k-form of a variety X over k is a variety Z over k together with
an isomorphism Zk = Z ×Spec(k) Spec(k) ≃ X. Giving a k-form of X corresponds to giving an
effective descent datum on X, i.e. an algebraic semilinear action µ∶ Γ→ Autk(X) stabilizing an
affine covering, in which case a k-form of X is given by the categorical quotient X/Γ, where Γ
acts on X via µ.

Since we are mostly interested in varieties endowed with an algebraic group action, we only
consider k-forms with symmetries coming from the algebraic group action. More precisely, given
a connected reductive algebraic group G over k and a G-variety X over k, we fix a k-form F of
G in the category of algebraic groups over k, and then consider the (k,F )-forms of X, i.e. the
F -varieties Z over k such that Zk ≃ X as G-varieties over k. Any such form corresponds to
an effective (G,ρ)-equivariant descent datum on X (here ρ refers to the descent datum on G
corresponding to the k-form F ) through the quotient map X ↦X/Γ; see § 2.2.2 for details.

Moreover, two (G,ρ)-equivariant descent data on X are equivalent if they are conjugate by
a G-equivariant automorphism of X, in which case the corresponding (k,F )-forms of X are
isomorphic as F -varieties over k. Let us note that certain G-varieties admit no (k,F )-form. On
the other hand, when a (k,F )-form exists, there may be several pairwise non-isomorphic.

A very basic problem is therefore the following

Question 2.1.1. What are the isomorphism classes of (k,F )-forms of the G-variety X?

or, equivalently,
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Question 2.1.2. What are the equivalence classes of effective (G,ρ)-equivariant descent data
on the G-variety X?

Our main goal in [MJT21a, MJT21b, MJT, BMJT] was to address this problem for certain
families of almost homogeneous G-varieties (i.e. G-varieties on which G acts with a dense open
orbit), with a particular focus on the case k = R. More precisely:

● In [MJT21a], we fix k = R and study the equivariant descent data on complex horospherical
varieties (a subclass of spherical varieties, see § 2.2.7 for the definition), generalizing classical
results known for toric varieties and flag varieties. We obtain a necessary and sufficient
condition, based on combinatorial data, for the existence of an equivariant descent datum
on a given horospherical variety, and we determine the number of equivalence classes of
equivariant descent data on horospherical homogeneous spaces. We then apply our results to
classify the equivalence classes of equivariant descent data on smooth projective horospherical
varieties of Picard rank 1; these were classified by Pasquier in [Pas09]. (Let us mention that
part of our results in [MJT21a] were generalized to spherical varieties over arbitrary fields of
characteristic zero a few months later by Borovoi-Gagliardi in [BG21].)

● In [MJT21b], we fix k = R and obtain a necessary and sufficient condition for the existence
of an equivariant descent datum on a complex symmetric space (in terms of the involution
defining the symmetric space), then we discuss how to determine the number of equivalence
classes for such equivariant descent data.

● In [MJT] we study the equivariant descent data of (non-necessarily spherical) almost homo-
geneous varieties over an arbitrary perfect field k. More precisely, we first obtain criteria
for the existence of an equivariant descent datum in the homogeneous case, and then we
extend the Luna-Vust theory over perfect fields so as to determine whether a given equiv-
ariant descent datum on the open orbit of an almost homogeneous variety extends to the
whole variety. Finally, we apply our results when k = R to determine the equivariant descent
data on complex almost homogeneous SL2-threefolds; these are not spherical varieties, but
they are among the simplest complexity-one varieties (we recall that the complexity of a
G-variety is the codimension of a general B-orbit, where G is reductive and B ⊆ G is any
Borel subgroup, see also the third chapter of this manuscript for a detailed study of another
family of complexity-one varieties with quite a simple combinatorial description).

● In [BMJT], we fix again k = R and determine the equivariant descent data on nilpotent
orbits and their closures for the adjoint action of a complex semisimple algebraic group on
its Lie algebra. (Let us note that, in contrast with the other families of almost homogeneous
varieties considered in our previous works, nilpotent orbits and their closures can have an
arbitrarily large complexity, and only a few of them are spherical or of complexity one.)

2.2 Results over arbitrary perfect fields

2.2.1 Notation

Let k be a perfect field. We denote by k a fixed algebraic closure of k, and by Γ = Gal(k/k)
the absolute Galois group of k. Since k is perfect, the field extension k ↪ k is Galois and Γ is
a profinite group endowed with the Krull topology. An abstract (abelian) group, endowed with
the discrete topology, on which Γ acts continuously is called an (abelian) Γ-group.

In this chapter, a variety (over k) is a separated scheme of finite type (over k) which is
geometrically integral and normal. An algebraic group (over k) is a finite type group scheme
(over k) which is smooth. Also, starting from Section 2.2.3, we will only consider linear algebraic
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groups. By an algebraic subgroup, we always mean a closed and reduced subgroup scheme. In
particular, we only consider homogeneous spaces with reduced stabilizers.

A reductive algebraic group F is always assumed to be connected and of simply-connected
type, i.e. Fk = F ×Spec(k) Spec(k) is isomorphic to a product of an algebraic torus and a simply-
connected semisimple algebraic group. We always denote by F an algebraic group over k and by
G an algebraic group over k such that G ≃ Fk. Also, we denote by Z(G) the (scheme-theoretic)
center of G and, when H ⊆ G is an algebraic subgroup, by NG(H) the (scheme-theoretic)
normalizer of H in G.

When we write “the homogeneous space G/H” we implicitly refer to a pair (X0, x0), where
X0 is a homogeneous G-variety over k and x0 ∈ X0(k) satisfies StabG(x0) = H as a subgroup
scheme of G. An equivariant embedding of G/H is a pair (X,x) formed by a G-variety X over
k and x ∈ X(k) such that Stabx(G) = H, as a subgroup scheme of G, and the G-orbit of x is a
dense open subset of X. Two equivariant embeddings (X1, x1) and (X2, x2) of G/H are said to
be isomorphic if there exists a G-isomorphism ψ∶ X1 → X2 such that ψ(x1) = x2. To simplify
the notation, we only write X instead of (X,x) to denote an equivariant embedding of G/H,
except when the k-point x plays an important role.

We refer to [Mil17] for the background concerning algebraic groups and varieties endowed
with an algebraic group action.

2.2.2 Preliminaries on forms and descent data

In this section we recall the basic notions of forms and descent data for algebraic groups and
varieties endowed with an algebraic group action.

Definition 2.2.1. Forms, descent data, and inner twists for algebraic groups.
● A k-form of the algebraic group G over k is an algebraic group F over k together with an

isomorphism G ≃ Fk of algebraic groups (over k).
● A descent datum on G is an algebraic semilinear action ρ∶ Γ → Autk(G) preserving the

algebraic group structure of G, which means that

– there exists a finite Galois extension k′/k in k and a k′-form F ′ of the k-variety G such
that the restriction of ρ to Gal(k/k′) coincides with the natural Gal(k/k′)-action on
G ≃ F ′ ×Spec(k′) Spec(k);

– for each γ ∈ Γ, we have a commutative diagram

G
ργ //

��

G

��
Spec(k) (γ∗)−1

// Spec(k)

where ργ is a scheme automorphism over Spec(k); and
– the induced morphism γ∗G → G is an isomorphism of algebraic groups over Spec(k),

where γ∗G→ Spec(k) is the base change of G→ Spec(k) along the morphism γ∗.
● Two descent data ρ1 and ρ2 on G are equivalent if there exists a group automorphism
ψ ∈ Autgr(G) such that

∀γ ∈ Γ, ρ2,γ = ψ ○ ρ1,γ ○ ψ−1.

If h ∈ G(k), we denote by innh the inner automorphism of G defined by

innh∶ G→ G, g ↦ hgh−1.

Two descent data ρ1 and ρ2 on G are strongly equivalent if we can take ψ = innh for some
h ∈ G(k).
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● Let ρ∶ Γ → Autk(G) be a descent datum on G, and let c∶ Γ → G(k) be a locally constant
map. If the map

ρc∶ Γ→ Autk(G), γ ↦ (g ↦ inncγ ○ ργ(g) = cγργ(g)c−1
γ )

is a descent datum on G, then ρc is called an inner twist of ρ.

Remark 2.2.2. The reason why the finite Galois extension k′/k appears in Definition 2.2.1 is
to ensure the existence of the categorical quotient G/Γ. Indeed, Γ = Gal(k/k) is a (possibly
infinite) discrete group while Gal(k′/k) is always finite, and so the categorical quotient G/Γ ≃
F ′/Gal(k′/k) is well-defined. (The same remark holds also for Definition 2.2.3 below.)

Let G be an algebraic group over k. There is a correspondence between descent data on G
and k-forms of G given as follows (see [FSS98, § 1.4]).
● If F is a k-form of G, then the homomorphism Γ→ Autk(Fk), γ → Id×(γ∗)−1 gives a descent

datum on G ≃ Fk.
● Conversely, if Γ → Autk(G) is a descent datum on G, then the categorical quotient F ∶=
G/Γ ≃ F ′/Gal(k′/k) is a k-form of G; an isomorphism G ≃ Fk is given by (q, f), where

q∶ G→ F is the quotient morphism and f ∶ G→ Spec(k) is the structure morphism.
Moreover, two k-forms of G are isomorphic (as algebraic groups over k) if and only if the
corresponding descent data are equivalent.

Definition 2.2.3. Forms and descent data for varieties with a group action.
We fix a k-form F of G, and we denote by ρ the corresponding descent datum on G.
● A (k,F )-form of a G-variety X (over k) is an F -variety Z (over k) together with an iso-

morphism X ≃ Zk of G-varieties, where G acts on Zk through G ≃ Fk.
● A (G,ρ)-equivariant descent datum on X is an algebraic semilinear action µ∶ Γ→ Autk(X)

compatible with (G,ρ), which means that

– there exists a finite Galois extension k′/k in k and a k′-form Z ′ of the k-variety X such
that the restriction of µ to Gal(k/k′) coincides with the natural Gal(k/k′)-action on
X ≃ Z ′ ×Spec(k′) Spec(k);

– for each γ ∈ Γ, we have a commutative diagram

X
µγ //

��

X

��
Spec(k) (γ∗)−1

// Spec(k)

where µγ is a scheme automorphism over Spec(k); and
– the following condition holds

(2.1) ∀γ ∈ Γ,∀g ∈ G(k),∀x ∈X(k), µγ(g ⋅ x) = ργ(g) ⋅ µγ(x).

● Two (G,ρ)-equivariant descent data µ1 and µ2 on X are equivalent if there exists a G-
automorphism ϕ ∈ AutG

k
(X) such that

∀γ ∈ Γ, µ2,γ = ϕ ○ µ1,γ ○ ϕ−1.

Let X be a G-variety. As for algebraic groups, there is a one-to-one correspondence between
isomorphism classes of (k,F )-forms of X (as F -varieties over k) and equivalence classes of
effective (G,ρ)-equivariant descent data on X (see [Bor20, § 5]). Here the word effective means
that X is covered by Γ-stable affine open subsets, i.e. that the categorical quotient X/Γ ≃
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Z ′/Gal(k′/k), which always exists as an algebraic space over k, is in fact a variety over k (see
[SGA03, Proposition V.1.8]).

Let us note that if X is quasiprojective or covered by Γ-stable quasiprojective open subsets,
then X is covered by Γ-stable affine open subsets ([BG21, Lemma 2.4]). In particular, since
homogeneous spaces under the action of a connected algebraic group are quasiprojective (this
follows for instance from [Bri17, Theorem 1]), equivariant descent data on homogeneous spaces
are always effective.

Once we know the existence of a (G,ρ)-equivariant descent datum µ on X, we can use
Galois cohomology to parametrize the equivalence classes of all of them. (We refer to [Ser02] for
general background on Galois cohomology.) First, observe that the group of G-automorphisms
AutG

k
(X) is endowed with a Γ-group structure as follows:

(2.2) innµ∶ Γ ×AutG
k
(X)→ AutG

k
(X), (γ,ϕ)↦ µγ ○ ϕ ○ µ−1

γ .

Then, the next result is a straightforward consequence of the definition of cohomologous 1-
cocycles with values in the Γ-group AutG

k
(X).

Proposition 2.2.4. ([Wed18, Corollary 8.2]) Let X be a G-variety, and let µ be a (G,ρ)-
equivariant descent datum on X. There is a bijection of pointed sets

H1(Γ,AutG
k
(X)) ∼Ð→ { equivalence classes of

(G,ρ)-equivariant descent data on X
}

[Γ→ AutG
k
(X), γ ↦ cγ] ↦ [Γ→ Autk(X), γ ↦ (x↦ cγ ○ µγ(x))].

2.2.3 A cohomological invariant

From now on we assume that the algebraic group G over k is linear and connected. As before
we fix a descent datum ρ on G. There is a short exact sequence of Γ-groups

1→ Z(G)(k)→ G(k)→ (G/Z(G))(k)→ 1,

which induces a long exact sequence in Galois cohomology. In particular, there is a connecting
homomorphism

(2.3)
δ∶ H1(Γ, (G/Z(G))(k)) → H2(Γ, Z(G)(k))

[c∶ Γ→ (G/Z(G))(k), γ ↦ cγ] ↦ [Γ2 → Z(G)(k), (γ1, γ2)↦ cγ1ργ1(cγ2)c−1γ1γ2)]
,

where c∶ Γ → G(k) is a locally constant lift of c satisfying ce = IdG and H2(Γ, Z(G)(k)) is the
second cohomology group (and not just a pointed set since Z(G)(k) is an abelian Γ-group).

Remark 2.2.5. The cohomology class δ([c])−1 is called Tits class of the descent datum ρc on
G. Tits classes are determined for all classical groups over an arbitrary base field in [KMRT98,
§ 31]. When k = R, tables where the Tits classes are computed for all simple algebraic groups
can be found in the appendix of [MJT21a] written by Borovoi.

Let H ⊆ G be an algebraic subgroup, and assume that the homogeneous space X = G/H
admits a (G,ρ)-equivariant descent datum µ. Then the group AutG

k
(X), which is isomorphic

to (NG(H)/H)(k) by [Tim11, Proposition 1.8], is a Γ-group (see (2.2) for the definition of
the Γ-action induced by µ), and the homomorphism κ obtained by composing the following
homomorphisms

κ∶ Z(G)(k)↪ NG(H)(k)↠ (NG(H)/H)(k) ∼Ð→ AutG
k
(X), z ↦ (x↦ z−1 ⋅ x)
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is Γ-equivariant. It induces a map between second pointed sets of Galois cohomology

(2.4) λH ∶ H2(Γ, Z(G)(k))→ H2(Γ,AutG
k
(X)), [(ρ,α)]↦ [(innµ, κ ○ α)].

We refer to [Bor93, § 1.5] for the definition of the second nonabelian Galois cohomology set.
(It is also defined in [Spr66, § 1.14]. Note, however, that in loc. cit. the convention differs
slightly from ours. More precisely, a 2-cocycle (τ, β) in the present manuscript and in [Bor93]
corresponds to a 2-cocycle (τ, β−1) in [Spr66].) We denote by

(2.5) ∆H ∶ H1(Γ, (G/Z(G))(k))→ H2(Γ,AutG
k
(X))

the map obtained by composing δ and λH .

If AutG
k
(X) is an abelian group, then H2(Γ,AutG

k
(X)) is also an abelian group, and ∆H is

a group homomorphism. In this case, the neutral element is called neutral cohomology class
in H2(Γ,AutG

k
(X)). In the general case, the definition of a neutral cohomology class is the

following.

Definition 2.2.6. ([Bor93, § 1.6]) The class of a 2-cocycle [(τ, β)] ∈ H2(Γ,AutG
k
(X)) is called

neutral if there exists a locally constant map d∶ Γ→ AutG
k
(X) such that

∀γ1, γ2 ∈ Γ, dγ1γ2 ○ βγ1,γ2 ○ τγ1(dγ2)−1 ○ d−1
γ1

= IdX .

Let us note that, in the nonabelian case, the subset of neutral cohomology classes in
H2(Γ,AutG

k
(X)) may be empty or have more than one element.

The set H1(Γ, (G/Z(G))(k)) identifies with the strong equivalence classes of inner twists of
ρ (see [MJT, Lemma 1.3]). Hence we will do the slight abuse of notation to write [ρc] to denote
an element of H1(Γ, (G/Z(G))(k)), where ρc is some inner twist of ρ. The cohomology class
∆H([ρc]) is the cohomological invariant to which the title of the section refers; it will appear in
the statements of several of our main results. (This cohomological invariant, which appears also
in [BG21], was brought to our attention by Mikhail Borovoi after several discussions concerning
the existence of forms for spherical homogeneous spaces.)

2.2.4 Forms of homogeneous spaces over perfect fields

Let G be a connected linear algebraic group over k, let F be a k-form of G, and let ρ be the
corresponding descent datum on G. Let H ⊆ G be an algebraic subgroup. We now state our
mains results obtained in [MJT, § 1] concerning the forms of arbitrary homogeneous spaces.

Proposition 2.2.7. ([MJT, Proposition A]) The homogeneous space X = G/H admits a (k,F )-
form if and only if there exists a locally constant map t∶ Γ→ G(k) such that
(i) ργ(H) = tγHt−1

γ for all γ ∈ Γ; and
(ii) tγ1γ2 ∈ ργ1(tγ2)tγ1H for all γ1, γ2 ∈ Γ.
If (i)-(ii) are verified, then a (G,ρ)-equivariant descent datum on X is given by

µ∶ Γ→ Autk(X), γ ↦ (gH ↦ ργ(g)tγH).

Moreover, if F1 and F2 are two k-forms of G, whose corresponding descent data ρ1 and ρ2 on G
are strongly equivalent, then there is a bijection between the isomorphism classes of (k,F1)-forms
and of (k,F2)-forms of X.

We now give an example of two isomorphic k-forms F1 and F2 of G, whose corresponding
descent data ρ1 and ρ2 on G are equivalent but not strongly equivalent, such that X = G/H
admits a (k,F1)-form but does not admit a (k,F2)-form.
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Example 2.2.8. Let k = R and Γ = {Id, γ}. Let G = G2
m,C, let H = {1} ×Gm,C, and let

ρ1,γ ∶ G→ G, (u, v)↦ (u, v−1);
ϕ ∶ G→ G, (u, v)↦ (uv, v); and

ρ2,γ = ϕ ○ ρ1,γ ○ ϕ−1 ∶ G→ G, (u, v)↦ (uv−2, v−1).

Then ρ1,γ(H) =H but ρ2,γ(H) = {(t2, t) ∣ t ∈ Gm,C} ≠H, and so X = G/H admits a (k,F1)-form
but according to Proposition 2.2.7 it admits no (k,F2)-form.

Theorem 2.2.9. ([MJT, Theorem B]) Let Fc be a k-form of G whose corresponding descent
datum ρc on G is an inner twist of ρ. We assume that the homogeneous space X = G/H admits
a (k,F )-form.
(i) The homogeneous space X admits a (k,Fc)-form if and only if the cohomology class

∆H([ρc]) ∈ H2(Γ,AutG
k
(X))

is neutral. In particular, if Z(G)(k) ⊆ H(k) or H(k) = NG(H)(k), then X admits a
(k,Fc)-form.

(ii) If X admits a (k,Fc)-form and AutG
k
(X) is abelian or Z(G)(k) ⊆ H(k), then there is a

bijection between the isomorphism classes of (k,F )-forms and of (k,Fc)-forms of X.

Remark 2.2.10. The first part of Theorem 2.2.9 coincides with [BG21, Theorem 1.6] applied to
homogeneous spaces. We gave however a self-contained proof in [MJT, § 1.4] relying only on
Proposition 2.2.7.

Remark 2.2.11. With the notation of Theorem 2.2.9, there are homogeneous spaces G/H ad-
mitting a (k,F )-form and a (k,Fc)-form for which the numbers of isomorphism classes of
(k,F )-forms and of (k,Fc)-forms are distinct (see e.g. the case H = An with n odd in Ta-
ble 2.1 in § 2.3.6). This shows that the condition that the group AutG

k
(G/H) is abelian or that

Z(G)(k) ⊆H(k) in Theorem 2.2.9(ii) cannot be removed.

2.2.5 Recollections on Luna-Vust theory over algebraically closed fields

We assume in this section 2.2.5, and in this section only, that the base field k is algebraically
closed. Let G be a (connected) reductive algebraic group over k, let B be a Borel subgroup of
G, and let X0 be a G-variety over k.

Our objective here is to give a brief overview of the Luna-Vust theory over algebraically
closed fields (established by Luna-Vust in [LV83] for almost homogeneous G-varieties, and then
later extended by Timashev in [Tim97, Tim11] for arbitrary G-varieties), concentrating only
on the essential information necessary to understand our contribution in [MJT, § 2]. The goal
of this theory is to classify the G-varieties in the G-birational class of X0 (i.e. G-equivariantly
birational to X0) in terms of certain combinatorial objects depending on X0. In § 2.2.7 we will
see how to adapt this combinatorics to classify G-varieties over arbitrary perfect fields.

Definition 2.2.12. (Colored equipment of the G-variety X0.)
● Let K = k(X0) be the function field of X0. The group G acts naturally on K.
● By a valuation ν of K we mean a surjective homomorphism ν∶ (K∗,×) → (Z,+) satisfying
ν(a + b) ≥ min(ν(a), ν(b)) when a + b ≠ 0 and whose kernel contains k∗. A valuation ν is
geometric if there exists a variety X in the birational class of X0 such that ν = νD with D a
prime divisor on X (here νD(f) denotes the order of vanishing of f ∈ K∗ along D). Also, a
valuation ν of K is G-invariant if ν(g ⋅ f) = ν(f) for all g ∈ G and all f ∈K. We denote

VG = VG(X0) = {G-invariant geometric valuations of K}.
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● The set of colors of X0 is

DB = DB(X0) = {B-stable prime divisors of X0 that are not G-stable}.

The pair (VG,DB) is called colored equipment of X0.

Let ψ∶ X0 ⇢X1 be a G-equivariant birational map. It induces a field isomorphism k(X1) ≃
k(X0) and bijections VG(X0) ≃ VG(X1) and DB(X0) ≃ DB(X1). This is clear for VG through
the identification k(X1) ≃ k(X0). For DB this follows from the fact that the complements of
the G-stable dense open subsets of X0 and X1 over which ψ is an isomorphism are unions of
G-stable closed subvarieties, and therefore they contain no colors.

Definition 2.2.13. Let X be a G-variety in the G-birational class of X0, and let ψ∶ X0 ⇢ X
be a G-equivariant birational map.
(i) The pair (X,ψ) is called a G-model of X0.

(ii) LetX1 andX2 be twoG-varieties in theG-birational class ofX0. For i = 1,2, let ψi∶ X0 ⇢Xi

be a G-equivariant birational map. We say that the G-models (X1, ψ1) and (X2, ψ2) are
equivalent if there exists a G-isomorphism ϕ∶ X1 →X2 such that ψ2 = ϕ ○ ψ1.

(iii) The colored data of a G-orbit Y ⊆X (with respect to ψ) is the pair

● VGY = {νD ∈ VG(X) ∣ Y ⊆D, where D is a G-stable prime divisor on X} ⊆ VG(X) ≃ VG;
and

● DBY = {D ∈ DB(X) ∣ Y ⊆D} ⊆ DB(X) ≃ DB.

Let us note that if the G-models (X1, ψ1) and (X2, ψ2) are equivalent, then the colored data
of the G-orbits of X1 (with respect to ψ1) coincides with the colored data of the G-orbits of X2

(with respect to ψ2).

The next statement is the central pillar of the Luna-Vust theory.

Theorem 2.2.14. (see [LV83] and [Tim11, § 14]) The map

(X,ψ)↦ F(X,ψ) = {(VGY ,DBY ), for every G-orbit Y ⊆X}

induces a bijection between the equivalence classes of G-models of X0 and the collections of pairs
(Wi,Ri)i∈I , where Wi ⊆ VG and Ri ⊆ DB, satisfying certain technical conditions listed in [MJT,
§ A.2] (see also [Tim11, § 14.2], but with slightly different notations). The collection of pairs
F(X,ψ) is called colored data of the G-model (X,ψ).

Remark 2.2.15. In the case where a G-variety X has a dense open G-orbit X0 = G/H, then
a canonical representative of the G-birational class of X is given by X0, and the category of
G-models of X0 identifies with the category of G-equivariant embeddings of X0. This is the
original framework considered by Luna and Vust in [LV83].

2.2.6 Galois actions on the colored equipment

Let k be a perfect field (not necessarily algebraically closed), let k be an algebraic closure of k,
and let Γ = Gal(k/k) be the absolute Galois group of k. Let F be a reductive algebraic group
over k, and let X0 be an F -variety over k. We denote

G = Fk = F ×Spec(k) Spec(k) and X0,k =X0 ×Spec(k) Spec(k).

In § 2.2.5, we introduced the colored equipment (VG,DB) of a G-variety over k, where B is
a fixed Borel subgroup of G. In this section, we define (continuous) Γ-actions on this colored
equipment. These actions were originally given by Hurguen in his thesis (see [Hur11, § 2.2]).

– 40 –



2.2. Results over arbitrary perfect fields

First, Γ acts on G = Fk and on X0,k through its natural action on k. We denote by ρ∶ Γ →
Autk(G) the corresponding descent datum on G and by µ∶ Γ → Autk(X0,k) the corresponding

(G,ρ)-equivariant descent datum on X0,k. The Γ-action on X0,k induces a Γ-action on K =
k(X0,k) defined by

∀γ ∈ Γ, ∀f ∈K, ∀x ∈ Def(f ○ µγ−1), (γ ⋅ f)(x) ∶= γ (f(µγ−1(x))) ,

where Def(f ○ µγ−1) ⊆X0,k is the maximal dense open subset over which f ○ µγ−1 is defined.

Second, there is also a Γ-action on

VB = {B-invariant geometric valuations of K}

as we now explain. If γ ∈ Γ, then ργ(B) is a Borel subgroup of G, therefore there exists eγ ∈ G
such that ργ(B) = eγBe−1

γ . Moreover, eγ is unique up to right multiplication by an element of

B. The group Γ acts on VB as follows

∀γ ∈ Γ, ∀ν ∈ VB, ∀f ∈K, (γ ⋅ ν)(f) ∶= ν(γ−1 ⋅ (eγ ⋅ f)).

By [Hur11, Proposition 2.15], this Γ-action is well-defined and does not depend on the particular
choice of the (eγ)γ∈Γ.

Given γ ∈ Γ and D ∈ DB, let γ ⋅D be the unique B-stable prime divisor on X0,k such that

νγ⋅D = γ ⋅ νD; this defines a Γ-action on DB such that D ∈ DB ↦ νD ∈ VB is Γ-equivariant.
Moreover, VG ⊆ VB is Γ-stable and, using (2.1), the restriction of the Γ-action to VG can be
rewritten as follows:

∀γ ∈ Γ, ∀ν ∈ VG, ∀f ∈K, (γ ⋅ ν)(f) ∶= ν(γ−1 ⋅ f).

2.2.7 Luna-Vust theory over perfect fields

In [MJT, § 2], inspired by the work of Huruguen in [Hur11] on spherical embeddings, we extend
the Luna-Vust theory for all varieties endowed with reductive algebraic group action over an
arbitrary perfect base field k; this is the content of Theorem 2.2.16 below.

We keep the same notation as in § 2.2.6. An F -model of an F -variety X0 over k is a pair
(X,δ), where X is an F -variety over k and δ∶X0 ⇢ X is an F -equivariant birational map.
Two models (X1, δ1) and (X2, δ2) are said to be equivalent if there exists an F -isomorphism
ϕ∶X1 →X2 such that δ2 = ϕ ○ δ1.

Let us note that if two F -models (X1, δ1) and (X2, δ2) of X0 are equivalent, then the two
G-models (X1,k, δ1,k) and (X2,k, δ2,k) of X0,k are also equivalent. By [MJT, Lemma 2.8], the
converse holds as well.

The next result extends Theorem 2.2.14 to the case where the base field k is an arbitrary
perfect field, and not necessarily an algebraically closed field.

Theorem 2.2.16. ([MJT, Theorem C]) Let F be a reductive algebraic group over the perfect
field k, let G = Fk, and let X0 be an F -variety over k. The map

(X,δ)↦ F(Xk, δk) = {(VGY ,DBY ), for every G-orbit Y ⊆Xk} ,

is a bijection between the equivalence classes of F -models of X0 and the collections of pairs
(Wi,Ri)i∈I , where Wi ⊆ VG and Ri ⊆ DB are subsets such that
(i) the technical conditions listed in [MJT, § A.2] (see also [Tim11, § 14.2], but with slightly

different notations) are verified, that is, the collection (Wi,Ri)i∈I corresponds to an equiv-
alence class of a G-model (Z,ψ) of X0,k;
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(ii) the collection (Wi,Ri)i∈I is globally preserved by the Γ-actions on VG and DB introduced
in § 2.2.6; and

(iii) the variety Z is covered by Γ-stable affine open subsets.

Remark 2.2.17. In fact, condition (iii) of Theorem 2.2.16 is equivalent to the fact that the G-
variety Z is covered by Γ-stable quasiprojective open G-subvarieties, and the condition for a
G-variety to be quasiprojective can be expressed in terms of the colored data. However, if the
reader prefers to work in the category of algebraic spaces instead of schemes (as Wedhorn in
[Wed18]), then he/she can eliminate condition (iii), which simplifies the statement.

To finish this section, we briefly review how our Theorem 2.2.16 specializes for certain
classes of varieties for which the Luna-Vust theory is constructive in the sense that the colored
equipment (see Definition 2.2.12) can be expressed in terms of implementable combinatorial
structures that allow us to work with these varieties similarly as is done with toric varieties.

● Torus embeddings: Let T be an algebraic torus over k, and let Z0 = T . Recall that a fan
in the Q-vector space X∨

Q = X∨ ⊗Z Q, with X∨ = Homgr(Gm, T ), is a finite collection E of
strictly convex cones in X∨

Q satisfying

(a) every face of a cone in E is a cone in E ; and
(b) the intersection of two cones in E is a face of each.

It is classical (see e.g. [Ful93]) that equivalence classes of T -models of Z0, also known as
torus embeddings or toric varieties, are in bijection with the fans in X∨

Q. In this situation,

VT ≃ X∨, DB = ∅, and the cones of a fan of a torus embedding (Z, ι) of Z0 correspond to the
colored data of Z. Forms of torus embeddings (in the sense of Definition 2.2.3) were studied
by Huruguen in [Hur11] for arbitrary torus embeddings, by Elizondo–Lima-Filho–Sottile–
Teitler in [ELFST14] for projective spaces and toric surfaces, and by Duncan in [Dun16] who
considered other notions of forms of torus embeddings.
In this setting, Theorem 2.2.16 specializes to [Hur11, Theorem 1.22].

● Complexity-one T -varieties: Let again T be an algebraic torus over k, let C be a curve
over k, and let Z0 = T × C on which T acts by left-multiplication on T and trivially on C.
It follows from the work of Altmann-Hausen in [AH06] (affine case) and Altmann-Hausen-
Süß in [AHS08] (general case) that equivalence classes of T -models of Z0 are in bijection
with the divisorial fans on (C,X∨

Q) with X∨ = Homgr(Gm, T ); roughly speaking these are
1-dimensional families of pseudo-fans in X∨

Q parametrized by C and constant over a dense
open subset (see [AHS08, § 5] for a precise definition).
Forms of affine complexity-one T -varieties were studied by Langlois in [Lan15]. In this
setting, Theorem 2.2.16 specializes to [Lan15, Theorem 5.10].

● Spherical embeddings: Let G be a reductive algebraic group over k, let B ⊆ G be a Borel
subgroup, and let Z0 = G/H be a G-homogeneous space with a dense open B-orbit. The
notion of fan defined for torus embeddings generalizes to the notion of colored fan, which is a
finite collection E = {(Ci,Fi), i ∈ I} of colored cones satisfying certain properties (see [Kno91,
§ 3] or [Tim11, § 15] for details). It follows from the work of Luna-Vust [LV83] and Knop
[Kno91] that equivalence classes of G-models of Z0, also known as spherical embeddings
or spherical varieties, are in bijection with the colored fans in some Q-vector space X∨

Q
(depending on Z0). In this situation, the colored cones of a colored fan of a spherical
embedding (Z, ι) of Z0 correspond to the colored data of Z.
Forms of spherical embeddings were studied by Huruguen in [Hur11] over perfect fields (see
also [BG21, § 7]), and by Wedhorn (who works in the category of algebraic spaces instead
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of schemes) in [Wed18] over arbitrary fields. In this setting, Theorem 2.2.16 specializes to
[Hur11, Theorem 2.26].

2.2.8 Strategy to determine the forms of almost homogeneous varieties

As before, let F be a reductive algebraic group over a perfect field k, and let G = Fk. Let ρ be
the descent datum on G corresponding to the k-form F . Luna-Vust theory over perfect fields
(Theorem 2.2.16), combined with Proposition 2.2.7 and Theorem 2.2.9, suggests a strategy to
determine the (k,F )-forms of a given almost homogeneous G-variety as we now explain.

Let Z be a given almost homogeneous G-variety with dense open orbit Z0 = G/H. We are
interested in determining the (k,F )-forms of Z. Recall that these correspond to effective (G,ρ)-
equivariant descent data on Z. Let us note that if µ∶ Γ → Autk(Z) is an equivariant descent
datum on Z, then it induces an equivariant descent datum on Z0 by restriction. This suggests
to start by studying the equivariant descent data on Z0 (which correspond to (k,F )-forms of
Z0), and then to determine which ones extend to Z.

Our strategy to determine the isomorphism classes of (k,F )-forms of the almost homoge-
neous G-variety Z is therefore the following:

(1) Determine whether the dense open orbit Z0 = G/H admits a (k,F )-form with Proposi-
tion 2.2.7 and Theorem 2.2.9.

(2) If Z0 has a (k,F )-form, then use Proposition 2.2.4 to parametrize all the isomorphism
classes of (k,F )-forms of Z0.

(3) Pick a (k,F )-form X0 of Z0 and apply Luna-Vust theory over perfect fields (Theorem 2.2.16)
to determine if the corresponding equivariant descent datum extends to an effective equiv-
ariant descent datum on Z.

(4) Determine whether the natural homomorphism AutG
k
(Z) ↪ AutG

k
(Z0) is an isomorphism,

in which case our strategy provides one representative for each isomorphism class of (k,F )-
forms of Z. Otherwise it remains to determine which (k,F )-forms in each isomorphism
class of (k,F )-forms of Z0 correspond to equivariant descent data that extend on Z, and
which ones are equivalent after extension.

This strategy will be applied in the next section to determine the real forms for certain
families of complex almost homogeneous varieties.

2.3 Results over the field of real numbers

We refer to [Man20] for a general presentation of real algebraic geometry; in particular, the
point of view adopted in the rest of this chapter is the same as in [Man20, Chapter 2], where
the author calls R-variety a pair formed by a complex algebraic variety together with a real
structure on it.

2.3.1 Notation

We keep the same notation as in § 2.2.1, but we now focus on the case where the base field k is
the field of real numbers R. In particular, the Galois group of the extension C/R is denoted by

Γ ∶= Gal(C/R) = {Id, γ} ≃ Z/2Z.

Moreover, we will always denote by G a complex algebraic group, by Z(G) its center, by B
a Borel subgroup of G, by T a maximal torus of G contained in B, and by U the unipotent
radical of B (which is also a maximal unipotent subgroup of G). We will write X = X(T ) =
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Homgr(T,Gm) for the character group of T , and X∨ = X∨(T ) = Homgr(Gm, T ) for the cochar-
acter group of T . If H is an algebraic subgroup of G, then NG(H) will denote the normalizer
of H in G. When G is semisimple, we will denote its Dynkin diagram by Dyn(G).

2.3.2 Real group structures and real forms for complex algebraic groups

In this section, we first specify the notion of descent data for algebraic groups in the case
of the Galois extension C/R; this gives rise to the notion of real group structures on complex
algebraic groups. Then, as we are mostly interested in the case of reductive algebraic groups, we
explain how to obtain all real group structures on complex reductive algebraic groups by piecing
together real group structures on complex algebraic tori and on complex simply-connected
simple algebraic groups. Finally, we recall the notions of quasi-split real group structures and
inner twists since these notions make it possible to define a Γ-action on the combinatorial data
defined from a triple (G,B,T ).

Definition 2.3.1. Let G be a complex algebraic group.
● A real form of G is a pair (F,Θ) with F a real algebraic group and Θ∶ G→ FC an isomorphism

of complex algebraic groups.
● A real group structure σ on G is a scheme involution on G such that the diagram

G
σ //

��

G

��
Spec(C) Spec(z↦z) // Spec(C)

commutes, and such that the induced morphism γ∗G → G is an isomorphism of complex
algebraic groups, where γ∗G → Spec(C) is the base change of G → Spec(C) along the
morphism Spec(z ↦ z). (Here z denotes the complex conjugate of z.)

● If G is a complex algebraic group with a real group structure σ, then G(C)σ is called the
real locus (or real part) of (G,σ); it is a real Lie group.

● Two real group structures σ and σ′ on G are equivalent if there exists a group automorphism
ψ ∈ Autgr(G) such that σ′ = ψ ○ σ ○ ψ−1.

For complex algebraic groups, the notions of descent data and real group structures are
equivalent. Indeed, ρ∶ Γ → AutR(G) is a descent datum on G (see Definition 2.2.1) if and only
if ρId = Id and ργ is a real group structure on G.

As recalled in §2.2.2, there is a correspondence between real group structures on G and real
forms of G. Moreover, two real forms of G are isomorphic (as real algebraic groups) if and only
if the corresponding real group structures are equivalent. Let us mention that the name real
locus for G(C)σ comes from the fact that this set identifies with the set of R-points of the real
algebraic group G/Γ (see [Ben16, Proposition 3.14] for details), where Γ acts on G through σ.

Let G be a complex reductive algebraic group, let T = Z(G)○ be the neutral component of
the center of G, and let G′ be the derived subgroup of G. Then the homomorphism T ×G′ → G,
(t, g′)↦ t−1g′ is a central isogeny with kernel T ∩G′. Also, there is a 1-to-1 correspondence

{real group structures σ on G}↔ { real group structures (σ1, σ2) on T ×G′

such that σ1∣T∩G′ = σ2∣T∩G′
}

given by σ ↦ (σ∣T , σ∣G′). Therefore, to determine real group structures on complex reductive
algebraic groups, it suffices to determine real group structures on complex algebraic tori and on
complex semisimple algebraic groups.
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Lemma 2.3.2. (Real group structures on complex algebraic tori; see [MJT21a, Lemma 1.5])
Let T ≃ Gn

m be an n-dimensional complex algebraic torus.

(i) If n = 1, then T has exactly two inequivalent real group structures, defined by σ0 ∶ t↦ t and

σ1 ∶ t↦ t
−1

.
(ii) If n = 2, then σ2 ∶ (t1, t2)↦ (t2, t1) defines a real group structure on T .
(iii) If n ≥ 2, then every real group structure on T is equivalent to exactly one real group structure

of the form σ×n0
0 × σ×n1

1 × σ×n2
2 , where n = n0 + n2 + 2n2.

It remains to determine the real group structures on complex semisimple algebraic groups.
For any complex semisimple algebraic group G, there exists a central isogeny G̃ → G, where
G̃ is a simply-connected semisimple algebraic group. Then G̃ is isomorphic to a product of
simply-connected simple algebraic groups (see [Con14, Exercise 1.6.13 and § 6.4]). Moreover,
every real group structure σ on G lifts uniquely to a real group structure σ̃ on G̃ (this follows
for instance from [Pro07, § 3.4, Theorem]).

The next result reduces the classification of real group structures on simply-connected
semisimple algebraic groups to the classification of real group structures on simply-connected
simple algebraic groups.

Lemma 2.3.3. ([MJT21a, Lemma 1.7]) Let σ be a real group structure on a complex simply-
connected semisimple algebraic group G ≃ ∏i∈I Gi, where the Gi are the simple factors of G.
Then, for a given i ∈ I, we have the following possibilities:

(i) σ(Gi) = Gi and σ∣Gi is a real group structure on Gi; or
(ii) there exists j ≠ i such that σ(Gi) = Gj, then Gi ≃ Gj and σ∣Gi×Gj is equivalent to (g1, g2)↦

(σ0(g2), σ0(g1)), where σ0 is an arbitrary real group structure on Gi ≃ Gj.

Real group structures on complex simply-connected simple algebraic groups are well-known
(see e.g. [GW09, § 1.7.2] or [Kna02, § VI.10]). Therefore, all real group structures on complex
simply-connected semisimple algebraic groups can be determined from Lemma 2.3.3.

Example 2.3.4. Up to equivalence, there are two real group structures on SL2 given by σ0(g) =
g and σ1(g) = tg−1. (Here g denotes the complex conjugate.) Up to equivalence, there are four
real group structures on SL2 × SL2 given by σi × σj with (i, j) ∈ {(0,0), (0,1), (1,1)} and σ2 ∶
(g1, g2)↦ (σ0(g2), σ0(g1)). Similarly, we let the reader check that, up to equivalence, there are
six real group structures on SL2×SL2×SL2 and nine real group structures on SL2×SL2×SL2×SL2.

We finish this section by recalling the notions of (quasi-)split real group structures and inner
twists (see Definition 2.2.1 for the general case), and how the choice of a real group structure σ
on G induces a Γ-action on the combinatorial data defined from a triple (G,B,T ).

Definition 2.3.5. Let G be a complex reductive algebraic group with a real group structure σ.
● If there exists a Borel subgroup B ⊆ G such that σ(B) = B, then σ is called quasi-split. Let
T ⊆ B be a maximal torus such that σ(T ) = T (such a torus always exists when σ is quasi-
split). With the notation of Lemma 2.3.2, if the restriction σ∣T is equivalent to a product

σ
×dim(T )
0 , then σ is called split.

● For c ∈ G(C) we denote by innc the inner automorphism of G defined by

innc ∶ G→ G,g ↦ cgc−1.

● If σ1 and σ2 are two real group structures on G such that σ2 = innc ○ σ1, for some c ∈ G(C),
then σ2 is called an inner twist of σ1.
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Up to equivalence, there exists a unique split real group structure on G (see [Con14, Theorem
6.1.17], or [OV90, Chp. 5, § 4.4] when G is semisimple) that we will always denote by σ0 or σs,
and also a unique compact real group structure σc on G (see [OV90, Chp. 5, §§ 1.3-1.4] when
G is semisimple, and Lemma 2.3.2 when G is an algebraic torus).

If G is simple, then G has at most two inequivalent quasi-split real group structures (de-
pending on the existence of a non-trivial element of order two in Aut(Dyn(G))). On the other
hand, for complex algebraic tori, all real group structures are quasi-split. Moreover, every real
group structure on G is an inner twist of a unique (up to equivalence) quasi-split real group
structure on G. (We refer to [Con14, § 7] for proofs and details regarding these statements.)

Example 2.3.6.

(i) Let c = c−1 =
⎡⎢⎢⎢⎢⎢⎣

0 0 −i
0 −1 0
i 0 0

⎤⎥⎥⎥⎥⎥⎦
∈ SL3(C). Up to equivalence, the group SL3 has three real

group structures given by σ0(g) = g, which is split and whose real locus is SL3(R), σ1(g) =
c(tg−1)c−1 (our choice for c is arbitrary, there are other choices), which is quasi-split and
whose real locus is SU(1,2), and its inner twist σ2(g) = tg−1 = innc ○ σ1, which is compact
and whose real locus is SU(3).

(ii) We keep the previous notation and write σij = σi × σj . The group SL3 × SL3 has seven
inequivalent real group structures: σ00 (split), σ01 (quasi-split) and its inner twist σ02 =
inn(1,c) ○σ01, σ11 (quasi-split) and its two inner twists σ12 = inn(1,c) ○σ11 and σ22 = inn(c,c) ○
σ11, and the quasi-split real group structure σ ∶ (g1, g2)↦ (σ0(g2), σ0(g1)).

Definition 2.3.7. Let G be a complex reductive algebraic group with a real group structure
σ = innc ○ σqs, where σqs is a quasi-split real group structure that preserves a Borel subgroup
B ⊆ G and a maximal torus T ⊆ B.

● There is a Γ-action on the lattices X and X∨ defined as follows:

∀χ ∈ X, γχ = τ ○ χ ○ σqs and ∀λ ∈ X∨, γλ = σqs ○ λ ○ τ ,

where τ(t) = t is the complex conjugation. Moreover, if σ is an inner twist of a split real
group structure on G, then the corresponding Γ-actions on X and X∨ are trivial.

● The sets of roots, coroots, simple roots, and simple coroots associated with the triple
(G,B,T ) are preserved by this Γ-action (see [Con14, Remark 7.1.2]).

2.3.3 Equivariant real structures and real forms for G-varieties

In this section, and similarly as in the previous section, we first specify the notion of equivariant
descent data for varieties with a group action in the case of the Galois extension C/R; this gives
rise to the notion of equivariant real structures. Then we give a criterion for the existence of an
equivariant real structure in the homogeneous case, and finally we recall the definition of the
first Galois cohomology pointed set in this special setting (as it will appear several times in this
chapter).

Definition 2.3.8. Let G be a complex algebraic group, let F be a real form of G, and let σ be
the corresponding real group structure on G. Let X be a G-variety.

● An (R, F )-form of X is a pair (Z,Ξ) with Z a real F -variety and Ξ∶X → ZC an isomorphism
of complex G-varieties.
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● A (G,σ)-equivariant real structure on X is an antiregular involution µ on X, that is, a
scheme involution on X such that the following diagram commutes

X
µ //

��

X

��
Spec(C) Spec(z↦z) // Spec(C)

and satisfying the condition

(2.6) ∀g ∈ G(C), ∀x ∈X(C), µ(g ⋅ x) = σ(g) ⋅ µ(x).

● The real locus (or real part) of a (G,σ)-equivariant real structure µ on X is the (possibly
empty) set of fixed points X(C)µ; it identifies with the set of R-points of the corresponding
real form X/ ⟨µ⟩. Moreover, it is endowed with an action of the real Lie group G(C)σ.

● Two (G,σ)-equivariant real structures µ and µ′ on X are equivalent if there exists a G-
automorphism ϕ ∈ AutGC(X) such that µ′ = ϕ ○ µ ○ ϕ−1. They are strongly equivalent if we
can choose ϕ = innc for some c ∈ G(C).
Let us note that, as for complex algebraic groups, the notions of equivariant descent data and

equivariant real structures on varieties endowed with an algebraic group action are equivalent.
As recalled in §2.2.2, there is a correspondence between (G,σ)-equivariant real group struc-

tures on X and (R, F )-forms of X. Moreover, two (R, F )-forms of X are isomorphic if and only
if the corresponding equivariant real structures on X are equivalent.

The following lemma is a particular case of Proposition 2.2.7.

Lemma 2.3.9. ([MJT21a, Lemma 2.4]) Let G be a complex algebraic group with a real group
structure σ, and let X = G/H be a homogeneous space. Then X has (G,σ)-equivariant real
structure if and only if there exists t ∈ G(C) such that these two conditions hold:
(i) (G,σ)-compatibility condition: σ(H) = tHt−1

(ii) involution condition: σ(t)t ∈H
in which case a (G,σ)-equivariant real structure on X is given by

∀k ∈ G(C), µ(kH) = σ(k)tH.

Example 2.3.10. Let G be a complex reductive algebraic group with a real group structure σ,
and let X = G/P be a flag variety. Then Lemma 2.3.9 implies that X has a (G,σ)-equivariant
real structure if and only if σ(P ) is conjugate to P . Moreover, if such a structure exists, then
it is equivalent to µ∶ gP ↦ σ(g)tP , where t ∈ G(C) satisfies σ(P ) = tP t−1.

We now recall the definition of the first Galois cohomology pointed set for the field extension
C/R. Indeed, in this particular setting the definition of this set is quite simple and it can be
useful to have it in mind when reading/checking examples.

Definition 2.3.11. If A is a Γ-group, then

H1(Γ,A) = Z1(Γ,A)/ ∼, where Z1(Γ,A) = {a ∈ A ∣ a−1 = γa}

and two elements a1, a2 ∈ Z1(Γ,A) satisfy a1 ∼ a2 if a2 = b−1a1
γb for some b ∈ A.

Remark 2.3.12.
● For all a ∈ Z1(Γ,A), we have

a−1a2 γa = a−1a2a−1 = 1,

and so a2 ∼ 1. In the case where H1(Γ,A) is a finite group, this implies that its cardinal is a
power of 2.
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● If A is an abelian group, then H1(Γ,A) and H2(Γ,A) are abelian groups; the latter identifies
with the group AΓ/{a γa ∣ a ∈ A} (see [Ser02, § I.2]).

As recalled at the end of § 2.2.2, if µ0 is a (G,σ)-equivariant real structure on a given G-
variety X, then AutGC(X) is a Γ-group, where Γ acts on AutGC(X) through µ0-conjugacy, and
the first pointed set of Galois cohomology H1(Γ,AutGC(X)) is in bijection with the equivalence
classes of (G,σ)-equivariant real structures on X. In particular, it follows from [Ser02, Chp. III,
§ 4.3, Theorem 4] that if X = G/H, then there is always a finite number of equivalence classes
of (G,σ)-equivariant real structures on X (see [MJT, Corollary 1.7]).

Example 2.3.13. (First and second cohomology sets for tori; see [MJT21a, Proposition 1.18])
Let T be an algebraic torus endowed with a real group structure equivalent to a product σ ∶=
σ×n0

0 × σ×n1
1 × σ×n2

2 (with the notation of Lemma 2.3.2), then
(i) H1(Γ,T) ≃ (Z/2Z)n1 ; and

(ii) H2(Γ,T) ≃ (Z/2Z)n0 .
Since σ is a (T, σ)-equivariant real structure on T and T ≃ AutTC(T), x↦ (y ↦ xy) is an isomor-
phism of Γ-groups (where the Γ-action on both sides is the one induced by σ), it follows from
Proposition 2.2.4 that the set H1(Γ,T) parametrizes the equivalence classes of (T, σ)-equivariant
real structures on the homogeneous space T. Hence, there are exactly 2n1 inequivalent (T, σ)-
equivariant real structures on T; these are equivalent to

σ×n0
0 × µ′1 ×⋯ × µ′n1

× σ×n2
2 , where µ′i = σ1 or µ′i = τ1∶ t↦ −t−1 for each i = 1, . . . , n1.

2.3.4 Case of horospherical varieties

In this section, we review the main results obtained in [MJT21a] concerning the equivariant
real structures on horospherical varieties. These form a subclass of spherical varieties (see
[Pau81, Kno91]) containing both flag varieties and toric varieties, but whose combinatorial
description is more accessible. A presentation of the theory of horospherical varieties can be
found in [Pas08].

Let G be a complex reductive algebraic group, let B, T , U , X be as in § 2.3.1, and let
S = S(G,B,T ) be the set of simple roots corresponding to the root system associated with the
triple (G,B,T ).

Definition 2.3.14.
● An algebraic subgroup H of G is horospherical if it contains a maximal unipotent subgroup

of G. A homogeneous space G/H is horospherical if H is a horospherical subgroup of G.
● A horospherical G-variety is a G-variety with an open orbit isomorphic to G/H, where H is

a horospherical subgroup of G.

Example 2.3.15. Let U be a maximal unipotent subgroup of SL2, then SL2/U is a horospherical
homogeneous space isomorphic to A2 ∖ {0}. Moreover, the horospherical SL2-varieties with an
open orbit SL2-isomorphic to SL2/U are A2 ∖ {0}, A2, P2, P2 ∖ {0}, Bl0(A2), and Bl0(P2).

We now recall the combinatorial description of the horospherical subgroups given in [Pas08,
§ 2]. For I ⊆ S, we denote by PI the standard parabolic subgroup generated by B and the
unipotent subgroups of G associated with the simple roots −α with α ∈ I; this gives a 1-
to-1 correspondence between the powerset of S and the set of conjugacy classes of parabolic
subgroups of G. In particular, P∅ = B and PS = G. Let I ⊆ S, and let M be a sublattice of
X(PI) ∶= Homgr(PI ,Gm) (⊆ X). Then

H(I,M) ∶= ⋂
χ∈M

Ker(χ)
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is a horospherical subgroup of G whose normalizer is PI . Conversely, if H is a horospherical
subgroup of G, then by [Pas08, Proposition 2.4] there exists a unique pair (I,M) as above such
that H is conjugate to H(I,M); we say that (I,M) is the (horospherical)datum of H. Therefore,

P ∶= NG(H) is a parabolic subgroup of G, and the quotient group T ∶= P /H ≃ AutG(G/H) is an
algebraic torus (see [Pas08, Remarque 2.2]). In particular, the homogeneous space G/H may
be thought of as the total space of a principal T-bundle over the flag variety G/P .

Example 2.3.16. The datum of a parabolic subgroup conjugate to PI is (I,{0}). The datum
of a maximal unipotent subgroup of G is (∅,X).

Our main goal in [MJT21a] was to determine the equivariant real structures on horospherical
varieties. Our first main result concerns the homogeneous case.

Theorem 2.3.17. ([MJT21a, Theorem 0.1]) Let G be a complex reductive algebraic group with
a real group structure σ strongly equivalent to innc ○σqs, where c ∈ G(C) and σqs is a quasi-split
real group structure on G that stabilizes B and T . Let H be a horospherical subgroup of G with
datum (I,M). There exists a (G,σ)-equivariant real structure on G/H if and only if

(i) the pair (I,M) is stable for the Γ-action on X induced by σqs (see Definition 2.3.7); and
(ii) the cohomology class ∆H([σ]) is neutral, where ∆H is the map defined by (2.5) in § 2.2.3

and the Γ-actions on (G/Z(G))(C) and (NG(H)/H)(C) are the ones induced by σqs.

Moreover, in this case, σ induces a real group structure on T equivalent to σ×n0
0 × σ×n1

1 × σ×n2
2

for some n0, n1, n2 ∈ Z≥0 such that n0 + n1 + 2n2 = dim(T) (with the notation of Lemma 2.3.2),
and then by Example 2.3.13 there are exactly 2n1 equivalence classes of (G,σ)-equivariant real
structures on G/H.

Remark 2.3.18. A few months after the release of [MJT21a], Borovoi and Gagliardi obtained
in [BG21] a criterion for the existence of equivariant real structures on general spherical homo-
geneous spaces, generalizing the first part of Theorem 2.3.17 (the existence criterion), but with
different combinatorial data.

Example 2.3.19. (see [MJT21a, § 3]) The group G = SL4 has five inequivalent real group
structures:
● a split one σs (with real locus SL4(R)) and an inner twist σ′s (with real locus SL2(H)); and
● a non-split quasi-split one σqs and two inner twists σ′qs and σc (with real loci SU(3,1) and

SU(4) respectively).

Let T be the maximal torus of G formed by diagonal matrices, and let B be the Borel
subgroup formed by upper-triangular matrices. Let Li∶ T → Gm, (t1, t2, t3, t4) ↦ ti, where i ∈
{1,2,3,4}. Then the simple roots of (G,B,T ) are α1 = L1 −L2, α2 = L2 −L3, and α3 = L3 −L4.
Let PI ⊆ G be the standard parabolic subgroup associated with I = {α2}, and let H be the
kernel of the character χ = L1 + L4 in X(PI). Then H is a horospherical subgroup of G with
datum (I,M) = ({α2},Z ⟨χ⟩).

The Γ-action on X induced by σs is trivial, and so γ(I,M) = (I,M). On the other hand, the
Γ-action induced by σqs is determined by the relations γL1 = −L4 and γL2 = −L3. Thus, we still
have γ(I,M) = (I,M), but the Γ-action on M is non-trivial since γχ = −χ. By Theorem 2.3.17,
the homogeneous space G/H has a (G,σs)- and a (G,σqs)-equivariant real structure, and it has
a (G,σ)-equivariant real structure if and only if ∆H([σ]) is neutral. Let T = PI/H ≃ Gm.
● Let σ ∈ [σqs]∪ [σ′qs]∪ [σc]. Then the real group structure on T induced by σ is equivalent to

σ1. Hence H2(Γ,T) is trivial, which implies that the cohomology class ∆H([σ]) is neutral,
and so there exists a (G,σ)-equivariant real structure on G/H. Moreover, there are exactly
two equivalence classes of (G,σ)-equivariant real structures on G/H since H1(Γ,T) ≃ Z/2Z.
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● Let σ ∈ [σs] ∪ [σ′s]. Then the real group structure on T induced by σ is equivalent to σ0.
Hence H2(Γ,T) ≃ Z/2Z, but we can verify that the cohomology class ∆H([σ′s]) is neutral,
and so there exists a (G,σ)-equivariant real structure on G/H. Moreover, such a structure
is unique up to equivalence since H1(Γ,T) is trivial.

For brevity, we do not recall the theory of spherical embeddings (see e.g. [Kno91], [Tim11], or
[Per14] for a presentation), and how to describe such embeddings in terms of the combinatorial
data called colored fans; these are fans such as those for toric varieties but with additional
information called colors (this is in fact a particular case of the Luna-Vust theory recalled in
§ 2.2.5). As explained in [Hur11] (and recalled in § 2.2.6), if σ is a real group structure on G,
and if X is a G-variety endowed with a (G,σ)-equivariant real structure µ, then µ induces a Γ-
action on the colored equipment of X. Let us note that if X = G/H is a spherical homogeneous
space, then this Γ-action depends in fact only on σ (and not on the choice of µ).

The next result is an immediate consequence of [Hur11, Theorem 2.23] (or [Wed18, The-
orem 9.1]) together with a quasiprojectivity criterion for spherical varieties due to Brion. It
corresponds to Step (3) in the strategy exposed in § 2.2.8 and applied to horospherical varieties.

Theorem 2.3.20. ([Hur11, Theorem 2.23]) Let G be a complex reductive algebraic group with
a real group structure σ. Let µ be a (G,σ)-equivariant real structure on a horospherical homo-
geneous space G/H, and let G/H ↪ X be a G-equivariant embedding. Then µ extends to an
effective (G,σ)-equivariant real structure on X if and only if the colored fan of the embedding
G/H ↪X is invariant for the Γ-action on the colored equipment of G/H induced by σ.

Example 2.3.21. ([MJT21a, Example 3.34]) Let X be one of the equivariant embeddings of
SL2/U given in Example 2.3.15. There are two inequivalent real group structures on SL2: σs
which is split, and its inner twist σc, which is compact. We deduce from Theorem 2.3.17 that
there exists a unique equivalence class of (SL2, σs)-equivariant real structure on SL2/U , but that
there is no (SL2, σc)-equivariant real structure on SL2/U as the cohomology class ∆U([σc]) is
not neutral. Moreover, any (SL2, σs)-equivariant real structure on SL2/U extends to X since
the Γ-action on the colored equipment of SL2/U is trivial in the split case.

Example 2.3.22. ([MJT21a, Example 3.35]) We return to Example 2.3.19. Let σ be an inner
twist of a non-split quasi-split real group structure on G = SL4. We saw that the Γ-action
on N ∶= M∨ = Z ⟨χ∨⟩ induced by σ satisfies γχ∨ = −χ∨. Let F be a colored fan in NQ ≃ Q
corresponding to a G-equivariant embedding G/H ↪ Y . Then, by Theorem 2.3.20, a (G,σ)-
equivariant real structure on G/H extends to Y if and only if the colored fan F is symmetric
with respect to the origin of NQ. It follows from the theory of spherical embeddings that either
Y = G/H (case F = {({0},∅)}) or Y is a P1-bundle over G/P which is the union of two G-orbits
of codimension 1, the two G-invariant sections of the structure morphism Y → G/P , and the
open G-orbit (case F = {(Z+ ⟨χ∨⟩ ,∅), (Z− ⟨χ∨⟩ ,∅)}).

To illustrate the previous results, we then considered in [MJT21a, § 3.6] the equivariant
real structures on smooth projective horospherical G-varieties of Picard rank 1. These were
classified by Pasquier in [Pas09] who proved the following result.

Theorem 2.3.23. ([Pas09, Theorem 0.1]) Let G be a complex reductive algebraic group. Let X
be a smooth projective horospherical G-variety of Picard rank 1. Then either X = G/P is a flag
variety (with P a maximal parabolic subgroup) or X has three G-orbits and can be constructed
in a uniform way from a triple (Dyn(G),$Y ,$Z) belonging to the following list:
(i) (Bn,$n−1,$n) with n ≥ 3;
(ii) (B3,$1,$3);
(iii) (Cn,$m,$m−1) with n ≥ 2 and m ∈ [2, n]; (= the odd symplectic Grassmannians)
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(iv) (F4,$2,$3);
(v) (G2,$1,$2),
where $Y , $Z are fundamental weights of G such that the two closed orbits of X are G-
isomorphic to the flag varieties G/P ($Y ) and G/P ($Z). (Here, if $ is a fundamental root,
P ($) is the parabolic subgroup PI , where I = S ∖ {$}.)

We have already considered equivariant real structures on flag varieties in Example 2.3.10.
Therefore, it remains only to consider equivariant real structures in the non-homogeneous cases.

Theorem 2.3.24. ([MJT21a, Theorem 3.37]) We keep the notation of Theorem 2.3.23. Let σ
be a real group structure on G, let G0 = G(C)σ be the corresponding real locus, and let X be
a non-homogeneous smooth projective horospherical G-variety of Picard rank 1 associated with
a triple (Dyn(G),$Y ,$Z). Then X admits a (G,σ)-equivariant real structure if and only if
(Dyn(G),G0,$Y ,$Z) belongs to the following list:
(i) (Bn,G0,$n−1,$n) with G0 = Spinn+4t,n+1−4t(R) and n ≥ 3, t ∈ Z;

(ii) (B3,G0,$1,$3) with G0 = Spin7(R) or Spin3,4(R);
(iii) (Cn,Sp(2n,R),$m,$m−1) with n ≥ 2 and m ∈ [2, n];
(iv) (F4,G0,$2,$3) with G0 the real locus of one of the three inequivalent real group structures

on F4; or
(v) (G2,G0,$1,$2) with G0 the real locus of one of the two inequivalent real group structure

on G2 (the split one and the compact one).
Moreover, when such a structure exists on X, then it is unique up to equivalence.

We finish this section with a few comments. As mentioned before, horospherical varieties are
a subclass of spherical varieties, and equivariant real structures on spherical varieties appeared
in the literature before our work, but the scope was not the same as in [MJT21a]. More precisely:
● In [Hur11, Wed18], the authors consider the situation where an equivariant real structure

on the open orbit is given, and they determine in which cases this real structure extends
to the whole spherical variety. They do not treat the case of equivariant real structures on
homogeneous spaces. (Note also that they work over an arbitrary field and not just over R.)

● In [ACF14, Akh15, CF15], the authors study equivariant real structures on spherical ho-
mogeneous spaces G/H and their equivariant embeddings when NG(H)/H is finite. Such
varieties are never horospherical, except the flag varieties.

● In [Bor20] the author extends part of the results in [ACF14, Akh15, CF15] and works over
an arbitrary base field of characteristic zero.

2.3.5 Case of symmetric spaces

In this section, we review the main results obtained in [MJT21b] concerning the equivariant real
structures on symmetric spaces. The historical motivation for the study of symmetric spaces
comes from the Riemannian symmetric spaces (see [Hel78] for a detailed exposition); those arise
in a wide range of situations in both mathematics and physics, and local models are given by
the real loci of certain (complex algebraic) symmetric spaces. Therefore, given a symmetric
space, it is natural to ask whether it admits equivariant real structures. A presentation of the
theory of symmetric spaces can be found in [Tim11, § 26].

Definition 2.3.25. Let G be a complex semisimple algebraic group. A G-symmetric space
(or symmetric space for short when G is clear from the context) is a homogeneous space G/H,
where H ⊆ G is an algebraic subgroup such that Gθ ⊆ H ⊆ NG(Gθ) with θ ∈ Autgr(G) a group
involution. (Note that our definition of symmetric spaces differs slightly from the one given by
Timashev; see [Tim11, Definition 26.1].)
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Example 2.3.26. The group G itself can be viewed as a symmetric space for the action of
G × G by left and right multiplication. Indeed, G ≃ (G × G)/H, where H = (G × G)θ with
θ(g1, g2) = (g2, g1).

Remark 2.3.27. Given G a complex semisimple algebraic group, ψ∶G′ → G its universal covering,
and G/H a G-symmetric space, the homogeneous space G′/ψ−1(H) ≃ G/H is a G′-symmetric
space, as observed by Vust in [Vus90, § 2.1]. Consequently, when studying symmetric spaces,
we can always replace G by its universal covering space to reduce to the case where G is
simply-connected without loss of generality.

Until the end of this section we fix G a complex simply-connected semisimple algebraic
group. As for real group structures (see Lemma 2.3.3), the next well-known result shows that
the classification of (regular) group involutions on simply-connected semisimple algebraic groups
reduces to the case of simply-connected simple algebraic groups.

Lemma 2.3.28. ([MJT21b, Lemma 1.16]) Let θ be a group involution on G ≃ ∏i∈I Gi, where
the Gi are the simple factors of G. Then, for a given i ∈ I, we have the following possibilities:
(i) θ(Gi) = Gi and θ∣Gi is a group involution on Gi; or

(ii) there exists j ≠ i such that θ(Gi) = Gj, then Gi ≃ Gj and θ∣Gi×Gj is conjugate to (g1, g2) ↦
(g2, g1).

Conjugacy classes of group involutions on simply-connected simple algebraic groups can
be classified by using either Kac diagrams or Satake diagrams; see [Tim11, § 26.5] for more
details on these classifications and [Tim11, Table 26.3] for the list of conjugacy classes of group
involutions on simply-connected simple algebraic groups.

Our leading goal in [MJT21b] was to obtain a practical criterion for the existence of an
equivariant real structure on a symmetric space using the involution θ. The next example
shows that the combinatorial invariants of the conjugacy class of θ (such as Kac diagrams or
Satake diagrams) are too coarse to determine the existence of an equivariant real structure on
the symmetric space G/Gθ.

Example 2.3.29. ([MJT21b, Example 2.2]) Let G = SL×3
n with n ≥ 2, and let σ∶ (g1, g2, g3) ↦

(g2, g1,
tg−1

3 ) be a real group structure on G. We give an example of two group involutions θ
and θ′ that are conjugate (by an outer automorphism of G) such that G/Gθ admits a (G,σ)-
equivariant real structure but G/Gθ′ does not. Indeed, let

θ∶ (g1, g2, g3)↦ (g2, g1,
tg−1

3 ), ψ∶ (g1, g2, g3)↦ (g3, g2, g1), and θ′ = ψ ○ θ ○ ψ−1.

Then σ(Gθ) = Gθ while σ(Gθ′) is not conjugate to Gθ
′
in G, and we conclude with Lemma 2.3.9.

Therefore, a criterion for the existence of an equivariant real structure on a symmetric space
should depend on θ up to a conjugate by an inner automorphism of G. Before stating our main
result, we need to explain how Γ = Gal(C/R) acts on the group NG(Gθ)/Gθ.

Definition 2.3.30. Let σ = innc ○σqs be a real group structure on G, where c ∈ G(C) and σqs a
quasi-split real group structure on G. If σ ○θ ○σ and θ are conjugate by an inner automorphism
of G, then σqs(Gθ) = tGθt−1 for some t ∈ G(C). Hence, by [MJT21b, Corollary 2.7], there exists
a quasi-split real group structure σ′qs, strongly equivalent to σqs, such that σ′qs(Gθ) = Gθ. Then

σ′qs(NG(Gθ)) = NG(Gθ), and so σ′qs induces a real group structure τ on NG(Gθ)/Gθ defined

by τ(nGθ) = σ′qs(n)Gθ. The Γ-action on NG(Gθ)/Gθ that we will consider in the following
is the one given by τ . (Note that this Γ-action does not depend on the choice of σ′qs in the
conjugacy class of σqs by inner automorphisms. Moreover, if σ is an inner twist of a split real
group structure, then the corresponding Γ-action on NG(Gθ)/Gθ is trivial.)
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The main result obtained in [MJT21b] is the following.

Theorem 2.3.31. ([MJT21b, Theorem 0.1]) Let G be a complex simply-connected semisimple
algebraic group with a real group structure σ = innc ○ σqs. Let θ be a group involution on G,
and let H ⊆ G be an algebraic subgroup such that Gθ ⊆ H ⊆ NG(Gθ). Then there exists a
(G,σ)-equivariant real structure on the symmetric space G/H if and only if the following hold:
(i) the involutions σ ○ θ ○ σ and θ are conjugate by an inner automorphism of G;

(ii) the Γ-action on NG(Gθ)/Gθ induced by σqs (see Definition 2.3.30) stabilizes H/Gθ; and
(iii) the cohomology class ∆H([σ]) is neutral, where ∆H is the map defined by (2.5) in § 2.2.3

and the Γ-actions on (G/Z(G))(C) and (NG(H)/H)(C) are the ones induced by σqs.
Moreover, if such a structure exists, then there are exactly 2n equivalence classes of (G,σ)-
equivariant real structures on G/H, where n is a non-negative integer than can be calculated
explicitly (see [MJT21b, § 3] for details).

Remark 2.3.32.
● The fact that G is assumed to be semisimple, and not just reductive, is crucial in the proof

of Theorem 2.3.31.
● Let X = G/H be a symmetric space with a (G,σ)-equivariant real structure µ such that
X(C)µ is non-empty. Then G(C)σ acts on X(C)µ with finitely many orbits and a combina-
torial description of these orbits using Galois cohomology can be found in [CFT18] (see also
[BJ06, Chp. 6]).

Example 2.3.33. ([MJT21b, Example 2.12]) Let G = SLn × SLn with n odd and n ≥ 3, let
σ∶ (g1, g2) ↦ (g2, g1), and let θ∶ (g1, g2) ↦ (tg−1

1 , tg−1
2 ). Then σ ○ θ ○ σ = θ and NG(Gθ)/Gθ ≃

Z/nZ × Z/nZ on which Γ acts by γ ⋅ (a, b) = (b−1, a−1). Thus, since σ is quasi-split, it follows
from Theorem 2.3.31 that there exists a (G,σ)-equivariant real structure on the symmetric
space G/H if and only if H/Gθ is stable under the operation of exchanging the two factors of
NG(Gθ)/Gθ.

Example 2.3.34. ([MJT21b, Examples 2.13 and 3.7]) Let n ≥ 2. There are exactly two
inequivalent quasi-split real group structures on G = SL2n. The first one is the split real group
structure σs∶ g ↦ g, whose real locus is SL2n(R), and the second is defined by

σqs∶ g ↦Kn,n
tg−1 tKn,n with Kn,n = [ 0 Cn

−Cn 0
] , where Cn =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 1

0 . .
.

0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

∈ GLn(C).

Let us note that tKn,n =K−1
n,n = −Kn,n. The real locus of σqs is SU(n,n,R).

Let θ be the group involution defined by

θ∶ g ↦ J (tg−1) tJ, with J = [ 0 In
−In 0

] , and so tJ = J−1 = −J.

We have Gθ = Sp2n and NG(Gθ) = ⟨Z(G),Gθ⟩, hence NG(Gθ)/Gθ ≃ Z(G)/(Z(G)∩Gθ) ≃ Z/nZ.
Let σ be a real group structure on G, and let H ⊆ G be an algebraic subgroup such that

Gθ ⊆H ⊆ NG(Gθ). Since σs ○ θ ○ σs = σqs ○ θ ○ σqs = θ, we have that σ ○ θ ○ σ and θ are conjugate
by an inner automorphism of G for any real group structure σ on G. Moreover, the Γ-action on
the cyclic group NG(Gθ)/Gθ ≃ Z/nZ always stabilizes H/Gθ. Hence, the symmetric space G/H
has a (G,σ)-equivariant real structure if and only if the condition (iii) of Theorem 2.3.31 holds.

For the sake of brevity, we study only the case where σ is an inner twist of σqs. Let
T = {0, . . . , n}. The equivalence classes of the real group structures on G obtained as an inner
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twist of σqs are in bijection with T . For t ∈ T , we denote by σt the real group structure
whose real locus G(C)σt is SU(n + t, n − t,R). Borovoi determined in [MJT21a, Table 2] that
H2(Γ, Z(G)) ≃ Z(G)/2Z(G) ≃ Z/2Z and that δ([σt]) = t mod 2 (see (2.3) in § 2.2.3 for the
definition of δ). Let ξ be a primitive 2n-th root of unity. Then H = ⟨ξrI2n,G

θ⟩, for some positive
integer r dividing 2n, and A ∶= NG(H)/H ≃ Z(G)/(Z(G) ∩H) ≃ Z/uZ with u = gcd(r, n). We
can verify that the Γ-action on Z(G) (and so also on A) is trivial, thus

H2(Γ,A) ≃ A/2A ≃ { Z/2Z if u is even; and
{0} if u is odd.

The map λH ∶H2(Γ, Z(G)) ≃ Z(G)/2Z(G) → H2(Γ,A) ≃ A/2A defined by (2.4) in § 2.2.3 is the
map induced by the quotient map Z(G)→ A ≃ Z(G)/(Z(G)∩H), hence it is the identity map
if u is even resp. the trivial map if u is odd. It follows that ∆H([σt]) = 0 if and only if t is even
or u is odd. Therefore, G/H has a (G,σt)-equivariant real structure if and only if t is even or
u is odd. Moreover, using [MJT21b, Proposition 3.4], we can verify that
● if u is odd, then there is a unique (G,σt)-equivariant real structure on G/H (up to equiva-

lence); and
● if t and u are even, there there are exactly two inequivalent classes of (G,σt)-equivariant real

structures on G/H.

To finish this section, we make a few comments concerning the main differences between the
study of the equivariant real structures on symmetric spaces and on horospherical varieties (see
§ 2.3.4) which are two subclasses of spherical varieties. The main result regarding the existence
of equivariant real structures on horospherical homogeneous spaces (Theorem 2.3.17) is quite
similar to Theorem 2.3.31 but the horospherical case differs greatly from the symmetric case
for the following reasons.
● The homogeneous spherical data (see [Tim11, § 30.11]) corresponding to horospherical ho-

mogeneous spaces are easy to discriminate and take a very simple form (the horospherical
data recalled in § 2.3.4) contrary to the case of symmetric spaces.

● The group AutGC(G/H) ≃ NG(H)/H, which plays a key role when counting the number
of equivalence classes of equivariant real structures on G/H (see Proposition 2.2.4), is an
algebraic torus for horospherical homogeneous spaces while it is a finite abelian group for
symmetric spaces.

● In both cases, an equivariant real structure on G/H extends to a G-equivariant embedding
G/H ↪ X if and only if the corresponding colored fan is stable for the induced action
of the Galois group Γ = Gal(C/R) (see [Hur11, Wed18]), but in the horospherical case the
categorical quotient X/Γ is always a variety while in the symmetric case it can be an algebraic
space. Therefore the question of the existence of real forms for symmetric varieties is subtler
than for horospherical varieties, and that is the reason why in [MJT21b] we restrict ourselves
to the homogeneous case.

2.3.6 Case of almost homogeneous SL2-threefolds

In this section, we review the main results obtained in [MJT, § 3] concerning the equivariant
real structures on almost homogeneous SL2-threefolds. These are complexity-one variety with
a dense open orbit for which the Luna-Vust combinatorial description is quite easy (see [LV83,
§ 9], [MJ90], [Bou00] or [Tim11, § 16.5] for details) compared to the general case.

We fix once and for all G = SL2. Let B be the Borel subgroup of G formed by lower triangular
matrices. Note that any real group structure on G is strongly equivalent either to σs∶ g ↦ g or
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to σc∶ g ↦ tg−1 with corresponding real loci SL2(R) and SU2(C) respectively. Moreover, σc is
an inner twist of σs.

If X is an almost homogeneous G-threefold, then it contains a dense open orbit isomorphic
to G/H with H ⊆ G a finite subgroup, and these are well-known (see [Kle93]): there are the
cyclic groups of order n (conjugate to An), the binary dihedral groups of order 4n−8 (conjugate
to Dn with n ≥ 4), and the binary polyhedral groups (conjugate to En with n ∈ {6,7,8}).

Theorem 2.3.35. ([MJT, Theorem D]) Let H be a finite subgroup of G = SL2, and let σ be a
real group structure on G. Then G/H admits a (G,σ)-equivariant real structure. Moreover, the
equivalence classes of the (G,σ)-equivariant real structures µ on X = G/H and their real loci
are listed in Table 2.1 on page 57.

Following the strategy discussed in § 2.2.8, we now move on to the almost homogeneous
case and specialize Theorem 2.2.16 in this setting in order to obtain a criterion for a (G,σ)-
equivariant real structure on G/H (with H a finite subgroup of G) to extend to a given G-
equivariant embedding G/H ↪ X. We refer to [MJT, Appendix B] for a description of the
colored equipment (VG(G/H),DB(G/H)) of G/H (see Definition 2.2.12) and for the types of
the G-orbits of a given equivariant embedding of G/H. Let us just mention that there are six
possible types of G-orbits denoted by
● A-AB-B+-B− for orbits isomorphic to P1;
● B0 for fixed points; and
● C for 2-dimensional orbits.

Theorem 2.3.36. ([MJT, Theorem E]) Let H be a finite subgroup of G = SL2, let σ be a real
group structure on G, and let µ be a (G,σ)-equivariant real structure on G/H. Let G/H ↪ X
be a G-equivariant embedding. Then µ extends to an effective (G,σ)-equivariant real structure
µ̃ on X if and only if
(i) the Γ-actions on VG(G/H) and DB(G/H) induced by µ (see § 2.2.6) preserve the collection

of colored data of the G-orbits of X; and
(ii) every G-orbit of X of type B0 or B− is stabilized by the Γ-action.

Remark 2.3.37. Let us note that, contrary to the spherical case (see [Hur11, § 2]), the Γ-action
on the colored equipment of G/H depends not only on σ, but also on µ. In fact, it is even
possible, for a given σ, to have two equivalent (G,σ)-equivariant real structures on G/H such
that only one of them extends to a given G-equivariant embedding G/H ↪X.

Example 2.3.38. ([MJT, Example 3.10]) Let X = P1×P1×P1 on which G acts diagonally. Then
the stabilizer of the point x = ([1 ∶ 1], [1 ∶ 0], [0 ∶ 1]) is H = {±I2} = A2, and so (X,x) is a G-
equivariant embedding of G/H = PGL2(C). The orbit decomposition of X is `⊔S1⊔S2⊔S3⊔X0,
where X0 ≃ PGL2(C) is the dense open orbit, Si ≃ P1 × P1 ∖∆, and ` ≃ P1. Let us note that

S3 ≃ AutGC(X)↪ AutGC(X0) ≃ PGL2(C), (12)↦ [i 0
i −i] and (23)↦ [0 i

i 0
] ,

where the symmetric group S3 acts on X by permuting the three factors. Then, using Proposi-
tion 2.2.4, a direct computation of H1(Γ,AutGC(X)) yields thatX admits exactly two equivalence
classes of (G,σ)-equivariant real structures for each σ ∈ {σs, σc}.

The situations are very similar for σs and σc, thus we only give details when σ = σs. The
Γ-action induced by the equivariant real structure µ1∶ gH ↦ σs(g)eH (see Table 2.1) does not
preserve the collection of colored data of X, and so µ1 does not extend to X. On the other hand,
the Γ-action induced by the equivariant real structure µ2∶ gH ↦ σs(g)H stabilizes the colored
data of each orbit of X, and so it extends to an equivariant real structure µ̃2 on X. Moreover,
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the equivariant real structure µ3∶ gH ↦ σs(g)fH, which is equivalent to µ2, also extends to
an equivariant real structure µ̃3 on X, but µ̃2 and µ̃3 are inequivalent as real structures on
the G-variety X. Hence µ̃2 and µ̃3 are the two inequivalent equivariant real structures on X.
Also, the real locus of µ̃2 is P1

R × P1
R × P1

R and the real locus of µ̃3 is P1
R × S ≃ P1

R × P1
C, where

S = {([u0 ∶ u1], [u0 ∶ u1])} ⊆ P1
C ×P1

C. (And when σ = σc, the real locus of any (G,σ)-equivariant
real structure on X is empty.)

Other examples where we apply Theorem 2.3.36 to determine the equivariant real structures
on certain almost homogeneous G-varieties can be found in [MJT, § 3.3].

Lastly, to illustrate our results, we then considered in [MJT, § 3.4] the equivariant real
structures on minimal smooth completions of G/H, when H is non-cyclic. Here we call minimal
smooth completion of G/H any G-equivariant embedding G/H ↪ X such that X is a smooth
complete variety and any birational G-morphism X →X ′, with X ′ smooth, is an isomorphism.

The minimal smooth completions of G/H when H is a finite subgroup of G are well-known.
They were classified and studied by Mukai-Umemura in [MU83] (for H conjugate to E7 or E8),
by Umemura in [Ume88, § 4] (for H conjugate to Dn), and by Nakano in [Nak89] (for all H, but
under projectivity assumption) as an application of Mori theory. Finally, the full classification
(including the non-projective cases occurring when H is conjugate to An) and the description of
the corresponding colored data were obtained by Moser-Jauslin and Bousquet in [MJ90, Bou00]
as an application of the Luna-Vust theory.

Corollary 2.3.39. ([MJT, Corollary F]) Let H be a non-cyclic finite subgroup of G = SL2, and
let σ be a real group structure on G. Then the following hold.
(i) If H is conjugate to D4, then each of the three non-isomorphic minimal smooth completions

G/H ↪X admits exactly two inequivalent (G,σ)-equivariant real structures.
(ii) If H is conjugate to E6 or Dn, with n ≥ 5, then each of the two non-isomorphic minimal

smooth completions G/H ↪X admits exactly one (G,σ)-equivariant real structure.
(iii) If H is conjugate to E7 or E8 then the unique (up to isomorphism) minimal smooth com-

pletion G/H ↪X admits exactly one (G,σ)-equivariant real structure.
Moreover, a table with the list of the (G,σ)-equivariant real structures on G/H that extend to
the minimal smooth completions G/H ↪X can be found at the end of [MJT, § 3.4].

Remark 2.3.40. The underlying G-variety X is the same for each minimal smooth completion
of G/H (only the choice of the base point in X to embed G/H changes). It is G-isomorphic to
● the rank 1 Fano threefold P3, Q3, ,X5, or XMU

22 (with the notation of [IP99, § 12.2]) when
H is conjugate to D5, E6, E7, or E8 respectively;

● the projectivization of the tangent bundle over P2 when H is conjugate to D4; and
● the projectivization of the classical Schwarzenberger bundle Sn−2 → P2 introduced in [Sch61]

(whose definition is recalled in § 1.2.4(vi)) when H is conjugate to Dn, with n ≥ 6.
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Table 2.1: Table of equivariant real structures on SL2/H with H a finite subgroup

Subgroup H ⊆ SL2 µ for σ = σs real locus of µ for σ = σc real locus of µ

A1 g ↦ σs(g) SL2(R) g ↦ σc(g) SU2(C)
g ↦ −σc(g) ∅

A2 g ↦ σs(g) PSL2(R)I2 ⊔PSL2(R)ω4 (= PGL2(R)) g ↦ σc(g) PSU2(C) (≃ SO3(R))
g ↦ σs(g)e ∅ g ↦ σc(g)e ∅

An, n ≥ 3, n odd g ↦ σs(g) SL2(R)I2 ⊔ SL2(R)ω2n g ↦ σc(g) SU2(C)/An
g ↦ −σs(g)f SL2(R)d−1 g ↦ −σc(g) ∅

g ↦ −σs(g)fω2n SL2(R)d
An, n ≥ 4, n even g ↦ σs(g) PSL2(R)I2 ⊔PSL2(R)ω2n g ↦ σc(g) SU2(C)/An

g ↦ σs(g)e
⎧⎪⎪⎨⎪⎪⎩

∅ if n ≡ 2 [4]
PSL2(R)d ⊔PSL2(R)d−1 if n ≡ 0 [4]

g ↦ σc(g)e ∅

g ↦ σs(g)eω2n

⎧⎪⎪⎨⎪⎪⎩

PSL2(R)d ⊔PSL2(R)d−1 if n ≡ 2 [4]
∅ if n ≡ 0 [4]

g ↦ σc(g)ω2n ∅

Dn, n ≥ 4 g ↦ σs(g)
⎧⎪⎪⎨⎪⎪⎩

PSL2(R)I2 ⊔PSL2(R)ω4n−8 ⊔PSL2(R)d if n ≡ 0 [2]
PSL2(R)I2 ⊔PSL2(R)d if n ≡ 1 [2]

g ↦ σc(g) SU2(C)/Dn

g ↦ σs(g)ω4n−8

⎧⎪⎪⎨⎪⎪⎩

PSL2(R)ω8n−16 if n ≡ 0 [2]
PSL2(R)ω8n−16 ⊔PSL2(R)ω−1

8n−16 if n ≡ 1 [2]
g ↦ σc(g)ω4n−8 ∅

E6 g ↦ σs(g) PSL2(R)I2 g ↦ σc(g) SU2(C)/E6

g ↦ σs(g)ω8 PSL2(R)ω16 g ↦ σc(g)ω8 ∅
E7 g ↦ σs(g) PSL2(R)I2 ⊔PSL2(R)ω16 g ↦ σc(g) SU2(C)/E7

E8 g ↦ σs(g) PSL2(R)I2 g ↦ σc(g) SU2(C)/E8

Here we write g to denote the class gH in G/H. Also, we denote e = [ 0 1
−1 0

], f = [0 i
i 0

], d = 1√
2
[1 i
i 1

], and ωn = [ζn 0
0 ζ−1

n
] with n ∈ N.

These are all elements of SL2(C). Note that, d−1 = σs(d), d2 = f , and ω4e = −eω4 = f .
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2.3. Results over the field of real numbers

2.3.7 Case of nilpotent orbit closures

In this section, we review the main results obtained in [BMJT] concerning the equivariant real
structures on nilpotent orbit closures in complex semisimple Lie algebras. These are examples
of varieties with symplectic singularities (whose symplectic desingularizations are quite well
understood) and they furthermore have a series of applications in the representation theory of
algebraic groups, Lie algebras and related objects (such as Weyl groups). We refer to [CM93]
for a general reference on nilpotent orbits.

Let G be a complex semisimple algebraic group, let σ be a real group structure on G, and
let g be the Lie algebra of G.

Denoting by dσe∶g → g the differential of σ∶G → G at the identity element, we can verify
that dσe is a (G,σ)-equivariant real structure on g, viewed as a G-variety for the adjoint action,
and that dσe maps a nilpotent orbit to a nilpotent orbit. In particular, if O is a nilpotent
orbit in g, then dσe induces a (G,σ)-equivariant real structure on O if and only if dσe(O) = O.
However, there are also equivariant real structures on nilpotent orbits which are not obtained by
differentiating a real group structure on G, nor even by restricting an equivariant real structure
from the Lie algebra g.

Example 2.3.41. ([BMJT, Example 1.1])
● We keep the previous notation, and assume that dσe(O) = O. Let θ ∈ R. Then

µθ ∶O → O, v ↦ eiθdσe(v)

is a (G,σ)-equivariant real structure on O which is not obtained by differentiating a real
group structure on G when θ ∉ 2πZ (because, in this case, µθ does not preserve the Lie
bracket).

● Let G = SL3 with σ(g) = g for all g ∈ G (here g denotes the complex conjugate of g), and let
Oreg be the regular nilpotent orbit in sl3. Then one can verify that the map

µ∶Oreg → Oreg, g ⋅
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
↦

⎛
⎜
⎝
σ(g)

⎡⎢⎢⎢⎢⎢⎣

1 i 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
⋅
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
= σ(g) ⋅

⎡⎢⎢⎢⎢⎢⎣

0 1 i
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦

is a (G,σ)-equivariant real structure on Oreg (see Lemma 2.3.9) that does not lift to a
(G,σ)-equivariant real structure on sl3 (see [BMJT, § 3.4] for a proof of this last claim).

The following theorem provides a complete answer (up to normalization) to Question 2.1.2
for nilpotent orbit closures in g.

Theorem 2.3.42. ([BMJT, Main Theorem]) Let G be a complex semisimple algebraic group
endowed with a real group structure σ. Let g be the Lie algebra of G, let O be a nilpotent orbit
in g, and let O be the closure of O in g. Then the following hold.

(i) The nilpotent orbit O admits a (G,σ)-equivariant real structure if and only if dσe(O) = O,
in which case (dσe)∣O is a (G,σ)-equivariant real structure on O.

(ii) All (G,σ)-equivariant real structures on O are equivalent.
(iii) Every (G,σ)-equivariant real structure on O extends uniquely to the normalization Õ of O.

Moreover, all (G,σ)-equivariant real structures on Õ are equivalent.

Remark 2.3.43.
● In [BMJT, § 3.1] we describe which nilpotent orbits satisfy dσe(O) = O. It turns out that,

except for a few cases in type Dn, every nilpotent orbit O in g is fixed by dσe when g is
simple (see Example 2.3.44 below for details in the case of D4).
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2.3. Results over the field of real numbers

● For every nilpotent orbit O in g, we have O(C)dσe = O(C)∩g(C)dσe which is a real manifold
(possibly empty) whose G(C)σ-orbits, usually called real nilpotent orbits, are classified (see
[CM93, § 9]).

● A brief review on what is known about the (non-)normality of nilpotent orbit closures in
semisimple Lie algebras can be found in [BMJT, § 3.3].

Example 2.3.44. In type D4, the Hasse diagram for nilpotent orbit closures is the following
(see [CM93, § 6.2] for details).

O[7,1]

O[5,3]

OI
[42]

yy %%
oo // O[5,13] oo // OII

[42]

O[32,12]

O[3,22,1]

OI
[24]

yy %%
oo // O[3,15] oo // OII

[24]

O[22,14]

O[18]

Let G = Spin8, then G admits two inequivalent
quasi-split real group structures: a split one,
say σs, and a non-split quasi-split one, say τ .
It follows from [BMJT, Proposition 3.4] that
if σ is an inner twist of σs, then dσe stabilizes
each nilpotent orbit of g, while if σ is an inner
twist of τ , then dσe swaps two pairs of orbits
(depending on the choice of σ in its equiva-
lence class). The dotted arrows in the oppo-
site picture indicate which pairs of orbits can
be swapped by dσe in this last case.

We now leave the realm of nilpotent orbits and give an example of a quasi-affine surface X0

in A4
C, endowed with a real structure µ that does not extends to the closure X of X0 in A4

C but
does extend to the normalization X̃ of X (see the first comment below for the motivation).

Example 2.3.45. Let X be the image of the morphism

f ∶A2
C → A4

C, (s, t)↦ (s, st, t2, t3);

it is a closed non-normal surface in A4
C, defined by the prime ideal

(u2w − v2, vw − ux,uw2 − vx,w3 − x2) in C[u, v,w, x].

One can check that X has an isolated singularity at p ∶= (0,0,0,0), and that f restricts to an
isomorphism A2

C ∖ {(0,0)} → X0 ∶= X ∖ p. Moreover, the normalization of X, which coincides
with the affinization of X0, is X̃ = A2

C, and the normalization morphism corresponds to the
inclusion of C-algebras C[y, yz, z2, z3] ⊆ C[y, z].

Let µ̃ be the real structure on X̃ given by (s, t)↦ (t, s). It restricts to a real structure µ on
X0 (as (0,0) is fixed by µ̃). But the corresponding comorphism

µ∗∶C[y, z]→ C[y, z], Q(y, z)↦ Q(z, y)

does not preserve C[y, yz, z2, z3] (as µ∗ exchanges y and z), and so µ does not extend to a real
structure on X.

We finish this section with a few general comments.
● We do not know whether a phenomenon similar to the one described in Example 2.3.45 can

occur when X0 is a nilpotent orbit with non-normal closure. More precisely, by the results
we have proven, we know that any (G,σ)-equivariant real structure on a nilpotent orbit O
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is equivalent to one that extends (whether the closure of the orbit is normal or not), namely
(dσe)∣O. However, in the case where the nilpotent orbit does not have a normal closure, it
could be a priori possible to have two equivalent real structures, one that extends, and one
that does not, or even two that extend to inequivalent real structures.

● Nilpotent orbits having complexity ≤ 1 were determined by Panyushev in [Pan94, Pan99]. It
turns out that most of the nilpotent orbits have higher complexity; in particular, Luna-Vust
theory does not seem very helpful here to determine whether a given (G,σ)-equivariant real
structure on O extends to Õ (we rather use in the proof of Theorem 2.3.42 (iii) the specific
geometric features of nilpotent orbit closures).

● There is a quite simple combinatorial description of nilpotent orbits in terms of certain
weighted Dynkin diagrams, that is, Dynkin diagrams with a label in {0,1,2} for each node
(see [CM93, § 8] for details). One can check that, for a given real group structure σ on G,
the Γ-action on the simple roots of (G,B,T ) given in Definition 2.3.7 induces a Γ-action on
the set of nilpotent orbits which coincides with the Γ-action given by γ ⋅O = dσe(O).

2.4 Lines of research

(ζ) It would be of interest, and could certainly be the subject of a PhD thesis,
to extend the results obtained in [MJT, § 3] for complex almost homogeneous
SL2-threefolds to arbitrary complexity-one G-varieties, following the combinatorial
description of these varieties due to Timahsev in terms of colored hypercones and colored
hyperfans (see [Tim11, § 16]); the latter being valid even for varieties whose a general G-
orbit is of codimension 1. (For affine varieties endowed with a complexity-one torus action,
this was done by Langlois in [Lan15].)

As a first step, we could express our results for complex almost homogeneous SL2-threefolds
in terms of Galois actions on the corresponding colored hypercones and colored hyperfans;
those are described in [Tim11, Example 16.23]. Then, as a second step, we could study the
equivariant real structures on the homogeneous space SL3/T and its completions, with T the
diagonal torus; the colored equipment of this space, a.k.a. the space of ordered triangles on
a projective plane, is described in [Tim11, Example 16.24]. Alternatively, we could study
the equivariant real structures on complexity-one horospherical varieties (introduced in the
next chapter of this manuscript) since their combinatorial description is halfway between
horospherical varieties and complexity-one varieties with a torus action (see § 3.2). The final
step would then be to handle the general complexity-one case, first over the field of real
numbers, and then over an arbitrary perfect field.

(η) In the same vein as the previous point, we could use the combinatorial description due
to Altmann-Hausen [AH06] and Altmann-Hausen-Süß [AHS08] to describe the
k-forms of the varieties endowed with a torus action, where k is a field of characteristic
zero. (As mentioned above, for affine varieties endowed with a complexity-one torus action,
this was done by Langlois in [Lan15].)

When k = R, any real form of a complex algebraic torus T ≃ Gn
m,C is isomorphic to a product

Gp
m,R × (S1)q × RC/R(Gm,C)r for some p, q, r ∈ N satisfying p + q + 2r = n. A combinatorial

description of the real affine varieties endowed with an action of such a real algebraic torus
was obtained by Gillard in [Gil]. Moreover, in a forthcoming work, Gillard intends to give a
similar combinatorial description of the algebraic k-varieties endowed with a 2-dimensional
torus action, where k is an arbitrary field of characteristic zero.
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(θ) In [MJT, § 3.4], we determined the real forms of the minimal smooth completions of G/H
when H is a non-cyclic finite subgroup of G = SL2. Using our approach, one should be able to
determine also the real forms of the minimal smooth completions of G/H when H
is a cyclic group of order n ∈ N. However, in this case, the group AutGC(G/H) ≃ NG(H)/H
is infinite and, for each n ≥ 1, there are between seven and eleven minimal smooth completions
of G/H to consider (depending on n), up to a G-automorphism of the dense open orbit G/H.
Moreover, the underlying G-varieties are not all projective, which makes the question of the
effectiveness of the Galois descent not straightforward in this case.

(ι) A homogeneous space G/H is horosymmetric if it is a homogeneous fibration over a flag
variety G/P , whose fibers are symmetric spaces (i.e. G/H is a parabolic induction from a
symmetric space). This class of spherical homogeneous spaces, which contains both symmet-
ric spaces and horospherical homogeneous spaces, was introduced by Delcroix in [Del20b].
We could try to adapt our results from § 2.3.4 and § 2.3.5 to determine the
equivariant real structures on horosymmetric spaces and their equivariant em-
beddings.

(κ) In a direction involving more classical questions in affine algebraic geometry, let us end this
chapter by mentioning the following two open problems concerning the real forms of the
complex affine space AnC.

● “Stable triviality”: Let X be a real form of AnC, with n ≥ 3.
Does there exist m ∈ N such that X ×AmR ≃ An+mR ?

● “Cancellation”: Let X be a real form of AnC such that X ×AmR ≃ Am+nR , for some m ∈ N.
Does this imply that X ≃ AnR?

A positive answer for both questions would imply that AnR is the unique real form (up to
isomorphism) of AnC. But already an answer to one of these questions would be a big step
towards the understanding of the real forms of AnC when n ≥ 3.
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Chapter 3

About complexity-one varieties with
horospherical orbits

In this third chapter we review the main results obtained with Kevin Langlois in [LT16, LT17].
These results concern the study of the complexity-one varieties with horospherical orbits (i.e. G-
varieties whose general orbits are horospherical and of codimension 1). Using the combinatorial
description of Timashev for complexity-one varieties (see [Tim11, § 16]) and adapting results
concerning the geometry of (horo)spherical and complexity-one T -varieties, we obtain criteria
for rationality of singularities and for smoothness, a presentation of the class group by generators
and relations, an explicit representative of the canonical class, an explicit desingularization, and
a presentation of the Cox ring by generators and relations.

3.1 Aims and scope

Let G be a (connected) reductive algebraic group. We recall that the complexity of a G-variety
is the codimension of a general B-orbit, where B ⊆ G is any Borel subgroup. From the point
of view of Luna-Vust theory (briefly recalled in § 2.2.5, see also [Tim11, § 12]), the smaller the
complexity of a G-variety is, the more tractable its combinatorial description is.

The complexity-zero case corresponds to spherical varieties (see e.g. [Kno91, Tim11, Per14]
for a presentation), whose study is a long-established subject of algebraic geometry. The study
of complexity-one varieties is therefore the next case to consider, and several classical families
of examples motivate this study.
● The complexity-one T -varieties, with T is an algebraic torus, were studied by many au-

thors; see [KKMSD73, Tim08] for a combinatorial description, [Lan15] for a generalization
over an arbitrary field, [FZ03] for the case of surfaces, and [AH06, AHS08, AIP+12] for a
combinatorial description in higher complexity.

● The complexity-one homogeneous spaces G/H, with H a connected reductive algebraic sub-
group of G, are classified in [Pan92, AC04].

● The affine SL2-threefolds with a two-dimensional general orbit are studied in [Arz97, § 6].
● The equivariant embeddings of SL2/H, where H is a finite subgroup of SL2, are studied in

[Pop73], [LV83, § 9], [MJ90, Bou00], and [Tim11, § 16.5] (see also § 2.3.6 of this manuscript).
● An example from classical geometry: Let T ⊆ SL3 be the subgroup of diagonal matrices. The

homogeneous space SL3/T identifies with the set of ordered triangles in P2. The equivariant
embeddings of SL3/T are studied in [War82] and [Tim11, § 16.5].

A complexity-one G-variety is called horospherical if every G-orbit is horospherical, i.e. the
stabilizer of any point contains a maximal unipotent subgroup of G. It follows from [Kno90,
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Satz 2.2] (see also [Tim11, § 7]) that a complexity-one horosphericalG-varietyX isG-equivarian-
tly birational to C×G/H, where H ⊆ G is a horospherical subgroup and C is a smooth projective
curve on which G acts trivially (in particular, complexity-one horospherical varieties are not
almost homogeneous). More precisely, H is the stabilizer of a general point of X, and C is the
smooth projective curve such that k(C) ≃ k(X)G. Hence, G-birational classes of complexity-one
G-varieties are classified by pairs (C,H) as above. (Let us mention that the classification of
G-birational classes for complexity-one varieties with spherical orbits is generally more involved;
see [Arz97, § 3] and [Lan20, § 3.1] for details.)

A combinatorial description of arbitrary complexity-one varieties (in a given G-birational
class) was obtained by Timashev in [Tim97] (see also [Tim11, § 16]). This description was in-
spired by the Luna-Vust theory for equivariant embeddings of homogeneous spaces (see [LV83]).
In [LT16, LT17], we considered the subclass of complexity-one horospherical varieties for which
we were able to push the study of their geometrical properties a bit further than in the gen-
eral case (see § 3.3 for a detailed account) by adapting results for (horo)spherical varieties
and by relating complexity-one horospherical varieties to complexity-one and higher complexity
T -varieties.

An important issue for varieties endowed with a reductive algebraic group action is to
describe them in terms of equations via “explicit coordinates”. In some cases, this can be
achieved via the theory of Cox rings (see [ADHL15] for a general reference). The Cox ring has
been computed for flag varieties in [KR87], for toric varieties in [Cox95], and more generally
for spherical varieties (complexity-zero case) in [Bri07, Gag14]. In addition, the Cox ring for
T -varieties has bee investigated in [HS10, HH13]. Our purpose in [LT17] was to describe the
Cox ring for complexity-one horospherical varieties (Theorem 3.3.24), as a new step towards the
general complexity-one case. Let us also mention that Vézier introduced recently in [Vezb, Veza]
the notion of equivariant Cox ring for a G-variety (which can be thought of as a tool to study
the ordinary Cox ring) with a particular focus on complexity-one varieties.

Lastly, let us note that the results obtained in [LT16] play an important role in the proofs of
some of the main results in [Lan17], where the author provides a criterion to determine whether
complexity-one horospherical varieties have at most canonical, log canonical, or terminal singu-
larities, and in [LPR19], where the authors determine the stringy motivic volume of log-terminal
complexity-one horospherical varieties (see [BM13] for the complexity-zero case).

3.2 Combinatorial description

In this part, we explain the combinatorial description of complexity-one varieties given in
[Tim11, § 16] and specialized in the horospherical case in [LT16, § 1]. This is a particular
case of the Luna-Vust theory briefly recalled in § 2.2.5 (see also [Tim11, Chapter 3]).

3.2.1 Notation

Let k be a fixed algebraically closed field of characteristic zero. As in the previous chapter,
a variety (over k) is a separated scheme of finite type (over k) which is integral and normal.
If X is a variety, then k[X] denotes the coordinate ring of X and k(X) denotes the field of
rational functions of X.

An algebraic group (over k) is a finite type group scheme (over k). By an algebraic subgroup,
we always mean a closed subgroup scheme. A reductive algebraic group is always assumed to
be connected and of simply-connected type , i.e. isomorphic to a product of an algebraic
torus and a simply-connected semisimple algebraic group.

We fix once and for all a reductive algebraic group G, a Borel subgroup B ⊆ G, and a
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maximal torus T ⊆ B. We denote by U = Ru(B) the unipotent radical of B, this is a maximal
unipotent subgroup of G. We write X = X(T ) = Homgr(T,Gm) for the character group of T ,
and we denote by S = S(G,B,T ) the set of simple roots corresponding to the root system
associated with the triple (G,B,T ). When H ⊆ G is an algebraic subgroup, we denote by
NG(H) the normalizer of H in G.

We recall that the notions of horospherical subgroups and horospherical homogeneous spaces
were introduced in Definition 2.3.14. In particular, we recalled at the beginning of § 2.3.4 the
combinatorial description of the conjugacy classes of horospherical subgroups of G in terms of
pairs (I,M), called horospherical datum of H, where I is a subset of S and M is a sublattice
of X(PI) ∶= Homgr(PI ,Gm)(⊆ X).

We fix a horospherical subgroup H ⊆ G containing U and with horospherical datum (I,M).
These two conditions determine H uniquely; in particular, P ∶= NG(H) coincides with the
parabolic subgroup PI . Let T ∶= NG(H)/H which is an algebraic torus. Let C be a smooth
projective curve, and let

Z ∶= C ×G/H
on which G acts by translation on the second factor (and trivially on the first factor). The G-
variety Z is a complexity-one horospherical G-variety which we will consider in this chapter as a
canonical representative of its G-birational class. (And each G-birational class of complexity-one
horospherical G-varieties admits a unique representative of this form.)

3.2.2 Models, colors, and hyperspace of invariant valuations

We start by introducing the scheme of geometric localities as in [Tim11, § 12.2]. All varieties
which are G-equivariantly birational to Z may be glued together into a scheme over k that
we denote by Sch(Z). More precisely, the schematic points of Sch(Z) identify with local rings
corresponding to prime ideals of finitely generated subalgebras with quotient field k(Z), and
the spectra of those subalgebras define a base of the Zariski topology on Sch(Z) (by identifying
prime ideals with associated local rings). Moreover, the group G acts birationally on Sch(Z)
via its linear action on k(Z). We denote by SchG(Z) the largest open subset of Sch(Z) on
which the G-action is regular.

Definition 3.2.1. Models, charts, and germs.
● A G-model X of Z is a G-stable dense open subset of SchG(Z) which is separated and of

finite type over k. (Equivalently, a G-model of Z is a pair (X,ψ), where X is a G-variety
and ψ∶Z →X is a G-equivariant birational map; see Definition 2.2.13.)

● A chart (or affine chart or B-chart) of X is an affine dense open subset of X which is
B-stable.

● A germ (or G-germ) of X is a non-empty irreducible G-stable closed subset γ ⊊ X. (By
[Sum74, Theorem 1], for every germ γ ⊊X, there exists a chart X0 ⊆X such that X0∩γ ≠ ∅.)

● The G-model X of Z is called simple if it has a chart intersecting all the germs. (Let us note
that any G-model of Z is a finite union of simple G-models of Z.)

We now describe the colors of G/H (see Definition 2.2.12). We recall that a color of G/H
is a B-stable prime divisor on G/H. As H ⊆ P = PI , there is a quotient map

π∶G/H → G/P,

and each color of G/H is of the form Dα = π−1(Eα), where Eα is the Schubert variety of
codimension one corresponding to the root α ∈ S ∖ I.

Colors are usually represented as elements of the lattice N ∶=M∨ = Homgr(M,Z) as follows.
The lattice M identifies with the lattice of B-weights of the B-algebra k(G/H). We denote
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by k(G/H)(B) the multiplicative subgroup of (non-zero) B-eigenvectors in k(G/H). For every
f ∈ k(G/H)(B) of weight m ∈M , we define %(Dα) as the unique element in N such that

(3.1) ⟨m,%(Dα)⟩ = νDα(f),

where ⟨, ⟩∶M ×N → Z is the duality bracket and νDα is the valuation associated with the color
Dα. The value %(Dα) does not depend on the choice of f and coincides with the restriction of
the coroot α̂ to the lattice N (see [Pas06, § 2]). Denoting by DB = DB(G/H) the set of colors
of G/H, we thus obtain a map

%∶DB → N.

Let us note that % is not injective in general; for instance, if H = P is a parabolic subgroup,
then N = {0} and thus % is constant.

Remark 3.2.2. Let X be a G-model of Z. There is a one-to-one correspondence between the set
of colors of G/H and the set of colors of X. Indeed, X possesses a G-stable dense open subset
of the form C ′ ×G/H, where C ′ ⊆ C is a dense open subset, and if D is a color of G/H, then
the closure of C ′ ×D in X is a color of X (and vice-versa).

Definition 3.2.3. Let NQ = N ⊗ZQ. Following [Tim11, § 16.2], we define the hyperspace E (of
k(Z)) as

E ∶= ⊔
z∈C

{z} × Ez, where Ez = NQ ×Q≥0

modulo the equivalence relation ∼ defined by

(3.2) (z, u, l) ∼ (z′, u′, l′) if z = z′, u = u′, l = l′ or u = u′, l = l′ = 0.

Therefore, the hyperspace E is the disjoint union, indexed by C, of copies of the upper half-space
NQ ×Q≥0 ⊆ NQ ×Q with boundaries NQ × {0} identified as a common part.

There is a bijection between the set of G-invariant valuations of k(Z) (see Definition 2.2.12)
and the hyperspace E , which we now explain. Let AM denote the subalgebra of k(Z) generated
by the elements of k(Z)(B). Since M is a free abelian group, the exact sequence of abelian
groups

0→ k(Z)B ∖ {0}→ k(Z)(B) →M → 0

splits. Let us fix once and for all a (non-canonical) splitting M → k(Z)(B), m↦ χm. Then AM
admits an M -grading given by

AM = ⊕
m∈M

k(C)χm.

Let w = [(z, u, l)] ∈ E . We define a valuation ν = νw of AM by

ν
⎛
⎝∑j∈J

fjχ
mj

⎞
⎠
= min

j∈J
{u(mj) + l ⋅ ordz(fj)} ,

where J is a finite set, the mj are pairwise distinct elements of M , and each fj belongs to k(C)∗.
For every w ∈ E , there exists a unique G-invariant valuation of k(Z) such that the restriction to
AM is νw. From now on, we will always identify the hyperspace E with the set of G-invariant
valuations of k(Z), and NQ as a part of E via the (well-defined) map v ↦ [(⋅, u,0)].
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3.2.3 Colored polyhedral divisors and colored divisorial fans

Let us first recall the notions of colored cone and colored hypercone since these notions will
appear in the definition of colored polyhedral divisor.

Definition 3.2.4. A colored cone of G/H is a pair (C,F), where F ⊆ DB is such that 0 ∉ %(F)
and C ⊆ NQ is a strongly convex polyhedral cone generated by %(F) and finitely many other
vectors.

We recall that there is a correspondence between the colored cones of a (horo)spherical ho-
mogeneous space and its simple equivariant embeddings (see [Kno91, Theorem 3.1] for details).

Definition 3.2.5. (following [Tim11, § 16]) Let C0 be a dense open subset of C.
● A hypercone of G/H is

C ∶= ⊔
z∈C0

{z} ×Cz ⊆ E , where each Cz ⊆ NQ ×Q≥0 is a convex polyhedral cone such that

– for all but finitely many z ∈ C0, we have

Cz = (C ∩NQ) +Q≥0ε with ε = (0, . . . ,0,1) ∈ NQ ×Q;

and either
– (A) there exists z ∈ C0 with Cz = (C ∩NQ); or

(B) we have B ∶= ∑z∈C0
Bz ⊆ (C ∩NQ) ≠ ∅, where ε + Bz = Cz ∩ (ε +NQ).

● We say that C is strongly convex if all Cz are strongly convex and if 0 ∉ B.
● A colored hypercone of G/H is a pair (C ,F), where F ⊆ DB is such that 0 ∉ %(F) and C ⊆ E

is a strongly convex hypercone for which each Cz is generated by %(F) × {0} and finitely
many other vectors.

● A hyperface of a colored hypercone (C ,F) is a colored hypercone (C ′,F ′), where C ′ =
⊔z∈C0

C ′
z is a union of faces of Cz, and F ′ = F ∩ %−1(C ′).

We now introduce the notion of colored polyhedral divisor. This notion is equivalent to
the one of colored hypercone in E defined above, but is more suitable for our purposes (when
relating complexity-one horospherical varieties with complexity-one T-varieties).

Definition 3.2.6. Let σ ⊆ NQ be a strongly convex polyhedral cone. A σ-polyhedron is a subset
of NQ obtained as a Minkowski sum Q + σ, where Q ⊆ NQ is the convex hull of a non-empty
finite subset. Let C0 be a dense open subset of the curve C, let

D = ∑
z∈C0

∆z ⋅ [z]

be a formal sum over the points of C0, where each ∆z is a σ-polyhedron of NQ and ∆z = σ for
all but a finite number of z ∈ C0, and let F ⊆ DB be a set of colors of G/H such that
● 0 does not belong to %(F); and
● %(F) ⊆ σ.

We call such a pair (D,F) a colored σ-polyhedral divisor on C0. If σ and F are clear from the
context, then we write D instead of (D,F) and call D a colored polyhedral divisor on C0.

Remark 3.2.7. Let (D,F) be a colored σ-polyhedral divisor on a dense open subset C0 ⊆ C. Let
C (D) be the subset of E defined as the disjoint union ⊔z∈C0

{z}×C (D)z modulo the equivalence
relation ∼ defined by (3.2), where C (D)z is the cone generated by σ × {0} and ∆z × {1}. Then
the pair (C (D),F) is the colored hypercone of G/H associated with (D,F). One may check
that this gives a one-to-one correspondence between the set of colored hypercones in E and the
set of colored polyhedral divisors defined on a dense open subset of C.

– 67 –



3.2. Combinatorial description

In the following, σ ⊆ NQ always denotes a strongly convex polyhedral cone and F a set
of colors satisfying the conditions of Definition 3.2.6; in particular, (σ,F) is a colored cone of
G/H. Let

σ∨ = {m ∈MQ ∣ ∀v ∈ σ, ⟨m,v⟩ ≥ 0} ⊆MQ =M ⊗Z Q
denote the dual polyhedral cone of σ, and let D be a colored σ-polyhedral divisor on C0 ⊆ C.
To each m ∈ σ∨, we associate a Q-divisor on C0:

(3.3) D(m) ∶= ∑
z∈C0

min
v∈∆z(0)

⟨m,v⟩ ⋅ [z],

where, for every z ∈ C0, we denote by ∆z(0) the set of vertices of the σ-polyhedron ∆z ⊂ NQ.
To a given D on C0 we furthermore associate the following M -graded normal k-algebra (see

[AH06, § 3] for details):

(3.4) A[C0,D] ∶= ⊕
m∈σ∨∩M

Amχ
m,

where
Am ∶=H0 (C0,OC0(⌊D(m)⌋))

and ⌊D(m)⌋ is the Weil divisor (with integer coefficients) on C0 obtained by taking the integer
part of each coefficient of D(m).

To ensure that the algebra A[C0,D] is finitely generated over k and has Frac(AM) as field of
fractions (we recall that AM is the subalgebra of k(Z) generated by the B-eigenvectors of k(Z)),
we now introduce the notion of properness for colored polyhedral divisors following [AH06, § 2].

Definition 3.2.8. Let D be a colored σ-polyhedral divisor on C0. Then D is called proper if
either C0 is affine or C0 = C is projective and satisfies the following two conditions.
● deg(D) ∶= ∑z∈C ∆z ⊊ σ; and
● if minv∈deg(D)⟨m,v⟩ = 0, then rD(m) is a principal divisor on C0 for some r ∈ Z>0.

We now have all the cards in our hand to give the correspondence between simple G-models
of Z and proper colored polyhedral divisors (see [Tim11, § 13] for details).

Let (D,F) be a proper colored σ-polyhedral divisor on a dense open subset C0 ⊆ C. Let
C (D)(1) be the set of elements [(z, u, l)] ∈ C (D) such that (u, l) is the primitive vector of an
extremal ray of C (D)z, and let Bx0 be the open B-orbit of G/H. We consider the subalgebra
R ⊆ k(Z) defined by

R = (k(C)⊗k k[Bx0]) ∩ ⋂
D∈F
OνD ∩ ⋂

v∈C (D)(1)
Oν ,

where for a B-invariant valuation ν of k(Z), we denote by

Oν = {f ∈ k(Z)∗ ∣ ν(f) ≥ 0} ∪ {0}

the corresponding local ring. Then R is a normal k-algebra of finite type, on which B acts
linearly, and the affine B-variety

X0(D) ∶= Spec(R)
is an open subscheme of SchG(Z). Moreover, the subscheme

X(D) ∶= G ⋅X0(D) ⊆ SchG(Z)

is a simple G-model of Z, and X0(D) is a chart of X(D). Conversely, for every simple G-model
X of Z, there exists a colored polyhedral divisor D such that X =X(D).

It remains to explain the combinatorial description of (non-necessarily simple) G-models of
Z. This leads to the notion of colored divisorial fan.
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Definition 3.2.9. A finite collection Σ = {(Di,F i)}i∈J of proper colored polyhedral divisors
defined on dense open subsets of C is a colored divisorial fan if, for all i, j ∈ J , there exists
l ∈ J such that C (Dl) = C (Di)∩C (Dj) and (C (Dl),F l) is a common hyperface of the colored
hypercones (C (Di),F i) and (C (Dj),F j).

Remark 3.2.10. This notion of colored divisorial fan is equivalent to the notion of colored hy-
perfan introduced by Timashev in [Tim11, § 16].

Theorem 3.2.11. ([Tim11, Theorem 16.19 (3)]) If Σ = {(Di,F i)}i∈J is a colored divisorial fan
on C, then

X(Σ) ∶= ⋃
i∈J
X(Di) ⊆ SchG(Z)

is a G-model of Z, and every G-model of Z is obtained in this way.

Remark 3.2.12. According to [Tim11, Corollary 12.14], the G-model X(Σ) of Z is a complete
variety if and only if ⋃i∈J C (Di) = E .

3.3 Main results

3.3.1 Rational singularities and smoothness criteria

In this section we give a criterion (Theorem 3.3.1) to determine whether the singularities of a
simple G-model of Z are rational. Moreover, we give smoothness criteria (Theorems 3.3.3 and
3.3.5) for simple G-models of Z. Throughout this section we fix a proper colored σ-polyhedral
divisor (D,F) on a dense open subset C0 ⊆ C.

We recall that a variety X has rational singularities if there exists a desingularization φ ∶
Y → X such that the higher direct images of φ∗ applied to OY vanish. This notion does not
depend on the choice of the desingularization.

Theorem 3.3.1. ([LT16, Theorem 2.4]) The simple G-model X(D) of Z has rational singu-
larities if and only if one of the following assertions holds.

(i) The curve C0 is affine.
(ii) The curve C0 is the projective line P1 and deg(⌊D(m)⌋) ≥ −1, for every m ∈ σ∨ ∩M , where

D(m) is the Q-divisor on C0 defined by (3.3).

Remark 3.3.2. A sufficient condition for rationality of singularities of an arbitrary complexity-
one G-variety was obtained by Timashev in [Tim00, Theorem 7].

The next theorem gives a smoothness criterion for X(D) when (D,F) is a proper colored
polyhedral divisor on an affine curve C0.

Theorem 3.3.3. ([LT16, Theorem 2.5]) With the same notation as before, and assuming that
C0 is affine, the following statements are equivalent.

(i) The G-variety X(D) is smooth.
(ii) For every z ∈ C0, the simple embedding of the horospherical (Gm ×G)-homogeneous space

Gm ×G/H associated with the colored cone (C (D)z,F) is smooth.

Definition 3.3.4. We say that two proper colored polyhedral divisors D and D′ on C0 are
equivalent if the M -graded algebras A[C0,D] and A[C0,D

′] (defined by (3.4)) are isomorphic;
see [AH06, § 8] and [Lan15, Proposition 4.5] for a combinatorial description of the equivalence
classes of polyhedral divisors. (Let us note that the fact for D and D′ to be equivalent does not
imply in general that X(D) and X(D′) are isomorphic.)
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The next theorem gives a smoothness criterion for X(D) when (D,F) is a proper colored
polyhedral divisor on a projective curve C0 = C.

Theorem 3.3.5. ([LT16, Theorem 2.6]) With the same notation as before, and assuming that
C0 is projective (i.e. C0 = C), the following statements are equivalent.
(i) The G-variety X(D) is smooth.

(ii) The curve C is P1, the polyhedral divisor D is equivalent to a proper colored polyhedral
divisor D0,∞ = ∑z∈P1 ∆z ⋅ [z] with ∆z = σ except when z = 0 or ∞, and the simple embedding
of the horospherical (Gm×G)-homogeneous space Gm×G/H associated with the colored cone
(C,F) is smooth, where C is the cone generated by (σ × {0}) ∪ (∆0 × {1}) ∪ (∆∞ × {−1}).

Remark 3.3.6. The smoothness criteria of Theorems 3.3.3 and 3.3.5 can be made explicit if we
combine them with a smoothness criterion for horospherical varieties. We refer to [Pau83, § 3.5]
for a smoothness criterion when H = U , and [Pas06, Theorem 2.6], [Tim11, Theorem 28.10], or
[BM13, § 5] for a smoothness criterion in the general case.

3.3.2 Discoloration morphism

In this section, we state the existence of the discoloration morphism for complexity-one G-
varieties, inspired by the spherical case (see [Bri91, § 3.3]). This discoloration morphism is a
crucial tool in the proofs of the next results, and also to construct an explicit desingularization
of X(Σ) in Proposition 3.3.22, by reduction to the case of complexity-one T-varieties (we recall
that T = P /H is an algebraic torus whose character group identifies with the lattice M).

Definition 3.3.7. Let Σ = {(Di,F i)}i∈J be a colored divisorial fan, then the discoloration of
Σ is the colored divisorial fan

Σdisc ∶= {(Di,∅)}i∈J .

Let Σ = {(Di,F i)}i∈J be a colored divisorial fan. Then the collection of T-varieties Y (Di) =
Spec(A[Ci0,Di]) (defined by (3.4)) glue together to give a complexity-one T-variety that we
denote by Y (Σ) (see [AHS08, Theorem 5.3 and Remark 7.4 (ii)] for details).

Proposition 3.3.8. ([LT16, Proposition 2.9]) Let Σ = {(Di,F i)}i∈J be a colored divisorial fan,
and let Xi

0 and Xi
disc be the charts corresponding to (Di,F i) and (Di,∅) respectively. Then the

inclusions k[Xi
0] ⊆ k[Xi

disc] induce a proper birational G-morphism

πdisc∶ X(Σdisc)→X(Σ).

Moreover, there exists a G-isomorphism between X(Σdisc) and the twisted product

G/H ×T Y (Σ) ∶= (G/H × Y (Σ))/T,

where Y (Σ) is the T-variety defined above, and T = P /H acts on G/H as follows:

∀g ∈ G, ∀pH ∈ T, pH ⋅ gH = gp−1H.

Remark 3.3.9. The morphism πdisc is a resolution of the indeterminacy locus of theG-equivariant
surjective rational map ϕ∶X ⇢ G/P induced by the G-equivariant birational map X ⇢ Z =
C ×G/H. In particular, the scheme-theoretic fiber of ϕ ○ π is a T-variety isomorphic to Y (Σ).

Example 3.3.10. ([LT16, Example 2.10]) We consider the natural action of G = SL3 on A3
∗ =

A3 ∖ {(0,0,0)}. Let H be the stabilizer of the point (1,0,0) for this action. Then H is a
horospherical subgroup of G and A3

∗ ≃ G/H. Also, the torus T = P /H ≃ Gm acts diagonally on
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A3
∗, and the fibration G/H = A3

∗ → G/P = P2 is simply the quotient morphism for the diagonal
Gm-action.

Let us consider the colored σ-polyhedral divisor on A1 = Spec(k[t]) defined by F = ∅ and
D = [1

2 ,+∞[⋅[0], where NQ = Q, and σ = Q≥0. The k-algebra

A[A1,D] = ⊕
m≥0

k[t]t−⌊
1
2
m⌋χm

is generated by the homogeneous elements t, χ1, and 1
tχ

2. Therefore, Y (D) = Spec(A[A1,D])
can be identified with the affine surface V (xz − y2) ⊆ A3 endowed with the Gm-action defined
by λ ⋅ (x, y, z) = (x,λ−1y, λ−2z) for every λ ∈ Gm.

Denoting by (x1, x2, x3) a system of coordinates of A3, the twisted action of T ≃ Gm on the
product G/H × Y (D) is given by

λ ⋅ (x1, x2, x3, x, y, z) = (λ−1x1, λ
−1x2, λ

−1x3, x, λ
−1y, λ−2z).

By Proposition 3.3.8, the G-variety X ∶= X(D,∅) identifies with the twisted product G/H ×T
Y (D). Hence, X is the hypersurface xy − z2 = 0 in the complement of

{[0 ∶ 0 ∶ 0 ∶ x ∶ y ∶ z] ∣ [x ∶ y ∶ z] ∈ P(0,−1,−2)}

in the weighted projective space X ′ ∶= P(−1,−1,−1,0,−1,−2). Assume that B ⊆ G is the
Borel subgroup formed by upper triangular matrices. To determine a chart of X, it suffices to
determine the inverse image of the open B-orbit in P2 = G/P through the projection q ∶ X =
G/H ×T Y (D) → G/P . The open orbit Bx̄0 ⊆ P2 is precisely P2 ∖ {x3 = 0} ≃ A2. Thus the
chart X0(D) = q−1(Bx̄0) is the hypersurface xy − z2 = 0 in X ′ ∖ {x3 = 0} which is isomorphic to
A2 × V (xy − z2) with V (xy − z2) ⊆ P(0,−1,−2).

3.3.3 Parametrization of the stable prime divisors

In this section, we start by describing the germs of codimension one for a complexity-one
horospherical G-variety X (Theorem 3.3.12). From this, we deduce a description of the class
group of X by generators and relations (Corollary 3.3.13). Next, we give a factoriality criterion
for X (Corollary 3.3.16). Finally, we relate the description of stable Cartier divisors obtained
by Timashev in [Tim00] to our description of stable Weil divisors (Corollary 3.3.19).

To state our results we need first to introduce the set of vertices and the set of extremal
rays of a colored polyhedral divisor.

Definition 3.3.11. Let (D,F) be a colored polyhedral divisor on C0 with D = ∑z∈C0
∆z ⋅ [z].

● The set of vertices of D, denoted by Vert(D), consists in pairs (z, v) ∈ C ×NQ, where z ∈ C0

and v ∈ ∆z(0) is a vertex of ∆z. For a colored divisorial fan Σ = {(Di,F i)}i∈J , we denote

Vert(Σ) ∶= ⋃
i∈J

Vert(Di) ⊆ C ×NQ.

● The set of extremal rays of D, denoted by Ray(D) or Ray(D,F), consists in extremal rays
ρ ⊆ σ such that ρ ∩ %(F) = ∅, and satisfying ρ ∩ deg(D) = ∅ when C0 = C. To simplify the
notation, we denote by the same letter an extremal ray of a polyhedral cone of NQ and its
primitive vector with respect to the lattice N . We also denote

Ray(Σ) ∶= ⋃
i∈J

Ray(Di) ⊆ NQ,

where we recall that NQ naturally identifies with a subset of the hyperspace E (see Defini-
tion 3.2.3).

– 71 –



3.3. Main results

● We denote by CΣ the union of dense open subsets ⋃i∈J Ci0 ⊆ C, where Ci0 is the curve on
which Di ∈ Σ is defined.

In the next theorem, we parametrize the set of G-stable divisors of a G-model X(Σ) of Z by
the set Vert(Σ)∐Ray(Σ). This description is a natural generalization of the case of T -varieties
specialized to the complexity-one case (see [FZ03, Theorem 4.22] and [PS11, Proposition 3.13]).
We refer to Definition 2.2.13 (iii) for the notion of colored data of a G-orbit of a G-model of Z.

Theorem 3.3.12. ([LT16, Theorem 2.11]) Let Div(Σ) denote the set of G-stable divisors of
the G-model X(Σ). With the notation of Definition 3.3.11, the map

Vert(Σ)∐Ray(Σ)→ Div(Σ), (z, v)↦D(z,v), ρ↦Dρ,

which
● to the vertex (z, v) associates the germ D(z,v) of X(Σ) defined by the colored data
([(z,Q≥0(v,1))],∅); and

● to the ray ρ associates the germ Dρ of X(Σ) defined by the colored data
(ρ,∅) = ([(⋅, ρ,0)],∅)

is a bijection.

Corollary 3.3.13. ([LT16, Corollary 2.12]) Wit the previous notation, the class group Cl(X(Σ))
is isomorphic to the abelian group

Cl(CΣ)⊕ ⊕
(z,v)∈Vert(Σ)

ZD(z,v) ⊕ ⊕
ρ∈Ray(Σ)

ZDρ ⊕ ⊕
α∈S∖I

ZDα,

where Dα ⊆X(Σ) is the color associated with α ∈ S ∖ I, modulo the relations:

[z] = ∑
(z,v)∈Vert(Σ)

µ(v)D(z,v); and

0 = ∑
(z,v)∈Vert(Σ)

µ(v)⟨m,v⟩D(z,v) + ∑
ρ∈Ray(Σ)

⟨m,ρ⟩Dρ + ∑
α∈S∖I

⟨m,%(Dα)⟩Dα,

where m ∈M , z ∈ CΣ, and µ(v) = inf{d ∈ Z>0 ∣ dv ∈ Z}.

Remark 3.3.14. The previous result was later generalized to any G-variety with spherical orbits
by Langlois in [Lan20, Theorem 4.2].

Example 3.3.15. ([LT16, Example 2.13]) Returning to the example of the SL3-variety

X(D) = {xz − y2 = 0} ∩ (P(−1,−1,−1,0,−1,−2) / P(0,−1,−2))

considered in § 3.3.2, we can apply Corollary 3.3.13 to determine the class group of X(D). We
obtain that Cl(X(D)) is isomorphic to a quotient of the abelian group ZD(0, 1

2
) ⊕ ZDρ ⊕ ZDα,

where ρ = Q≥0 and Dα is the unique color of X(D), modulo the following relations:
● 2D(0, 1

2
) = 0; and

● mDρ + 2mDα = 0 for every m ∈ Z.
It follows that Cl(X(D)) ≃ Z⊕Z/2Z.

Let Y (Σ) be the T-variety defined at the beginning of § 3.3.2. We denote by ρ ↦ Γρ,
(z, v) ↦ Γ(z,v) the parametrization of the T-stable divisors on Y (Σ) given by Theorem 3.3.12.
We recall that a variety is called factorial if its class group is trivial. The next corollary gives
a criterion of factoriality for the G-variety X(D).
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Corollary 3.3.16. ([LT16, Corollary 2.14]) Let (D,F) be a proper colored σ-polyhedral divisor
on a dense open subset C0 ⊆ C. Then X(D) is factorial if and only if the two following
conditions are satisfied.

(i) The equality Cl(Y (D)) = ∑Γρ⊆Γ Z[Γρ] holds, where Γ denotes the union of the T-stable
divisors Γρ with ρ satisfying %(F) ∩ ρ ≠ ∅.

(ii) For every α ∈ S ∖ I, there exists mα ∈M and fα ∈ k(C)∗ such that

⟨mα, %(Dα)⟩ = 1,

and, for all β ∈ S ∖ (I ∪ {α}), (z, v) ∈ Vert(D) and ρ ∈ Ray(D,F), we have

⟨mα, %(Dβ)⟩ = µ(v)(⟨mα, v⟩ + ordz(fα)) = ⟨mα, ρ⟩ = 0.

Remark 3.3.17. In general, the factoriality of Y (D) does not imply the one of G ×P Y (D).
For instance, we can take G = SL2, H the unipotent subgroup of upper triangular matrices,
C = P1, and (D,∅) the colored Q≥0-polyhedral divisor trivial on A1 ⊂ P1. The SL2-variety
X(D) identifies with A1 ×Bl0(A2), where Bl0(A2) is the bowing-up of A2 at the origin. Hence,
we have Cl(X(D)) ≃ Z, whereas Cl(Y (D)) = Cl(A2) = {0}.

As another by-product of Theorem 3.3.12, we can refine the description of B-stable Cartier
divisors given in [Tim00] to our setting. Let us start with a definition.

Definition 3.3.18. Let Σ = {(Di,F i)}i∈J be a colored divisorial fan on C, and let D = Di ∈ Σ
be a colored polyhedral divisor on C0 with set of colors F = F i. Recall that we denote by C (D)
the hypercone associated with D (see Remark 3.2.7).
● An integral linear function on D is a map

θ∶C (D)→ Q

satisfying the following properties.

(i) For every z ∈ C0, there exists mz ∈ M and γz ∈ Z such that θ(z, u, l) = u(mz) + lγz, for
every (u, l) ∈ C (D)z.

In addition, if C0 = C, then θ must satisfy the following extra condition.

(ii) We have m ∶=mz =mz′ , for every z, z′ ∈ C, and there exists f ∈ k(C)∗ such that

div(f) = ∑
z∈C

γz ⋅ [z].

● Let us denote by FΣ the union in DB of all the subsets F i ⊆ DB, where the (Di,F i) run
over Σ. A colored integral piecewise linear function on Σ is a pair (θ, (rα)α), where θ is a
function

θ∶⋃
i∈J

C (Di)→ Q

such that the restriction θ∣C (Di)∩C (Dj) is integral linear for every i, j ∈ J , and where (rα)α is
a sequence of integers with α running over the set {β ∈ S ∖ I ∣ Dβ /∈ FΣ}.

● The pair (θ, (rα)α) is called principal if θ satisfies (ii) and rα = ⟨m,%(Dα)⟩. We denote
respectively by PL(Σ) and Prin(Σ) the abelian groups (for the natural additive law) of
colored integral piecewise linear functions of Σ and of principal colored integral piecewise
linear functions of Σ. If Σ has a single element D, then we write PL(D) and Prin(D)
instead of PL(Σ) and Prin(Σ) respectively.
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As a direct consequence of [Kno94], [Tim00, § 4], [Tim11, § 17], and Theorem 3.3.12, we have
the next result. (See [Bri89, § 3.1] for the case of spherical varieties and [PS11, Corollary 3.19]
for the case of T -varieties.)

Corollary 3.3.19. ([LT16, Corollary 2.17]) With the notation above, if (θ, (rα)α) ∈ PL(Σ),
then

Dθ ∶= ∑
(z,v)∈Vert(Σ)

θ(z, µ(v)(v,1)) ⋅D(z,v) + ∑
ρ∈Ray(Σ)

θ(⋅, ρ,0) ⋅Dρ

+ ∑
Dα∈FΣ

θ(⋅, %(Dα),0) ⋅Dα + ∑
Dα/∈FΣ

rα ⋅Dα

is a B-stable Cartier divisor on X(Σ). More precisely, the map θ ↦ Dθ is an isomorphism
between the group PL(Σ) and the group of B-stable Cartier divisors on X(Σ), and there is a
short exact sequence of abelian groups

0→ Prin(Σ)→ PL(Σ)→ Pic(X(Σ))→ 0,

where Pic(X(Σ)) is the Picard group of X(Σ).

3.3.4 Canonical class and log-terminal singularities

In this section, we give an explicit representative of the canonical class for a complexity-one
horospherical G-variety X (Theorem 3.3.20). From this, we deduce a criterion for X to be
Q-Gorenstein (Corollary 3.3.21). Then we construct an explicit desingularization of X (Propo-
sition 3.3.22). Finally, we obtain a criterion to determine whether the singularities of X are
log-terminal (Theorem 3.3.23).

The next result gives an explicit canonical divisor for any complexity-one horospherical G-
variety. (See [MJ90, § 5] for the case of equivariant embeddings of SL2, [Bri93, § 4.1] for the
case of spherical varieties, and [FZ03, Corollary 4.25] and [PS11, Theorem 3.21] for the case of
T -varieties.)

Theorem 3.3.20. ([LT16, Theorem 2.18]) Let Σ be a colored divisorial fan on C. Then, with
the notation of Definition 3.3.11, every canonical divisor on X =X(Σ) is linearly equivalent to

KX = − ∑
ρ∈Ray(Σ)

Dρ + ∑
(z,v)∈Vert(Σ)

(µ(v)bz + µ(v) − 1)D(z,v) − ∑
α∈S∖I

aαDα, where

● KC = ∑z∈C bz ⋅ [z] is a canonical divisor on C;
● aα = ⟨∑β∈Φ+∖ΦI β, α̂⟩ ≥ 2;
● Φ+ is the set of positive roots with respect to (B,T ); and
● ΦI ⊆ Φ is the subset of roots that are sums of elements of I.

A G-variety X is called Q-Gorenstein if one (and thus any) canonical divisor KX is Q-
Cartier. The next corollary gives a combinatorial criterion for a complexity-one horospherical
G-variety to be Q-Gorenstein. (See [Bri93, § 4.1, Proposition] for the case of spherical varieties
and [LS13, Proposition 4.3] for the case of T -varieties.)

Corollary 3.3.21. ([LT16, Corollary 2.19]) With the notation of Definitions 3.3.11 and 3.3.18,
the variety X(Σ) is Q-Gorenstein if there exists d ∈ Z>0 and θ ∈ PL(Σ) such that the following
conditions are all satisfied.

(i) For every ρ ∈ Ray(Σ), we have θ(⋅, ρ,0) = −d.
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(ii) There exists a canonical divisor KC = ∑z∈C bz ⋅[z] on C such that, for every (z, v) ∈ Vert(Σ),
we have θ(z, µ(v)v,1) = d(µ(v)bz + µ(v) − 1).

(iii) For every Dα ∈ FΣ, we have θ(⋅, %(Dα),0) = −daα.

We now give an explicit method to construct a desingularization of the G-model X(D) of
Z. Let (D,F) be a proper colored σ-polyhedral divisor on a dense open subset C0 ⊆ C. With
the notation of § 3.2.3, we define

Ỹ (D) ∶= SpecOC0
( ⊕
m∈σ∨∩M

OC0(⌊D(m)⌋)χm) .

Then, by [AH06, Theorem 3.1 (ii)], the natural morphism Ỹ (D) → Y (D) induces a partial
desingularization

G ×P Ỹ (D)→ G ×P Y (D) ≃X(D,∅).

The G-variety G ×P Ỹ (D) identifies with X(Σtor), where Σtor is the colored divisorial fan
Σtor = {(D∣Ci ,∅)}i∈J ; the sequence (Ci)i∈J forming an affine covering of C0. Moreover, if we

consider a divisorial fan Σ that refines Σtor and such that for all colored polyhedral divisors
D ∈ Σ and z ∈ C with C(D)z ≠ ∅, the polyhedral cone C(D)z is regular (i.e., a cone generated
by a subset of a basis of the lattice N ×Z), then X(Σ̄)→X(Σtor) is a desingularization.

The next result is a straightforward consequence of this discussion.

Proposition 3.3.22. ([LT16, Proposition 2.21]) The G-morphism

φ∶ X(Σ̄)→X(Σtor)→X(D,∅)→X(D,F)

obtained by composing the discoloration morphism of Proposition 3.3.8 with the morphisms de-
fined above is a desingularization of X(D,F). Moreover, with the notation of Definition 3.3.11,
the exceptional divisors of φ correspond to the subsets Ray(Σ)/Ray(D) and Vert(Σ)/Vert(D).

Let X be a Q-Gorenstein variety, let φ ∶X ′ →X be a desingularization, and let d ∈ Z>0 such
that dKX is Cartier. Then the pull-back φ∗(dKX) is well-defined. The discrepancy of φ is the
Q-divisor

KX′ − φ∗(KX) ∶=KX′ − 1

d
φ∗(dKX).

We say that X has (purely) log-terminal singularities if each coefficient of KX′ − φ∗(KX) is
strictly bigger than −1. The property of having log-terminal singularities does not depend on
the choice of the desingularization φ.

The next statement gives a characterization of the complexity-one horospherical G-varieties
having log-terminal singularities. (See [Bri93, § 4.1, Proposition] for the case of spherical vari-
eties and [LS13, Theorem 4.9] for the case of T -varieties.)

Theorem 3.3.23. ([LT16, Theorem 2.22]) Let (D,F) be a proper colored σ-polyhedral divisor
on a dense open subset C0 ⊆ C. We suppose that X(D) is Q-Gorenstein. Then X(D) has
log-terminal singularities if and only if one of the following assertions holds.

(i) The curve C0 is affine.

(ii) The curve C0 is the projective line P1 and ∑z∈C0
(1 − 1

µz
) < 2, where for every z ∈ C0 we

denote µz ∶= max{µ(v) ∣ v ∈ ∆z(0)} and µ(v) ∶= inf{d ∈ Z>0 ∣ dv ∈ N}.
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3.3.5 Presentation of the Cox ring

Cox rings are intrinsic objects naturally generalizing homogeneous coordinate rings of projective
spaces. In the note [LT17], we provide a presentation by generators and relations for the Cox
rings of complete rational complexity-one horospherical varieties. Note that, by Corollary 3.3.13,
the class group of a complexity-one horospherical variety is finitely generated if and only if the
variety is rational (which is equivalent to require C = P1). The completeness assumption however
is only by convenience (see Remark 3.2.12 for a completeness criterion).

Let X be a variety whose class group Cl(X) is of finite type and such that Γ(X,O∗X) = k∗.
As a graded k-vector space, the Cox ring of X is defined as

R(X) ∶= ⊕
[D]∈Cl(X)

Γ(X,OX(D)).

Furthermore, the vector space R(X) can be equipped with a multiplicative law making R(X)
a Cl(X)-graded k-algebra (see [ADHL15, § 1.4] for details). Let us mention that any projective
Q-factorial variety X, with finitely generated class group Cl(X), is uniquely determined (up to
isomorphism) by the data of its Cox ring, as a Cl(X)-graded algebra, and an ample class (see
[ADHL15, § 1.6.3]).

Our main result in [LT17] is the following.

Theorem 3.3.24. ([LT17, Theorem 2.1]) Let Σ = {(Di,F i)}i∈J be a colored divisorial fan
on C = P1, and let {z1, . . . , zr} ⊆ P1 be the set of points where the coefficients of the Di are
non-empty and non-trivial. The Cox ring of the complexity-one horospherical variety X(Σ) is
isomorphic to

R(G/P )⊗k k [Sρ; ρ ∈ Ray(Σ)]⊗k k [T0, T1, T(zi,v) ; (zi, v) ∈ Vert(Σ)] /J ,

where J is the ideal generated by the elements

−αiT0 − βiT1 + ∏
v vertex of Σzi

T
µ(v)
(zi,v)

for 1 ≤ i ≤ r, with zi = [αi ∶ βi], and µ(v) is the smallest integer d ∈ Z>0 such that dv is a lattice
vector. Moreover, the Cl(X)-degree of the variables Sρ and T(zi,v) is given by the class of the
G-stable prime divisors corresponding to ρ and (zi, v) respectively, and the Cl(X)-grading on
R(G/P ) is obtained by identifying colors of X and Schubert divisors of G/P (see § 3.2.2).

Remark 3.3.25. In the case where r ≥ 2 the variables T0, T1 can be eliminated and the presen-
tation of the Cox ring R(X) in Theorem 3.3.24 takes the following form. Denote by B a basis
of the (r − 2)-dimensional vector space

{(λ1, . . . , λr) ∈ kr
r

∑
i=1

λi(αi, βi) = 0}

and by Fi the monomial ∏v T
µ(v)
(zi,v)

. Then R(X) is isomorphic to

R(G/P )⊗k k [Sρ; ρ ∈ Ray(Σ)]⊗k k [T(zi,v) ; (zi, v) ∈ Vert(Σ)] /J ′,

where J ′ is the ideal generated by the elements ∑ri=1 γiFi for (γ1, . . . , γr) ∈ B.

The reader is referred to [ADHL15, § 3.2.3] for a presentation by generators and relations of
the Cox ring of a flag variety. Note that our result implies that the Cox ring of a complete ratio-
nal complexity-one horospherical variety is finitely generated (which follows also from [Kno93,
Satz]).
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Example 3.3.26. ([LT17, Example 2.3]) Let G = SL3 and let H be a maximal unipotent
subgroup of G. The parabolic subgroup P = NG(H) is a Borel subgroup of G and T = P /H is
a 2-dimensional torus; in particular, M ≃ Z2.

The figures below represent the colored divisorial fan of a complete rational complexity-one
horospherical variety X with general orbit G/H. We only mention in the figures the non-
trivial slices and the tails of the colored polyhedral divisors. The dark gray boxes correspond
to polyhedral divisors defined over P1. The two colors of X map to the vectors e1, e2 of the
canonical basis via the map %∶DB →M defined by (3.1). The mark in the diagram of tail fan
is the color that we take into account.

(0,0)
●

e1

e2

O
(0,0)

●

( −1
2
, 1
2
)

●

( 1
4
, −1

4
)
●

(0, 1
9
)

●
(0, 1

9
)

●

tail fan slice over [0 ∶ 1] slice over [1 ∶ 1] slice over [2 ∶ 3]

Applying Theorem 3.3.24 and [ADHL15, Ex. 3.2.3.10], we obtain that the Cox ring of the
variety X is

R(X) ≃ k [s1, s2, s3, t1, t2, t3, t4, x1, x2, x3, z1, z2, z3]
(t94 − 2t93 − t21t42, x1z1 + x2z2 + x3z3)

.

Moreover, from Corollary 3.3.13, we determine the class group of X:

Cl(X) ≃ Z10/⟨f10 − 2f4 − 4f5, f10 − 9f6, f10 − 9f7, f8 − f4 + f5 − f3, f9 + f4 − f5 + f6 + f7 + f1 − f2⟩
≃ Z5 ×Z/2Z ×Z/9Z,

where we denote by fl the l-th vector of the canonical basis of Z10. The Cl(X)-degrees of the
variables in the presentation of the Cox ring above can be chosen as follows.

variable s1 s2 s3 t1 t2 t3 t4 xi zj
degree f1 f2 f3 f4 f5 f6 f7 f8 f9

3.4 Lines of research

(λ) It would be interesting to study and classify Fano complexity-one horospherical
varieties as was done by Pasquier in [Pas06, Pas08] for Fano horospherical varieties, and by
Herppich in [Her14] and Süß in [Süß14] for Fano complexity-one T -varieties.

In [LT16] we gave an explicit anticanonical divisor on any complexity-one horospherical
variety (Theorem 3.3.20). Thus, with an ampleness criterion, we should be able to classify
Fano complexity-one horospherical varieties in terms of convex geometry. Then it would
remain to describe the usual numerical invariants for these Fano varieties, such as the Picard
rank, the degree or the pseudo-index.

(µ) For Fano varieties that are not symmetric nor horospherical, the famous Mukai conjecture
seems to be quite a hard problem (see [Muk, BCDD03]), even in the spherical case. However,
the case of Fano complexity-one horospherical varieties seems more accessible than the case
of Fano spherical varieties. Hence, once we are done with the previous point, we could try
to prove the Mukai conjecture for Fano complexity-one horospherical varieties
as was done by Pasquier in [Pas10] for Fano horospherical varieties.

– 77 –



3.4. Lines of research

(ν) Following the proof, by Datar and Szekelyhidi [DS16], of the equivariant version of the
Yau-Tian-Donaldson conjecture, a combinatorial characterization of the existence of Kähler-
Einstein metrics was obtained via K-stability for Fano spherical varieties by Delcroix in
[Del20a] and for Fano complexity-one T -varieties by Ilten-Süß in [IS17]. In both cases, the
key ingredients are first the understanding of some one-parameter equivariant degenerations
involved in K-stability, and then the computation of an algebro-geometric invariant of such
a degeneration (the Donaldson-Futaki invariant). A next step could therefore be to
handle the case of Fano complexity-one horospherical varieties by adapting these
two key ingredients in this setting.

(ξ) We could study the existence of special metrics on complexity-one horospherical
varieties. Indeed, there are several directions in which we can hope to make significant
progress. For instance:

● Since a variety with a cscK (constant scalar curvature Kähler) metric must have a reduc-
tive automorphism group, a first step could be to determine the automorphism groups
of complexity-one horospherical varieties, and then to focus on those with a reductive
automorphism group.

● To prove the existence of canonical metrics on complexity-one horospherical varieties, we
could attempt to adapt the techniques developed by Zhou-Zhu and Delcroix in [ZZ08,
Del20b] via coercivity of Mabuchi’s K-energy, or to develop an algebraic analogue, to
prove uniform K-stability (conjecturally equivalent to the existence of canonical metrics).

(o) Smooth varieties with small Picard rank appear very often in complex and algebraic geom-
etry, and especially in Mori theory. Therefore it would be useful to get new large families of
examples of such varieties. Requiring a spherical variety to be smooth and of Picard rank 1 is
quite restrictive. For instance, in the case of horospherical varieties, we only get homogeneous
varieties and five families of two-orbit varieties (see [Pas09] or Theorem 2.3.23). The case of
symmetric varieties has also been considered by Ruzzi in [Ruz10, Ruz11]. For other spherical
varieties, there are lots of examples but we still do not know the complete classification. Here
again, classifying complexity-one horospherical varieties with Picard rank 1, as
well as their automorphism groups, might be easier than for spherical varieties.

Also, there is a naive conjecture of Odaka-Odaka [OO13] stating that Fano varieties with
Picard rank 1 should be K-semistable. While this conjecture was proved to be false in general
(see e.g. [Del20a] by using examples from [Pas09]), there are several related open questions,
such as: Can we find a strictly K-unstable Fano variety with Picard rank 1 and with no
Kähler-Ricci soliton?

(π) In a completely different direction, we would like to extend the results presented in
§ 3.3 to the case where the base field is algebraically closed of positive charac-
teristic. In this setting, even a combinatorial classification of the horospherical subgroup
schemes is an open problem; indeed, if H is a subgroup scheme of a reductive algebraic group
G containing a maximal unipotent subgroup of G, then this does not imply that the subgroup
scheme NG(H) is a parabolic subgroup scheme of G (see [Kno95] for such examples when
G = SL2). On the other hand, the combinatorial classification of complexity-one varieties
due to Timashev (see [Tim11]) is valid over any algebraically closed field, and thus extending
most of our results to this setting seems to be an achievable goal.
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[BFTa] Jérémy Blanc, Andrea Fanelli, and Ronan Terpereau. Automorphisms of P1-bundles over
rational surfaces. arXiv:1707.01462, preprint.
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[Bri93] Michel Brion. Variétés sphériques et théorie de Mori. Duke Math. J., 72(2):369–404, 1993.

[Bri07] Michel Brion. The total coordinate ring of a wonderful variety. J. Algebra, 313(1):61–99,
2007.

[Bri17] Michel Brion. Algebraic group actions on normal varieties. Trans. Moscow Math. Soc.,
78:85–107, 2017.

[BSU13] Michel Brion, Preena Samuel, and V. Uma. Lectures on the structure of algebraic groups
and geometric applications, volume 1 of CMI Lecture Series in Mathematics. Hindustan
Book Agency, New Delhi; Chennai Mathematical Institute (CMI), Chennai, 2013.

[BT15] Tanja Becker and Ronan Terpereau. Moduli spaces of (G,h)-constellations. Transform.
Groups, 20(2):335–366, 2015.

[BW17] Caucher Birkar and Joe Waldron. Existence of Mori fibre spaces for 3-folds in charp. Adv.
Math., 313:62–101, 2017.
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