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To 
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Preface 

In the early 70's and 80's the field of integrable systems was in its prime 
youth: results and ideas were mushrooming all over the world. It was during 
the roaring 70's and 80's that a first version of the book was born, based 
on our research and on lectures which each of us had given. We owe many 
ideas to our colleagues Teruhisa Matsusaka and David Mumford, and to our 
inspiring graduate students (Constantin Bechlivanidis, Luc Haine, Ahmed 
Lesfari, Andrew McDaniel, Luis Piovan and Pol Vanhaecke). 

As it stood, our first version lacked rigor and precision, was rough, dis
connected and incomplete. . . In the early 90's new problems appeared on 
the horizon and the project came to a complete standstill, ultimately con
fined to a floppy. A few years ago, under the impulse of Pol Vanhaecke, the 
project was revived and gained real momentum due to his insight, vision and 
determination. The leap from the old to the new version is gigantic. 

The book is designed as a teaching textbook and is aimed at a wide read
ership of mathematicians and physicists, graduate students and professionals. 
The main thrust of the book is to show how algebraic geometry, Lie theory 
and Painleve analysis can be used to explicitly solve integrable differential 
equations and to construct the algebraic tori on which they linearize; at the 
same time, it is a play ground for the student in applying algebraic geome
try and Lie theory. The book is meant to be reasonably self-contained and 
presents numerous examples. The latter appear throughout the text to illus
trate the ideas and make up the core of the last part of the book, acting as a 
final movement to unite the various themes of this volume. The book contains 
the basic tools from Lie groups, algebraic and differential geometry needed to 
understand its main scope. We do not claim to cover the whole subject: we 
have developed a certain point of view, which we hope is sufficiently rich, and 
passed in silence over many other fascinating aspects of integrable geometry. 

Our thanks and long time appreciation go to Suzanne D'Addato who, 
at an early stage, transformed a messy handwritten manuscript into the first 
version of the book. We also thank Antony Phan for kindly providing pictures 
for the Dynkin diagrams. 

Mark Adler and Pierre van Moerbeke 
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1 Introduction 

In the late 60's and 70's a remarkable renaissance occurred around an equa
tion, discovered in 1895 by Korteweg and de Vries, describing the evolution 
over time of a shallow water wave. This equation has its roots in Scott Rus
sel's horseback journey along the Edinburgh to Glasgow canal; he followed a 
wave created by the prow of a boat, which stubbornly refused to change its 
shape over miles. This revival in the 60's was driven by a discovery of Kruskal 
and coworkers: the scattering data for the one-dimensional Schrodinger op
erator, with potential given by the solution of the KdV equation, moves in 
a remarkably simple way over time, while the spectrum is stubbornly pre
served in time. This led to a Lax pair representation involving a fractional 
power of the Schrodinger operator; it ties in with later developments around 
coadjoint orbits in the algebra of pseudo-differential operators. Very soon it 
was realized that this isolated example of a "soliton equation" had many 
striking properties, leading to an explosion of ideas, following each other at 
a rapid pace. 

The KdV equation is a Hamiltonian system with regard to a "symplectic 
structure", but is also Hamiltonian with regard to another "compatible sym
plectic structure", turning KdV into a hi-Hamiltonian system, which has an 
infinite number of constants of motion, all in involution. That is to say the 
KdV equation is part of an infinite hierarchy of commuting non-linear PDE's. 

Besides the soliton and scattering solutions, other important solutions of 
KdV emerged, namely rational and algebra-geometrical solutions. The so
lutions in terms of theta functions established the fundamental link with 
curve theory. This was the royal road to the infinite-dimensional Grassman
nian description of the KdV-solutions, leading to the fundamental concept 
of r-function, which enjoys Pliicker relations and bilinear identities. The r
function is a far reaching generalization of classical theta functions and is a 
unifying theme in mathematics: representation theory, curve theory, symmet
ric function theory, random matrix theory, the theory of orthogonal polyno
mials and Painleve theory all live under the same hat! 

M. Adler et al., Algebraic Integrability, Painlevé Geometry and Lie Algebras
© Springer-Verlag Berlin Heidelberg 2004



2 1 Introduction 

Very soon vast generalizations of the KdV equation appeared on the hori
zon, namely the KP and AKNS hierarchies, to name a few, which enjoyed 
many of the same features. These facts led to an age of enlightenment, where 
universal principles began to emerge beyond the special cases and overshad
owed many of the previous investigations. 

The ideas, reaped for infinite-dimensional systems, began to shed some 
new light on finite-dimensional systems, old and new. The old include ancient 
systems initiated by the giants of the 18th and 19th centuries, like Euler, Ja
cobi, Lagrange and Kowalewski; more recent ones include the Toda lattices. 
Classically, it was stated as a general principle by Noether that symmetries of 
mechanical systems produce constants of motion. Much later it was discov
ered that the splitting of a Lie algebra gives rise to functions with sufficient 
invariance properties and which are in involution with regard to a symplectic 
structure associated with coadjoint orbits. The corresponding Hamiltonian 
systems have Lax pair representations and are solved by a group factoriza
tion procedure; its analytic implementation often involves Riemann-Hilbert 
methods. 

It was realized that the Lax pairs involve matrices depending on an extra 
parameter, pointing the way to Kac-Moody Lie algebras. In their quest for 
Lax pairs, researchers found more and more intricate Kac-Moody Lie alge
bras, some twisted and some related to the exceptional Lie algebras. The 
extra parameter in the Lax matrix has the advantage that its characteristic 
polynomial is an algebraic curve. Then comes the remarkable fact: the equa
tions can be linearized on the Jacobian of that curve, at least under mild and 
practically verifiable conditions on the Lax pair. 

All this knowledge, unknown classically, shed further light on a celebrated 
paper of Kowalewski, which stated that under a reasonable working hypoth
esis the only integrable rigid body motions are ( i) the free motion of Euler 
about a fixed point, without gravity, ( ii) the Lagrange top and (iii) a some
what esoteric "top", discovered by Kowalewski. Kowalewski's top was inte
grable for no obvious reason: the configurational symmetry was not enough 
to do the job using Noether's Theorem! The symmetry resides at a higher 
level than the configuration space and was later explained by the splitting 
theorem; however, more to the point, the working hypothesis employed by 
Kowalewski is that if a system is completely integrable, the generic solutions 
to the system must at some moment blow up in time and instantly be fi
nite again. "Generic" means that these solutions depend on a number of free 
parameters, besides time, equal to the dimension of the phase space minus 
one. 

This can be spelled out as follows: a system, integrable in the sense of 
Liouville, has many constants of motion in involution with regard to the 
Poisson structure; this implies many commuting flows, depending on real 
times t1, t2, ... and leading, in a compact situation, to real tori. 



1 Introduction 3 

In addition, making the times ti complex leads, in favorable cases, to complex 
tori, on which the phase variables are meromorphic functions. 

In other terms, the blowup locus of the solutions gives rise to divisors 
which, glued onto the natural complexified phase space, turn the invariant 
manifolds into complex algebraic tori. These complex tori are identical to or 
closely related to the Jacobians obtained by means of the Lax pairs. 

The Laurent solutions which are easily computed from the differential 
equations enable one to compute the explicit functions which embed the 
complex tori into projective space; thus these tori are Abelian varieties. This 
technology provides a powerful tool to explore their algebraic features, such as 
finding their periods and answering questions on how they relate to algebraic 
curves. Are they Jacobians, Prym varieties, or other natural objects? 

Meanwhile the field has reached maturity; by now it has invaded nearly 
all of mathematics and has had a definite impact on whole new fields, like 
topological field theory and matrix models, combinatorics and number theory, 
etc ... This general field goes under the somewhat bizarre name of "integrable 
mathematics". 

The book is divided into three parts. Part I deals with Liouville inte
grability, in a real or complex setting, and with basic differential geometry, 
including the theory of Poisson manifolds, Lie groups and Lie algebras, fi
nite and infinite-dimensional. Besides classical integrability theory, it contains 
contemporary integrability theorems, which have been discovered in the last 
few decades. 

Part II gives the theoretical foundations of algebraic integrability. This 
part contains an outline of algebraic tools for non-specialists which will be 
employed throughout the book, like Abelian, Jacobi and Prym varieties. Ex
ploring algebraic integrability requires tools like Laurent expansions, in order 
to understand the embedding of the complexified invariant manifolds in pro
jective space and their algebraic nature. 

To show that a Hamiltonian system linearizes on an Abelian variety, one 
may either construct a Lax representation of the differential equation de
pending on an extra-parameter and linearize on the Jacobian of the curve 
specified by its characteristic equation, or one may complete the complex
ified invariant manifolds by using the Laurent solutions of the differential 
equations. The latter method allows us in addition to identify the nature of 
the invariant manifolds and of the solutions of the system: in most examples 
the isospectral manifolds and the invariant manifolds are different. 

Part III deals with three sets of examples which are analyzed using the 
tools developed in parts I and II. Among a class of left-invariant metrics on 
80(4), our search for algebraic integrable systems leads us to three metrics. 
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Except for the third metric, which is new, the two others appeared previ
ously in the context of rigid body motions in fluids, as investigated by Clebsch 
and Lyapounov-Steklov. For each of these metrics there is an extensive dis
cussion of their moduli, the algebraic geometry of the invariant tori and their 
connection with Kac-Moody Lie algebras. 

A second set of examples addresses the classification of integrable lattices 
among a natural class of Toda-like lattices; this turns out to be equivalent to 
the classification of twisted affine Lie algebras. The latter amounts to finding 
all the "outer" automorphisms of semi-simple Lie algebras. The blow-up locus 
for this system consists of several codimension one subvarieties (divisors on 
the algebraic tori), each associated with one point of the Dynkin diagram 
of the twisted Lie algebra. In fact, their intersection patterns are totally 
governed by the associated Dynkin subdiagrams. 

A last set of examples deals with the classification of rigid body motions 
about a fixed point under the influence of gravity; to wit, the Euler, Lagrange 
and Kowalewski top. For some special initial conditions, other tops have 
arisen, whose solutions linearize on Abelian varieties, such as the Goryachev
Chaplygin top, which turns out to be related to a Toda system. 

Mark Adler, Pierre van Moerbeke and Pol Vanhaecke 
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Liouville Integrable Systems 



2 Lie Algebras 

In this chapter we fix our conventions and terminology and we provide a quick 
review of the notions in differential geometry and in Lie theory that will be 
used. Since algebraic geometry, mainly the geometry of Abelian varieties, will 
only show up later and since we will need to do in that case a little more 
than just a review, we defer that subject to Part II of the book. 

2.1 Structures on Manifolds 

Our manifolds will always be either real smooth or complex holomorphic. In 
both cases the algebra of functions on such a manifold M will be denoted 
by F(M). Thus F(M) is the algebra of smooth functions on M when M is 
a real manifold while F(M) is the algebra of holomorphic functions on M 
when M is a complex manifold; when M = en or a smooth affine variety we 
will often restrict ourselves to the polynomial functions on M (usually called 
regular functions on M). Since many of the basic definitions and construc
tions that are given below are algebraic they apply to complex (algebraic) 
manifolds as well as real manifolds, and we will just write "Let M be a man
ifold" when our definition or construction applies to the real as well as to the 
complex case. Similarly, the word "map" will stand for "smooth map" (resp. 
"holomorphic map" or "regular map") in the case of smooth manifolds (resp. 
holomorphic manifolds or (non-singular) algebraic varieties). 

2.1.1 Vector Fields and 1-Forms 

For a manifold M and a point m E M the (real or holomorphic) tangent 
space to M at m is denoted by T mM and its dual space, the cotangent space 
to M at m, is denoted by T~M. The tangent and cotangent spaces to M 
form the fibers of the tangent bundle T M, resp. the cotangent bundle T* M. 
A vector field V is a section of the tangent bundle while a 1-form w is a 
section of the cotangent bundle; the values of V and w at m E M are simply 
denoted by V(m) and w(m), where V(m) E TmM and w(m) E T~M. The 
F(M)-modules of vector fields and 1-forms on M will be denoted by X(M) 
and f!(M). We will find it convenient to denote the pairing between a vector 
space and its dual, such as TmM and T~M, by(·,·). 

M. Adler et al., Algebraic Integrability, Painlevé Geometry and Lie Algebras
© Springer-Verlag Berlin Heidelberg 2004



8 2 Lie Algebras 

For example, if V E X(M) and wE n(M) then we may define a function 
w(V) E :F(M) by setting 

w(V)(m) := (w(m), V(m)) (2.1) 

for all m E M. To a function F E :F(M) we may associate its differential 
dF E n(M), which is a 1-form, hence can be applied to vector fields on M. 
This is used to associate to every vector field Von M a derivation on :F(M): 
for FE :F(M) we define V[F] E :F(M) by 

V[F] := dF(V), (2.2) 

which means in view of (2.1) that 

V(F](m) = (dF(m), V(m)) (2.3) 

form E M. Saying that Vis a derivation on :F(M) means that ifF, H E 
:F(M) then 

V[F H] = V[F]H + FV[H], 

an easy consequence of (2.2) and the Leibniz rule for differentials. It follows 
from (2.3) that V(F](m) depends on V(m) (and F) only; it is the derivative of 
Fat min the direction of V(m), hence it is legitimate to write it as V(m)(F]. 
At m E M the derivation property then reads 

V(m)(FH] = (V(m)[F])H(m) + F(m)(V(m)[H]); 

one says that V(m) defines a derivation on :F(M) at m. 
It is a fundamental fact that, conversely, every derivation on M corre

sponds to a unique vector field on M and that every derivation at m cor
responds to a unique tangent vector at m. As a corollary, since the com
mutator of two derivations is a derivation we may define the Lie bracket 
(V1 , V2] of V1 , V2 E X(M) as the vector field that corresponds to the deriva
tion V1 o V2- V2 o V1. This way, X(M) becomes an infinite-dimensional Lie 
algebra. For FE :F(M) and for V1, V2 E X(M) one has 

[FV11 V2] = F[V1, V2]- V2[F]V1. (2.4) 

Notice also that if U ~ M is a coordinate neighborhood then a derivation 
on :F(U) is completely determined once its effect on all elements Xi of a 
coordinate system (x1 , ••• ,xn) on U is known, where n := dimM. Indeed, 
since in terms of these coordinates 

we have in view of (2.2) that 

n 8F 
dF= 2:-dxi 

i=l axi 

n 8F 
V[F] = La: V[xi]· 

i=l x, 
(2.5) 
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When we are dealing with a fixed vector field V we often write P for V[F], 
where FE :F(M). In this notation, the coordinate expression (2.5) takes the 
form 

· n 8F 
F=l:-a .±;. 

i=l x. 

There is a one-to-one correspondence between vector fields on the coordinate 
neighborhood U and differential equations on U of the form 

dx1 dt = h(xl, ... ,xn), 

(2.6) 
dxn dt = fn(Xl, ... , Xn), 

where fi E :F(U), for i = 1, ... , n. Indeed, given a vector field V, define the 
functions fi by f; := V[x;]; given the functions Ji, define V[x;] := f; and 
extend V to a derivation on :F(U) by using (2.5). Solutions to (2.6) are easily 
interpreted as parametrized curves in U, whose tangent vector at each point 
coincides with the value of V at that point; we will usually consider solutions 
that are defined on an open ball BE around t:, where BE := { t E C lit I < t:} in 
the holomorphic case and BE := { t E R I It I < t:} in the smooth real case. For 
that reason a solution x(t) = (x1 (t), ... , xn(t)) to (2.6), defined on BE, and 
such that x(O) = m is often called an integral curve of V, starting at m. The 
well-known uniqueness and existence theorem for differential equations can 
(in the holomorphic case) be formulated in terms of vector fields and integral 
curves as follows. 

Theorem 2.1 (Picard Theorem for ODE's). Let V be a holomorphic 
vector field on an open subset U of en and let m E U. There exists an integral 
curve of V, starting at m; this integral curve x(t; m) is unique in the sense 
that any two integral curves of V that start at m coincide on the intersection 
of their domains. Moreover, x(t; m) depends in a holomorphic way on m. 

The analogous theorem for smooth vector fields on open subsets of R n of 
course also holds. The theorem and its smooth analog imply that given a 
vector field V on an n-dimensional manifold M we can find for any m E M 
a coordinate neighborhood U of m, with coordinates (x1, ... ,xn), an open 
subset U' <;;; U and an t: > 0, such that the solution x(t; m) is defined for 
(t, m) E (BE x U'). The map 

qJ : BE X U' -+ u 
(t, m) t-t qit(m) := x(t; m) 

is called the flow of V. 
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For a fixed t E BE the map ~t : U' -+ U is a biholomorphism ( diffeomor
phism, in the smooth case) from U' to ~t(U'). It is customary to pretend that 
for smallltl the local biholomorphism (diffeomorphism) ~t is global if we are 
in the case of a vector field on a manifold M and to write ~t : M -+ M, but 
of course - unless M is compact - the globalness needs not be true. For ex
ample, one writes the fundamental property that links directional derivatives 
to flows in the form 

V[F] = dd ~;F, 
tlt=O 

where F E :F(M) and ~;F = F o ~t· Theorem 2.1 and its smooth analog 
lead to the following theorem, that we will use often. 

Theorem 2.2 (Straightening Theorem). Let V be a vector field on a 
manifold M of dimension nand suppose that V(m) =f. 0, where mE M. Then 
there exist coordinates x1 , ... , Xn on a neighborhood U of m such that the 
restriction ofV to U is the first coordinate vector field, i.e., V[F] = 8Fj8x1. 

In the same spirit we can, intuitively speaking, parameterize a neighborhood 
of an analytic hypersurface by local coordinates on the hypersurface on the 
one hand, and by the parameter which is going with any fixed vector field, on 
the other hand, assuming that the vector field is transversal to the divisor. 
Precisely, the following theorem holds (see Figure 2.1). 

Theorem 2.3. Let M be a complex manifold of dimension n and let V be a 
holomorphic vector field on M. Suppose that 'D is an analytic hypersurface 
of M and let mo be a smooth point of 'D. IfV is transversal to 'D at m0 , then 
there exist neighborhoods U and V of m0 in 'D, resp. in M, and there exists 
t: > 0, such that the restriction of~ to BE x U is a biholomorphism onto V. 
In addition, if U is a coordinate neighborhood of mo in 'D, with coordinates 
x2, ... , Xn then V is a coordinate neighborhood of mo in M, with holomorphic 
coordinates (t, x2, ... , Xn), where V = gt {on V ). In the latter case, 

'D n v ={mE vI t(m) = 0}. 

It follows that, under the above transversality assumption, we can write any 
holomorphic function F on V locally as a series 

(2.7) 

where the coefficients f(o), f(l), ... of the series F(t) are holomorphic func
tions on a neighborhood of mo in 'D. By analyticity, the series F(t) is actually 
convergent on an open neighborhood in M of an open dense subset of the 
irreducible component 'D' of 'D that contains m0 , and it coincides on this 
neighborhood with the function F. We call the series (2.7) the Taylor series 
ofF with respect to V, starting at 'D', and we denote it by F(t; 'D'). 
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M 

Fig. 2.1. When a holomorphic vector field Von a complex manifold M is transver
sal to a divisor 'D at mo E 'D then a neighborhood V of mo in M admits holomorphic 
coordinates that come from coordinates s = (s1, ... , Sn-d on 'D, plus the time co
ordinate t that goes with V. 

Since V is transversal to V' at mo, the integer p in (2.7) is equal to 
ordv' (F), the order of vanishing ofF along V', if f(o) is not identically zero 
on V'. The restriction ofF to V' is given by substituting 0 for t in this Taylor 
series, i.e., by the first coefficient of its Taylor series. 

The same can be done for meromorphic functions on U: writing such a 
function F as the ratio G / H of two holomorphic functions we define the 
Laurent series ofF with respect to V, starting at V', denoted F(t;V'), to 
be the quotient G(t; V')/ H(t; V'). In this case the series converges for small, 
non-zero it!. The Laurent series ofF is still of the form (2.7), where 

is now any integer. Under the assumption that f(o) is not identically zero 
on V', it is still true that p is the order of vanishing of F along ~, which in 
the case of negative p means that F has a pole of order -p along V'. 

2.1.2 Distributions and the Frobenius Theorem 

Instead of having a vector at every point of a manifold M, as is the case of a 
vector field on M, one may have a one-dimensional subspace of the tangent 
space to M, at every point of M. This is what is called a !-dimensional 
distribution on M; a k-dimensional distribution L1 on M is then the datum 
of a k-dimensional subspace Ll(m) of TmM for every mE M. One says that 
L1 is smooth (or holomorphic) if there exist for every m E M smooth (or 
holomorphic) vector fields vl, ... 'vk, on a neighborhood u of m, such that 

Ll(m) =span {V1 (m), ... , Vk(m)}, for any mE U. 
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The notion of an integral curve is easily adapted to the case of a k
dimensional distribution Ll: a k-dimensional connected immersed subman
ifold M' of M is called an integral manifold of Ll if TmM' = Ll(m) for 
any m E M'. In contrast to the case of integral curves, integral manifolds 
need not exist in general, even locally. One obstruction comes from the fol
lowing fact: if V1 and V2 are two vector fields on M which are tangent to 
some submanifold M' (such as the candidate integral manifold) then their 
Lie bracket [V1 , V2] is also tangent to M'. In order to rephrase this in the lan
guage of distributions, let us say that a vector field V on U ~ M is adapted 
to Ll on U if V(m) E Ll(m) for every mE U. In these terms the obstruction 
reads: if V1 and V2 are adapted to Ll on some open subset U then [V1 , V2] is 
also adapted to Ll on U. One says that Ll is an integrable distribution if for 
any vl and v2 that are adapted to Ll on an open subset u' their commutator 
[V1 , V2] is also adapted to Ll on U. The Frobenius Theorem says that the 
above obstruction to the existence of integral manifolds is the only one. 

Theorem 2.4 (Frobenius). Suppose that Ll is a (smooth or holomorphic) 
k-dimensional distribution on M. If Ll is integrable then there exists through 
any point mo E M a unique maximal integral manifold for Ll. 

The above version of the Frobenius Theorem is the analogue of Theorem 2.1 
for distributions. For a short and elementary proof, which is immediately 
adapted to the holomorphic case, we refer to [42] or [108]. Another version 
of the Frobenius Theorem is the following. 

Theorem 2.5 (Frobenius). Under the conditions of Theorem 2.4 coordi
nates Xt, ••. , Xn can be chosen in a neighborhood U of any point mo E M 
such that 

Ll(m) =span { 8~1 (m), ... ' a~k (m)}' for any mE U. 

In terms of these coordinates the integral manifold of Lllu through mo is given 
by the connected component of 

{ m E U I Xi ( m) = Xi ( mo) for i = k + 1, ... , m} 

that contains mo. 

It is clear that the latter version of the Frobenius Theorem generalizes the 
Straightening Theorem (Theorem 2.2). It implies that the maximal integral 
manifolds of an integrable distribution on M form the leaves of a foliation 
onM. 

In applications it is sometimes necessary to consider the more general 
concept of a singular distribution, in which the dimension of the subspace 
of T mM may vary with m. This happens for example when one considers 
the singular distribution associated with the Hamiltonian vector fields on a 
Poisson manifold, as we will see in Section 3.4. For a good account on singular 
distributions we refer to [107, Appendix 3]. 
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2.1.3 Differential Forms and Polyvector Fields 

We will make frequent use of k-forms and k-vector fields on manifolds and of 
the operations on and between them. Fork EN we denote the F(M)-module 
of k-forms on a manifold M by f!k(M); an element of f!k(M) is by definition 
a section of 1\kT*M, in particular !!0 (M) = F(M) and !l1 (M) = !l(M). 
We let 

n 

!l*(M) := ffi !lk(M), 
k=O 

where n := dim(M). An element of !l*(M) will be called a differential form. 
There is an F(M)-bilinear map 

1\: !l*(M) X !l*(M) """* !l*(M), 

which associates to two differential forms w, w' their wedge product w 1\ w'. 
This operation makes !l*(M) into a graded associative algebra over F(M), 
called the Grassmann algebra of M. It is graded commutative, which means 
that for wE f!k(M) and w' E !l1(M) we have 

w 1\ w' = ( -1) kl w' 1\ w. 

The fact that a 1-form can be evaluated on a vector field to produce an 
element of F(M) generalizes in two ways to a k-form w, where k ~ 1. We can 
evaluate wonk vector fields V1, ... , Vk, giving w(Vb ... , Vk) E F(M); from 
this point of view a k-form is an F(M)-k-linear map on X(M) with values 
in F(M). Or we can insert one vector field V as the first argument to w, 
yielding a (k- 1)-form, which is denoted by zvw; from this point of view a 
k-form is, for k ~ 1, an F(M)-linear map X(M) """* !]k-l (M). Notice that 
it is from the former point of view natural to define a k-form by prescribing 
its value on all k-tuples of vector fields on M; however, one still needs to 
check besides skew-symmetry that the k-form is indeed F(M)-k-linear. It is 
convenient to extend the above definition of zv to all of !l*(M) by defining 
zvw = 0, for all 0-forms, i.e. functions, won M. 

The differential is a linear map d: !l*(M) """* !l*(M) which maps k-forms 
to (k +I)-forms according to the following formula: 

k 

dw(Vo, ... ,Vk) = ~)-l)iVi [w(Vo, ... ,V:, ... ,Vk)] (2.8) 
i=O 

+ ~) -l)i+iw ([Vi, Vi], Vo, ... , iJ:, ... , VJ, ... , Vk). 
i<j 

As we just pointed out one has to verify that the right hand side of this 
formula is F(M)-(k +I)-linear, but that is an easy consequence of (2.4). 
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We have that dod= 0, which implies that each exact differential form (an 
element of [}*(M) that is in the image of d) is a closed differential form (an 
element wE [}*(M) for which dw = 0). On a coordinate neighborhood every 
closed differential form is exact, but this is false for general open subsets of 
manifolds. The differential of a wedge satisfies the graded Leibniz rule 

d(wl\w1) = dwl\w' + (-l)kwl\dw', 

where w is a k-form and w' an l-form. The differential is not an F(M)-linear 
map, as is seen from the following formula: ifF E F(M) and w E n 1(M) 
then 

d(Fw) = dF 1\ w + Fdw, FE F(M), wE nk(M). 
We will also consider k-vector fields, mainly in the case k = 2, 3, in which 
cases we speak of a bivector field or a trivector field. A k-vector field is by 
definition a section of 1\ k T M, hence we can evaluate any k-form w on any 
k-vector field P: for P a k-vector field of the form P = V1 1\ ... 1\ Vk, we 
let w(P) = w(V1 1\ ... 1\ Vk) := w(V1, ... , Vk)· Since vector fields correspond 
to derivations we have that a 2-vector field corresponds to a skew-symmetric 
biderivation, a 3-vector field corresponds to a skew-symmetric triderivation, 
and so on. Namely, if P is a k-vector field the value of the corresponding 
skew-symmetric k-derivation on k functions F1, ... , Fk E .1'( M) is denoted 1, 
resp. defined by 

P[F1 1\ · · · 1\ Fk] := (dF1 1\ ···I\ dFk)(P) (2.9) 

and we have that P is completely specified on a coordinate neighborhood U 
once it is known on all k-tuples ( Xi1 , ••. , Xik), with 1 :;:; i1 < i2 · · · < ik :;:; n = 
dim M, where the k-tuples are taken from any chosen system of coordinates 
(x1, ... , Xn) on U. Explicitly, (2.5) admits the following generalization to 
arbitrary k-vector fields, 

We denote the F(M)-module of k-vector fields by Xk(M), in particular 
XO(M) = F(M) and X1 (M) = X(M), and we let 

n 

X*(M) := ffiXk(M), 
k=O 

where n := dim(M). An element of X*(M) is called a polyvector field. We 
can define, as in the case of differential forms, a wedge product 

1\: X*(M) X X*(M) --t X*(M), 

which makes X*(M) into a graded associative algebra which is the covariant 
analogue of the Grassmann algebra. 

1 We use P[F1 A ... A Fk] instead of P[H, ... , Fk] to avoid confusion with the 
notation for Lie brackets. Moreover, this notation makes sense in view of (2.9). 
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2.1.4 Lie Derivatives 

The most important operation on k-forms and on k-vector fields is the Lie 
derivative. For V E X( M) and w E [lk ( M) we denote the Lie derivative of w in 
the direction of V by Lvw. For FE :F(M) and V E X(M) the Lie derivative 
is given by LvF := V[F] = dF(V), while for an arbitrary k-form w (with 
k > 0) its Lie derivative Lvw is the k-form whose value on V1 ... , Vk E X(M) 
is given by 

k 

Lvw(V1, ... , Vk) := V[w(V1, ... , Vk)]- l:w(V1, ... , [V, Vi], ... , Vk); (2.10) 
i=l 

again one checks that the right hand side of this formula is :F(M)-k-linear, 
so that Lvw is indeed a k-form. 

The Lie derivative Lvw measures how w changes in the direction of V, 
hence Lvw = 0 if and only if w is constant on the integral curves of V. This 
follows immediately from the following alternative (geometric!) definition, 

d * Lvw = -d Ptw, 
tit=O 

where P denotes the (local) flow of Von M. The most useful expression for 
Lvw is given by the following formula, known as Carlan's Formula 

Lvw = dzvw + zvdw; (2.11) 

for example, Cartan's formula implies at once that Lvw is :F(M)-k-linear, 
i.e., that it is a k-form. We will also need the formula 

(2.12) 

which is valid for V1 , V2 E X(M) and wE D*(M). Let us prove (2.12) when 
w is a two-form (this is the only case which will be used), in which case both 
sides of (2.12) are one-forms. For any vector field V we have, in view of (2.10) 
applied to the one-form zv2 w, 

Applying (2.10) again, but now to the two-form w we get 

It follows that for any vector field V 

Lv1 zv2 w(V) - zv2 Lv1 w(V) = w([V1, V2], V) = Z[v1 ,v2Jw(V), 

showing (2.12). 
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The Lie derivative LvW of a vector field W is given by LvW := [V, W), 
while the Lie derivative of an arbitrary k-vector field P is the k-vector field 
LvP, defined by 

k 

LvP[F1 A ... A Fk] := V[P[F1 A ... A Fk]] - L P[F1 A ... A V[Fi] A ... A Fk], 
i=l 

(2.13) 
where F1, ... , Fk E :F(M). As in the case of the Lie derivative of a differential 
form, the Lie derivative LvP of a k-vector field P on M also measures how 
P changes in the direction of V, hence Lv P = 0 if and only if P is constant 
on the integral curves of the vector field V. 

Example 2. 6. In order to get familiar with the notations, let us verify that 
LvW = [V, W), for any V, W E X(M). In fact, ifF E :F(M) then (2.13) 
implies 

(LvW) [F)= V[W[F))- W[V[F)) =(VoW- Wo V)[F) = [V, W][F), 

proving our claim. 

2.2 Lie Groups and Lie Algebras 

Unless otherwise stated, all Lie groups and Lie algebras will be defined over C. 
We use the standard convention that Lie groups are denoted by boldface 
capital letters (G, H, .. . ) and their Lie algebras by the corresponding gothic 
letters (g, ~ •... ). The main examples of Lie groups include linear groups, 
i.e., Lie subgroups of GL(n) = GL(Cn), the non-commutative group of all 
invertible n x n matrices (with coefficients in C), where the group operation 
is given by the usual product of matrices. Similarly, the main examples of 
Lie algebras include matrix Lie algebras, i.e., Lie subalgebras of gl(n) = 
gl( en), the Lie algebra of all n x n matrices (with coefficients in C), where 
the Lie bracket is given by the commutator of matrices. In fact, according 
to Ado's Theorem, every finite-dimensional Lie algebra is isomorphic to a 
matrix Lie algebra, but the corresponding theorem does not hold true for 
(finite-dimensional) Lie groups. gl(n) is the Lie algebra of GL(n), and the 
Lie algebra of a given linear group can easily be realized as a matrix Lie 
algebra. This is done by using the exponential map exp, which is a natural 
local biholomorphism exp : U ~ g ~ G between an open neighborhood U of 
the origin 0 of any finite-dimensional Lie algebra g and an open neighborhood 
of the unit element e E G. For X E g = TeG close to 0, exp X is the Lie 
group element !1>1 (e) where !I> denotes the flow of the left invariant vector 
field on G, defined by X. For example, taking g = gl(n) and G = GL(n) the 
map exp is the usual exponential of matrices and the conditions that define 
a subgroup of GL(n) are easily translated in the conditions that define its 
Lie algebra. 
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Example 2. 7. Consider the linear group G of all orthogonal n x n matrices. 
For X E gl(n) and for small ltl, consider the invertible matrix exp(tX) = 
Idn +tX + t2 X 2 + O(t3 ). Orthogonality of exp(tX) yields 

Idn = exp( tX)exp( tX) T 

= (Idn +tX + t2 X 2 + O(t3 )) (Idn +tXT+ t2 (X2 ) T + O(t3)) 

= Idn +t(X + XT) + O(t2), 

hence the Lie algebra g of G is given by the matrices X for which X+ XT = 0, 
i.e., g is the Lie algebra of all skew-symmetric n x n matrices. · 

More generally, Lie subalgebras of a finite-dimensional Lie algebra g are in 
one-to-one correspondence with connected Lie subgroups of G; notice how
ever that a Lie subgroup needs not be closed in its ambient Lie group (consider 
the subgroup generated by a generic element of the complex torus C2 /Z2 ). 

The tangent space T9 G to G at an element g E G is naturally identified 
with g: the left translation map Ly-t : G -+ G maps g toe, and its differential 
maps T9G to g. Similarly we can identify the cotangent spaces toG with g* 
(the dual vector space to g) and so on. 

Example 2.8. Suppose that G is a linear group which is closed (as a topolog
ical subspace of GL(n)). Elements of TG are then naturally represented by 
pairs .of matrices (g, X), where a vector (g, X) acts by definition on FE F(G) 
by 

(g, X)[ F) := lim F(g + tX) - F(g)' 
t-+0 t 

where F is any (holomorphic) extension ofF to a small open neighborhood 
of g in its ambient space, the space of all n x n matrices (this can be done 
because G is closed). Then dL9-t (g, X) = (e, g-1 X), so that (g, X) gets 
naturally identified with the matrix g-1 X. The same result holds true when 
G is not closed, because a small neighborhood in G of any element g of G is 
closed in a small neighborhood of gin GL(n). 

Since g (resp. g*) is a vector space, its tangent spaces are also naturally 
identified with g (resp. g*). These identification will be (ab)used in the sequel, 
often without further mention. A particular instance of this that will be used 
throughout the text is the following: if F E F(g*) and e E g* then the 
differential of F at e is a linear map 

which under the above identifications gets naturally identified with an el
ement of g. Conversely, an element X E g will often be viewed (without 
changing notations) as a linear map g* -+ C, a change of perspective that 
is made transparent by the notations, which simply read (X, e) = (e, X} for 
X E g and e E g*. 
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Lie groups appear most often through their action (always taken to be a 
left action) on manifolds. By assumption, if 

x:GxM-tM 

is an action, then for each g E G the map x9 : M -+ M, defined by m t-+ 
x(g, m) is a biholomorphism, with inverse m t-+ x(g- 1 , m). We will usually 
write g·m or gm for x(g, m). The action allows us to associate to each element 
X E g a vector field X, whose value at m, denoted X(m), is the derivation 
on :F(M) at m given by 

d 
X(m)[F] := -d F((exptX) · m), 

t it=O 

for all F E :F(M). The vector field X is called the fundamental vector field 
corresponding to X E g. Its flow is given by the action of the one-parameter 
group exp tX. The fundamental vector fields describe infinitesimally the ac
tion of G on M and they span the tangent space to the orbits of G at every 
point of M. 

The simplest action of a Lie group G on a vector space S is a linear ac
tion, which means that for each g E Gone has that Xo E GL(S). Then one 
can view x as a homomorphism x: G -+ GL(S) and one says that xis a 
representation of G on S. A subspace T ~ S is called an invariant subspace if 
x 9 leaves T stable, i.e. x 9 (T) ~ T, for all g E G. Then x induces a represen
tation G -+ GL(T) which is called a subrepresentation. A representation x of 
G on S is called an irreducible representation if dim S > 0 and if x does not 
admit a non-trivial (i.e., with T different from {0} and T) subrepresentation. 
In general an invariant subspace T may or may not have a complement T' in 
S which is also an invariant subspace. One says that a representation x is a 
completely reducible representation if any invariant subspace admits a com
plementary subspace which is also invariant. In that case one can describe x 
as a direct sum of irreducible representations. 

The above terminology applies equally to the case of Lie algebra repre
sentations, with the understanding that a representation of g on S is a Lie 
algebra homomorphism g -+ End(S), the Lie bracket in End(S) being the 
commutator of endomorphisms. One also says that S is a g-module. Using 
the fact that End(S) is the Lie algebra of GL(S) and using our convention 
that we identify all tangent spaces to G with g, every representation of G 
on S leads to a representation of g on S by mapping X E g t-+ X E End(S). 
The fact that this gives indeed a representation follows from the formula 

[X, Y] =[X, Y] X,Y Eg. 

The two most important examples are the adjoint and the coadjoint action 
(representation) of a Lie group G on its Lie algebra g, resp. on the dual g* 
of its Lie algebra. 
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For g E G, we define Ad9 to be the endomorphism of g which is the 
derivative of the conjugation map C9 : G --+ G : h f-t ghg- 1 at the iden
tity, Ad9 := dC9 (e). The adjoint action or adjoint representation of Gong 
is then given by 

Ad : G --+ GL(g) : g f-t Ad9 . 

For example, if G is a linear group and g its (matrix) Lie algebra, then it 
follows, as in Example 2.8, that 

Ad9 X= dC9 (e)(X) = gXg- 1 , 

where g E G and X E g. 
The representation of g on itself which corresponds to the adjoint action 

is called the adjoint representation of the Lie algebra g on itself and is de
noted by ad; the image of X E g under ad will, for readability, be written 
as adx. By the above definition, adx is the fundamental vector field X on g 
that corresponds to the adjoint action, viewed as an endomorphism of g (by 
identifying all tangent spaces of g to g). Explicitly, adx Y = [X, Y], for Y E g. 

We now turn to the coadjoint action. For g E G we define Ad; by duality: 

where ~ E g* and X E g. The resulting map 

Ad* : G--+ GL(g*) : g f-t Ad; 

is called the coadjoint action or the coadjoint representation of G on g*. Its 
orbits are called coadjoint orbits and they play an important role in what 
follows. The representation of g on g* that corresponds to the coadjoint rep
resentation is denoted by ad* and is called the coadjoint representation of g 
on g*. The relation between ad and ad* is consequently given by 

(adx ~. Y) = (~,- adx Y) = (~, [Y, X]), (2.14) 

where~ E g* and X,Y E g. 
A function HE F(g) (resp. HE F(g*)) is called Ad-invariant (resp. Ad*

invariant) if H (Ad9 X)= H(X) for all g E G and X E g (resp. H {Ad;~) = 
H(~) for all g E G and ~ E g*). The algebra of Ad-invariant functions on g 
is denoted by F(g)G, while the algebra of Ad* -invariant functions on g* is 
denoted by F(g*)G. 

In the following lemma we describe two properties of Ad* -invariant func
tions that we will use. The Ad-invariant functions have similar properties, 
that are easily written down, and are proven in the same way, but these 
properties will not be used explicitly used here. 
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Lemma 2.9. LetHE F(g*)G. For any~ E g* and for any X E g we have 
that (~, (dH(~), X]) = 0, i.e., one has for any~ E g* that 

ad;jH({) ~ = 0. 

Moreover, for any g E G and~ E g* the following diagram is commutative. 

Proof. Let X E g and ~ E g*. If H E F(g*)G then H(~) = H (Ad;~) for all 
~ E g* and g E G. Taking any X E g we therefore have that 

( addH{{) ~,X) = -(ad~~, dH(~)) = -ad~~ (H] 

= - :t it=O H (Ad:xptX ~) = - :t it=O H(~) = 0, 

showing the first property. In order to prove that the above diagram is com
mutative, differentiate for a fixed g E G the identity H = H o Ad; at ~ E g*. 
It gives 

because, for fixed g, the map Ad; is a linear map. Thus, for "' E g*, we have 

(dH(~),'f/) = (dH(Ad;~),Ad;'f/) = (Ad9-t (dH(Ad;~)) ,'f/). 

It follows that dH(Ad; ~) = Ad9 (dH(~)), which proves that the diagram is 
commutative. 0 

Lie algebras often come equipped with a non-degenerate symmetric bilinear 
form 

(·I·) : g X g-+ c. 
Such a form allows us to identify g with g*, simply by assigning to X E g the 
linear form X which maps Y E g to (X I Y), i.e., 

(X, Y) = (X I Y) 

for all X, Y E g. Its inverse is the linear map g* -+ g : ~ 1-t X, where X 
is the unique element of g which satisfies (X I Y) = (~, Y), for all Y E g. A 
symmetric bilinear form (·I·) on g will be called Ad-invariant when for any 
g E G and for any X, Y E g one has 

(Adg X I Adg Y) = (X I Y) . 
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Ad-invariance of (·I·) implies the following associativity-like rule: for any 
X, Y, Z E g one has 

(ady X I Z) = - (X I ady Z) , (2.15) 

so that ady is skew-symmetric with respect to (·I·). Ad-invariance of (·I·) 
also implies that for any g E G the following diagram is commutative. 

(2.16) 

Indeed, for any X, Y E g it follows from the definitions and from Ad
invariance that 

(Ad;x,Y) = (x,Ady-1 Y) =(XI Ady-1 Y) 

= (Ad9 X I Y) = (Ad;X, Y). 

In words: upon identifying a Lie algebra with its dual (using an non
degenerate Ad-invariant symmetric bilinear form (·I·)), the adjoint and coad
joint actions get identified. The datum of a bilinear form on g leads to a 
notion of orthogonality: for any subset A ~ g the (-I· )-orthogonal of A is the 
subspace of g, defined by 

Aj_ := {Y E g I (X I Y) = 0 for all X E A}. 

Example 2.10. Consider the subalgebras a and b of gl(n) which consist re
spectively of the skew-symmetric and the upper triangular matrices. Obvi
ously, gl(n) = a E9 b (direct sum of vector spaces). Consider on gl(n) the 
non-degenerate symmetric bilinear form defined by (X I Y) := Trace(XY). 
Then aj_ is the subspace of gl(n) consisting of all symmetric matrices, while 
bj_ consists of all strictly upper triangular matrices. 

The main example of an Ad-invariant symmetric bilinear form is the Killing 
form of g, which is defined by 

(X I Y) := Trace(adx o ady ). (2.17) 

The Killing form of g is non-degenerate if and only if g is a semi-simple Lie 
algebra. Semi-simple Lie algebras and simple Lie algebras will be defined 
in the next section. Together with their infinite-dimensional analogues, the 
(twisted) affine Lie algebras, they will be the main types of Lie algebras 
encountered in this book. 
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2.3 Simple Lie Algebras 

A non-empty subset ~ of a Lie algebra g is called an ideal when [g, ~] ~ ~· 
If g contains no other ideals than 0 and itself and dim g > 1 then g is called 
a simple Lie algebra. A Lie algebra that is isomorphic to the direct sum of 
simple Lie algebras is called a semi-simple Lie algebra. Such a Lie algebra 
is characterized by the fact that its Killing form ( · I· ) (see ( 2 .17)) is non
degenerate. Moreover, for any simple Lie algebra g the Killing form is, up to 
a constant, the unique Ad-invariant symmetric bilinear form on g which is 
non-degenerate. 

2.3.1 The Classification 

We describe in this paragraph the elements that appear in the classification 
and in the representation theory of simple Lie algebras, since we will need 
them in what follows. For proofs and details we refer to [87]. 

In this paragraph we assume that g is a simple Lie algebra (over C). 
Let ~ ~ g be a Carlan subalgebra of g, i.e., ~ is Abelian ([~, ~] = 0) and 
self-normalizing (x E g and [x, ~] ~ ~ implies x E ~). The dimension of ~ 
is called the rank of g, denoted Rk g. It does not depend on the choice of ~ 
because one shows that ~ is unique up to an automorphism of g. For X E ~ 
the endomorphism adx : g ~ g is diagonalizable and commutativity of ~ 
implies that ad~ is a family of simultaneously diagonalizable endomorphisms 
of g, leading to a direct sum decomposition of g into eigenspaces of ad~, 

(2.18) 

where each subspace ga can be shown to be one-dimensional. An element a 
of iP is called a root, iP ~ ~· is called a root system and the decomposition 
(2.18) is called the root space decomposition. A root a E iP is a collection of 
eigenvalues of ad~ in the sense that if Ea E ga then 

[H, Ea] = (a, H) Ea for all HE~· 

Notice that 0 is not a root because we assumed that ~ is self-normalizing. It 
can be shown that the root system iP spans~· and that a (non-unique) basis 
II for~· can be extracted from iP, with the following property: any root a E iP 
is a linear combination of elements of II with coefficients in Z which are either 
all positive or all negative. Thus, iP = jp+ U IP-, where iP- = -fP+, and any 
element of jp+ is a linear combination of elements of II with coefficients in N. 
In particular, II ~ fP+ and the roots all belong to the lattice2 , generated by 
the simple roots, called the root lattice. 

2 This lattice is independent of the choice of simple roots II since it is the smallest 
lattice in ~· that contains all the roots. 
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We call II a set of simple roots and we set II = ( a1, ... , az), where l := 
Rk g. For a E cJ> we define its height Ia I by 

l 

lal = :~::::ai, 
i=l 

It leads to a grading of g, 

il = EBflk, 
k 

l 

where a= 2:aiai. 
i=l 

(2.19) 

where ilk is, for k =f. 0, the span of the eigenvectors of all Eo:, with lal = k, 
and flo :=~-One proves that the Killing form (·I·) restricts to a bilinear form 
on ~' which is also non-degenerate, hence the isomorphism g -+ g*, induced 
by (·I·), leads to an isomorphism~ -+ ~·. We mainly use its inverse, ~· -+ ~' 
which maps A E ~· to h>. E ~' where 

(A,-) = (h>.l·). 

We will use, for i = 1, ... , l, the abbreviation hi for ho:,. The l-tuple 
( h1, ... , hz) forms a basis of ~. For a E P we define the following useful 
normalization3 of ho:: 

(2.20) 

Each Ho: is called a coroot and for i = 1, ... , l the coroot which corresponds 
to ai is denoted by Hi. The coroots appear in the following refinement of the 
root space decomposition. 

Theorem 2.11 (Chevalley). Let g be a simple Lie algebra of rank l, let~ 
be a Cartan subalgebra with root system P, and let II = ( a 1, ... , az) denote 
a system of simple roots with respect to ~- Then there exists for every a E P 
a non-zero vector E01 E go: {see {2.18)) such that for any H, H' E ~ and 
a, {3 E P 

[H,H'] = 0, 

[H, Eo:] = (a, H) Eo:, 

{ 
Ho: 

[Eo:, E13] = 0 

N o:,BEo:+/3 

if a+ {3 = 0, 

if a+ {3 fj P U {0}, 
if a+ {3 E P. 

Here, No:/3 = ±(p + 1), where 

p := max{n I {3- na E P}. 

The basis (H1 , ..• , Ht) U (Eo:)o:E~ of g is called a Chevalley basis of g, and 
each Eo: is called a root vector. 

3 It is a normalization in the sense that if we replace (-I·) by a non-zero multiple 
of itself, then Ha do not change, while the ha get divided by that factor. 
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For computational purposes it is useful to know that for given a, {3 E P 
the set {n I a- n/3 E 4>}, consists of (a finite number of) consecutive integers. 
The choice of sign for Naf3 for all a, {3 E Pis non-trivial, since the signs that 
correspond to the different values of a and {3 need to satisfy several non-trivial 
coherence conditions, but they can be determined algorithmically (see [67]). 
Notice that Chevalley's Theorem implies that, in terms of a Chevalley basis, 
all structure constants of g are integers. 

The Killing form ( · I· ) allows us to measure angles and lengths of roots 
in P ~ ~·. To do this, let ~R denote the real vector space which is spanned 
by P and define (·I·)~. to be the bilinear form on ~R which corresponds to 
the Killing form via the isomorphism h t-+ h>... Thus, for A, J..t E ~· we have 
that (A I J..t)~. = (h>..l hi-'). It turns out that (·!·)~. is positive definite, making 
~R into a genuine Euclidean space. For a E 4', let sa : ~R. -t ~R be the linear 
map defined by 

(2.21) 

where A E ~R. This linear map is the reflection in the hyperplane orthogonal 
to a, since it fixes all roots which are orthogonal to a and since sa(a) = -a. 

The Weyl group W is the group generated by {sal a E P}. One shows 
the following properties of the Weyl group. Every non-trivial element of W 
permutes at least two elements of P hence W is finite. Moreover, W is gen
erated by the l reflections that correspond to the elements a 1 , ..• , az of II. 
The root system P consists either of one W -orbit, in which case all roots 
have the same length, or it consists of two W -orbits, where roots from one 
W -orbit have a length which is different from the length of the vectors in 
the other W -orbit. The two W -orbits are then distinguished by calling its 
elements short roots or long roots, according to their lengths. Among the long 
roots there is precisely one that has maximal height. It is called the highest 
long root (with respect to~ and II). Similarly, there is among the short roots 
precisely one that has maximal height, the highest short root. When all roots 
have the same length then the highest long root and the highest short root 
of course coincide. 

For a, {3 E II the fact that 

is a root, implies for a -=1 {3 that sa ({3) E p+, hence that 

(2.22) 

is a non-positive integer for i -=1 j, and equals 2 for i = j. 
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The numbers aii are called the Carlan integers and the matrix A = 
(ai;) is called the Carlan matrix of g (with respect to ~ and II). It is a 
fundamental result that there is a bijection between the triples {g, ~.II), 
modulo conjugation in g and their Cartan matrices, modulo conjugation by 
a permutation matrix. In fact, g can be reconstructed from its Cartan matrix 
by a set of generators and relations (see [156, Chapter VI]). 

If we denote by (Jii the angle between O:i and a:; then 

so that (2.22) implies that 4cos2 (Jii = aiiaii· Letting nii := ai;a;i we have 
that if i =I j then 0, 1, 2, 3 are the only possible values for ni;, since aii is 
a non-positive integer when i =I j. The Dynkin diagram of g is the graph 
with l nodes labeled by 1, ... , l such that the nodes i and j are joined with 
nii bonds. Notice that the integers nii do not contain enough information 
to determine the aii• i.e., to reconstruct the Cartan matrix: when nii = 0 
then aii = a;i = 0 and when nii = 1 then aii = a;i = -1, but when 
nii E {2,3} then there are two possibilities to assign the values -1 and -nii 
to aii and aii· To resolve this ambiguity one adds an arrow to the double 
and the triple bonds in the Dynkin diagram which points to the shorter root 
((2.22) shows that the two roots cannot have the same length). This way 
the Cartan matrix, and hence the whole structure of the simple Lie algebra, 
can be encoded in its Dynkin diagram. Analyzing the properties that root 
systems which come from a simple Lie algebra have and constructing all 
possible Dynkin diagrams that bear the corresponding properties one arrives 
at the well-known list of Dynkin diagrams, given in Table 2.1 (the labeling 
of the roots in the Dynkin diagram is the one that is used in most classical 
books on Lie algebras, in particular (37], (79] and (87]). 

The coroots Ha, which were defined in (2.20), satisfy the axioms of a 
root system as well as the roots a:, the dual root system, for which a system 
of simple roots can be chosen as (Ht, ... , Hz). It leads to a natural duality 
on the set of simple Lie algebras, which at the level of the Cartan matrix 
amounts to A t-t AT. As it turns out, this duality is trivial except that it 
permutes the Lie algebras bz and cz. 

If A E ~R has the property that (A, Ha) E Z for all a: E iP then A is called 
a weight and the set of all weight vectors is a lattice in ~R. which is denoted 
by A and which is called the weight lattice. Clearly iP ~ A. A basis for the 
lattice A can be constructed as follows: for i = 1, ... , l let Ai E ~· be such 
that (>.i, H;) = Oij, where j = 1, ... , l. Each of the basis vectors >.i is called 
a fundamental dominant weight, or a weight for short. Since iP ~ A, (2.22) 
implies that 

I 

O:i = L UikAk, 

k=l 

i=1, ... ,l. (2.23) 
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Table 2.1. Some data on simple Lie algebras. For each simple Lie algebra we list 
its rank, the order of its Weyl group W, the determinant of its Cartan matrix A, 
the coefficients of highest long/short root in terms of the simple roots (only one 
is given if they are the same) and its Dynkin diagram. A label i in the Dynkin 
diagram refers to the root a;. The Cartan matrix A is immediately written down 
from the Dynkin diagram. 

g Rank #W IAI Highest long/short root Dynkin diagram 

az l ~ 1 (l + 1)! l+1 (1,1, ... ,1) o---o- .. ·-o--o 
1 2 1-1 l 

bt l ~ 2 21l! 2 (1, 2, ... ) 2)/(1, 1, ... ) 1) o---o-.. ·-o=::}o 
1 2 1-1 l 

Ct l ~ 3 21l! 2 (2, ... ) 2, 1)/(1, 2, ... ) 2, 1) o---o- .. ·-<l{=o 
1 2 l-1 l 

~1-1 
llt l ~ 4 21-1l! 4 (1, 2, ... ) 2, 1, 1) o-o-·. 1-2 

1 2 
l 

e6 6 27345 3 (1,2,2,3,2,1) ~ 
1 3 4 5 6 

e7 7 21034 57 2 (2,2,3,4,3,2,1) ~ 
1 3 4 5 6 7 

es 8 21435527 1 (2,3,4,6,5,4,3,2) ~ 
8 7 6 5 4 3 1 

f4 4 2732 1 (2,3,4,2)/(1,2,3,2) Q-0::::::}0--0 
1 2 3 4 

g2 2 223 1 (3,2)/(2, 1) ~ 
2 1 

It follows from this relation that the Cartan matrix describes the change of 
basis from the simple roots to the fundamental dominant weights, a property 
that will play a fundamental role in our study of the periodic Toda lattice (see 
Chapter 9). 
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In the four examples that follow we give a concrete representation of 
the classical Lie algebras, whose root systems are a1, bt, Ct and ilt, together 
with a choice of root vectors which, supplemented with a basis of 1), form 
a Chevalley basis. We only give a choice for root vectors corresponding to 
the roots Ea,, E-a,, where i = 1, ... , l, and to plus and minus the highest 
long/short root, because the other root vectors will not be needed. The choices 
that we make are the most appropriate for our approach to the periodic 
Toda lattices (Chapter 9), and are taken from [36], where one also finds 
explicit expressions for the other root vectors. We denote by Cij the square 
matrix (of the appropriate size) which has a 1 at position (i, j) and zeros 
elsewhere and Ll is the l x l matrix with 1 's on the anti-diagonal and zeros 
elsewhere, Ll := L:~=1 £i,l-i+I· Notice that the condition ALl = LlAT (resp. 
ALl+ LlAT = 0) means that A is symmetric (resp. skew-symmetric) with 
respect to its anti-diagonal. 

Example 2.12. a1 is the root system of the semi-simple Lie algebra sl(l + 1) 
of all traceless matrices of size l + 1. For Ea, one chooses £i,i+l and for the 
root vector corresponding to the highest (long = short) root a 0 one takes 
Ea0 := £1,1+1· Then E-a; := E;I, fori= 0, ... , l. 

Example 2.13. b1 is the root system of the semi-simple Lie algebra of all block 
matrices of size 2l + 1 of the form 

2Llw 

0 

2Llv 

where 

ALl+ LlDT = 0, 

BLl + LlBT = 0, 

CLl + LlCT = 0, 

and where A, ... , Dare square matrices of size l, while v and ware column 
vectors on length l. For the root vectors of height ± 1 we choose 

Ea, := £i,i+1 - £2t-i+1,2t-i+2, 

E-a• := £i+1,i - £2t-i+2,2t-i+1, 

Ea1 := 2£1,1+1 + £1+1,1+2• 

E-a1 := E:t+l,l + 2£!+2,!+1, 

i = 1, ... 'l- 1, 

i = 1, ... 'l-1, 

while for the root vectors corresponding to the highest long/short roots we 
choose 

Ea := £1,21 - £2,2!+1, 

E-a := £21,1 - £21+1,2, 

Ea := 2£1,!+1 + Ct+I,21+1, 

E-a := £1+1,1 + 2£2!+1,1+1, 

a highest long root, 

a highest long root, 

a highest short root, 

a highest short root. 
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Example 2.14. c1 is the root system of the semi-simple Lie algebra of all block 
matrices of size 2l of the form 

where 

ALl+ LlDT = 0, 

BLl = LlBT, 

CLl = LlCT, 

and where A, ... , D are square matrices of size l. For the root vectors of 
height ± 1 we choose 

Eo:; := t'i,i+1 - t'2!-i,21-i+1, 

E-o:; := t'i+1,i - t'2!-i+1,2!-i, 

Eo:, := t'l,l+1, 

E-o:1 := £1+1,1, 

i = 1, ... 'l- 1, 

i = 1, ... 'l- 1, 

while for the root vectors corresponding to the highest long/short roots we 
choose 

a highest long root, 

E-o: := £21,1, a highest long root, 

Eo: := £1,21-1 + £2,21, a highest short root, 

E-o: := £21-1,1 + £21,2, a highest short root. 

Example 2.15. il1 is the root system of the semi-simple Lie algebra of all block 
matrices of size 2l of the form 

where 

ALl+ LlDT = 0, 

BLl + LlBT = 0, 

CLl + LlCT = 0, 

and where A, ... , D are square matrices of size l. For the root vectors of 
height ± 1 we choose 

Eo:; := t'i,i+1 - t'21-i,21-i+1, 

E-o:; := t'i+1,i- t'21-i+1,2!-i, 

Eo:, := t'1-1,1+1 - t'!,l+2, 

E-o:1 := t'!+l,l-1 - £1+2,1, 

i = 1, ... ,l-1, 

i = 1, ... ,l- 1, 

while for the root vectors corresponding to the highest (long= short) root a 
we choose 

Eo: := £1,21-1 - t'2,2t. 

E-o: := £21-1,1 - £21,2· 
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2.3.2 Invariant Functions and Exponents 

We have defined in Section 2.2 the algebra of Ad-invariant functions on g 
and the algebra of Ad* -invariant functions on g*. If g is simple then these are 
isomorphic algebras since they correspond to each other under the isomor
phism g -t g*, defined by the Killing form. Moreover, they are isomorphic to 
a polynomial algebra which is generated by l homogeneous elements, since 
one proves that 

.F(g*)G 3:' .F(g)G 3:' C[Il, ... ,Iz]. 

We define the exponents of g to be the l integers ( m1, ... , ml), where mi := 
( deg Ii) - 1. One has that mi + m1-i+1 is independent of i, and is equal to 
the so-called Coxeter number of g. It is a fundamental fact that the order of 
the Weyl group is given by 

I 

#W = IT(mi + 1). 
i=l 

For future use, we also give an alternative formula for the latter, namely let 
I) by a Cartan subalgebra of g and let II be a system of simple roots with 
respect to 1), with Cartan matrix A. Then 

I 

#W = l! II 1Ji det A, (2.24) 
i=l 

where 171, ... , 1Jl are the coefficients of the highest long root with respect to II. 
For a proof of this (non-trivial) fact, see [37, Chapter VI no 2.4]. 

Below we give the list of exponents for all simple Lie algebras. Notice that 
a Lie algebra and its dual have the same exponents (i.e., for b1 and c1 they 
are the same; the other Lie algebras coincide with their duals, hence for those 
the statement is trivial). 

The following proposition will play an important role in the study of Toda 
lattices (see Section 9.2). 

Proposition 2.16. Let N := diag(n1, ... , n1), where the integers ni are de
fined by L:aE<P+ Ha = L:!=l niHi and consider the linear operator 

I 

X H L niHi (hi I X) , 
i=l 

whose matrix is N A, in the basis (H1, ... , H1). The spectrum ofl/t, and hence 
of N A, is expressible in terms of the exponents of g as follows: 

Spec(lli) = {m1(m1 + 1), ... , mt(ml + 1)}. 
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Table 2.2. More data on simple Lie algebras: for each type we give the l exponents 
and the Coxeter number, which is the sum of the i-th and (l + 1- i)-th exponents. 
The dual Weyl integers ni are defined in Proposition 2.16. 

g Exponents Coxeter ni or (n1, ... , n!) 

az 1, 2, ... 'l l+1 i(l-i+1} 

bz 1, 3, 5, ... '2l - 1 2l i(2l- i + 1)- O;z c~1) 

C! 1, 3, 5, ... '2l- 1 2l i(2l - i) 

llz 1, 3, ... '2l- 3, l- 1 2l- 2 i(2l- i -1)- (oil+ t5i,z-d(;) 

ea 1,4,5,7,8,11 12 (16,22,30,42,30,16) 

e7 1,5,7,9,11,13,17 18 (34,49,66,96, 75,52,27) 

es 1, 7,11,13,17,19,23,29 30 2(46,68,91,135,110,84,57,29) 

f4 1,5,7,11 12 (16,30,42,22) 

92 1,5 6 (10, 6) 

Proof. The proposition can be checked case by case by going through the list 
of simple Lie algebras (see Example 2.17 below). We give a representation 
theory proof, which was provided to us by Eric Sommers. Let (e, j, h) be an 
S-triplet for g, i.e., they are non-zero elements of g which satisfy the standard 
sl(2) commutation relations 

[h, e] = 2e, [h, f] = -2/, [e, /] = h. 

Let us denote the corresponding adjoint representation of sl(2) on g by X· 
We will suppose that the S-triplet is a principal S-triplet which means that 
ge, the centralizer of e (the subspace of all elements that commute with e), 

satisfies 
dim ge = min {gx I X E g} . (2.25) 

Then the representation x decomposes in precisely l = Rk g irreducible sub
representations, Xi : sl(2) -+ End(Si) (i = 1, ... , l), where dim Si = 2mi + 1. 

Decomposing Si further into eigenspaces of [h, ·] we can write for a fixed 

1 ~ i ~ l 
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where the action of e, I and h is described by 

[e, Vi,j] = (mi + j + 1)vi,J+1, 

[h, Vi,j] = 2jvi,j, 
[l,vi,j] = (mi- j + 1)vi,j-1, 

where Vi,-m;-1 = Vi,m;+l = 0. Notice that 

l 

~ = $Cvi,o 
i=1 

so that ad/ o ade restricts to an endomorphism 1/J of ~. which is given 
by 1/J(vi,o) = mi(mi + 1)vi,O for i = 1, ... , l. Thus, 1/J has as eigenvalues 
the integers mi(mi + 1), fori= 1, ... , l. 

We wish to relate 1/J to l/1. To do this we pick a particular principalS-triplet 
(all principalS-triplets are conjugate to each other). Choose a Chevalley basis 
(H1, ... , Ht) U (Ea)aE~ for g and let 

I 

h := L Ha = L niHi (2.26) 
aE~+ i=1 

where the latter equality is a definition of the positive integers n1 , ... , n1• 

The element h, defined by (2.26), is called the dual Weyl element and the 
integers n1 , ... , n, are called the dual W eyl integers. We define for a E iJi a 
reflection on ~ in analogy with the reflection sa on ~*, which was defined in 
(2.21). For X E ~ let 

aa(X) :=X- (a, X) Ha (2.27) 

It is the reflection with respect to the hyperplane orthogonal to the coroot H 0 • 

Indeed, if X is orthogonal to Ha then (a, X)= (ha I X)= 0, hence a0 fixes X, 
while a0 (Ha) = -H0 because (a,Ha) = 2. For 1 ~ i ~ l the reflection O"a; 
permutes all coroots H 0 , with a E ip+ \ {ai}, so that 

(2.28) 

Combining (2.27) and (2.28) we find that 

for i = 1, ... , l, (2.29) 

which characterizes the dual Weyl element. Furthermore, let e and I be 
defined by 

l 

e := LEail 
i=1 

l 

I := L niE-a;. 
i=1 
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e satisfies (2.25) and e, J, h satisfy the sl(2) commutation relations, as follows 
from Chevalley's Theorem (Theorem 2.11) and (2.29). Thus, (e, j, h) is a 
principalS-triplet. For k = 1, ... , l we have that 

1/J(Hk) = ad/ o ade Hk 

= [t niE-a;' [tEa;' Hkll 
•=1 ,1=1 

I 

=- L [niE-an(a;,Hk)Ea;] 
i,j=1 

I 

= L niHi (ai, Hk) 
i=1 

I 

= L niHi (hi I Hk) 
i=1 

showing that 1/J = tP. Since we have shown that the eigenvalues of 1/J are the 
integers mi(mi + 1), where i = 1, ... , l, this yields the announced eigenvalues 
for tP, and hence for the matrix N A. 0 

Example 2.17. Let us verify Proposition 2.16 by direct computation for one of 
the simple Lie algebras, say for f4. We find from the last columns of Tables 2.1 
and 2.2 that 

( 
2-1 0 OJ 

A= -1 2 -2 0 
0 -1 2 -1 

0 0-1 2 

(
16 0 0 0 l 

N= 03000. 
0 0 42 0 

0 0 0 22 

The exponents of f4 are (1, 5, 7, 11), as can be read of from the second column 
of Table 2.2, while the eigenvalues of 

NA = (-!~ -~~ -6~ ~l 
0-42 84-42 

0 0 -22 44 

are given by 2 = 1.2, 30 = 5.6, 56 = 7.8, 132 = 11.12, as follows from a 
direct computation. Clearly, this corresponds to the eigenvalues, predicted 
by Proposition 2.16. 
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2.4 Twisted Affine Lie Algebras 

For any Lie algebra g and for any element g E G, the linear map Ad9 : 

g --+ g is an automorphism of g, which is called an inner automorphism. 
The group of outer automorphisms T(g) is by definition the group of all 
automorphisms, modulo the inner automorphisms. If g is simple then any 
element of T(g) is represented by a (unique) automorphism of g which is 
induced by an automorphism of the Dynkin diagram of g. Therefore, T(g) 
can be identified naturally with the group of automorphisms of the Dynkin 
diagram of g. By inspecting Table 2.1 one finds that only a few Dynkin 
diagrams admit a non-trivial automorphisms; those are given in Table 2.2. 

Table 2.3. We list the simple Lie algebras g which admit a non-trivial group F(g) 
of outer automorphisms. We give the possible values for the order of its elements. 

{I Rank r(s) order(v) 

a, l>l Z/2Z 2 

i)4 l=4 Sa 2,3 

i)l l>4 Z/2Z 2 

e6 6 Z/2Z 2 

Let v be an automorphism of g which is induced by a diagram automor
phism, and let us denote its order by m. Since vm = Id9 each eigenvalue of v 
has the form ci, where c is a primitive mth root of unity and 0 ~ i ~ m - 1. 
The eigenspace of v which corresponds to this eigenvalue ci is denoted by gi. 
Then the algebra g admits the following finite grading: 

g = EB gi and [gi, gj] ~ gi+i· 
iEZm 

We now define the (infinite-dimensional) twisted affine Lie algebra of (g, v). 

L(g, v) := { t bj Xj I M, NEZ and Xj E gjmodm forM~ j ~ N}. 
J=M 

Notice that if we extend v in the obvious way to elements of the form 
N . 

X@= I::;=M b3 Xj, then elements of L(g, v) are characterized by the prop-
erty X(cPb) = vP X(b), for p = 1, ... , m- 1. When v = Id9 then 
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L(g) := L (g,Id9 ) = g ® C [b,b-1] 

the affine Lie algebra of g. The term loop algebra is also used. A natural Lie 
bracket on L(g, v) is given by 

and the Killing form (·I·) on g leads for every k E Z to a non-degenerate 
symmetric form on L(g, v), denoted by (·I· )k which is defined by 

It is easy to see that each of the bilinear forms (·I· )k on L(g, v) is Ad
invariant. We will refer to (·I· )o as the Killing form of L(g, v). 

Example 2.18. Consider the direct sum decomposition 

L(g) = L(g)+ Ee L(g)_, 

where L(g)+ consists of those elements of L(g) which are polynomial in b, 
while L(g)_ consists of all elements of L(g) that are polynomial in b-1 , but 
without constant term. In terms of the orthogonality that is induced by the 
Killing form (·I· )o we have that L(g)i consists of those elements of L(g) 
which are polynomial in b, but without constant term, while L(g)::: consists 
of all elements of L(g) that are polynomial in b-1 . 

It is possible to develop a theory of roots for twisted affine Lie algebras, which 
is analogous to the one for simple Lie algebras. We will first start with the 
easier case of (untwisted) affine Lie algebras. Let g be a simple Lie algebra, 
let ~ be a Cartan subalgebra with root system iP and let II = { a1, ... , a,} be 
a system of simple roots. By definition, a root of L(g) is a pair (a, i) =F (0, 0), 
where a E iP U {0} and i E Z; such pairs are added in the obvious way: 
(a, i) + (/3, j) = (a+ /3, i + j). We denote the set of all roots of L(g) by~ and 
we call~ the root system of L(g). Let a 0 denote minus the highest long root 
of g, and notice that ao is the unique root of L(g) which has the property 
that no decomposition of the form (ao, 1) = (a, 1) + (/3, 0), with a E iP and 
/3 E II is possible. One calls 0:0 := (a0, 1) the lowest root of L(g). Define 

fi = {O:o = (ao, 1), 0:1 = (a1, 0), ... , a:, =(a,, 0)}. 

Using the fact that -a0 is the highest long root of g, it is easy to show that 
every root of L(g) can be written uniquely as a linear combination of the 
elements of~. where all coefficients belong to z+ or they all belong to z_. 
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Thus, fi is the natural analogue of II, so we will call it a system of simple 
roots for L(g). 

To a root (a,j) E ~we associate the vector E(a,j) := Eabi, where Ea 
is the root vector that corresponds to a (see Theorem 2.11). We will call 
Eca,j) the root vector which corresponds to (a, j). It follows easily from 
Theorem 2.11 that these root vectors satisfy the following relations: for any 
a= (a,j) E ~. 

[H, Ea] = (a, H) Ea, 

[Ea, E-a] = Ha. 
HE~. 

(2.31) 

The Cartan matrix A of L(g) is constructed from the system of simple roots 
as before, namely 

aii := (ai, H;}, 

except that the indices i, j can now also take the value 0, besides the values 
1, ... ,l (the numbering of the rows and columns of these bigger Cartan ma
trices starts from 0). The Cartan matrix of L(g) and its Dynkin diagram are 
easily computed from the one of g and the coefficients el' ... 'ez of the highest 
long root (these coefficients are listed in Table 2.1). Indeed, one only needs 
to compute the first row and the first column of A, since the remaining block 
is precisely the Cartan matrix of g. In order to compute the first row of A, 
whose first element aoo is 2, it suffices to express that e = (eo = 1, e1, ... , et) T 
is a (normalized) null-vector of A, which follows from the fact that 

l 

ao = L eiai, 
i=l 

upon taking inner products with H;, 0 ~ j ~ l. Note that once again 
we have a duality between the system of roots {a I a E fl} and coroots 
{ Hci I a E fl}, which amounts to A ++ AT, inducing a duality between the 
L(g, v). 

By a direct computation for each of the simple Lie algebras we find that 
there is in each case one non-zero entry in the first row, besides the leading 2. 
Therefore the same is true for the first column of A. That non-zero entry 
is then computed by expressing that the first element of eTA is zero. The 
resulting matrices are given for each of the affine Lie algebras in Table 2.4; in 
this table the case ai1> and b~1 ) should be interpreted properly: the Cartan 

matrix of ail) is ( -~-~),as follows from the fact that eT = (1, 1). 

We now turn to the case of twisted affine Lie algebras. Suppose that g is 
a simple Lie algebra and that v is an automorphism which corresponds to a 
non-trivial diagram automorphism of the Dynkin diagram of g. This means 
that g is az or Oz or e6 and the order of the automorphism v is two, except in 
case 04, for which we can also consider an automorphism of order 3. 
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Table 2.4. For each of the affine Lie algebras we &ive its Dynkin diagram, its 
Cartan matrix A, the normalized null-vectors { and { of AT resp. of A (only one 
is given when they are the same) and the vector 1J that contains the coefficients of 
the highest weight vector. 

g 

b(l) 
I 

(1>2) 

(1) 
'I 

(1>1) 

Dynkin diagram 

0 

~ 
1 2 1-1 I 

: !-> .. ·--o=::>o 
3 1-1 I 

0 

o=:::>o- .. ·-<><==o 
0 1 1-1 I 

1!-> ~1-1 2 . . . 1-2 
3 1-3 

0 I 

1 3 4 5 6 

~ 
0 1 3 4 5 6 7 

~ 
0 8 7 6 5 4 3 1 

~ 
0 1 2 3 4 

Cartan matrix 

0 2 -1 0 
-1 -1 2 -1 

0 0 -1 2 [ 

2 0 -1 0 

[ 

2 -2 0 0 -1 2 -1 0 0 -1 2 -1 
0 0 -1 2 

0 2 -1 0 
-1 -1 2 -1 

0 0 -1 2 [ 

2 0 -1 0 

2-1 -1) (~) (l) 
=~ ~ g 1 1 

( 

2 0 -1 0 0 0 0) 0 2 0 -1 0 0 0 
-1 0 2 0 -1 0 0 

0 -1 0 2 -1 0 0 
0 0 -1 -1 2 -1 0 
0 0 0 0 -1 2 -1 
0 0 0 0 0 -1 2 

( -~-~ 0-1 ) 
0 2 0 -1 

-1 0 2 -1 
-1 -1 2 -1 

-1 2 -1 
-1 2 -1 

-1 2 

( 
~ g 0 -1 -

1
) 0 2 0 -1 

-1 0 2 -1 
-1 -1 2 -1 

-1 2 -1 
-1 2 -1 

-1 2 -1 
-1 -1 2 

( -~-~-~ 8 g) 
0 -1 2 -2 0 
0 0 -1 2 -1 
0 0 0 -1 2 

( 2 0 -1) 
0 2 -1 

-1 -3 2 

(I) (I) 

m m 
m m 

(I). (I) (D 
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By definition a root of L(g, v) is a pair (a, j) =f. (0, 0), with a E ~· and 
j E Z, such that the joint eigenspace 

{X E gj I [H,X] =(a, H) X for any HE~} 

is non-trivial (in the untwisted case this definition is equivalent to the one 
that we have given). We denote the set of all roots of L(g, v) by ~ and call 
it the root system of L(g, v). There are two main differences with the case of 
(untwisted) affine Lie algebras. First, the Lie algebra g0 is different from g, 
but it is still one of the simple Lie algebras; for each (g, v) with v =f. Id9 the 
corresponding simple Lie algebra go is given in Table 2.5. Second, the root 
ao which is used to define the lowest root &o = (ao, 1) of L(g), takes now the 
following form 

a 0 = -2(highest short root of go) 

ao = - (highest short root of go) 

if g = a21, 

otherwise. 
(2.32) 

The computation of the Cartan matrices is the same as in the case of the 
(untwisted) affine Lie algebras. The results are displayed in Table 2.5; in 
this table the case a~2) should be interpreted properly: its Cartan matrix is 

( -i -~),as follows from the fact that ~T = (1,2). A system of simple 

roots ~ can be constructed also in the twisted case, where each element now 
belongs to g0 (see [79, pp. 505-507] for explicit formulas). It leads, as before 
to the same formulas (2.31) for the simple roots a. 

The Cartan matrices that we see in Tables 2.4 and 2.5 are characterized 
by a few of their properties, just as in the case of the Cartan matrix of a 
simple Lie algebra, yielding a different approach to affine Lie algebras. Start 
with a collection II of n + 1 non-zero vectors ao, ... , O'.n in Rn and let ( · I· ) be 
an inner product on Rn. We will say that II is an indecomposable system of 
vectors if II cannot be split in two sets Il1 and Il2 such that (II1 I Il2) = 0. 
The Cartan matrix of II is by definition the (n+ 1) x (n+ 1) matrix A, which 
is defined by 

(ai I O'.j) 
aii := 2 ( I ) . 

O'.j O'.j 

Then one has the following proposition. 

Proposition 2.19. Let II be a collection of n+ 1 non-zero vectors a 0 , ... , O'.n 

in (R n, ( · I· ) ) and denote its Cart an matrix by A. Suppose that II and A 
satisfy the following three properties: 

{1) II is an indecomposable system of vectors; 
{2) II spans Rn; 

{3) aij E Z_ for 0 ~ i < j ~ n. 

Then A is the Carlan matrix of a (twisted) affine Lie algebra. 
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Table 2.5. For each of the twisted affine Lie algebras we give the type of g0 , its 
Dynkin diagram, its Cartan matrix A, the normalized null-vectors { and { of AT 
resp. of A and the vector 1J that contains the coefficients of the highest weight vector 
of go. 

g go Dynkin diagram Cartan matrix e, e 1J 

2 -2 0 0 
-1 2 -1 0 

0 -1 2 -1 

OUJ m a(2) o=>o-o- 0 0 ---o=?o 0 0 -1 2 
21 bl (1;,.1) 0 1 2 1-1 l 

2 -1 0 
-1 2 -2 

\ 0 -1 2, 

2 0 -1 0 
0 2 -1 0 

mm :f-,. -a<= 

-1 -1 2 -1 

(;) (2) 0 0 -1 2 
a21-1 

Cl (1>2) 3 1-1 I 
1 2 -1 0 

-1 2 -1 
0 -2 2 

I 2 -1 0 0 
-2 2 -1 0 

om 0 -1 2 -1 

m b(2) 0 0 -1 2 
1+1 bl 

o<:=- 0 0 ·--{)::::}0 
(1>1) 0 1 !-1 l 

2 -1 0 
-1 2 -2 

\ 0 -1 2 

( " 00 _,) 

m.m (D e(2) ~ 
0 2 -1 0 0 

6 f4 1 2 3 4 0 0 -1 2 -2 0 
0 0 -1 2 -1 

-1 0 0 -1 2 

lli3) ~ ( 2 -1 0) 0)· 0) 0) g2 -1 2 -1 
0 -3 2 

The reader can verify easily by merely looking at the tables that, con
versely, each of the Cartan matrices of the (twisted) affine Lie algebras sat
isfies the above three properties. 
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We end this section with some definitions, valid for a twisted or untwisted 
affine Lie algebras L(g, v). Let h = { ao, a1, ... , a!} denote a system of simple 
roots of L(g, v). The height Ia I of a root a E cP is defined by 

l 

lal = L:mi, 
i==O 

l 

where a= L miai. 
i==O 

This induces a grading of L(g, v), similar to the grading (2.19) of g, namely, 

L(g, v) = EB Lk, [Lk, Lt] ~ Lk+l, 
kEZ 

where Lk is the span of all Ea, with lal = k. The grading also leads to a 
natural operation of transpose: 



3 Poisson Manifolds 

In 1809 Poisson (see [144]) introduced a bracket on smooth functions, defined 
on R 2n, by the formula 

{F,G} := ~ (aF aa _ aa aF). 
L...J 8q· 8p· 8q· 8p· i=l • • • • 

(3.1) 

In this formula, F and G are arbitrary smooth functions on R 2n and 
(q1, ... ,qn,Pl, ... ,pn) are linear coordinates on R 2n. He observed that if 
F and G are two first integrals of a mechanical system (defined on R 2n) then 
their Poisson bracket {F, G} is also a first integral. Notice that the Poisson 
bracket also allows one to describe the equations of motion in their most 
symmetric form 

Qi = {qi,H} 

Pi= {Pi,H} 
i = 1, .. . ,n, (3.2) 

where H: R 2n-+ R is the Hamiltonian (the energy of the mechanical system, 
expressed in terms of position and momentum). Thirty years later, Jacobi 
explained (in [90]) Poisson's observation by showing that the bracket (3.1) 
satisfies the identity 

{{F,G}, H} + {{G, H}, F} + {{H, F}, G} = 0 (3.3) 

for all smooth functions F, G, H defined on R 2n. The above identity is now 
known as the Jacobi identity. To see how Poisson's Theorem follows from the 
Jacobi identity it suffices to remark that K is a constant of the motion (3.2), 
precisely if K Poisson-commutes with H, i.e., {K, H} = 0, since 

By the Jacobi identity (3.3), ifF and G are constants of motion then 

{F, G}' = { F, G} + { F, G} = o, 

showing that { F, G} is a constant of motion. 

M. Adler et al., Algebraic Integrability, Painlevé Geometry and Lie Algebras
© Springer-Verlag Berlin Heidelberg 2004
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Formalizing the properties of the Poisson bracket will lead us to the notion 
of a Poisson manifold and we will give several basic examples of Poisson 
manifolds (see Section 3.1). 

The Poisson bracket allows one to associate a Hamiltonian vector field 
XH to any function H, defined on a Poisson manifold (M, {·,·})by setting 

XH := {-,H}, 

and the Jacobi identity is equivalent to the fundamental formula 

[XF, Xa] = -X{F,G}· 

In local coordinates the Hamiltonian vector field XH is given by 

n a 
XH = L{Xj,H}~. 

j=l x, 

The Hamiltonian vector fields preserve the Poisson structure and they lead to 
a notion of rank at each point of M (see Section 3.2). Hi-Hamiltonian mani
folds and hi-Hamiltonian vector fields will shortly be discussed in Section 3.3; 
their relevance for integrable systems will show up later. 

A prime example of a Poisson manifold is that of a symplectic mani
fold (M,w), i.e., w is a closed non-degenerate two-form on M (see Exam
ple 3.4 below). Such a manifold carries a Poisson structure, which is defined 
for smooth functions F, G by 

{F,G} :=w(XF,Xa), 

where for HE :F(M) the Hamiltonian vector field XH is now defined by 

w (XH, ·) = dH. 

The following string of useful formulas shows that XH = { · , H} so that the 
above notations are coherent: 

{F,H} = w(XF,XH) = dF(XH) = XH[F]. 

We will show that, conversely, every Poisson manifold which has constant 
maximal rank is a symplectic manifold and that for any Poisson manifold 
the Hamiltonian vector fields define a generalized distribution whose leaves 
inherit a natural symplectic structure (see Section 3.4). 

Another prime example is that of the canonical Lie-Poisson structure on 
the dual g* of a (finite-dimensional) Lie algebra g. For smooth functions F, G 
on g* the Poisson bracket is defined by 

{F, G} (~) := (~, [dF(~), dG(~)]), 

where dF(~) and dG(~) are interpreted as elements of g when computing the 
bracket. The symplectic leaves of { · , ·} are in this case the coadjoint orbits. 
The Lie-Poisson structure of g* will be studied in detail in Section 3.5. Most 
of the Poisson structures in this book will be Lie-Poisson structures, or will 
be closely related to Lie-Poisson structures. 
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3.1 Basic Definitions 

We start with the basic definitions. As we said, all manifolds considered here 
can be chosen real smooth or complex holomorphic. 

Definition 3.1. Let M be a manifold. A Poisson bracket or Poisson struc
ture on M is a Lie algebra structure {·,·}on :F(M), which is a biderivation 
on :F(M), i.e., for any HE :F(M) the linear map 

XH : :F(M) -t :F(M) 
F 1-t {F, H} 

(3.4) 

is a derivation on :F(M), i.e., a vector field. The pair (M, {·, ·}) is called a 
Poisson manifold. If we want to stress that M is real or complex we use the 
terms real Poisson manifold and complex Poisson manifold. 

In many cases we will deal with Poisson structures on the affine space 
M = Rn or M = en. In this case, the standard coordinates X1 ••• , Xn on M 
lead to structure functions Xij E :F(M), which are defined by Xij :={xi, Xj} 

(1 ~ i,j ~ n). They satisfy 

Xij = -Xij, 

~ (8Xij 8Xjk 8Xki ) _ L..J -8 Xlk + -8 X!i + -8 Xlj - 0, 
1=1 XI XI XI 

(3.5) 

(3.6) 

for alll ~ i, j, k ~ n. Formula (3.6) is obtained by writing the Jacobi identity 
for the triple (xi, x;, Xk) and by writing 

~8Xij 
{Xij, xk} = L..J B {XI, xk}, 

1=1 XI 

a consequence of (2.5) for V = Xxk = { ·, xk}· Conversely, every set of func
tions Xij E :F(M) (where M = Rn or M = en, as before) satisfying the 
above two conditions defines a Poisson bracket on M, merely by setting 

( 8F 8H 8H 8F) 
{F,H}==L:Xij aa-aa 

i<j Xi Xj Xi Xj 
(3.7) 

for all F, H E :F(M), as can easily be verified. If we view the functions Xij 

as the elements of a (skew-symmetric) matrix X then the latter formula may 
also be expressed in a compact form by 

{F, H} = [dFf X [dH], (3.8) 

where [dF] is the column vector which represents dF in the natural basis 
( dx1 , ... , dxn), i.e., the i-th component of [dF] is g~ . More generally, the 
above formulas may also be used for calculations on coordinate neighborhoods 
on arbitrary manifolds, by taking the Xi to be local coordinates. 
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Since the Poisson bracket is a biderivation, it vanishes whenever one of 
its arguments is constant, so that we can associate to a Poisson bracket { · , ·} 
an :F( M)-bilinear map 

P : n(M) x n(M) ~ :F(M) 

(dF, dH) t-t {F, H}. 

Pis called the Poisson tensor associated to {·, ·}, and {·, ·} can be recon
structed from P. Recall that when we view P as a bivector field we also write 
P[ F 1\ H] for P( dF, dH) = P( dF 1\ dH) = { F, H}. In terms of coordinates, 
P can be written as 

n a a 
P = L xwjf-: A ~ • 

i,j=l x, x, 

as follows from (3.7). We derive from P a map 

P : il(M) ~ X(M), 

simply by putting F(dH)[F] := P[F 1\ H] = {F, H}. Thus, we have that 

F(dH) = {· ,H} = XH, (3.9) 

for any H E :F( M). The bundle map T* M ~ T M that corresponds to P 
will be denoted by the same letter P. 

A necessary and sufficient condition for a bivector field { · , ·} to define 
a Poisson structure is that [{·,·},{·,·}]8 = 0, where [·,·]s denotes the 
Schouten-Nijenhuis bracket. Indeed, if { · , ·} and { · , · }' are two bivector fields 
on M then their Schouten-Nijenhuis bracket1 is the trivector field, given by 

[{·, ·}, {·, ·}') 8 (F,G,H) 

so that 

:= {{F,G} ,H}' + {{G,H} ,F}' + {{H,F} ,G}' + 
{ {F,G}' ,H} + { {G,H}' ,F} + { {H,F}' ,G} 

[{-, ·}, {·, ·}]8 (F,G, H)= 2 {{F,G} ,H} + cycl(F,G,H), 

where F,G, HE :F(M) are arbitrary. It follows that[{·,·},{·, ·}]8 = 0 if and 
only if{·,·} satisfies the Jacobi identity . 

We next introduce the notion of a morphism for Poisson manifolds. Recall 
that if M1 and M2 are manifolds then a map 4J: M1 ~ M2 is a morphism 
(i.e., a smooth, holomorphic or regular map) if and only if 4J*(F) E :F(M1 ) 

for every FE :F(M2), where 4J*(F) := F o 4J. 

1 For the formula for the Schouten-Nijenhuis bracket on arbitrary multi-vector 
fields, see [164, Chapter 1.2]. 
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Definition 3.2. Let (M1, {-,·h) and (M2, {-, ·}2) be two Poisson manifolds. 
A map </J : M1 --+ M2 is called a Poisson morphism or a morphism of Poisson 
manifolds if 

(1) </J is a morphism, 4J*(:F(M2)) ~ :F(M1); 
(2) For all F, G E :F (M2), ¢* {F, G}2 = { ¢* F, ¢*G}1. 

An (immersed) submanifold M' of M is called an (immersed} Poisson 
submanifold if it admits a Poisson structure for which the inclusion map 
z : M' Y M is a Poisson morphism. Clearly such a Poisson structure on M', 
if it exists, is unique. 

Notice that the inverse of a Poisson morphism, if it exists, is also a Poisson 
morphism, hence it is a Poisson isomorphism. 

We next consider the basic examples of Poisson manifolds. These examples 
are important for the sequel because essentially all examples that will be 
encountered in this text are particular cases of them. 

Example 3. 3. Any constant skew-symmetric n x n matrix is the matrix of 
a Poisson structure on en, in terms of its standard coordinates, as follows 
from (3.6). We refer to such a Poisson structure as a constant Poisson struc
ture. By the classification theorem for skew-symmetric bilinear forms there 
exists a linear system of coordinates (x1 , ... , xn) of en with respect to which 
the Poisson matrix takes the form 

( 
0 Idr 0) 

X= -Idr 0 0 . 

0 0 0 

The integer 2r is called the rank of the Poisson structure; for general Poisson 
structures the rank will be defined in Section 3.2. This structure is often 
called the canonical Poisson structure of rank 2r on en. 

Example 3.4. Recall that a symplectic manifold (M, w) is a (real or complex) 
manifold equipped with a (smooth or holomorphic) closed two-form w (a 
symplectic two-form) which is non-degenerate (as a bilinear form on each 
tangent space). A vector field XH is associated to any function HE C00 (M) 
by 

w (XH, ·) = dH(·). (3.10) 

Rewriting this definition as zxHw = dH, it is clear that zxHw is closed (even 
exact) for any vector field XH. Combining (2.11) and (2.12) we find that for 
any V1, V2 E X(M), 
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Since w is closed, one has for vector fields XF and Xa, 

t(XF,Xa]W = dtxFtx0 W = -d (w(XF,Xa)). 

We define a skew-symmetric biderivation on :F(M) by 

{F,G} := w(XF,Xa) = dF(Xa) = Xa[F]; 

(3.11) 

(3.12) 

notice that the above equalities show that our definitions {3.4) and (3.10) of 
XF are coherent. In terms of{-,·}, {3.11) can be written as 

t(xF,Xa]W = -d { F, G} = -tx{F.a} w. 

Since w is non-degenerate this shows that [XF, Xa] = -X{F,G}· Applying this 
equation to an arbitrary HE :F(M) we find 

XFXa[H]- XaXF[H] + x{F,G}[H] = 0, 

which is precisely the Jacobi identity, as follows from {3.12). Thus, every 
symplectic manifold is in a natural way a Poisson manifold. Picking local 
coordinates (x1, ... , Xn) we can introduce a skew-symmetric n x n matrix {} 
by 

nii := w ( a~i, a~j) . 
We claim that the Poisson matrix X of { · , ·} with respect to these coor
dinates is given by X = -n-1• To show this, let us denote by [XF] the 
column matrix whose elements are the coefficients of XF with respect to the 
basis ( 8~1 , ••• , 8~n) and let us recall that we denote by [dF] the column 
matrix whose elements are the coefficients of dF with respect to the ba
sis {dx1, ... , dxn)· Then {3.10) says that {} (XF] = -(dF] and w (XF, Xa) = 
(XF]T {} (Xa], so that 

{F,G} = (XF]T{}(Xa] = (n-1[dFl)T nn-1 (dG] = -(dF]T n-1 (dG]. 

Comparing this to Formula {3.8) we see that X = -n-1 . 

A final comment about symplectic manifolds. If {M, w) is a symplectic 
manifold then the fact that the two-form w is non-degenerate implies that 
the dimension n of M is even. Then wn/2 is a top-form which is nowhere 
vanishing, i.e., a volume form. In particular, every symplectic manifold is 
orientable. 

Example 3.5. Let g be any finite-dimensional (complex) Lie algebra, with 
Lie bracket [· , -]. Then a Poisson bracket is defined on g* by putting, for 
F,GE:F(g*) 

{F, G} (~) := (~, [dF(~), dG(~)]), 

where dF{~) and dG(~) are interpreted as elements of g when computing 
the bracket (as explained in Section 2.1). Because of its importance for what 
follows, this example will be dealt with in more detail in Section 3.5. 
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Example 3. 6. It is easy to describe all Poisson structures on C2 since in 
this case the Jacobi identity is satisfied for any skew-symmetric biderivation 
on :F ( C 2 ). Letting x andy denote the standard coordinates on C 2 this means 
that every Poisson bracket on C2 is of t~e form 

{F, G} = <p (aF aa _ aa a F) ax ay ax ay (3.13) 

for some <p E :F ( C 2 ), where F, G E :F ( C 2 ). In fact, <p = { x, y} and for any 

<p E :F (C2 ) the above formula (3.13) defines a Poisson structure on C2 . 

Example 3. 7. Last and least (!) every manifold has a Poisson structure: just 
define {F, G} := 0 for any F, G E :F(M). We refer to it as the trivial Poisson 
structure on M. 

3.2 Hamiltonian Mechanics 

The Poisson bracket allows us to define Hamiltonian mechanics on spaces that 
are more general than R 2n, equipped with its standard symplectic structure 
(see Examples 3.3 and 3.4). For H E :F(M), where (M, {·, ·}) is a Poisson 
manifold, we have by definition that XH, defined by XH[F] := { F, H} for all 
F E :F(M), is a derivation on :F(M), hence a vector field on M, which can 
be written in terms of local coordinates (x1, ... , Xn) by 

n a 
xH = :L{xi,H}-a .' 

i=l x, 
(3.14) 

as follows from (2.5), or also as Xi = {xi, H}, i = 1, ... , n, where Xi is a 
convenient abbreviation of XH[Xi], when the function H has been fixed. 

Example 3.8. Consider on M := R 2n with coordinates (q1, ... , Qn,p1 , .•• ,Pn) 
the symplectic two-form 

For 1 ~ i ~ n the Hamiltonian vector field Xq,, as defined in (3.10), is given 
by 

dq; ~ (t. dq; A dp;) (X,., ·) ~ t. ( X,;[q; ]dp; - X,. [p; ]dq;) , 

so that Xq, = -ajaPi· Similarly, Xp, = ajaqi fori= 1, ... ,n. It follows that 
for any 1 ~ i, j ~ n, 
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Similarly, {qi,qi} := {pi,Pi} := 0 for any 1:::;; i,j:::;; n. As a consequence, for 
HE :F(M) the Hamiltonian vector field XH is explicitly given by 

. 8H 
Pi=--8 , 

qi 
(3.15) 

and we recognize Hamilton's equations. To specialize this example further, 
suppose that H is of the standard form "Kinetic energy + Potential energy", 

1 ( 2 2) H= 2 Pt +···+Pn +V(qt, ... ,qn), 

then we recover Newton's equations 

.. av 
qi=--

8qi 

for the motion of a particle of mass 1 in a potential field V on R n. 

(3.16) 

Definition 3.9. Let (M, {-, ·}) be a Poisson manifold and let H E :F(M). 
The vector field XH = { · , H} is called the Hamiltonian vector field associated 
to the Hamiltonian H and we write 

Ham(M, {· ,·}) := {XH I HE :F(M)} 

for the vector space of Hamiltonian vector fields. A function H E :F(M) 
whose Hamiltonian vector field is zero, XH = 0, is called a Casimir function 
or a Casimir and we denote 

Cas (M, {·, ·}) :={HE :F(M) I XH = 0} 

for the (vector) space of Casimirs. When no confusion can arise, either argu
ment in Ham ( M, { · , ·}) and Cas ( M, { · , ·}) is omitted. When studying Hamil
tonian vector fields on a Poisson manifold ( M, { · , ·}) the manifold M is often 
referred to as phase space. 

The Leibniz property for {·, ·} implies on the one hand that Cas(M) is a 
subalgebra of :F(M) (for the ordinary multiplication of functions) and on the 
other hand that Ham(M) is a Cas(M)-module (notice that Ham(M) is not 
an :F(M)-module, except in trivial cases). The latter implies that the map 

:F(M) -t Ham(M) : F 1-t XF 

is Cas(M)-linear, while the Jacobi identity is equivalent to the fact that this 
map is a Lie algebra anti-homomorphism, 

(3.17) 

for all F, G E :F(M). In particular, Ham(M) is a subalgebra of the Lie alge
bra X(M). 
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Example 3.10. In the case of Example 3.3 the algebra of Casimirs is gener
ated by the linear functions X2r+l, ..• , Xn. On a connected symplectic man
ifold (Example 3.4) the constant functions are the only Casimirs. However, 
this property does not characterize the symplectic manifolds within the class 
of connected Poisson manifolds, see Example 3.27 below. In the case of the 
canonical Poisson structure on g* (Example 3.5) the algebra of Casimirs can 
be identified with the center of the universal enveloping algebra Ug of g. 
For the trivial Poisson structure on M (Example 3. 7) one obviously has 
that Cas(M) = :F(M). 

If we specialize the above construction of Hamiltonian vector fields to a point 
m of M we find a linear space Hamm(M) ~ TmM, whose dimension varies 
in general with m, thereby defining a generalized distribution on M (see 
Paragraph 2.1.2). For future use, notice that 

Hamm(M) = span{Xx1 (m), · ·· ,Xxn(m)}, (3.18) 

where (x1, ••. , xn) is any system of coordinates, defined on a neighborhood 
ofm. 

Definition 3.11. FormE M, the dimension ofHamm(M) is called the rank 
of{·,·} at m, denoted Rkm {·,·}and max{Rkm {·,·}I mE M} is called the 
rank of (M, { ·, ·} ), denoted Rk { ·, · }. We say that { ·, ·} has maximal rank at 
m when Rkm { · , ·} = dim M, and that { · , ·} has maximal rank on a subset 
M' of M when {·, ·} has maximal rank at each point of M'. (M, {·, ·}) is 
called a regular Poisson manifold when Rkm { · , ·} = Rk { · , ·}, independently 
ofm EM. 

If we choose local coordinates ( x1 , ... , Xn) on a neighborhood of m then we 
see that Rkm { · , ·} equals the number of independent columns of the Poisson 
matrix X:= ({xi,Xj})1:1;;iJ:I;;n of{·,·} with respect to (x1, ... ,xn) at the 
point m, hence it is the rank of X at m. It is also the rank at m of the bundle 
map P : T* M --t T M that corresponds to { · , ·}, as follows from 

n a 
Xxi = L {xi,Xj} ax·, 

i=l t 

see (3.14) and (3.18). Skew-symmetry of X implies that the rank of a Poisson 
structure at a point is always even. 

Example 3.12. The Poisson structures in Examples 3.3 and 3.7 are regular 
(of respective rank 2r and 0). The same is true for a symplectic manifold 
(Example 3.4) because if M is a symplectic manifold then Hamm(M) = TmM 
for any m E M; hence the (even) rank of a symplectic manifold equals its 
dimension. The canonical Poisson structure on the dual g* of a Lie algebra 
g is never regular, unless g is Abelian: the rank at 0 E g is always zero. In 
the case of Example 3.6, if cp is a polynomial then the Poisson structure is 
regular if and only if cp is constant; otherwise the rank is two except at the 
plane algebraic curve rep defined by cp = 0. 
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Proposition 3.13. Let (M, {·,·})be a Poisson manifold and lets EN. The 
subset M(s) of M, defined by 

M(s) :={mE M I Rkm{·,·};;::: 2s} (3.19} 

is open. 

Proof. Since M(s) = Rk-1 {2t It;;::: s}, it is sufficient to show that the map 
Rk : M --+ Z is lower semi-continuous. Let s be such that M(s) is non-empty, 
i.e., 2s ~ Rk {·,·},let mE M(s) and let (x1, ... , Xn) be local coordinates on a 
neighborhood U of m. The rank of { · , ·} at p E U is the rank of { · , ·} (p), the 
Poisson matrix of{·,·} with respect to (x1, ... ,xn}, evaluated at·p. Hence, 
the restriction of Rk to U is the composition of the map U--+ gl(n), defined 
by m 1---t ({xi,x;} (m}} 1 ~i,j~n and the lower semi-continuous map gl(n)--+ Z 
which assigns to a matrix its rank. D 

In particular we have that, if we denote the rank of { · , ·} by 2r, then M(r) is 
a non-empty open subset of M and the restriction of {- , ·} to M(r) is regular 
(of rank 2r). 

Example 3.14. The rank needs not attain its maximum on a dense open 
subset. Let r.p be a function on R 2 which is positive on the interior of the 
unit disc and which is zero elsewhere. Then the rank of the Poisson bracket 
on R 2 , which is defined by r.p as in Example 3.6, is maximal only on the inside 
of the disk. 

The case in which the Poisson bracket has maximal rank on all of M is 
described in the following proposition. 

Proposition 3.15. Let (M, {·, ·}) be a Poisson manifold and suppose that 
{ · , ·} has maximal rank on M. Then M admits a symplectic structure w for 
which { · , ·} is the corresponding Poisson structure. 

Proof. Since the bundle map P : T* M --+ T M has maximal rank in every 
point it is invertible; we define w to be the two-form which corresponds to its 
inverse P-1 . Since P(dH} = XH, for any H E :F(M}, see (3.9}, this means 
that we are defining 

(3.20} 

for G, H E :F(M}. Obviously, w is non-degenerate. Applying Formula (2.8} 
to Hamiltonian vector fields we get 

dw(Xp,Xa,XH} = Xp [w(Xa,XH)] +w(Xp,[Xa,XH]} +cycl(Xp,Xa,XH} 
= 2 ({{F,G} ,H} + {{G,H} ,F} + {{H,F} ,G}) 

=0. 
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We have used that 

XF[w(Xa,XH)] = {{G,H},F} =w(XF,[Xa,XH]), 

as follows from (3.20) and (3.17). Since T mM = Hamm ( { ·, ·}) for any m E M 
this shows that w is closed, hence that w is a symplectic structure. 0 

Explicitly, formE M and v,w E TmM, let F,G E :F(M) be such that 
v = XF(m) and w = Xa(m). Then the above construction of w amounts to 
defining wm(v, w) := {F, G} (m), independently of the choices made for F 
and G. 

Proposition 3.16. Let (Mi, {-, · L), (i = 1, 2) be two Poisson manifolds, 
let m E M1 and let¢ : M1 -t M2 be a Poisson morphism. Then Rkm { · , · h ~ 
Rk¢(m) {-, ·}2. 

Proof. Consider the linear map d¢(m) : TmMl -t T</>(m)M2. We claim that 
Ham¢(m)(M2) is contained in d¢(Hamm(Ml)). Then 

Rkm {·, ·}1 = dimHamm(Ml) ~ dimHam¢(m)(M2) = Rk¢(m) {-, ·}2 . 

To show the above claim, write a given v E Ham</>(m)(M2) as XF(¢(m)), 
where F E :F(M2). Then 

d¢ (XFo¢(m)) (G] ={Go¢, F o ¢} (m) = {G,F} (¢(m)) = XF(¢(m))[G], 

for any G E :F(M2), so that v = d¢ (XFo¢(m)) Ed¢ (Hamm(Ml)). 0 

The proposition implies that a point m of a Poisson manifold is only a Poisson 
submanifold when the rank of the Poisson structure vanishes at m. More 
generally, the inequality 

dim Hamm ( M, { · , ·}) ~ dim M 

implies in view of the proposition that a necessary condition for a subman
ifold M' of M to be a Poisson sub manifold is that dim M' ~ Rkm { · , ·} for 
all m E M'. A refinement of this statement will be given in Section 3.4. 

The Jacobi identity has another interesting consequence, given in the 
following proposition. 

Proposition 3.17. Let ( M, { · , ·}) , be a Poisson manifold and let H E 
:F(M). The Hamiltonian vector field XH leaves {-, ·} invariant. 

Proof. Let P denote the bivector field that corresponds to { · , ·}, so that 
{F, G} = P[F 1\ G] for F, G E :F(M). According to Section 2.1 we need to 
show that LxHP = 0. Using (2.13) we find for any F, G E :F(M) that 

LxHP[F 1\ G] = XH[P[F 1\ G]] - P[XH[F]I\ G] - P[F 1\ XH[G]], 
= { {F,G}, H}- { {F, H} ,G}- {F, {G, H}}, (3.21) 

which evaluates to zero in view of the Jacobi identity. Notice that another 
way to state the vanishing of (3.21) is that all Hamiltonian vector fields are 
derivations of the Poisson bracket. 0 
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It follows for example that for any integer s the open subset M(s), defined in 
(3.19) is invariant for all Hamiltonian flows. 

Definition 3.18. Let (M, {·,·}),be a Poisson manifold and let V E X(M). 
Then Vis called a Poisson vector field if V leaves { ·, ·} invariant, i.e., LvP = 
0, where P denotes the bivector field that corresponds to {-, · }. 

Proposition 3.17 states that all Hamiltonian vector fields are Poisson vector 
fields; however the converse needs not be true. In terms of Poisson cohomol
ogy (see [169, Chapter 2.1]) one has that Poisson vector fields are 1-cocycles 
while Hamiltonian vector fields are 1-coboundaries. Poisson vector fields ap
pear naturally in the context of group actions, as follows from the following 
proposition. 

Proposition 3.19. Let G be a Lie group which acts on a Poisson mani
fold (M, {·, ·}). Denoting the action by x : G x M ~ M, let X E g and 
suppose that for any iti sufficiently small one has that Xexp(tX) : M ~ M 
is a morphism of Poisson manifolds. Then X, the fundamental vector field 
corresponding to X, is a Poisson vector field. As a consequence, if for every 
g E G the map Xu : M ~ M is a Poisson morphism then all fundamental 
vector fields of the action are Poisson vector fields. 

Proof. In order to show that LxP = 0 we need to check, according to (2.13), 
that the Leibniz property 

X [{F, G}] = {X[F], G} + {F, X[G]}, 

holds for any F, G E :F(M). The fact that Xexp(tX) is Poisson means that 

{ F, G} o Xexp(tX) = { F o Xexp(tX), G 0 Xexp(tX)} · 

Therefore, 

d 
X({F,G}] = -d {F,G}oXexp(tX) 

tit=O 
d 

= dt { F 0 Xexp(tX)' G 0 Xexp(tX)} 
lt=O 

= { ~t lt=O F 0 Xexp(tX)' G} + { F, ~t lt=O G 0 Xexp(tX)} 

= {X[F],G} + {F,X[G]}, 

as we needed to show. 0 

Given a group action x : G x M ~ M such that for any g E G the map 
Xu : M ~ M is Poisson (w.r.t. some given Poisson structure on M) it 
is in view of Propositions 3.17 and 3.19 a natural question to ask if the 
fundamental vector fields of the action are Hamiltonian. If this is so, then 
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the action is called a Hamiltonian action and one can build a map J.l. : M -+ g• 
by defining for any mE M and for any X E g, 

(J.I.(m), X)= .Jx(m), (3.22) 

where :Tx is a Hamiltonian for X (the Hamiltonian is only determined up to 
a Casimir; one picks a particular Hamiltonian .7 x for all X in a basis of g 
and then one extends by linearity). The map J.l. is called the momentum map 
with values in g•, and its dual map .7 is called the co-momentum map. 

Hamiltonian actions and their momentum maps have been studied mainly 
in the context of symplectic manifolds, and the theory of Hamiltonian actions, 
such as torus actions, on symplectic manifolds has become a subject of its 
own. See e.g., [19] and [73] and the references in these books. More recent 
developments include generalizations to Poisson maps (see Definition 3.41 be
low), and momentum maps that take values in a Lie group (see [64] and [16]). 

3.3 Bi-Hamiltonian Manifolds and Vector Fields 

Most of the Poisson manifolds that we will consider carry another Poisson 
structure, revelant for the Hamiltonian vector fields that we study. We give 
the basic definitions and refer to later chapters for the relation to integrability. 

Definition 3.20. Let M be a manifold and let { · , · h , ... , {- , ·} 8 be s Pois
son structures such that any linear combination of them is also a Poisson 
structure (i.e., any linear combination of them satisfies the Jacobi identity). 
Then these Poisson brackets are called compatible Poisson structures, and M, 
equipped with these Poisson structures is called a multi-Hamiltonian mani
fold. In the cases s = 2, 3 one usually speaks of a hi-Hamiltonian, respectively 
a tri-Hamiltonian manifold. 

Let P1 and P2 denote the Poisson bivectors that correspond to two Poisson 
structures{·, ·h and{-, ·h on M. For non-zero scalars )q and A2 we have 
that A1 { · , · } 1 + A2 { · , · h is a Poisson bracket if and only if 

[A1P1 + A2P2, A1P1 + A2P2]8 = 0, 

which is equivalent to [P1,P2]8 = 0, since [H,P1] = [P2,P2] = 0. There
fore, two Poisson structures { · , · h and { · , · }2 are compatible if and only 
if their sum satisfies the Jacobi identity. Similarly, s Poisson structures 
{·, ·h, ... , {-, ·}8 are compatible if and only if for any 1 ~ i < j ~ s one 
has that {- , ·} i + {- , ·} i satisfies the Jacobi identity, i.e., if and only if these 
s Poisson structures are pairwise compatible. 

Proposition 3.21. Let (M, {-, ·}1) be a Poisson manifold, let V be any vec
tor field on M and denote {·, ·}2 := Lv {·, ·}1 • If{·, ·h satisfies the Jacobi 
identity, then { · , · h and {- , · h are compatible Poisson structures. 
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Proof. By the above remark we have that { · , · h and { · , · h are compatible 
Poisson structures if and only if their sum { · , ·} 1 + { · , · h satisfies the Jacobi 
identity. Since {·, ·}1 and{·, ·h satisfy the Jacobi identity this means that 
we need to check that 

{{F, Gh, Hh + { {F, G} 2; H}1 + cycl(F, G, H) = 0. (3.23) 

Using Formula (2.13), {F,G}2 = V[{F,G}1]- {V[F),G}1 - {F, V[G]h, so 
we can express all brackets {-, ·h that appear in (3.23) in terms of{·, ·h, 
yielding the equality in (3.23) in view of the Jacobi identity for { ·, · }1, applied 
to 4 cycles. D 

Example 3.22. Any two constant Poisson structures on Rn or en are com
patible. Poisson cohomology arguments show that if one of them is of maximal 
rank, then the other one is a Lie derivative of it. 

Definition 3.23. Suppose that (M, {·, ·h, {·, ·}2) is a hi-Hamiltonian man
ifold, where {- , · h and { · , · h are essentially different in the sense that {- , · h 
is not a scalar multiple of{·, ·h. A vector field Vis called a bi-Hamiltonian 
vector field if it is Hamiltonian with respect to both Poisson structures. 

Example 3.24. Let F: C2 --+ C be a holomorphic function. We decompose F 
in its real and complex parts, F = G + HH, where we view G and Has 
smooth functions R 4 --+ R. The standard coordinates z1 and z2 on C2 will 
accordingly be decomposed as z1 = X1 + HY1 and Z2 = X2 + HY2. We 
consider on C2 the holomorphic symplectic two-form n := dz1 1\ dz2. We 
write n = Wo +Awl' where Wo and WI are the (real) symplectic two-forms 
on R 4 , given by 

wo = dx1 1\ dx2 - dy1 1\ dy2, 

w1 = dx1 1\ dy2 - dx2 1\ dy1. 

The corresponding Poisson structures { ·, · }0 and {-, · }1 are compatible since 
they are both constant. The Cauchy-Riemann equations for F, 

= and 
8G 8H 8G 8H = (i = 1,2) (3.24) 

imply that {-, G}0 = {·, Hh. To check this, compute that 

8G 8H 
{x1,G}0 = -8 = -8 = {x1,H}1 , 

X2 Y2 

and similarly for the other coordinate functions x2, YI. Y2· .It follows that 
the vector field {· ,G}0 is hi-Hamiltonian. One computes in the same way 
that {- , H}0 = - {-, G}1, so that this vector field is also hi-Hamiltonian. 
In fact, each of the equations { ·, G}0 = { ·, H}1 and { ·, H}0 = - { ·, Gh is 
equivalent to the Cauchy-Riemann equations (3.24) for G + AH. 
Another fundamental example is given in Section 3.5. 
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3.4 Local and Global Structure 

In this section we describe the Poisson bracket in the neighborhood of any 
point of a Poisson manifold and deduce from it a (global) decomposition 
of the Poisson manifold into symplectic leaves (of varying dimensions). The 
key is the Splitting Theorem, due to A. Weinstein (see [173] or [39]), which 
generalizes the classical Darboux Theorem, which corresponds to the case of 
a symplectic manifold (or a regular Poisson manifold). 

Theorem 3.25 (Splitting Theorem). Suppose that (M, {-, ·}) is a Pois
son manifold of dimension n, let m E M be arbitrary and denote the rank 
of {- , ·} at m by 2r. There exists a coordinate neighborhood U of m with 
coordinates ( Ql, ... , Qr, Pl, ... , Pr. z1 ... , Zs) centered at m, such that, on U, 

ra a 1 8 a a {·,·}=I:-"-+- I: rPkl(z)-1\ -, 
i=l aqi api 2 k,l=l azk azl 

(3.25) 

where the functions rPkl are smooth (or holomorphic} functions, which depend 
on z1, ... , Z8 only, and which vanish at m. 

Proof. We suppose that r > 0 and we show the existence of coordinates 
(q1 ,p1 , z 1 ... , Zn-2) on a neighborhood U of m, for which (3.25) holds, where 
the functions rPkl are smooth (or holomorphic) and depend on z1, ... , Zn-2 
only. The proof then follows by induction on r. 

Since r > 0 we may find a function Pl such that Xp1 (m) =I 0. By 
the Straightening Theorem (Theorem 2.2) there exists a neighborhood V 
of m and a function Q1 on it, such that Xp1 = 8~1 on V. Notice that 
{ Q1, pi} = Xp1 [ Ql] = ~ = 1. It follows that Xp 1 and Xq 1 define an inte
grable distribution of rank 2 on a neighborhood W of m: the vector fields 
Xp 1 and Xq 1 are independent on a neighborhood of m because they are in
dependent at m, and the vector space spanned by these vector fields forms a 
Lie subalgebra of X (W) since 

[ Xp 1 , Xq1 ] = x{q~,pt} = x1 = o. 
By the Frobenius Theorem (Theorem 2.4) they define a foliation near m with 
two-dimensional leaves. On a neighborhood U of m we can then find func
tions z 1 , ... , Zn-2 such that dz1, ... , dzn-2 are independent on U and such 
that Xp1 [zi] = Xq1 [zi] = 0, by the description of the leaves of the foliation. It 
follows that Pl, Q1, z1, ... , Zn-2 are coordinates on U and that, on U, 

In order to show that { Zk, zl} is independent of Ql and Pl it suffices to show 
that {{zk, zl} ,pi} = 0 = {{zk, zt}, ql}, an easy consequence of the Jacobi 
identity. 0 



56 3 Poisson Manifolds 

The rank of { · , ·} at m is 2r but is not necessarily constant on a neighbor
hood of m. When the rank is constant and equal to 2r on a neighborhood of 
m, the neighborhood U ofm can be chosen such that, on U, the functions 4>kt 
vanish, yielding the following canonical brackets for the above coordinates: 

where 1 ~ i, j ~ r and 1 ~ k, l ~ s. In this form Weinstein's Splitting 
Theorem is usually referred to as the Darboux Theorem and the above local 
coordinates are called Darboux coordinates or canonical coordinates. 

Moreover, when the Poisson structure is of constant rank 2r in a neigh
borhood U of m, then the Hamiltonian vector fields define a distribution of 
rank 2r on U and this distribution is integrable because [XF, Xa] = X{a,F}· 
Thus, we have a {regular) foliation of U, where each leaf has dimension 2r. 
The leaves do not necessarily carry the induced topology, (see Example 3.27 
below), but they inherit a Poisson structure from{·,·}; since the rank of this 
Poisson structure is 2r each leaf carries a symplectic form and U admits a 
natural (set-theoretical) decomposition into symplectic leaves. 

Surprisingly, such a decomposition exists in the neighborhood of any point 
m of a Poisson manifold (i.e., the rank needs not be constant in a neighbor
hood of m), but the dimension of the leaves will not be constant in general. 
This is the content of the following theorem. 

Theorem 3.26. Let (M,{·,·}) be a Poisson manifold. The (singular) dis
tribution on M defined by the Hamiltonian vector fields is integrable in the 
sense that every m E M has a coordinate neighborhood U which is, in a 
unique way, a disjoint union of symplectic manifolds Ui which are Poisson 
submanifolds of U. The resulting (singular) foliation is called the symplectic 
foliation and each of its leaves is called a symplectic leaf. 

Proof. For m E M, let U denote a coordinate neighborhood of m with 
coordinates (qt, ... ,qr,Pt, ... ,pr,Zt, ... ,z8 ) in terms of which{·,·} takes 
the form (3.25), as obtained in the proof of Theorem 3.25. The equations 
z1 = · · · = z8 = 0 define a 2r-dimensional submanifold M' of U which passes 
through m and to which the Poisson structure restricts, giving 

r a a 
{-' ·}IM' = L "j}: /\ "j}:' 

i=l q, p, 

M' is tangent to the distribution in a neighborhood of m, and dim M' = 
Rkv { · , ·} for p in a neighborhood of m in M', hence M' coincides with the2 

integral manifold of the distribution, passing through m. Since { · , ·} M' is 
of maximal rank on M' it comes from a symplectic structure (see Proposi
tion 3.15). 0 

2 For a singular distribution the integral manifold passing through any point is 
unique, just as in the case of a regular distribution. 
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Another useful characterization of the leaf passing through m is that its 
restriction to U is the smallest arcwise connected Poisson submanifold of U 
which contains m. 

Example 3.27. All Casimir functions are constant on each symplectic leaf. In 
good cases most or all of the symplectic leaves are level sets of the Casimir 
functions, but this is not true in general. Consider for example a constant 
bivector field P on R 3 . It descends to any torus R 3 fA, where A is a lattice 
in R 3 • Unless there is a special relation between P and A, all symplectic 
leaves are dense on the torus, hence cannot be the level sets of a (Casimir) 
function. 

Example 3.28. In the previous example there still exist local Casimirs around 
any point, which single out the symplectic leaves (locally). In the present ex
ample we show that on a Poisson manifold which is not a symplectic manifold, 
non-trivial Casimirs may even not exist locally. Take on R 3 with respect to 
the coordinates (x, y, z) the following Poisson matrix, 

( ~ ~ :) . 
-x -y 0 

The symplectic leaves of dimension 0 are the points on the Z-axis, while the 
symplectic leaves of dimension 2 are the half-planes which are the connected 
components of (o:x + {3y = 0) \ (x = y = 0) {a:, {3 E R). This symplectic 
foliation is called the open book foliation. Taking any point on the Z-axis it 
is clear that on no neighborhood of it the symplectic foliation is given as the 
level sets of one or several functions. 

Another interesting example, the symplectic foliation of the Lie-Poisson struc
ture on g* will be discussed in Section 3.5. 

3.5 The Lie-Poisson Structure of g* 

In this section we show that the dual of a finite-dimensional Lie algebra g 
carries a natural Poisson structure. We will also explain how the construction 
is modified in the case of certain infinite-dimensional Lie algebras. 

Suppose that g is a finite-dimensional (complex) Lie algebra, with Lie 
bracket[·,·). As we already indicated in Section 2.2, we can view an element 
X E g as a linear function on g*. For the clarity of the exposition we will 
violate in this section several times our convention, adapted in that section, 
that we do not distinguish X notationally from the linear function on g* that 
it defines. 
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Thus, to X E g we associate a linear function X. on the dual vector 
space g*, which is defined by 

X. : g* ~ C : ~ ~ (~,X}. 

The vector space of linear functions on g* forms a Lie algebra, isomorphic tog, 
by setting [X., Y.]9 • := [X, Y] •. It follows that g* admits a Poisson structure 
{ · , ·} whose structure functions are linear functions with the structure con
stants of g as coefficients: { · , ·} is the unique skew-symmetric biderivation on 
F (g*) such that 

{X., Y.} =[X., Y.] 9• =[X, Y]. (3.26) 

for any X, Y E g. Explicitly, for F, G E F (g*) and for ~ E g* the bracket is 
given by 

{F,G} (~) = [dF(~),dG(~)] 9·(~). (3.27) 

To prove this it suffices to notice that it is valid for linear functions on g*, 
because of (3.26), and that for fixed G and ~ both sides of (3.27) are a 
derivation (in F) at~· Formula (3.27) is, according to our conventions from 
Section 2.2, written in the form 

{ F, G} (~) = (~, [dF(~), dG(~)]} . (3.28) 

This Poisson structure on g* is known as the Lie-Poisson structure on g* or 
the canonical Poisson structure on g*. Notice that every Poisson structure 
on en which is linear in the sense that the Poisson bracket of any two linear 
functions is linear, is obtained in this way. Rewriting (3.28) for H =Gas 

XH(~)[F] = (~,- a.d<tH(~) dF(~)) = ( addH(e) ~' dF(~)) 
we find that the Hamiltonian vector field XH is given, at ~ E g* by 

XH(~) = addH(e) ~· (3.29) 

By identifying g with its dual we obtain a linear Poisson structure on g. Let us 
analyze the (most natural) case in which the identification is done by means 
of an Ad-invariant non-degenerate bilinear form on g, 

(·I·} : g X g ~ c, 
such as the Killing form in the case of a semi-simple Lie algebra. Recall from 
(2.15) that Ad-invariance implies that 

(X I [Y, Z]) = ([X, Y] I Z} (3.30) 

for all X, Y, Z E g. Non-degeneracy of (·I·} means that the map x : g ~ 
g*, defined by X ~ (XI·}, is an isomorphism; let us denote its inverse by 
tf; : g* ~g. These isomorphisms allow us to associate to a function on g* a 
function on g and vice versa, simply by composing with x or with ¢. Clearly, 
g then has a unique Poisson structure { · , ·} 9 with respect to which x is an 
isomorphism of Poisson manifolds. 
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We call {-, ·}9 the Lie-Poisson structure on g with respect to (·I·). Ex
plicitly, let F, G E F(g) and compute their Lie-Poisson bracket {F, G} 9 (with 
respect to (·I·)) at X E g by using (3.28) as follows. 

{F,G}9 (X)= {1/J*F,'IjJ*G}(x(X)) 
= (x(X), [d('I/J* F)(x(X)), d('ljJ*G)(x(X))]) (3.31) 

= (X I [1/J(dF(X)), 1/J(dG(X))]). 

We have used that d('I/J* F)(x(X)), viewed as an element of g is precisely 
1/J(dF(X)). To check the latter, first use the chain rule and the fact that 1/J is 
a linear map to find that 

d('I/J* F)(x(X)) = d(F o 1/J)(x(X)) = dF(X) o 1/J, 

so that, for any ~ E g*, 

(d('I/J* F)(x(X)), ~) = (dF(X), 1/J(~)) = (1/J(dF(X)) 11/J(~)) = (~, 1/J(dF(X))). 

Formula (3.31) is usually written in the following form, 

{F,G} (X)= (X I [V'F(X), V'G(X)])' (3.32) 

where V'F(X), the gradient ofF at X (with respect to (·I·)) is defined, for 
F E F(g) and X E g by 

(V' F(X) I Y) = (dF(X), Y)' 

for allY E g, which is equivalent to saying that V'F(X) = 1/J(dF(X)). Since 
F is a function on a vector space, the latter definition can also be written in 
the following form, 

('V F(X) I Y) = dd F(X + tY), 
tlt=O 

(3.33) 

which is the most useful form for explicit computation. The Hamiltonian 
vector fields XH on (g, { ·, ·}) take a particularly simple form. In fact, (3.30) 
implies that (3.32), for H = G, can be written as 

{F,H} (X)= ([V'H(X),X]I V'F(X)) = (dF(X), [V'H(X),X]); 

if we compare this to 

{F,H} (X)= XH(X)[F] = (dF(X),XH(X)), 

then we find that X:= XH(X) is given by the Lax equation 

X= [V'H(X),X]. (3.34) 

This follows also immediately from (3.29) as ad and ad* get identified by x 
(see (2.16)). Equations of form (3.34) will come up repeatedly in this book, 
see Sections 4.4, 4.5, 6.4 and the examples (part III). 
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Ad-invariance of (·I·) implies, in view of (2.16), also that x establishes 
a one-to-one correspondence between Ad* -invariant functions on g* and Ad
invariant functions on g. Since the Casimirs of the Lie-Poisson structure on g* 
are the Ad* -invariant functions on g*, as we show in the following proposition, 
the Casimirs of the Lie-Poisson structure on g are the Ad-invariant functions 
on g (when g and g* are identified by using an Ad-invariant non-degenerate 
bilinear form on g). 

Proposition 3.29. Let g be a finite-dimensional Lie algebra and let G be 
the simply connected Lie group whose Lie algebra is g. The symplectic leaves 
of the Lie-Poisson structure on g* are the coadjoint orbits of G. 

Proof. Recall that the fundamental vector fields of a group action span all 
tangent spaces to the orbits of the action. Hence, the vector fields ad~ span 
the tangent space to the coadjoint orbits at any point of g*, so that for any 
~ E g* 

T~O~ ={ad~~ I X E g}, 

where (')~ = {Ad; ( ~) I g E G} is the coadjoint orbit passing through ~. We 
have from (3.29) that 

Ham~ (g*) = { ad~a(~) ~I G E F(g*)} ={ad~~ I X E g} = T~O~, 

where we used that, given X E g, the linear function G on g*, defined by 
G(~) = (X,~) realizes dG(~) =X. This proves the proposition. D 

Example 3.30. For any manifold M the (infinite-dimensional) vector space 
X(M) of vector fields on M forms a Lie algebra. It is natural to wonder 
if this leads to a Poisson structure on a (finite-dimensional) manifold. The 
answer is yes, namely it leads to a Poisson structure on the cotangent bundle 
T* M of M. To show this, we associate to any vector field V on M a function 
Von T* M by defining V(wm) := (wm, V(m)), where Wm is any covector in the 
fiber over m E M. Similarly, every function F E F(M) leads to a function 
F := 1r* FonT* M, where 1r: T* M --t M is the natural projection map. The 
Poisson bracket of two functions V1 and V2 is then defined, as in the case of 
the Lie-Poisson structure on the dual of a Lie algebra, by 

(3.35) 

For such functions the Jacobi identity follows from the Jacobi identity for the 
Lie bracket of vector fields. We wish to extend this bracket to a biderivation 
on F(T* M). Using first (3.35) and then (2.4) we have that 

{ FV1,GV2} = [F~V2] = FG { V1, V2}- GV1 VJFj + FV2 VJG]. 
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If the Leibniz property for { · , ·} holds then 

If we compare the two expressions for { FV1, GV2 } = { FV1, GV2 } that we 
have obtained we see that, if we want to extend this bracket to a biderivation 
on F(T* M) then we must define 

{ P,c} := o, {v,P} := V[F], 
for all F, G E F(M) and V E X(M). These definitions extend uniquely to a 
biderivation on F(T* M), which automatically satisfies the Jacobi identity. If 
we take local coordinates x1 , ... , Xn on a coordinate neighborhood U of M ---- ----then Xl' ... ' Xn' a I OX!' •.. ' a I OXn are Darboux coordinates on T* u' since 

{Xi,ij} = {878x:.~} = 0, 

where 1 ::;; i, j ::;; n. In particular, { · , ·} has maximal rank on T* M, so that 
T* M carries a (natural3) symplectic structure. 

Example 3.31. Another example is the dual of an affine Lie algebra L(g, v). 
Recalling that such a Lie algebra has a Killing form ( · I· ) we define the 
(restricted) dual L(g, v)* to be the vector space of all linear forms on 
L(g, v) of the form (X(b) 1-), where X(b) E L(g, v). Any element Y(b) E 
L(g, v) then defines a (linear) function Y(b). on L(g, v)* via (X(b) 1-) 1--t 

(X(b) I Y(b) ). By definition the algebra offunctions on the restricted dual, de
noted F(L(g, v)*), is generated by the functions Y(b)., where Y(b) E L(g, v) 
and a Poisson bracket is defined on on F(L(g, v)*) by 

The reason why we include this infinite-dimensional example in a book on 
finite-dimensional integrable systems is that the construction of the latter of
ten involves a (twisted) affine Lie algebra, which then gets further restricted 
to a finite-dimensional subspace of it. In each of those examples one could 
start out with an appropriate finite-dimensional truncation of the loop alge
bra, but this would in fact complicate the construction and it would obscure 
the (often very simple) nature of the Poisson structure. 

In many cases of interest one deals with Poisson brackets on a vector space 
which are almost linear in the sense that the Poisson bracket of two linear 
functions is of degree at most one (i.e., it may also contain constants). This 
case is considered in the following proposition. 

3 To be ultra-precise, the same Poisson structure with opposite sign, as is obtained 
by putting a minus sign in (3.35), is just as natural; the two corresponding 
symplectic structures lead to opposite orientations of T* M when dim M is odd. 
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Proposition 3.32. Let g be a Lie algebra and let { ·, · }0 be a constant Pois
son structure on g*. The Lie-Poisson structure { ·, ·} on g* and the constant 
Poisson structure { · , · }0 on g* are compatible if and only if the bilinear map 
C, defined by 

C: g 1\ g--+ C: (X, Y) t--t {X., Y.}0 , (3.36) 

is a 2-cocycle in the cohomology of g associated with the trivial representation 
of g on C. In this case the Poisson structure { · , · }0 + { · , ·} is called a modified 
Lie-Poisson structure. 

Proof. We have, as in (3.23), that{·, ·}0 and{·,·} are compatible if and only 
if 

{{X., Y.}, z.}0 + { {Y., z.}, x.}0 + { {Z., x.}, Y.}0 = o (3.37) 

for any X, Y, Z E g; indeed {X., Y.}0 is constant so that {{X., Y.}0 , Z.} = 0 
and all the terms in { {X., Y. }0 , z.} + cycl(X, Y, Z) vanish. In terms of the 
linear map C, defined by (3.36) we have in view of (3.26) that 

{{X.,Y.},Z.}0 = C([X,Y],Z). 

Therefore (3.37) becomes 

C ([X, Y], Z) + C ([Y, Z], X)+ C ([Z, X], Y) = 0, 

which means precisely that C is a 2-cocycle in the cohomology of g associated 
with the trivial representation of g on C (see [107, Appendix 5]). 0 

As an application, suppose that H 2 (g) = 0, which is e.g. the case when 
g is semi-simple (see [107, Appendix 5]). For any Poisson structure {-, · }0 

which is compatible with the Lie-Poisson structure{·,·} on g we have that 
(g*, { · , ·} + { ·, · }0 ) and (g*, { ·, ·}) are isomorphic, the isomorphism (of Pois
son manifolds!) being an affine transformation g* --+ g*. 

3.6 Constructing New Poisson Manifolds from Old Ones 

In this section we describe some basic methods to construct new Poisson 
manifolds from given ones. We already noticed (in Section 3.2) that a sub
manifold of a Poisson manifold is, in general, not a Poisson submanifold. We 
will give precise conditions for this to happen in the proposition that follows. 

Proposition 3.33. Let (M, {·, ·}) be a Poisson manifold and let M' be a 
(possibly immersed) sub manifold. There exists a Poisson structure { ·, ·} M' 

for which M' is an (immersed} Poisson submanifold of M if and only if the 
restriction of every Hamiltonian vector field on M to M' is tangent to M'. 



3.6 Constructing New Poisson Manifolds from Old Ones 63 

Proof. The restriction of an immersion ~ : M' ~ M to a small neighborhood, 
in M', of any point in M', is an embedding. Therefore, it suffices to prove 
the proposition in the case in which M' is a submanifold of M, i.e., M' is a 
subset of M and the inclusion map ~ : M' Y M is an embedding. 

For any open subset U of M let us denote by IM' (U) the ideal of all 
functions on U that vanish on M' n U. Thus, ifF E :F(U) then FE IM' (U) 
if and only if~* F = 0. We first show that a vector field V on M is tangent to 
M' at all points of M' if and only if for any open subset U of M, the ideal 
IM'(U) has the property that V[IM'(U)] ~ IM'(U), i.e., V[F] E IM'(U) for 
any F E IM' (U). Since M' is a submanifold, say of dimension p, there exists 
for any mE M' a coordinate neighborhood U containing m with coordinates 
(x1, ... ,xn), such that M'nU is given by the equations Xp+l = · · · = Xn = 0. 
In terms of these coordinates the ideal IM' (U) is generated by Xp+l, ... , Xn 
and the condition V[IM' (U)] ~ IM' (U) takes the form V[xi] = Ej=p+l hijXj, 

fori = p + 1, ... , n. By uniqueness, the integral curves x(t) of V in U that 
start at points of M' (xp+l (0) = · · · = Xn(O) = 0) will have Xp+l (t) = · · · = 
Xn(t) = 0 (iti small), so they stay in M' and Vis tangent toM'. 

Suppose now that { · , ·} M' is a Poisson structure on M' for which the 
inclusion map z : M' ~ M is a Poisson map. Let U be any open subset of M 
and let F E IM' (U), so that z* F = 0. For any G E :F(U) it follows that 

z*(Xa[F]) = z* {F,G} = {z*F,~*G}M' = 0, 

showing that Xa[F] E IM' (U). By the above characterization, all Hamilto
nian vector fields Xa on M are tangent to M' at points of M'. 

Suppose, on the other hand, that all Hamiltonian vector fields on M 
are tangent to M' at points of M'. Since M' is a submanifold of M we may 
consider any open subset V of M' which is small enough so that every function 
on V extends to an open subset U of M, with V = U n M'. We may then 
define, for l,g E :F{V) their bracket {f,g}M' by {f,g}M' := z* {F,G}, where 
F, G E :F(U) are any functions for which I = z* F and g = z*G. To see that 
this is well-defined, notice that the difference between two extensions of I 
(or g) belongs to the ideal IM'(U) and take HE IM'(U). Then,~* {H,G} = 
z*(Xa[H]) = 0, for any function G E :F(U), since Xa[H] E IM'(U), again 
by the above characterization of tangent vector fields. By construction, z is a 
Poisson map, implying also that 

~* {{F,G},H} = {{z*F,z*G}M' ,z*H}M' 

for F, G, HE :F(M), leading to the Jacobi identity for {-, ·} M'" D 

Example 9.94. The symplectic leaves of a Poisson manifold are immersed 
submanifolds to which all Hamiltonian vector fields are tangent. Therefore, 
Proposition 3.33 yields another proof that these leaves carry a Poisson struc
ture. More generally, the proposition implies that any (immersed) subman
ifold M' of M of that is the union of symplectic leaves carries a Poisson 
structure, making it into an (immersed) Poisson submanifold. 
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Example 3. 35. Suppose that F1, ... , F8 are Casimirs and that c = ( c1 ... , c8 ) 

are constants such that 

8 

Ac := n {mE M I Fi(m) = ci} 
i=l 

is a (non-empty) submanifold of M. Since Xp[Fi] = {Fi, F} = 0 for all 
F E :F(M) and 1 ~ i ~ s, all Hamiltonian vector fields Xp are tangent to 
Ac and Ac is a Poisson submanifold of M. 

Example 3.36. Let m E M and suppose that M' is a Poisson submanifold, 
passing through m. Then M' contains, at least in a neighborhood of m, the 
symplectic leaf of M which passes through m, so M' is locally a union of 
symplectic leaves. 

A second standard construction is the product of Poisson manifolds. 

Proposition 3.37. Let (MI.{·, ·h) and (M2, {·, ·}2) be two Poisson mani
folds. The product M1 x M2 has a natural Poisson bracket such that the two 
projection maps 11"i : M1 x M2 -t Mi are Poisson morphisms. 

Proof. In order for 71"1 and 11"2 to be Poisson morphisms it is necessary 
and sufficient to define {7riFI,7riGI} := 7ri{F1,GI}1 and {7r~F2,11"~G2} := 

71"~ {F2,G2b for any F1,G1 E :F(Mt) and F2,G2 E :F(M2). We define in ad
dition {7riF1,11"~F2} := 0 for any F1 E :F(MI) and F2 E :F(M2). These def
initions extend uniquely to a skew-symmetric biderivation on :F (M1 x M2), 

which we denote by {·, ·}. Notice that the Poisson matrix of{·,·} with re
spect to the system of local coordinates coming from local coordinates on M1 

and on M 2 has a block form, where each block is (the pull-back under 71"; of) 
the Poisson matrix with respect to those local coordinates on M1 and on M 2 • 

Therefore, the Jacobi identity is satisfied. D 

Notice that the fact that the matrix of { · , ·} has block form also shows that 
the rank at (m1,m2) E M1 x M2 of{-,·} is given by the sum Rkm1 {·, ·h + 
Rkm2 { • , • h In particular, Rk { · , ·} = Rk { · , · h + Rk {-, ·} 2 • 

Definition 3.38. The Poisson bracket on M1 x M2 given by Proposition 3.37 
is called the product bracket. 

The above construction of the product of two Poisson manifolds is easily 
generalized to the product of several Poisson manifolds. 

Example 3.39. Let G be a Lie group with multiplication x : G x G -t G. 
If { · , ·} is a Poisson structure on G such that x is a Poisson morphism, the 
Poisson bracket on G x G being the product bracket, then (G, {·,·})is called 
a Lie-Poisson group. 
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Example 3.40. Theorem 3.25 can be restated as follows: every point min a 
Poisson manifold (M, { ·, ·}) has a coordinate neighborhood which is the prod
uct of a symplectic manifold of dimension Rkm { · , ·} and a Poisson manifold 
which has rank 0 at the point that corresponds to m. 

A final construction that we give here consists of the most simple form of 
Poisson reduction: we consider a group acting in a Poisson way on a Poisson 
manifold. 

Definition 3.41. Let (M, {-,·})be a Poisson manifold and let (G, {-,·}G) 
be a Lie group, equipped with a Poisson structure, acting (say on the left) 
on M. The action is called a Poisson action if the map G x M ~ M : 
(g, m) 1-t gm is a Poisson morphism, where one considers the product bracket 
on G x M. 

An interesting example is the diagonal adjoint action of a Lie-Poisson group 

(G,{·,·}) on (Gd,{·,·}d), where Gd = G x ···G (d factors) and where 

{ · , ·} d denotes the product bracket on Gd. 
Notice that we do not demand, in the above definition, that (G, {·,·}G) 

be a Lie-Poisson group. We neither demand this in the following proposition. 

Proposition 3.42. Let (M, {-, ·}) be a Poisson manifold and let G be a Lie 
group acting on M. We assume that G comes also equipped with a Poisson 
structure{·, ·}G. If the action is a Poisson action, then the algebra :F(M)G 
of G-invariant functions is a Poisson subalgebra of :F(M), i.e., it is closed 
under{·,·}. 

Proof. Let us denote the action G x M ~ M by x and the projection G x 
M ~ M by 11"2. Then FE :F(M) is G-invariant if and only ifF ox= F o 11"2. 
Thus, ifF, G E :F(M)G and x is Poisson then 

x* {F,G}M = {x*F,x*G}GxM = {1r;F,1r;G}GxM = 11"2 {F,G}M 

and we see that the bracket of any two G-invariant functions is G-invariant. 
Therefore the subalgebra :F(M)G of :F(M) is, in addition, a Lie subalgebra 
of ( :F( M), {- , ·}), making it a Poisson subalgebra. 0 

If the quotient M/G is a smooth manifold then we may identify :F(M/G) 
with :F(M)G and the above proposition states that M/G carries a Poisson 
structure for which the quotient map M ~ M/G is a morphism of Poisson 
manifolds. In general there is at least an open subset of M which is smooth 
and on it we get, by the above construction, a Poisson structure, the reduced 
Poisson structure. The quotient structure usually has Casimirs, so that we 
get Poisson or symplectic structures on the level sets of them. The case in 
which symplectic structures are found by the above procedure corresponds 
to what is classically known as symplectic reduction. 
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Example 3.43. Let (M,{·,·}) be a Poisson manifold and let (Md,{-,·}d) 
denote the product M x · · · x M (d factors), equipped with the product 
bracket. The group Sd of permutations of {1, ... , d} acts on Md by permuting 
the factors; since this group is discrete it only carries the trivial Poisson 
structure. The action is Poisson, hence the algebra of symmetric functions 
in d variables on M carries a natural Poisson structure, coming from the 
Poisson structure on M. 

For a few other constructions, that will not be used in this text, we refer 
to [169]. 
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Algebraic Completely Integrable Systems 



4 Integrable Systems on Poisson Manifolds 

In this chapter we give the basic definitions of Liouville integrable systems on 
Poisson manifolds, we prove some key propositions and we give simple exam
ples to illustrate the theory. While the definition of Liouville integrability is 
given on a general Poisson manifold, we will restrict ourselves to real Poisson 
manifolds in Section 4.3, where we will discuss the classical Liouville Theo
rem and the Action-Angle Theorem, which are, as such, only valid in the real 
case. For a complex version of the Liouville Theorem, we refer to Section 6.3. 
Lax equations, which often represent a vector field of an integrable system, 
are the subject of Sections 4.4 and 4.5. 

4.1 Functions in Involution 

Definition 4.1. Let (M, {·,·})be a Poisson manifold and let F, G E :F(M). 
We say that F and G are in involution if {F, G} = 0. For a subset F of :F(M) 
we say that F is involutive if any two elements of F are in involution. 

Example 4.2. Let X be a hi-Hamiltonian vector field on a hi-Hamiltonian 
manifold (M, { ·, · } 1 , {·,·b). The functions F and G for which X = { ·, F}1 = 
{ · , Gh are in involution with respect to both brackets. Indeed, { F, Gh = 
{F,Fh = 0 and {G,Fh = {G,G}2 = 0. More generally, suppose that we 
have a bi-Hamiltonian hierarchy, i.e., a sequence of functions F = {Fi I i E Z} 
such that 

{· ,Fih = {· ,Fi+d1, 

In this case one has for any i < j E Z 

(i E Z). 

{Fi,F;h = {Fi,F;-d2 

= {Fi+t,F;-1}1 

= 
= {F;,Fih, 

so that { Fi, F; h = 0 by skew-symmetry. It follows that F is involutive with 
respect to {·,·h. Notice that F is also involutive with respect to { ·, · h, 
since {Fi,F;}2 = {Fi,Fj+1}1 . 

M. Adler et al., Algebraic Integrability, Painlevé Geometry and Lie Algebras
© Springer-Verlag Berlin Heidelberg 2004
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Example 4.3. Let M ~ gl{n) be an affine subspace of the Lie algebra of 
(n x n)-matrices and let H E :F(M). Suppose that there exists a Poisson 
structure on M such that the Hamiltonian vector field XH takes the form 

X=[X,Y] (4.1) 

where X E MandY : M -t gl(n) is any map, and X is a shorthand for 
XH(X), viewed as an element of gl{n). As we have seen in Section 3.5, if a 
vector field on a Lie algebra g is Hamiltonian with respect to the Lie-Poisson 
bracket on g {identified with its dual using an Ad-invariant non-degenerate 
bilinear form) then it is of this form. Notice that in order for (4.1) to make 
sense, the function Y and the affine subspace M of gl{n) must be chosen 
such that for any Xo E M, with corresponding value of Y denoted by Yo, 
the commutator [Xo, Yo] belongs to the vector subspace of gl{n) that corre
sponds to M. We claim that all coefficients of the characteristic polynomial 
IJ.tldn -XI, which we view as functions on M, are in involution with H. To 
see this, let X{t) be an integral curve of {4.1), defined fort in a neighborhood 
of 0, and denote by Y(t) the corresponding value of Y at X(t) E M. Take 
any i > 0 and use Trace(AB) = Trace(BA) (twice!) to compute 

{Trace Xi, H} {X{t)) = :t TraceXi(t) 

. 1 dX 
= iTracex'- (t)dt(t) 

= iTrace (Xi(t)Y(t)- xi-1 (t)Y(t)X(t)) = 0. 

Thus, the functions Hi : X 1-t Trace Xi are in involution with H. The same 
is true for each coefficient of the characteristic polynomial of X because each 
such coefficient is a polynomial in the functions Hi. An equation (i.e., vector 
field) on M of the form (4.1) is called a Lax equation (with values in gl(n)). 
Lax equations will be discussed in more detail in Sections 4.4, 4.5 and 6.4, 
and we will give a Lax equation for each of our main examples {Part III). 

If F = (F1, ... , F8 ) is an s-tuple, where Fi E :F(M) for 1 ~ i ~ s, then F 
defines a map to C 8 (or R 8 ), which we will denote by the same letter. A fiber 
ofF is a fiber ofF as a map: it is a common level set of the functions Fi. 
The fiber ofF that passes through mE M will be denoted by F m, 

F m := {p EM I Fi(P) = Fi(m) fori= 1, ... , s}; 

for c E C 8 we will also use the notation F c for the fiber F-1 (c) over c, so 
that for any mE M, one has that Fm = F-1 (F(m)) = FF(m)· By Sard's 
Theorem1 (see [80, Chapter 3.1.]), the set of regular values ofF is a resid
ual subset (hence a dense subset) of C 8 {resp. R 8 ). By the inverse function 
theorem, the fiber F c over each regular value c that lies in the image ofF is 
non-singular. 

1 For algebraic varieties, Sard's Theorem can be considerably strengthened, namely 
the set of regular values ofF contains a Zariski open subset, see [134, Chapter 3]. 
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Since { F, G} = X a F and since [X F, X a] = -X{ F,G} for any F, G E F( M) 
the proof of the following proposition is immediate. 

Proposition 4.4. Let (M, {-, ·}) be a Poisson manifold and assume that 
F = (F1 , •.• , F8 ) is involutive. The Hamiltonian vector fields XF,, 1 ~ i ~ s, 
commute and for any mE M they are tangent to the non-singular part ofF m· 

0 

The proof of the following proposition is also immediate, in view of the Leibniz 
rule for Poisson brackets. 

Proposition 4.5. Let ( M, {- , ·}) be a Poisson manifold and assume that 
F = (F1, ... , Fs) is involutive. The subalgebra of F(M), generated by the 
functions Fi is also involutive. 0 

A third proposition, classically known as the Poisson Theorem, is an imme
diate consequence of the Jacobi identity for{-,·}. 

Proposition 4.6 (Poisson). Let (M,{-,·}) be a Poisson manifold and 
let F,G,H E F(M). If {F,H} = 0 and {G,H} = 0 then {{F,G} ,H} = 0. 
0 

Example 4. 7. Returning to Example 3.8, suppose that F = (F1, ... , F8 ), 

where each of the functions Fi is in involution with H (F needs not be 
involutive). XH is tangent to each of the hypersurfaces Fi = constant, hence 
all functions Fi are constant on the trajectories of the vector field X H. For 
this reason, functions in involution with H are classically called constants 
of motion. Finding (independent) constants of motion being very useful for 
the explicit integration of the equations of motion (3.15), as we will see in 
the next paragraph, the constants of motion are also referred to as first in
tegrals. Stated in this language, Poisson's Theorem says that the Poisson 
bracket of two first integrals is a first integral. Compare this statement to the 
less appealing, but equivalent, statement that the centralizer of any function 
HE F(M) is a Lie subalgebra of F(M). 

Another classical theorem that leads to constants of motion is Noether's The
orem, which we give in a Hamiltonian form (the classical version is in a La
grangian form). Recall from Section 3.2 that if the action of a Lie group G on 
a manifold M is a Hamiltonian action then we can construct a co-momentum 
map, which is a linear map :1: g--+ F(M) having the property that for any 
X E g the function :1 x is a Hamiltonian for the fundamental vector field X, 
i.e., 

X= X..rx = {-, :Jx} · 

The Noether Theorem, in its Hamiltonian form, then states that the co
momentum map yields constants of motion for any G-invariant Hamiltonian. 
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Theorem 4.8 (Noether). Let G be a group which acts on a Poisson 
manifold (M, {-, ·}) and assume that the action is Hamiltonian, with co
momentum map :f. If H is a G-invariant function then for any X E g 
the function :Tx is a constant of motion for XH. 

Proof. Let X E g and m E M be arbitrary. We denote for g E G by x9 : 

M --+ M the diffeomorphism that comes from the action. By G-invariance 
of H, i.e., H o x9 = H for any g E G, we have that 

-XH(m)[:Tx] = {H, :Tx} (m) = X.7x (m)[H] = X(m)[H] = 
d d 

= dt H (Xexptx(m)) = dt H(m) = 0. 
it=O it=O 

Since m E M is arbitrary this shows that :J x is a constant of motion of XH. 
0 

Remark 4. 9. The point of view that we wish to emphasize is that Hamiltonian 
vector fields that are generated by group actions a priori lead to Lie alge
bra induced constants of the motion for Hamiltonian vector fields where the 
Hamiltonian itself is invariant under the group action. The Adler-Kostant
Symes Theorem that we will give later in this chapter will be a theorem in 
this historic tradition. 

Example 4.10. As an application of Noether's Theorem we consider the clas
sical two-body problem, which is a conservative system of two point masses 
m1 and m2 in R 3 , where the interactive potential U ( q1 , q2 ) depends only on 
the vector that joins the particles, U(q1 , q2) = U(Q), where Q = q1 -q2 E R 3 . 

Denoting the standard Euclidean norm on R 3 by II · II the total energy is 
given by 

which we view as a function on R 12 !::! T*R6 , equipped with the standard 
symplectic structure. Clearly, H is invariant with respect to the natural trans
lation action ofR3 , given by V ·(qt,Pt,Q2,P2) = (q1 + V,p1,q2+ V,.P2), where 
V E G = R 3 . The fundamental vector fields of this action are given by 
lit = ti2 =X, P1 = fJ2 = 0, where X E g = R 3 • It follows that the linear map 

:J : g = R 3 --+ F(R3 ) 

X 1-t (X IPl + .P2) 

is a co-momentum map for the action, where (·I·) denotes the standard inner 
product on R 3. Indeed, X(x IP1 +p2 )Qi =X and X(x IPl+P2)Pi = 0, fori= 1,2. 
By Noether's Theorem the three components of the total linear momentum 
P := P1 + P2 are constants of motion. 
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We have moreover that H = Hem + He completely separates: 

He= m liE!_- ~~~2 + U(Q), 
2 m1 m2 

where m is the reduced mass, 

1 1 1 -=-+-. 
m m1 m2 

As P is constant the center of mass of the two particles moves in a linear way, 
as dictated by Hcmi let us therefore ignore this part of the total energy and 
focus on He, where we assume now that U(Q) depends only on the distance 
of the particles, U(Q) = U(p), where p = IIQII· Since H has then spherical 
(i.e., S0(3)) symmetry we have again by Noether's Theorem that all three 
components of its angular momentum are preserved, and hence the reduced 
particle evolves in a plane R 2 , with coordinates (p, 0) and the conserved 
momentum in that plane, i = mp2(} may be used to eliminate(}, leaving us 
with a Hamiltonian of the form (3.16) with 

£2 
V(p) = U(p) + -2 2' 

mp 

For more information on the two-body problem, see [65, pp. 331-332]. 

Definition 4.11. Let (M, {·, ·}) be a Poisson manifold and suppose that 
F = (F1, ... , F8 ), where Fi E :F(M) for 1 ~ i ~ 8. We say that F is in
dependent when the open subset on which the differentials dF1 , ... , dF8 are 
independent is dense in M. 

Thus, F = ( F1, ... , F 8 ) is independent if and only if the set 

UF :={mE M I dH (m) 1\ ···I\ dFs(m) f. 0} (4.2) 

is a dense open subset of M. Taking local coordinates x1, ... , Xn on a neigh
borhood of m E M we have that m E UF if and only if 

One obviously has that 8 ~ dim M when ( F1, ... , F8 ) is independent. For 
functions that are in involution, and in particular for Casimirs, one has 
stronger restrictions, as given in the following proposition. Recall from Chap
ter 3 that for any integer 8 we denote by M(s) the open subset of points of 
M where the rank is at least 28. Also, recall that we have defined the rank 
of a Poisson manifold (M, {-, ·}) as the maximal rank attained by {-, ·} at 
points of M. 
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Proposition 4.12. Let ( M, { · , ·}) be a Poisson manifold of rank 2r and 
suppose that (F1 , ... , F8 ) is independent. 

(1} If F1, ... , Fa are Casimirs then s ~ dim M- 2r; 
(2} If (F1, ... , Fa) is involutive then s ~ dim M- r; 
(3} If (F1, ... , Fa) is involutive with s =dim M- r then 

dim span {X p 1 ( m), ... , X F. ( m)} ~ r 

for any m E UF, with equality if m E UF n M( r). 

Proof. For m E M let Pm denote the linear map T:'nM """"* TmM, which 
corresponds to the Poisson structure. Explicitly, for F E :F(M), 

Fm (dF(m)) = Xp(m) = {-, F} (m). 

The rank of Pm is Rkm {-, ·} and for every F E Cas(M) the covector 
dF(m) belongs to Ker Pm, whose dimension is dim M - Rkm {-, ·}. Let 
F = (F1, ... , Fa) be independent and let m be an element of the non-empty 
(open) set UF n M(r)· Suppose first that each element ofF is a Casimir. Since 
dF1 ( m), ... , dFa ( m) are independent we have that 

s ~ dimKer Pm = dimM- 2r 

and (1} follows. Next, suppose that F is involutive and consider the fiber 
Fm, where m is still taken from UF n M(r)> so that the restriction of Fm 
to a neighborhood U of m is a sub manifold of dimension dim M - s of U, 
passing through m. This dimension is an upper bound for the dimension dm 
of span {Xp1 (m), ... , Xp. (m)}, because these s vectors are tangent to that 
fiber atm. Moreover, dm ~ s-dimKer Pm = s+2r-dimM, because the dif
ferentials dF1, ... , dFa are independent at m. Combining the two inequalities 
for dm (still assuming that m E UF n M(r)), we get 

s+2r-dimM=s-dimKerPm ~dm ~dimM-s, (4.3) 

leading to (2). Third, suppose that s = dim M-r. For m E UF n M(r) we 
deduce from (4.3) that 

r=s-dimKerPm ~dm ~r, 

so that dim span { Xp1 (m), ... , Xp, (m)} = dm = r. D 

When the Poisson structure on M is algebraic or analytic, as will be 
the case in all our examples, the proposition implies that when ( F1, ... , Fs) 
is involutive, with s = dim M- r, then the vector fields Xp1 , ••• , Xp, are 
independent on a dense open subset of M. 
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4.2 Liouville Integrability 

We now give the definition of (Liouville) integrability, we give the simplest 
examples and we show that integrable systems can be solved by quadratures. 

Definition 4.13. Let (M, {·, ·}) be a Poisson manifold of rank 2r and let 
F = (H, ... , Fs) be involutive and independent, with s = dim M-r. Then 
we say that F is completely integrable and that (M, { ·, ·} , F) is an integrable 
system or a completely integrable system. The vector fields XF, are then called 
integrable vector fields and the map F is called the momentum map. We say 
that the integer r is the number of degrees of freedom of the integrable system 
and we call 2r its rank. In order to distinguish this notion of integrability from 
other notions of integrability one also says that ( M, { · , ·} , F) is Liouville 
integrable. 

We speak of a real integrable system and of a complex integrable system 
when we need to be precise about the real or complex nature of its phase 
space M. 

Notice that 2r is the dimension of the symplectic leaves of maximal dimen
sion (typically the generic leaf) and that r is the number of independent 
commuting Hamiltonian vector fields on such a leaf. 

Example 4.14. On M := R 2n consider the Poisson structure coming from the 
standard symplectic structure dq1/\ dp1 + · · · + dqn 1\ dpn, where Pl, ... , qn are 
linear coordinates on M. The potential energy V := t L:i viq~, where each 
IIi is positive, leads to the Hamiltonian 

1 n 1 n 

H := 2 L:P~ + 2 L:viq~, 
i=l i=l 

(see Example 3.8), which in physical terms is the Hamiltonian of the n
dimensional harmonic oscillator. It is easy to check that the n functions 
Fi := (p~ + lliql)/2 (1 ~ i ~ n), are independent and that they are in 
involution. Therefore, F := (F1, ... , Fn) is completely integrable. The fibers 
of the momentum map F over (c1, ... , cn) E (R>ot are products of circles 
p~ + lliq~ = Ci, hence they are n-dimensional tori. Notice that H = L;~=l F;,, 
so that we may replace e.g. F1 by H to find that (H, F2, ... , Fn) is completely 
integrable. When all vi are equal one speaks of an isotropic oscillator. Notice 
that in this case each of the functions qiPi - qiPi is a constant of motion, but 
these functions are not all in involution. 

Example 4.15. The previous example is a special case of a general construc
tion which, given integrable systems (Mi, {-, ·h, Fi), for 1 ~ i ~ s, allows one 
to construct an integrable system (M, {-,·},F), where M := M1 x · · · x M8 • 

For {- , ·} one takes the product of the Poisson structures { · , ·} i (see Propo
sition 3.37) and one takes F := F1 x · · · x F8 • The (easy) verification that 
this defines an integrable system is left to the reader. 
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Example 4.16. For the canonical Poisson structure {-, ·} of rank 2r on en 
(see Example 3.3) let F := (xr+l• ... , Xn)· Then F is completely integrable 
and (en, {·,·},F) is a (complex) integrable system. Each fiber ofF is a com
plex r-dimensional plane. All symplectic leaves are 2r-dimensional and are 
of the form {x E en I Xi= c;, i ~ 2r + 1}, where the constants Ci are arbi
trary. The functions Xr+l, ... , X2r yield independent Hamiltonians on such a 
leaf. Notice that in this case (x1, ... , Xr, Xr+2, ••• Xn) is independent and that 
each of these n- 1 functions is in involution with x1; this does not contradict 
Proposition 4.12 however, because (x1, ... , Xn) is not involutive. 

Example 4.11. Picking up Example 3.24 again, let F : e 2 ~ e be a 
holomorphic function and let w0 and w1 be the real and imaginary parts 
of{}= dz1 1\ dz2. We know from Example 4.2 that the functions G and H 
which are defined by F = G + HH are in involution with respect to w1 
and w2. We claim that ifF is not constant then G and H are independent 
(in the sense of Definition 4.11). Indeed, if dG(m) and dH(m) are dependent 
then 

( 
aa (m) aa (m) aa (m) aa (m) ) Rk 8z1 8y1 8z2 8y2 < 2. 
8H (m) 8H (m) 8H (m) 8H (m) 
8z1 8y1 8z2 8y2 

Combined with the Cauchy-Riemann equations (3.24), this condition implies 
that dG(m) = dH(m) = 0. Therefore m is a common zero of the holomorphic 
functions 8Fjf)z1 and 8Fj8z2 so that m is contained in a non-trivial (because 
F is not constant) analytic subvariety of e 2 • It follows that dG and dH 
are independent on a dense subset of R 4 • This shows that F := ( G, H) is 
completely integrable and that each of (R\ {-, ·}0 , F) and (R\ {·, ·}1 , F) is 
a (real) integrable system. 

Example 4.18. Let r and s be fixed integers such that s ~ r ~ 1 and de
fine t := s-r. Let U be a non-empty open subset ofR8 on which we denote the 
standard coordinates by Pl, ... ,pr, Y1, ... , Yt· We also consider Tr := (R/Z)r 
with local coordinates Ql ... , Qr that come from the standard coordinates on 
the universal covering space Rr of Tr. We describe an elementary integrable 
system on M := Tr x U which will serve later as a local model, on a neigh
borhood of a generic compact invariant manifold (if any) of the momentum 
map of a real integrable system (Theorem 4.32 below). We denote the coor
dinates on M by the same letters Ql, ... , Pr, Yl, ... , Yt as the coordinates on 
each of the factors of M. We consider the Poisson structure { · , ·} for which 
all functions Yk are Casimirs and for which { Qi, Pi} = c5ii, where 1 ~ i, j ~ r. 
This Poisson structure can be seen as coming from the standard structure of 
rank 2r on R 2r+t by using a Poisson reduction (see Proposition 3.42). Letting 
F := (Pl, ... , Pr, Y1, ... , Yt) we have that F is independent, hence completely 
integrable and each fiber of F is an r-dimensional torus Tr. 
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More generally, let F{, ... , F; be independent functions on U, which we 
consider as functions on Tr xU. Then F' := (F{, ... ,F:) is completely in
tegrable. Each fiber of F' is a disjoint union of tori; indeed, F', viewed as a 
map U--+ R 8 needs not be injective. For 1 ~ k ~ s the integrable vector field 
X F,; is given by 

. 8FJ. 
Qi = -, Pi= o, Yi = o, (4.4) 

8pi 

where 1 ~ i ~rand 1 ~ j ~ t. The integration of (4.4) is trivial. 

Example 4 .19. In one degree of freedom integrability is trivial in the following 
sense. Suppose that the rank of ( M, { · , ·}) is two and that there exist n - 2 
independent Casimirs F1, ... , Fn-2, where n = dim M. For a generic function 
F one has that F := (F1, ... ,Fn-2,F) is independent, hence completely 
integrable. Notice that the fibers of the momentum map are in this case 
!-dimensional. 

Remark 4.20. Integrable systems often depend on parameters in the sense 
that one does not consider one particular Hamiltonian, but a whole class 
of them, parametrized by a one or several parameters. When the integrable 
systems come from physics these parameters usually have a physical meaning, 
such as moment of inertia, mass, spring constant, and so on. We still use the 
singular term "integrable system" in this case. It is then understood that 
all claims, such as independence of the functions, integrability, and so on, 
are valid for generic values of the parameters, i.e., when the parameters are 
fixed to generic values (say, taken in some non-empty Zariski open subset, 
when the parameter space is an algebraic variety). Given an integrable system 
that depends on parameters one may also think of it as a single integrable 
system by replacing phase space by the product of phase space with the 
parameter space. The Poisson structure is then extended to this larger phase 
space by declaring the parameters, that have now become phase variables, 
to be Casimirs. Similarly one enlarges the algebra of functions in involution 
by adding the parameters as extra functions. This point of view is of course 
consistent with the above convention that all claims are valid for generic 
values of the parameters. See (169] for formal details on constructions of this 
type. 

In order to explain the terminology integrable we show that the system 
of differential equations representing an integrable vector field is solvable by 
quadratures, a classical notion that will be defined below. We start with an 
example with one degree of freedom, where we show how the equations of 
motion can be integrated explicitly, by using only algebraic operations, the 
process of taking inverse functions and integration. 
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Example 4.21. We consider an integrable system on R 2 , as in Example 3.8 
with n = 1. Let us write p for Pl and q for q1. Then the Hamiltonian is given 
by 

p2 
H := 2 + V(q) (4.5) 

and it is, of course, a constant of motion. We fix a point (qo,Po) E R 2 for 
which dH(qo,Po)-# 0, and we denote the value of Hat (qo,Po) by ho. Using 
q = p (4.5) implies that the integral curve which starts at (qo,Po) satisfies 
the differential equation 

dt = dq 
y'2 {ho - v(q)) 

The above denominator does not vanish in a neighborhood of q0 , except 
maybe at qo, because dH(qo,Po) "# 0. Integrating both sides we find 

1q dq 
t-

- qo y'2 {ho - V(q)) 

which defines q (and hence alsop) implicitly as a function of q. The obtained 
functions (q(t),p(t)) define, for ltl small, the integral curve of XH, start
ing at (qo,Po), hence they integrate the equations of motion for the initial 
condition (q(O),p(O)) = (qo,Po)· Notice that q was obtained by using only 
algebraic operations, inverting a function {the inverse function theorem) and 
integration. 

We now show how the explicit integration of the equations of motion is 
done in the case of an arbitrary integrable system. To do this we suppose 
that (M, {-,·},F) is an integrable system of rank 2r and we write F = 
(F1, ... ,F8 ). We choose an arbitrary moE UF n M(r) {this corresponds ex
actly to the condition dH(qo,Po) -:1 0 in Example 4.21) and we show how the 
integral curve, starting at mo, of each of the Hamiltonian vector fields XF; 

can be obtained locally by using only algebraic operations, the inverse func
tion theorem and integration. This is what is meant precisely when saying 
that the system is solvable by quadmtures. 

In view of item {3) of Proposition 4.12 we may suppose that the elements 
ofF are ordered in such a way that the Hamiltonian vector fields X p 1 , ••• , X Fr 

are independent at m0 • Then these vector fields are independent on an open 
neighborhood of m0 ; we may suppose that this neighborhood is contained in 
UF n M(r) since the latter is open {and contains mo). Let us denote by U the 
intersection of this neighborhood with the fiber ofF that contains m0 , which 
is, by the cited item, r-dimensional. By shrinking U further, if necessary, we 
may assume that U is a coordinate neighborhood of m0 in the fiber of F 
through mo. Since the vector fields Xp1 , ••• , Xpr are independent at every 
point of U there exist unique 1-forms w1, ... , Wr on U such that Wi (X F;) = 
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8ij, for 1 ~ i,j ~ r. These 1-forms can be computed using linear algebra 
only. Indeed, for FE :F(M) we have on U that 

r 

dF = L {F,Fi}wi, (4.6) 
i=1 

(for a proof, evaluate both sides on the vector fields XF1 , •• • , XFr, which span 
the tangent space to U at any point of U). Choose now r functions ¢1 ... , ¢r 
on U whose differentials are independent at every point m E U, i.e., choose 
a system of coordinates on U (these functions may for example be chosen as 
r of the elements of a system of coordinates of M around m0 ). Then 

and the r x r matrix in this expression is invertible at any m E U because 
the vectors X F; ( m) span T m U at every m E U and because ( ¢1, ... , ¢r) is 
a system of coordinates on U. For 1 ~ i ~ r the 1-form Wi is closed: the 
vector fields XF1 , ••• XFr span the tangent space to U at every point of U 
and (see (2.8)) 

dwi (XFj,XFk) = XFi[wi (XFk)]- XFk[wi (XFJ]- Wi ([XFj,XFk]) 

for any 1 ~ j, k ~ r, which evaluates to zero because Wi (XFJ is constant 
and because the vector fields XFi commute. Since U is a coordinate neighbor
hood these closed forms are exact and we may integrate each of the 1-forms 
w1 , ... , wn to obtain r functions h, ... , tr; we choose the constants in these 
functions such that mo corresponds to t 1 = · · · = tr = 0. Notice that these 
functions provide a system of coordinates on U because dt1 A ... A dtr f. 0 
on U, hence we can, by the inverse function theorem, write the coordi
nates ( ¢1 , ... , ¢r) locally, around mo, in terms of ( t 1 ... , tr). By construction, 
8~, = XF, on U. Therefore the resulting functions ¢i (h, ... , tr) provide the 
integral curve of XF, that passes through mo (as contained in U) by putting 
t 1 , ... , ti-l, ti+1, ... , tr equal to zero. Using the equations Fi = ci we get the 
corresponding integral curve of XF, as a curve in M, via the implicit function 
theorem. One similarly determines the integral curve that corresponds to a 
linear combination of the vector fields XF,. 

Remark 4.22. Notice that the above proof works in the real as well as in 
the complex case; indeed, U being a coordinate neighborhood there is no 
ambiguity for the paths used in computing the complex integrals. 
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Remark 4.29. It is easy to show that the integrable vector fields XF1 , ••• , XF,. 
define an integrable r-dimensional distribution on a neighborhood of mo 
(see Proposition 4.24 below). The Frobenius Theorem (Theorem 2.5) im
plies that there exist coordinates (tt, ... , tr) in a neighborhood of m0 , such 
that XF; = 8~; fori= 1, ... , r. The point of the above proof is to show that 
these ti can be constructed by using only algebraic operations, the implicit 
function theorem and integration. The fact that this can be done in the case 
of a distribution defined by commuting vectors can be generalized to general 
integrable distributions, giving more general conditions under which a Hamil
tonian system can be solved by quadratures (see e.g. [59, Theorem 3.6]). 

4.3 The Liouville Theorem and the Action-Angle 
Theorem 

The Liouville Theorem is often considered as the motivation of the above 
Definition 4.13 of a completely integrable system. This theorem describes the 
generic manifolds, traced out by the flows of the integrable vector fields of 
a real integrable system, assuming compactness of these manifolds or com
pleteness of these flows on them: these manifolds are tori or cylinders and 
the flow on them is linear. The modern version of this theorem is due to 
Arnold and for this reason the theorem is sometimes (see e.g. [1]) referred 
to as the Arnold-Liouville Theorem, while often the latter name is reserved 
for the more elaborate theorem which proves the existence of action-angle 
coordinates (Theorem 4.32). For a complex version of the Liouville Theorem, 
see Section 6.3. 

We first define the submanifolds that will be described in the real case by 
the Liouville Theorem and that will lie at the basis of one of the definitions 
of an a.c.i. system in the complex case. 

Proposition 4.24. Let (M, {·,·},F) be an integrable system of rank 2r, 
with F = {F1, ... ,F,). The open subset UF n M(r) is preserved by the flows 
of the integrable vector fields XF;, i = 1, ... , s, which define a distribution V 
of rank r on UF n M(r), integrable in the sense of Frobenius. 

Proof. Let tP denote the flow of one of the vector fields XF;. We have (for 
smallltl) that tP; Fj = Fj for j = 1, ... , s because XF; is tangent to the fibers 
of F. Therefore, 

tP; (dH 1\ ... I\ dF,) = dtP;F1/\ .. . I\ dtP;Fs = dF1/\ .. . I\ dF,, 

so that the a-form dF1 /\ .• . 1\dF, is preserved by the flow of XF;. It follows that 
UF, as defined by (4.2), is preserved by the flow of XF;· But Proposition 3.17 
implies that the open subset M(r) is also preserved by these flows. Hence 
their intersection also. The integrable vector fields XF; define on UF n M(r) 

a distribution of rank r, as follows from item {9} in Proposition 4.12. This 
distribution is integrable because the vector fields XF; commute. 0 
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Definition 4.25. Form E UF n M(r) the maximal integral manifold of V, 

passing through m, is called the invariant manifold {ofF) passing through m, 
and is denoted by F~. 

Thus, the invariant manifold of F that passes through m is by definition 
the immersed submanifold which is traced out by the flow of the integrable 
vector fields, starting at m. In the following proposition we give an alternative 
description of the invariant manifold F~, which on the one hand explains the 
notation F~ (recall that F m denotes the fiber ofF which passes through m), 
and on the other hand shows that F~ is actually an (embedded) submanifold 
ofM. 

Remark 4.26. The integrable vector fields XF; define on M a generalized 
distribution, which can also be shown to be integrable, hence we can define 
F~ for any m E M. We will in this book only restrict our attention to the 
invariant manifolds F~, where mE UF n M(r)• although the other ones also 
deserve to be studied; see Section 6.1, starting from Definition 6.2. 

Proposition 4.27. Let ( M, { · , ·} , F) be an integrable system and suppose 
that mE UFnM(r)· The invariant manifold F~ ofF is the connected compo
nent ofF mn UFnM(r) which contains m. In particular, F~ is an (embedded) 
submanifold of M. 

Proof. Let us denote by F~ the connected component ofF m n UF n M(r) 

which contains m. Since F~ is a connected submanifold of dimension r, 
whose tangent space at each of its points m coincides with V(m), we have 
that F~ ~ F~. On the other hand, F~ C UF n M(r)• by definition, while 
F~ ~ F m since V is tangent to F m. Since F~ contains m and is connected 
it follows that F~ ~ F~. D 

We now come to the Liouville Theorem for real integrable systems. 

Theorem 4.28 {Liouville Theorem). Let (M, {·,·},F) be a real inte
grable system of rank 2r, where F = (F1, ... , Fs). For m E UF n M(r), let F~ 
denote the invariant manifold ofF that passes through m. 

( 1) IfF~ is compact then there exists a diffeomorphism from F~ to the torus 
Tr = {R/Zr, under which the vector fields XF1 , ••• , XF. are mapped to 
linear (i.e., translation-invariant) vector fields. 

(2) IfF~ is not compact, but the flow of each of the vector fields XF; (where 
i = 1, ... , s) is complete on F~ then there exists a diffeomorphism from 
F~ to a cylinder Rr-q x Tq (0 ~ q < r ), under which the vector fields XF; 

are mapped to linear vector fields. 

Proof. We suppose that the flow !l)(i) of each of the integrable vector fields 
XF; is complete on F~ and that the functions Fi are ordered such that 
XF1 , ••• , XFr give the r independent vector fields. Then their completeness 
and commutativity imply that we can define an action Rr x F~ -t F~ by 

((t1, ... , tr), m) ~ !P~~) o !P~~) o · • • o !Pt) (m). 
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Since F:n is the integral manifold through m of the distribution defined 
by the integrable vector fields, the action is transitive on F:n and F~ be
comes a homogeneous space. The action is also locally free because the vec
tor fields X F; are independent at any point of F:n. Therefore the stabilizer 
is a discrete subgroup H of Rr and F:n is diffeomorphic to Rr I H. If F:n is 
compact then H must be a lattice, so Rr I H is a torus, smoothly embedded 
into M. Otherwise H is a discrete subgroup whose rank q is at most r- 1 
and Rr I His isomorphic to Rr-q x Tq. By construction, the vector fields XF; 

are mapped to linear vector fields in both cases. 0 

The tori that appear in Liouville's Theorem are often called Liouville tori. 

Remark 4.29. For most integrable systems that come from classical mechan
ics (spinning tops, systems of oscillators, penduli, ... ) the energy function is 
proper, so that all fibers F m of the momentum map are compact. This does 
however not mean that each invariant manifold F:n, with m E UF n M(r) 

is compact, but it does imply that the flow of the integrable vector fields is 
complete on each such F:n. Therefore, each F:n is a torus or a cylinder (of 
dimension r). In order to see how a cylinder can appear in this setting, think 
of a pinched torus which appears as a singular fiber of the momentum map. 
The integrable vector fields necessarily vanish at the singular point, and for 
m different from that point, F:n is the pinched torus, minus its singular point, 
which is a cylinder. Many integrable systems of interest do not satisfy either 
assumption of the Liouville Theorem and the topology of the fibers of the 
momentum map has to be determined in a different way (see (20], (169]). 

Example 4.30. In the case of Example 3.24 we find that the fibers of the 
momentum map are given by F = c, where c is any complex constant. Taking 
for F any polynomial in two variables, the fiber becomes an (affine) plane 
algebraic curve and every such curve appears in this way. The fiber will be 
smooth for generic values of c and it will be a topological surface of genus g, 
with a few points removed. Thus, the topological types that appear as the 
fibers of the momentum map of an integrable system are in the non-compact 
case much more general than the ones that appear in the Liouville Theorem. 

Definition 4.31. Let ( M, { · , ·} , F) be a real integrable system of dimen
sion nand rank 2r. We say that (M, {·,·},F) admits action-angle coordinates 
around m E M if there exists 

(1) an open neighborhood Um of min M; 
(2) an open subset U of Rn-r; 
(3) a diffeomorphism¢: Um -t Tr xU; 
( 4) an independent ( n - r )-tuple E of functions, defined on U; 

such that, when Tr x U is equipped with the Poisson structure from Exam
ple 4.18, then 

(1) ¢ is a Poisson map; 
(2) ¢*E = F on Um. 
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In the latter formula we view the elements of E as functions on Tr x U, so 
strictly speaking, (2) should be written as 1/J*rr*E = F, where 1r : Tr xU--+ U 
is the projection on the second component. 

The following diagram may be helpful for visualizing the spaces and maps 
involved. 

The coordinates on Um which come from the natural coordinates on Tr x 
U are called action-angle coordinates. In plain language, after a change of 
coordinates which respects the Poisson structure, Um looks like the canonical 
Example 4.18. 

The following theorem is called the Action-Angle Theorem and is in com
bination with the Liouville Theorem sometimes called the Arnold-Liouville 
Theorem. Simply put it says that neighborhoods of compact invariant mani
folds F~ look like the canonical Example 4.18. 

Theorem 4.32 (Action-Angle Theorem). Let (M,{·,·},F) be a real 
integrable system and suppose that mE UpnM(r) is such that F~ is compact. 
Then (M, {·,·},F) admits action-angle coordinates around m. 

For a complete proof of the above action-angle theorem in case M is sym
plectic we refer to [107]. The adaption to the case of a general real Poisson 
manifold is left to the reader. 

Example 4.33. There is at least one case in which action-angle coordinates 
can easily be computed: the case of an isotropic oscillator (see Example 4.14). 
Recall that the functions in involution for a harmonic oscillator are the func
tions Fi = (p~ + viql) /2. For an isotropic oscillator all Vi are equal; we take 
them here equal to 1. Thus, F = (F1, ... , Fr), with Fi = (p~ + q~)/2. In the 
notation of Definition 4.31 we take U := (R>of and Um := (R2 \ {0,0}( 
and we take for E = ( E1, ... , Er) the standard coordinates on (R>o f. We 
define the map 1/J = 1/J -l by 

1/J: 

It is clear from the formulas that 1/J and its inverse tjJ are diffeomorphisms. 
We need to verify that 1/J is a Poisson map and that 1/J*E = F on Um. In 
terms of 1/J this means that we need to verify that 1/J is a Poisson map and 
that 1/J*F = Eon Tr x U. But 1/J* Fi = ! (2Ei cos2 ()i + 2Ei sin2 Oi) = Ei for 
i = 1, ... , r. Thus, 1/J preserves indeed the constants of motion. 
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Since {Ei,9j} = t5ij, while the other brackets are zero we have that 

{'!fl*qi, '!fl*pj} = { J2E; cos9i, J2Ej sin9j} 

- (cos ei cos 9j J2Ej sin ei sin 9jy'2Ei) 
- v'2Ei + J2Ej t5ij 

= t5ij 

= '!fl* {qi,Pj}, 

for 1 ~ i,j ~ r. Similarly, {'!fl*qi,'!fl*qj} = 0 = '!fl* {qi,qj} and {tP*pi,tP*Pj} = 
0 = '!fl* {pi,Pj}· Thus, tP is indeed a Poisson map. 

In general it is difficult to compute explicit action-angle variables for a given 
integrable system. It is already non-trivial to find whether or not some of 
the fibers of the momentum map of the integrable system are compact and 
to localize them; furthermore the fibration by Liouville tori is in general not 
trivial and global action-angle variables do not exist due to monodromy. For 
this, see the original article [48] and also [21] and [29]. 

4.4 The Adler-Kostant-Symes Theorem(s) 

We have seen in Example 4.3 that a Hamiltonian vector field that can be 
written in the Lax form X = [X, Y], admits each coefficient of the charac
teristic polynomial of X as a constant of motion. A Lax equation with values 
in g, where g is any Lie algebra, is a vector field on a (finite-dimensional) 
affine subspace M of g, which has the form X = [X, Y], where X E M and 
Y is a map from M to g. In our case, the vector field that is given by a Lax 
equation is always a Hamiltonian vector field with respect to some Poisson 
structure. The Lie algebras that we consider are either finite-dimensional Lie 
algebras or (twisted) affine Lie algebras. In the latter case, we also use the 
terminology Lax equation with a spectral parameter, see Paragraph 6.4. In 
part III we give Lax equations the integrable systems that we consider. 

The purpose of this section is to present a method that allows one to 
construct Lax equations from a Lie algebra splitting. We show in addition 
that the obtained constants of motion are in involution and that, while they 
may not necessarily form a large enough set to make the system integrable, 
the Lax equation can be integrated explicitly upon using the underlying Lie 
group. This collection of fundamental results is called the Adler-Kostant
Symes Theorem. We will present two versions of this theorem. The first one 
is on the dual g* of a Lie algebra and has the advantage of admitting a more 
transparent proof, but the Hamiltonian vector fields are not in the standard 
Lax form (because they are defined on g*). For the second one it is assumed 
that g comes equipped with a non-degenerate pairing (·I·), which is Ad
invariant. The latter form yields Lax equations and is most suited towards 
applications. 
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4.4.1 Lie Algebra Splitting 

Let g be a Lie algebra and recall from Section 3.5 that the Lie-Poisson bracket 
on g* (the dual of g when g is finite-dimensional; the restricted dual of g when 
g is a (twisted) affine Lie algebra) is given by 

where F, G E F(g*) and e E g*, and where dF(e) and dG(e) are interpreted 
as elements of g when computing the Lie bracket. Recall also that if we view 
X E g as a linear function on g* we still denote it by the same letter X. 

We suppose that we are given a Lie algebra splitting of g, i.e., that g is 
a direct sum (as a vector space) of two Lie subalgebras, g = g+ E9 g_. We 
denote the corresponding projection operators by 

and p_: g-+ g_. 

For X E g we define X+ := P+(X) and X_ := P_(X). The splitting leads 
to a direct sum decomposition of g*. Namely, 

g* = Ann(g_) E9 Ann(g+) ~ g.f. E9 g:_, (4.7) 

where for a subset A ~ g, its annihilator Ann(A) is defined as the subspace 
of g*, given by 

Ann(A) := {e E g* 1 (e,x) = o for all X E A}. 

Indeed, dualizing the projection maps P+ and P_ we find two injective linear 
maps 

p~ = ~+ : g.f. -+ g* and p~ = L : g:_ -t g*' 

which are explicitly given by (z±(¢), X) = (¢,X±), for 4> E g± and X E g. 
Thus, t±(¢) is a natural extension of 4> E g± to a linear function on g. We 
have that g± ~ t±(g±) = Ann(g'F), which yields the isomorphism in (4.7). 

Let R denote the endomorphism of g which is given by R := P+ - P_. 
For X,Y E g, let 

1 
[X, Y]R := 2 ([RX, Y] + [X,RY]) =[X+, Y+]- [X_, y_]. (4.8) 

Lemma 4.34. Let g = g+ffig_ be a Lie algebra splitting and let[·, ·]R denote 
the bracket, defined by {4.8). 

{1} [·, ·]R defines a Lie bracket on g, called an R-bracket. Its Lie-Poisson 
bracket on g* is called a Lie-Poisson R-bracket and is denoted by{·, ·}R. 

{2} Denoting by{·,·}+ the Lie-Poisson structure on the dual g'f_ of the Lie 
algebra g+, the linear map 

is a Poisson map. 
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Proof. g+ and g_ being subalgebras of g we have that P+ ([X, Y]R) = 
[X+, Y+], so that 

P+ ([[X, Y]R, Z]R) =[[X+, Y+], Z+]· 

Similarly P- ([[X, Y]R, Z]R) = [[X_, Y_J, Z-]· It follows that [·, ·]R satis
fies the Jacobi identity and defines another Lie algebra structure on g. This 
proves {1}. Since g* admits a system of linear coordinates, taken from g, 
where elements of g are viewed as linear functions on g*, it follows that in 
order to prove (2), it suffices to prove that if X andY belong tog then 

z:t {X,Y}R = {z:tX,z:tY}+. (4.9) 

For cjJ E g+ and X E g we have that (z+X,c/J) = (cfJ,X+), since z+ = P+. On 
the one hand it follows that if cjJ E g+ and X, Y E g and then, as functions 
on g*, they satisfy 

On the other hand, since P+([X, Y]R) =[X+, Y+] we have that 

Since cjJ is arbitrary this shows (4.9) for any X, Y E g and completes the proof 
of (2}. D 

Remark 4.35. The linear map z_: (g~, {-, ·}_) -t (g*, {-, ·}R), where{·,·}_ 
denotes the Lie-Poisson structure on 9:. is an anti-Poisson morphism, which 
means that 

z~ {X, Y}R =- {z~X,z~Y}_, 

for any X, Y E g. The reason for this asymmetry between 9+ and 9- is that 
P+[X, Y]R =[X, Y]+ while P_[X, Y]R =-[X, Y]_. 

4.4.2 The AKS Theorem on g• 

In order to formulate and prove the Adler-Kostant-Symes Theorem on g*, 
we need some more notation. For f E 9* and for HE .1"(9*) we introduce two 
functions HE and He by 

He : 9:t -t C : cjJ t-t H ( t: + cjJ), 

He: g* -t c: e t-t H(t:+e). 

Notice that He is just the restriction of He to g:t, i.e., z+He = He (we identify 
cjJ with z+(cP) to make the notation lighter). We also need the group analogue 
of the splitting of g. Therefore, we denote by G the (connected, simply
connected) Lie group whose Lie algebra is 9 and we denote the subgroups of 
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G that correspond tog+ and g_ by G+ and G_, The subset G+G- of G 
contains an open neighborhood of the origin in G, but G+G- is in general 
neither dense nor open in G. We recall from Section 2.2 that F(g*)G denotes 
the algebra of Ad* -invariant functions. 

Theorem 4.36 (AKS Theorem on 9*). Suppose that 9 = 9+ EB 9- is a 
Lie algebra splitting, let F, H E F(g*)G and suppose that € E 9* satisfies 

(4.10) 

Then 

{1) {F,H}R = 0 and {F0 H,}+ = 0; 
{2) The Hamiltonian vector fields XH := {-, Hh and XH. := {-, H,}+ are 

given by 

where, on the second line, ~ := ¢ + E; 

(4.11) 

( 4.12) 

{3) For ~o E 9* and for ltl small, let g+(t) and g_(t) denote the smooth 
curves in G+ resp. G_ which solve the factorization problem 

g±(O) =e. ( 4.13) 

Then the integral curve of XH which starts at ~o is given for ltl small by 

(4.14) 

The same formulas provide the integral curves of XH,, by replacing ~(t) 
by ¢(t) + € and ~o by ¢o + €. 

Proof. IfF, H E F(g*)G then it follows from the first equality in Lemma 2.9 
that 

{F, Hh (~) = ~ (~, [R(dF(~)), dH(~)]) + ~ (~, [dF(0, R(dH(~))]) = 0. 

This shows the first part of {1). In view of item {2) in Lemma 4.34, it is 
for the second part of {1) sufficient to prove that { F0 if,} R (~) = 0 for any 

~ E g* that vanishes on 9-· For such a~' we find by using (4.8) and (4.10) 
and by applying the first equality in Lemma 2.9 to F, as well as to if,, 

{P,,ii,}R(~) = (~, ((dF,(~))+,(dii,(~))+]) 

= ( ~ + €, ((dF,(~))+, (dii,(~))+ J) 
= -(~+€, ((dF,(~))-,(dii,(~))+]) 

= ( ~ + €, ((dF,(~))-, (dii,(~))-J) 
= 0. 
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This proves that they are in involution with respect to the Lie-Poisson R
bracket. In order to write down the Hamiltonian vector field XH, for H E 
:F (9*)G, take any F E :F(9*) and let ~ E 9*. By definition of XH we have 
that 

(4.15) 

But Lemma 2.9, applied to H, gives 

{F, Hh (~) = ~ (~, (dF(~), R(dH(~))]) = ~ ( adR(dH(e)) ~, dF(~)), 

leading to the first expression for XH in (4.11). The other expressions follow 
at once from the obvious formulas 

R(dH(~)) = (dH(~))+- (dH(~))-

= 2(dH(~))+- dH(~) = dH(~)- 2(dH(~))-

and Lemma 2.9. The computation that leads to XH. is more subtle, so we 
also give it. For FE :F(9*) and¢ E 9+ we have as in (4.15) that 

(4.16) 

and note that the vectors dFe(¢) span 9+* 9:' 9+ as F runs through :F(9*). 
Formula ( 4.16) can also be written as 

because dFe = dz+Fe = z+dFe. Since t+ is a Poisson map (see Lemma 4.34) 
we have that 

Since the latter expression is of the form (t+(¢),*), where * belongs to 
[9+, 9+] + [9-, 9-], the conditions (4.10) imply that it equals (z+(¢) + f, *). 
We can now use the invariance of H again to obtain 

{Fe, He}+(¢) = {Fe, il"e} R (t+(¢) +f) 

= ~ ( z+(¢) + f, [d.Fe(t+(¢)), R(dHe(z+(¢)))]) 

= ~ ( ad~(dii.(~+(¢))) t+(¢) + f, dFe(t+(¢))). 

Comparing the last expression to ( 4.17) leads to the announced expression 
for XH., upon suppressing t+ through our identifications. 
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We now turn to the integral curves of XH. We first show that Ad;+(t) eo= 
Ad;_(t) eo (the second equality in (4.14)). Since Ad* is a group homomor
phism, the factorization (4.13) implies that 

Ad;xp(-tdH(€o)) eo= Ad;+(t)-1 Ad;_(t) eo, 

for any eo E g*. We have for any X E g that 

( Ad;xp( -tdH(€o)) eo, X) = (eo, Adexp(tdH(€o)) X) 

= (eo,exp (ta~H(€o)) X) 
= (eo, X)+ t (eo, [dH(eo), *D 
=(eo, X), 

where the value of* (which depends on t) is irrelevant, by Lemma 2.9. This 
shows that Ad;xp(-tdH(€o)) eo= eo, and hence that Ad;+(t) eo= Ad;_(t) eo. 

We now show that e(t) := Ad;+(t) eo is (for jtj small) a solution to (4.11), 
which amounts to proving that 

d * * ( ) dt Ad9+(t) eo = ad(dH({(t)))+ e t . (4.18) 

In order to simplify the proof (mainly the notation), we will assume that G 
is a linear group, so that Ad and Ad* are just given by conjugation. Then the 
left hand side of (4.18) is given by ad;+(t)Y+(t)-1 e(t), so it suffices to show 
that 

(4.19) 

If we differentiate the identity g+(t) exp( -tdH(eo)) = g_(t) with respect to 
t and multiply both sides of the result by g_(t)- 1 we get 

iJ+(t)g+(t)-1 - g_(t)dH(eo)g-(t)- 1 = il-(t)g-(t)-1 • 

The Ad* -invariance of H implies, by the commutativity of the diagram in 
Lemma 2.9, that 

dH(e(t)) = dH ( Ad;_(t) eo) = Ad9_(t) dH(eo) = 9-(t)dH(eo)g-(t)-1 , 

so that 
il+(t)g+(t)-1 - dH(e(t)) = il-(t)g-(t)-1 • 

If we take the + part of both sides of this equation then we find (4.19), as 
was to be shown. The proof in the case of XH. is similar. 0 
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4.4.3 R-Brackets and Double Lie Algebras 

It is easily seen from the above proof that the first part of ( 1) and the first 
part of (2} in the Theorem 4.36 hold true for any endomorphism R: g ~ g 
for which 

1 
[X, Y]R = 2 ([RX, Y] + [X, RY]) 

defines a Lie bracket on g, which is then called an R-bracket and g, equipped 
with the two Lie algebra structures [·, ·] and [·, ·]R is called a double Lie 
algebra. Letting BR denote the bilinear map g x g ~ g, defined by 

BR (X, Y) = [RX, RY] - R ([RX, Y] + [X, RY]), 

the condition that [·, ·]R defines a Lie bracket (satisfies the Jacobi identity) 
is easily rewritten as 

(BR (X, Y), Z] + cycl (X, Y, Z) = 0. (4.20) 

Solutions R to the Yang-Baxter equation BR = 0, i.e., solutions R to 

VX,Y E g : [RX,RY] = R([RX,Y] + [X,RY]), 

yield particular solutions to (4.20), and the same is true for the solutions to 
the more general modified Yang-Baxter equation 

BR(X, Y) = -c[X, Y], 

where c E C is a constant. The endomorphism R = P + - P _ that we have 
considered corresponds to c = 1. Notice that when c -::f. 0 we may rescale2 R 
so as to get c = 1. But this case presents nothing new: if we define g+ and 
g_ by 

g± :={X± RX I X E g} 

then 9+ and g_ are subalgebras of g. Indeed, if we define 

then 

Z := [RX, Y] + (X, RY] 

[X± RX, Y ± RY] = [X, Y] + (RX, RY] ± ([X, RY] + [RX, Y]) 

= ±(Z±RZ), 

a consequence of the modified Yang-Baxter equation BR(X, Y) = -[X, Y]. 
Thus, we have a Lie algebra splitting g = 9+ E9 g_, and RX is nothing but the 
difference between the projection operators P+ : g ~ 9+ and p_ : g ~ g_, 
as in the AKS Theorem. 

2 When g is a real Lie algebra the rescaling yields c = ±1. 
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The case c = 0 (or c ~ 0 when g is a real Lie algebra) might lead to 
something new, but in that case the method that we presented to produce 
the solutions (integral curves), i.e., item (3} of Theorem 4.36, fails and no 
general integration method for that case is known. Finally, it is only in the 
case in which R comes from a Lie algebra splitting that one gets also an 
E-version of the AKS Theorem, as can be seen from our proof. We stress that 
for the majority of examples it is the E-version of the theorem that needs to 
be used. 

4.4.4 The AKS Theorem on g 

We will now transcribe the AKS Theorem to g, assuming that we are given 
an Ad-invariant non-degenerate bilinear form on g, 

(·I·) : g X g-+ c. 

Recall from Section 3.5 that the Lie-Poisson structure on g with respect to 
(-I·) is given by 

{F, H} (X)= (X I (VF(X), v H(X)])' 

where V F(X) is the gradient ofF at X (with respect to (·I·)). We also recall 
that the isomorphism g -+ g*, which is induced by (·I·), establishes a one-to
one correspondence between Ad* -invariant functions on g* and Ad-invariant 
functions on g, and that the Hamiltonian vector fields XH on (g, {-, ·}) take 
the simple form 

X= [VH(X),X]. 

See Section 3.5 for details. 
Non-degeneracy of (·I·) implies that g admits another (vector space) di

rect sum decomposition, namely as g = gi EB g:: where g:): (resp. g::) is the 
orthogonal complement (with respect to (·I·)) of g+ (resp. g_). In view of 
the isomorphisms 

and g.L C>i g* -- +• 
which are induced by (·I·), the two subspaces g:): and g:: of g (which are 
not Lie subalgebras) carry a linear Poisson structure, which we will denote 
by { · , ·} s:l:, resp. { · , ·} 9 ::. The element of g that corresponds to E will still 

be denoted byE, and for HE F(g) we get now a function ii, E F(g) and a 
function H, E F(g::), defined as before. In the formulas in the theorem that 
follows we will leave once again the inclusion Z+ : g:: -+ g out in favor of the 
readability of the formulas. 

We are now ready to formulate the Adler-Kostant-Symes on g. The proof 
follows by transcribing Theorem 4.36 to g. 
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Theorem 4.37 (AKS Theorem on g). Suppose that g = g+ EB g_ is a 
Lie algebra splitting and that (·I·) is an Ad-invariant non-degenerate bilinear 
form on g, leading to a vector space splitting 

g = g:j: EB g= £!! g:_ EB g~. 

Let F, H E F(g)G and suppose that f E g satisfies 

Then 

(1} {F,Hh = 0 and {Fe,He}9:: = 0; 

{2} The Hamiltonian vector fields XH := {-, H}R and XH, := {-, He}9:: are 

respectively given by 

XH(X) = -~[X,R(\?H(X))] = ±[X,(\?H(X)h:] (4.21) 

and 

XH,(Y) = -~[Y,R(\?H(Y))] = ±[Y,(\?H(Y))'f], (4.22) 

where Y E g:: + Ei 
(3) For Xo E g and for It I small, let g+(t) and g_ (t) denote the smooth curves 

in G+ resp. G_ which solve the factorization problem 

exp( -t\7 H(Xo)) = Y+(t)- 1 g_ (t), 9±(0) =e. 

Then the integral curve of XH which starts at Xo is given for ltl small by 

X(t) = AdY+(t) Xo = Ad9_(t) Xo. 

We illustrate the AKS Theorem (on g) by the following simple example. 

Example 4.38. Consider the Lie algebra splitting 

g = g[(n + 1) = ..:1~+1 EB ..:1~+1 = g+ EB g_, 

where .d~H (resp . ..1~+ 1 ) denotes the Lie algebra oflower triangular matrices 
(resp. of strictly upper triangular matrices). Letting (A I B) = Trace(AB) we 

have that g:: = ( .d~H) .l = .d~H, the vector space of all upper triangular 
matrices in g[(n+ 1). IfF is a linear function on g[(n+ 1) then \7 F(X) = \7 F 
is independent of X and it follows from (3.33) that it is given by (\7 F I Y) = 
F(Y), where Y E g[(n+ 1). Denoting by Xij the linear function that picks the 
element (i,j) of a matrix, it follows that \?Xij = Cji, the matrix whose entry 

at position (k, l) is 6jk6u. The Poisson bracket on .d~H £!! g~ is therefore 
given by 
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where j ;;:: i and l ;;:: k. Let us denote by Bp the set of all p-band matrices in 
Ll~+l· Thus 

Bp := {X E Ll~+l I Xij(X) = 0 if j- i > p}. 

All Hamiltonian vector fields on Ll~+l are tangent to Bv (at points of Bp): 
letting j - i > p and l ;;:: k we have that 

for any X E Bv, since j- k > p and l- i > p. Thus, all Hamiltonian vector 
fields annihilate the ideal defining Bp, which implies, in view of Proposition 
3.33 that they are tangent to Bv and that Bv is a Poisson subspace of Ll~+l· 
We take p := 1 and 

c ·._.-

0 0 
1 0 

0 1 0 

It is easy to verify that [t:,g_J ~ g:: and that [t:,g+] ~ g:l:. Taking H: Y 1-t 

-~Trace Y2 , so that V' H(Y) = - Y we find from ( 4.22) the Hamiltonian 
vector field XH., given by the Lax equation 

Y = [Y, Y+] =- [Y, y_], 

where 

Y·-

1 bn an 

0 1 bn+l 

and where 

0 a1 0 bl 0 0 

0 0 a2 1 b2 0 

y_ = Y+= 

0 0 an 1 bn 0 

0 0 0 0 1 bn+l 
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For future reference, we also wish to write down the vector field that goes 
with K := - ~ Trace Y3 • Since V K (Y) = - Y2 it is given by 

where Y is as above and 

0 a1(b1 + bz) a1a2 0 

0 az(bz + b3) aza3 

0 an-1 (bn-1 + bn) an-1an 

0 0 an(bn + bn-1) 

Example 4.39. We now give a class of examples where the Lie algebra is a 
finite-dimensional subspace of the affine Lie algebra 

L(g) = { X(b) = ,f;, [)'X; I M, NEZ and X; E g fm M <; j <; N}, 

where g is a Lie subalgebra of gl( n), that is assumed to carry a non-degenerate 
Ad-invariant symmetric bilinear form (·I·). Recall from Section 2.4 that there 
is a natural Lie bracket on L(g), which is given by 

and that ( · I· ) leads to a sequence of Ad-invariant symmetric bilinear forms 
(·I· )k on L(g) upon defining 

Moreover, the non-degeneracy of ( · I· ) implies that ( · I· ) k is non-degenerate, 
for any k. In the sequel we take k = 1 and we write 

where 

L(g) = L(g)+ EB L(g)_ 

L(g)+ = L(g):j: = {X@ = ~[)'X; I N E N} (; L(g), 

L(g)_ = L(g)~ = {X@ = ,tM IJ' X; I M E N'} (; L(g), 
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the subalgebra of L(g) consisting of polynomial elements (in b), resp. the 
subalgebra of L(g) consisting of polynomial elements in b - 1, without constant 
term. Notice that with respect to this splitting 

i.e., 1r+(X) = X+ is the polynomial part of X = X(b) while 1f_(X) 
X_ is its Laurent part. Let a and 'Y be two fixed diagonal matrices, a = 
diag( a 1, ... , an) and 'Y = diag( 'Y1, ... , 'Yn), where we assume that all ai are 
different. We consider the affine subspace of L(g)+, defined by 

Tm(a,'Y) = abm + 'Ybm-1 + Am-1, 

where 

Am-1 :={I: b3 Xj I diagXm-1 = o} c L(g)+· 
J=O 

We claim that r m(a, 'Y) is a Poisson subspace of (L(g)+, {-,·}_),where{-,·}_ 
is, in analogy3 with the notation using in Lemma 4.34, the Lie-Poisson struc
ture on L(g)~ ~ L(g)i = L(g)+· Since the symplectic leaves of the Lie
Poisson structure are the coadjoint orbits (Proposition 3.29) and since we 
have identified L(g) with its dual by using an Ad-invariant form this amounts 
to showing that for any X E L(g)_ the fundamental vector field adx of the 
coadjoint action is tangent to r m (a, 'Y). The coadjoint action is given, under 
the isomorphism L(g)+ ~ L(g)~, by adx Y = [X, Y]+, where X E L(g)_ 
andY E L(g)+ ~ L(g)~; indeed, for any Z E L(g)_, 

(adx Y, Z) = - (Y, [X, Z]) = - (Y I [X, Z])1 = ((Y, X] I Z)1 = ([X, Y]+ I Zh = ([X, Y]+, Z) . 
Notice that the Lie group of L(g)_ is infinite-dimensional, but this is inessen
tial because only a finite-dimensional quotient of this group has a non-trivial 
action on Tm(a,'Y)· To check tangency, let X= :Ei~- 1 Xibi E L(g)_ to find 

adi(abm + 'Ybm-1 + Am-1) = [.L Xibi,abm + 'Ybm-1 + Am-1] 
·~-1 + 

= (X-1,a]bm-1 + O(bm-2 ) E Am-1, 

where the vector space Am-1 is naturally identified with the tangent space of 
the affine spacer m(a, 'Y) at any of its points. Notice that all elements on the 
diagonal of (X_1, a] are indeed zero, as is obvious from the fact that a is a 
diagonal matrix. Thus, r m (a, 'Y) is a (finite-dimensional) Poisson submanifold 
of (L(g)+, {-, ·} _). 

3 Notice that since we will work with L(g)~, rather than with L(g)+ (as we did in 
the AKS Theorem) we will have an extra sign in the Hamiltonian vector fields. 
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We now specialize to g = gl(n) and we take (X I Y) = Trace(XY), for 
X, Y E gl(n), so that 

(X (b) I Y(b))1 = Resb=o Trace X(b)Y(b). 

We take a function f of one variable (typically, think of a polynomial or a 
logarithm) and we define a function H1 on L(g)+ by 

Then His Ad-invariant. Indeed, let g = g(b) be an element of the loop group 
of L(g) and let X = X(b) be an arbitrary element of L(g)+· Then 

H1(gXg- 1) = (1 (gxg- 1b-i) I bk) 1 = (gf ( Xb-i) g-1 1 bk) 1 

= (1 (xb-j) lg-1bkg\ = (1 (xb-j) lbk\ = H1(X) 

We have that 
(4.23) 

where f'(z) it the ordinary derivative of f(z). Indeed, assuming first that 
f(z) = zi we compute by using (3.33) for Y = Y(b) E L(g) 

d 
(VH1(X) 1 Y) 1 = -d H1(x + tY) 

tit=O 

= ~ ((x + tY)ib-ij 1 bk) 
dt lt=O 1 

=the linear term in tin ((X+ tY)ib-ij I bk\ 

= ( (xi-ly + xi-2y x + ... + Y xi-1)b-ij I bk) 1 

= (i(Xb-i)i-1b-j IYbk)1 

= (!'(Xb-j)bk-j I Y) 1. 

This shows (4.23) when f is of the form f(z) = zi. Since (4.23) is linear 
in f the formula remains correct for f when f is a polynomial and, more 
generally, when f is an analytic function. It follows from (4.21) that the 
Hamiltonian vector field on (L(g)+, {·,·}_)that is associated to H1 is given 
by (see the previous footnote for the extra minus sign) 
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Table 4.1. We display four examples where the Hamiltonian His given by (4.24), 
with Hamiltonian vector field, given by the Lax equation (4.25). In the table, T,, = 
x®x while Sxy = x®y+y®x. The last column gives a Hamiltonian fi which yields 
the same Hamiltonian vector field XH, but with respect to the standard Poisson 
structure {x;,yi} = 8;i· They yield, in that order, (a) the Arnold-Euler equations, 
(b) geodesic flow on an ellipsoid, (c) the Neumann problem of n harmonic oscillators, 
confined to the sphere and (d) the central force problem on an ellipsoid. 

X= X(b) f(z) ii 

o:b + Txy 1z3/2 
3 t L:VQiH; 

o:b2 + T,yb - T,., ln(z) 1 2:: -1 F 2 0:; i 

o:b2 + Txyb- T,, z2/2 t 2:: o:;F; 

o:b2 + Txyb + Sxy - 0: ln(z) t L:o:;-tG; 

where X = X(b) E o:bm + rbm-1 + 2:::~ 1 Xibi, with diag(Xm-1) = 0. If 
we specialize this further to the case j = m, k = m + 1 then H(X) = 
( f ( Xb -m) I bm+l \ and the vector field becomes 

X= [X,,Bb+ E], 

where ,8 = f'(o:) and E = ad13ad~ 1 Xm-1 + f"(o:)r, i.e., for 1 ~ i,j ~ n, 

the above being easily checked for the case f(z) = zk and then the general 
case follows by linearity. A few relevant special cases are given in Table 4.1; 
see [7] and [8] for more information on these examples and for other im
portant examples. In the given examples Fm(o:) does not depend on/, the 
Hamiltonian is always of the form 

and the Hamiltonian vector field XH on Fm(o:) is always of the form 

X= [X, ,Bb + ad13 ad~ 1 Txy], (4.25) 

where Txy :=X® y- y ® x, for x, y E en, and ,8 := f'(a). We also denote 

where 1 ~ i,j ~ n. 
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4.5 Lax Operators and r-matrices 

In the previous section we have seen how a Lie algebra splitting g = g+ EB g_ 
leads to a collection of commuting functions, and hence to a collection of 
commuting vector fields on the dual g* of g. In order to make these into 
commuting vector fields on g, which can be written as Lax equations, we 
used an Ad-invariant non-degenerate symmetric bilinear form on g (such as 
the Killing form when g is semi-simple). In the present section we describe a 
different approach to Lax equations, where the essential ingredient is a Lie 
algebra structure on g* (which yields a linear Poisson structure on g). In our 
exposition we will not describe the theory in its utmost generality, restricting 
ourselves to the most important class of such Lie algebra structures. See [152] 
or [99] for more details. 

We start with a Lie algebra g and we equip g ® g with the structure of a 
g-module by letting 

g X (g ®g) -t g ® g 

(X,r) t-t [X® 1 + 1 ® X,r], 
(4.26) 

where [X® 1,r] and [1 ® X,r] are, for r of the form r = Y ® Z, explicitly 
given by 

[X®1,Y®Z] = [X,Y]®Z, 

[1®X,Y®Z] =Y®[X,Z]. 

For a fixed r E g ® g the action ( 4.26) leads to a linear map 

6r: g -t g ® g 

X t-t [X® 1 + 1 ® X,r]. 

Let us suppose that the dual of 6r defines a Lie algebra structure 

[· '·]r : g* X g* -t g* 

(4.27) 

on g* (rather general sufficient conditions for this to happen will be given 
shortly); for ~' TJ E g* and X E g, this means by definition that 

([~, TJ]r, X} = (~ 1\ TJ, 6r(X)} = (~ 1\ TJ, [X® 1 + 1 ®X, r]}. (4.28) 

Then g inherits a linear Poisson structure{·, ·}r from[·, ·]n since g ~ g** is 
then the dual of a Lie algebra. Explicitly, ifF, G E F(g) then 

{F,G}r(X) = ([dF(X),dG(X)]r,X} 

= (dF(X) 1\ dG(X), [X® 1 + 1 ®X, r]}. 

where dF(X) and dG(X) are interpreted as elements of g*. In particular, if 
we take for F and G elements~ and TJ of g* then this formula becomes 
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{e, 17} r (X) = (e 1\17, [X® 1 + 1 ®X, r]). (4.29) 

In order to get sufficient conditions for [·, ·]r to define a Lie algebra structure 
on g*, let us denote by r+ (resp. r-) the symmetric (resp. skew-symmetric) 
part of r. Notice that 6r+(X) (resp. 6r-(X)) is a symmetric (resp. skew
symmetric) element of g ® g, for any X E g. Indeed, for a symmetric/skew
symmetric element B± = Y ® Z ± Z ® Y of g ® g and X E g we have that 

6s±(X) = [X®1+1®X,Y®Z±Z®Y] 
= [X, Y] ® Z ± Z ®[X, Y] + Y ®[X, Z] ±[X, Z] ® Y, 

showing our claim. It follows that skew-symmetry of[·, ·]r is guaranteed if 
we assume r to be skew-symmetric, r = r-, which we will do from now on. 
In order to analyze the Jacobi identity for [·, ·]r we introduce the linear map 
r. : g* -t g, which is defined for e E g* by 

In terms of r. we get the following explicit formula for [·, ·]r· 

Lemma 4.40. Let r E g ® g be skew-symmetric. For any e, 17 E g*, 

[e, '1lr = ad~(~) '1 - ad~(fl) e. 

(4.30) 

(4.31) 

Proof. Since the formula is linear in r it suffices to show it for r of the form 
r = Y 1\ Z, withY, Z E g. We do this in two steps. First we show that 

[e, '71YAZ = (e, Y} adz q- (e, Z) ady q- <e +t q). (4.32) 

To do this, take any X E g and use (4.28), (4.27) and (2.14) to get 

([e, 11lYAZ, x) = (e 1\ 11, [x ® 1 + 1 ® x, Y 1\ z]) 
= (e 1\ q, [X, Y]/\ Z + Y 1\ [X, Z]) 

= (e, Y) (17, [X, Z]}- (e, Z) (1J, [X, Y]) - (e +t 17) 

= (e, Y) (adz 11, x) - (e, z) (ady 11, x) - <e ++ q). 

This shows (4.32). In order to show (4.31) it suffices now to show that 

adyAz(~) '1 = (e, Y) adz 17- (e, Z) ady '1· 

Taking again any X E g, use now (2.14) and (4.30) to compute 

( ady Az(~l 77, x) = - (adi q, Y 1\ z(e)) 

= - (e 1\ adi 11, Y 1\ z) 
= - (e, Y) (adi 17, Z) + (e, Z) (adi q, Y) 

= (e, Y) (adz 17, X)- (e, Z) {ady q, X). 

This establishes (4.33) and hence also (4.31). D 

(4.33) 
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Proposition 4.41. If r E g 181 g is skew-symmetric and satisfies 

((, [r.(~),z:(ry)]} + (~, [r.(ry),z:(()]} + (ry, [r.((),r.(~)]} = 0, (4.34) 

for all(,~'~ E g*, then[·, ·]r is a Lie bracket on g*. 

Proof. We have already shown that if r is skew-symmetric then [· , ·]r is skew
symmetric. Thus, it remains to be shown that if r satisfies, in addition, ( 4.34) 
then [·, ·]r satisfies the Jacobi identity 

We prove that 

[[~, 7J]r, (]r =ad~(() ad~(TI) (-ad~(() ad~(() 1J- (~ ++ ry); (4.36) 

(4.35) follows from it trivially. Using Lemma 4.40 (twice) we have that 

[[~, 7J]r '(]r = [ad~( e) 1J, (L- (~ ++ 17) 

=ad*( • ) (-ad~(() ad~(e) 1J- (~ ++ ry), :r. adr.wTI 

so ( 4.36) is proven when we show that 

ad*( • ) (- ad~(e) ad~(TI) (- (~ ++ ry) = 0. (4.37) 
:r. adr.wTI 

To show the latter, let X E g and use (2.14) and the skew-symmetry of r to 
find that 

\ ad~(act~w 71) (,X) =- ( adi (,r. ( ad~(e) 11)) 
= (dadi (), ad~(e) 1J) 
= (ry, [r.(adi () ,r.(~)]}. 

If we substitute this in (4.37), evaluated at X, and we use that ad* is a 
representation, [ad}r, adZ,] = ad(Y,ZJ• for any Y, Z E g, then we find 

(ry, [r.(ad~ () , r.(~)]) - (~, [r.(ad~ () , r.(ry)]) - ( [ad~w, ad~(71)](, X) 
= (ry, [r.(adi () ,r.(~)]) + (~, [r.(ry),r.(adi ()])- ( ad[:r.((),:r.(ry)J (, x) 
= (ry, [r. (ad~(), r.(~)]) + (~, [r.(ry), r. (ad~()]) + (ad~(,[!:(~), r.(ry)]) 

which is zero in view of (4.34), applied to the triple (~,ry,adi (). D 
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If r E g ® g is skew-symmetric and satisfies ( 4.34) then we will say that 
r is an r-matrix, although some authors reserve this terms for the particular 
case in which g is a Lie algebra of matrices. 

We now wish to apply this formalism to Lax operators. For a manifold 
M and a Lie algebra g we denote by gM the space of functions on M with 
values in g. Elements of gM may be viewed as matrices over the ring :F(M), 
hence the Lie bracket [·, ·] on g leads to a Lie bracket on gM, which is also 
denoted by [·, ·]. 

Definition 4.42. Let (M,{·,·}) be a Poisson manifold and let g be a Lie 
algebra, equipped with a Poisson bracket { · , ·}g. An element L E gM is called 
a Lax operator in (g, {- , ·}g) if 

L: (M, {·, ·})--+ (g, {·,·}g) 

is a Poisson map. When { · , ·} g is the Poisson structure that comes from an 
r-bracket r, then we also say that Lis a Lax operator with r-matrix r. 

An important particular case for what follows is obtained by taking M = g 
and L = Idg. 

For K, L E gM we define an element { K ~ L} E (g ® g)M. To do this, we 
pick any basis El' ... 'EN of g, with dual basis el' ... 'eN' and we define 

N 

{K~L} == 2: {K*ei,L*ej}Ei®Ej, (4.38) 
i,j=l 

which is easily seen to be independent of the chosen basis for g. If L is a Lax 
operator in g with r-matrix r, as defined above, then (4.38) implies 

N 

{L~L} := 2: L*{ei,ei}rEi®Ej, 
i,j=l 

so we find, by (4.29), that for any mE M, 

N 

{L ~ L} (m) = L ({ei.eilr ,L(m)) Ei ® Ei 
i,j=l 

N 

= L (ei "ej, [L(m) ® 1 + 1 ® L(m), r]} Ei ® Ej 
i,j=l 

= [L(m) ® 1 + 1 ® L(m), r]. 

This yields a proof of the following result. 

Proposition 4.43. Let (M, {·, ·}) be a Poisson manifold and let g be a Lie 
algebra. If L E gM is a Lax operator in g with r-matrix r, then 

{ L ~ L} = [L ® 1 + 1 ® L, r]. 

0 
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We now specialize the above construction to the case in which g = gl(E), 
where E is a finite-dimensional vector space, whose dimension will be denoted 
by n. The extra feature that we will use is the fact that we can multiply 
(compose) elements of gl{E). Thus, we are also able to multiply elements 
of gM. Another extra feature, which is very useful for explicit computations, 
is that upon choosing a basis £ = (e1, ... , en) for E, one can easily write 
down explicitly a n2 x n2 matrix for { K ~ L} from the matrices for K and L 
with respect to £. In fact, if we write the ( i, j)-th entry of the matrices for K 
and L by Kii and Lii then the matrix of { K ~ L} with respect to the basis 
e1 ® e1, e1 ® e2, ... , en® en is given by (recall that Kij and Lij are functions 
(on M)) 

{K~L}= 
{Ku,Lnd ... {Ku,Lnn} · · · {Ktn,Lnt} · · · {Ktn,Lnn} 
{K21,Lu} ... {K2l,Ltn} ... {K2n,Lu} ... {K2n,Ltn} 

{Knt,Lnt} · · · {Knt,Lnn} · · · {Knn,Lnt} · · · {Knn,Lnn} 
(4.39) 

The relevance of r-matrices and their Poisson brackets for the theory of in
tegrable systems is given by the following theorem. 

Theorem 4.44. Let (M, {-, ·}) be a Poisson manifold and let g = gl(E), 
where E is a finite-dimensional vector space. If L E gM is a Lax operator 
in g with r-matrix r, then the functions Hi E F(M), which are defined by 
Hi(m) := Trace£i(m), formE M, are in involution with respect to{-,·}, 
where i E N*. Moreover, the Hamiltonian vector field associated to Hi has 
the Lax form 

Proof. We first establish a few formulas4 for computing with { · ~ ·}. It is seen 
at once from ( 4.39) that the Leibniz property for { · , ·} implies the following 
Leibniz properties for {- ~ ·}, 

{ K1K2 ~ L} = Kt ® 1 { K2 ~ L} + { Kt ~ L} K2 ® 1, 
{L ~ K1K2} = 1 ® K1 {L ~ K2} + {L ~ Kt} 1 ® K2, 

( 4.40) 

4 We minimize the use of brackets in the formulas, but they remain unambiguous: 
for example, if r =a® b then 1 ® Lr =a® (Lb). 
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Also, notice that for any o: E g ® g and for any integer k we have that 

LP ® 1[o:, L ® 1 + 1 ® L] = [LP ® 1 o:, L ® 1 + 1 ® L], 
[o:, L ® 1 + 1 ® L]LP ® 1 = [o: LP ® 1, L ® 1 + 1 ® L]. 

(4.41) 

The proof follows trivially from the fact that £P ® 1 commutes with L ® 1 as 
well as with 1 ® L. 

We use these formulas to show that if L E gM is a Lax operator in g with 
r-matrix r, then 

p-1q-1 

{ £P !if U} = L L [Lp-i-1 ® Lq-i-1rLi ® Li, L ® 1 + 1 ® L]. (4.42) 
i=O j=O 

The proof goes by induction on p and q; let us just show that if the formula 
is true for (p, q) and for (1, q) then it is true for (p+ 1, q). Indeed, using (4.40) 
and (4.41), 

{LP+l!if U} = L ® 1 {£P !if U} + {L !if U} £P ® 1 
p-1q-1 

= L L [Lp-i ® Lq-j-1rLi ® Li, L ® 1 + 1 0 L] 
i=O j=O 

q-1 

+ L [1®u-i-1r£P®Li,L®1+1®L] 
j=O 

p q-1 

= L L [Lp-i ® u-i-1rLi ® Li' L ® 1 + 1 ® L]. 
i=O j=O 

As a corollary, notice that each term in { £P !if Lq} is a commutator, hence 
the trace of { £P !if Lq} = 0 is zero, for any p, q ~ 1. But 

Trace { K !if L} = {Trace K, Trace L} , 

for any K, L E gM, as is most easily seen from ( 4.39). It follows that for any 
p,q ~ 1, 

{Trace£P, TraceU} = Trace{LP !if U} = 0. 

We use the above formula (4.42) to show that the Hamiltonian vector 
fields XH, can be written in Lax form. To do this, we define a linear map 
Trace2 : g ® g -+ g, trace in the second component, which is given for a ® b 
by Trace2(a ®b)= a Trace(b). For example, if X, Y E g then 

Trace2[X ® Y, 1 ® L] = XTrace[Y,L) = 0. 

Now XH,L is a matrix whose entry at position (j,k) is given by 

XH,Lik = { Ljk, Trace(Li)} = (Trace2 { L !if Li} )Jk· 
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It follows, using (4.42), that 

XH;L = Trace2 {L ~ Li} 
i-1 

= L:Trac~ [1 ® Li-i-1 r 1 ® Li,L ® 1) 
j=O 

= [i Trac~(1 ® Li-1r), L] . 

In order to prove the last equality, the reader may first assume that r is a 
decomposable tensor, i.e., that r is of the form X® Y, with X, Y E g and 
then write the bracket as a commutator; the proof for general r then follows 
from the fact that any r is a finite sum of decomposable tensors. D 

The fact that the traces of the powers of L are in involution can also be 
restated by saying that the coefficients of the characteristic polynomial of L, 
which are elements of :F(M), are in involution or by saying that the eigenval
ues of L are in involution (the latter may, strictly speaking, be only smooth 
or holomorphic on a dense open subset of M). 

Suppose that (M, {-, ·}) is a Poisson manifold and that L E gM, where 
g = gl(E) as above. If there exist functions A, B E (g ® g)M such that 

{L ~ L} = [1®L,A] + [L® 1,B] ( 4.43) 

then the traces of the powers of L are also in involution. The proof is essen
tially the same as the proof of the above theorem. In the theorem A = B = r; 
moreover, A and B are elements of g ® g, i.e., they are constant functions 
M -+ g ®g. We show now, following [25] that, conversely, if the traces of 
L are in involution then- under some genericity assumption of L- there 
exist functions A, B, defined on a dense open subset of M, such that (4.43) 
holds. 

Theorem 4.45 (Babelon-Viallet). Let (M, {·, ·}) is a Poisson manifold 
and let L E gM, where g = gl(E) and E is a finite-dimensional vector space. 
Suppose that 

{1} There exists an open dense subset U of M such that L(m) is diagonaliz-
able for all mE U; 

{2} The coefficients of the characteristic polynomial of L are in involution. 

Then there exists an open dense subset V ~ U of M, and smooth functions 
A, B : V -+ g ® g, such that 

{ L ~ L} = [1 ® L, A]+ [L ® 1, B]. 

Proof. By assumption, we can diagonalize L on U. By passing to a smaller 
subset V, which can still be chosen open and dense, this implies that we 
have a smooth map (the diagonalizing map) S : V -+ GL(E), such that 
L = s-1 AS, where A is a diagonal matrix. 
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Now { L ~ L} = { s-1 AS~ s-1 AS} , and the latter is computed by using 
the derivation property ( 4.40). This gives only 8 terms, since {A ~ A} = 0. 
Each of them contains either {A~ S} or { S ~ A} or { S ~ S}. We write each 
of them in the form (1 0 L,*] or [L 01,*]· First, for the (two) terms that 
contain {A~ S} we have explicitly 

s-1 0 (S- 1 A) {A~ S} S 0 1 - s-1 0 s-1 {A ~ S} S 0 (S-1 AS) 

= (10 (S-1 AS))(S-1 0 s-1 ) {A~ S} S 01 

-(S- 1 0 s-1 ) {A~ S} (S 01)(10 (S- 1 AS)) 

= [10 (S-1 AS), s- 1 0 s-1 {A~ S} S 01] 

= [10L,S- 1 0S-1 {A~S}S01]. 

Similarly, the (two) terms that contain { S ~ A} are given by 

[L 0 1, s- 1 0 s-1 { S ~A} 10 S). 

The four remaining terms, which contain { S ~ S}, are given by 

(S- 1 A) 0 (S- 1 A) { S ~ S} + s-1 0 s-1 { S ~ S} (S-1 AS) 0 (S-1 AS) -

(S-1 A)® s-1 {S ~ S} 1 ® (S-1 AS)- s-1 ® (S-1 A) {S ~ S} (S-1 AS)® 1 

which can be rewritten in the following way: 

[(s-1 AS) 0 1, s-1 0 (s-1 A) { S ~ S}) -

((S-1 AS) 01, s-1 0 s-1 { S ~ S} 10 (S- 1 AS)] 

= [ L 0 1, s-1 0 ( Ls- 1 ) { s ~ s} - s-1 0 s-1 { s ~ s} 1 ® L) 

= [L01,[10L,s-1 0S- 1 {s~s})]. 

Notice that, in view of the Jacobi identity and because [L ® 1, 1 ® L] = 0, the 
latter can also be written as 

(1 ® L, [L 01,S-1 0 s-1 {S ~ S})). 

This shows that the eight terms in { L ~ L} can be written in the desired 
commutator form. D 

Example 4.46. We illustrate the Babelon-Viallet Theorem by a simple non
linear example. Consider the quadratic Poisson structure 

where 

{ L ~ L} = [L 0 L, r] 

(
0 0 0 OJ 
0 0 10 

r ·-
.- 0 -1 0 0 

0 0 0 0 

and L:= (~~). 

(4.44) 
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Explicitly, (4.44) is given by 

(

{P,P} {P,Q} {Q,P} {Q,Q}J 
{P,R} {P,S} {Q,R} {Q,S} 

{R, P} {R, Q} {S, P} {S, Q} 

{R,R} {R,S} {S,R} {S,S} 

[ ( 
P

2 
PQ Q P Q2 

) ( 0 0 0 0 ) l PR PS QR QS 0 0 1 0 
- RP RQ SP SQ ' 0 -1 0 0 

R2 RS S R 8 2 0 0 0 0 

( 
0 -PQ PQ 0 ) 

= -PR -2QR 0 -QS 
PR 0 2QR QS . 
0 -RS RS 0 

It is easy verified that the Jacobi identity is satisfied and that the coefficients 
of the characteristic polynomial of L are in involution (in fact, det L is a 
Casimir, and the above Poisson structure is most naturally interpreted as 
(an extension of) a Poisson structure on GL(2) or on SL(2), which makes 
them into Lie-Poisson groups). According to the Babelon-Viallet Theorem 
there must exist matrices A and B such that 

{L ~ L} = [1 ®L,A] + [L® 1,B). 

A simple example of such matrices is given by 

(
0 0 0 0 l 

A- 0 0 P 0 
0 -P 0 -Q 
0 0 R 0 

and (
p 0 Q 0 l 

B- OPPQ 
- R -P S 0 ' 

0 -R 0 P 

as is easily checked by direct computation, using 

(
p Q 0 0 l 
RSOO 

1®£= 
OOPQ 

OORS 

(
p 0 Q 0 l OPOQ 

£®1= . 
ROSO 

OROS 

The matrices A and B that satisfy (4.45) are, of course, not unique. 

(4.45) 



5 The Geometry of Abelian Varieties 

In this chapter we give a down-to-earth introduction to the theory of Abelian 
varieties, with the purpose of making this book reasonably self-contained and 
accessible to the applied community. The basic algebraic-geometric tools that 
we present here are well-known and can be found scattered around in the 
excellent books by Fay [52], Lange-Birkenhake [105], Mumford [129], Weil 
[172], and especially Griffiths and Harris [69]. 

5.1 Algebraic Varieties versus Complex Manifolds 

In this section we fix the algebraic-geometric terminology and notations that 
we will use and we recall the basic correspondence between divisors and line 
bundles, with emphasis on the Kodaira map, which embeds, under certain 
conditions, a complex manifold into projective space. 

5 .1.1 Notations and Terminology 

We will assume that the reader is familiar with the basic definitions of com
plex manifolds and algebraic varieties. Our convention is that an affine variety 
is an irreducible closed subset of eN (some authors do not assume it to be 
irreducible). We say that a complex manifold, which we always assume to be 
connected, is projective if it admits a projective embedding, i.e., a holomor
phic embedding into projective space (projective embeddings will be studied 
in Paragraph 5.1.3). An affine (resp. projective) variety of dimension 1 is 
called an affine curve (resp. projective curve), while any !-dimensional sub
variety of a general algebraic variety (for example the support of a divisor in 
an algebraic surface) is simply called a curve. An analytic curve in a complex 
manifold M is by definition a holomorphic map from an open subset of e 
into M. We will sometimes remove from an affine variety A in en the zero 
locus of a polynomial P E e[x1, ... , xn]· The resulting algebraic variety is 
often called a quasi-projective variety, but we will still call it an affine vari
ety, because it can be naturally viewed as a closed subset of enH, by adding 
to the polynomial equations Pi = 0 for A (where Pi E e[x1, ... , xn]) the 
equation XnHP = 1. 

M. Adler et al., Algebraic Integrability, Painlevé Geometry and Lie Algebras
© Springer-Verlag Berlin Heidelberg 2004
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On a complex manifold M we will use, besides the constant sheaves 
Z, Q, Rand C, the sheaves, defined for any connected open subset U by 

OM(U) =the ring (algebra) of holomorphic functions on U, 

MM(U) =the field of meromorphic functions on U, 

OM(U) = the group of nowhere vanishing holomorphic functions on U, 

MM(U) =the group of non-zero elements in M(U), 

n~(U) =the vector space of holomorphic p-forms on U. 

Another sheaf, introduced in Paragraph 5.1.3, is the sheaf OM(V) of a divi
sor V. For an open subset U ~ M the group OM(V)(U) is defined by 

OM(V)(U) =the OM(U)-module of holomorphic sections of [V], 

where [V] denotes the line bundle associated to V. Putting .C := [V] we also 
write O(.C) for O(V). We also use the common notation !}P(.C) for the sheaf 
!}P ® .C, where p E N, and we write !}P(V) for !}P(.C) if .C = [V]. For a 
sheaf SM on M the i-th Cech cohomology group is denoted by Hi(M, S), 
since it is clear that we are talking about a sheaf on M, and we use the 
standard abbreviation hi(M, S) for dim Hi(M, S). For a concise introduction 
to sheaves and cohomology, see [69, Section 0.3]. 

5.1.2 Divisors and Line Bundles 

We first briefly recall from [69, Section 1.1] how meromorphic functions, di
visors and line bundles on a complex manifold M are related. Everything is 
encoded in part of the long exact Cech cohomology sequence associated to 
the exact sequence of sheafs on M 

o --tOM --t MM --t MMfOM --to. 

The portion of interest is given by 

i.e., 
· · · --t M*(M) --t Div(M) --t Pic(M) --t · · · 

First, H 0 (M, M*) consists of the global sections of MM, i.e., the group 
M*(M) := MM(M) ofmeromorphic functions on M that are not identically 
zero. Second, H 0 (M, M* JO*) is naturally isomorphic to the group Div(M) 
of divisors on M: a divisor Von M is a formal, locally finite1 sum 

(5.2) 

1 Since we will only consider divisors on compact complex manifolds M the sum 
will actually be finite. 



5.1 Algebraic Varieties versus Complex Manifolds 109 

where the sum is over all irreducible hypersurfaces (codimension 1 analytic 
subvarieties) of M and each coefficient av is an integer. Given an irreducible 
hypersurface V of M, we can find an open cover {Ua}aEI of M such that for 
each a: E I the intersection U an V is given as the zero locus of a holomorphic 
function fa on Ua. The collection of meromorphic functions {f~v}aEI is 
clearly a global section of M:M/O:M since on the overlap Uaf3 := Ua n U13 the 
quotient Ua/ ff3)av is holomorphic and nowhere zero. Reversing the argument 
one associates to a global section of M:M/O:M a divisor on M by taking 
the zero and pole locus of the meromorphic functions that represent the 
section locally on each Ua. Thus, H 0 (M, M* /0*) and Div(M) are naturally 
isomorphic and the first part of (5.1) is, under this isomorphism, given by 

M*(M) -t Div(M) 

and the homomorphism between these groups is the map that associates to 
a meromorphic function f the formal difference between its divisor of zeros 
and its divisor of poles, denoted (f). Recall also that a divisor V = E av V is 
called an effective divisor when all av are non-negative. This is often denoted 
as V ;;:: 0, leading to a partial ordering on Div(M) by putting V ;;:: V' 
whenever V -V' ;;:: 0. If we denote the coefficients in the expansions (5.2) of 
V and of V' by av and a~ then the inequality V;;:: V' means precisely that 
av ;;:: a~ for all irreducible hypersurfaces V of M. 

Next, the group H 1 (M, 0*) is naturally isomorphic to the Picard group 
of M, denoted Pic(M), which is by definition the group of (isomorphism 
classes of) holomorphic line bundles on M. Indeed, given a line bundle C 
on M, we can find an open cover {Ua}aEI of M such that for each a: E I 
there exist local trivializations 

lPa: C -t Ua XC 

and holomorphic transition functions 

Ya/3 : U a n U 13 -t C*, 

which are defined by l/Jal/J"i1(p, 1) = (p, 9af3(p)), for p E UanU/3. The collection 
of transition functions Ya/3 define a Cech 1-cochain, which is a Cech 1-cocycle 
because they satisfy 

9af39{3a = 1, 

on Ua n U13 resp. on Ua n U13 n U"Y. But this cocycle is only defined up to a 
coboundary, because we can replace each of the l/Ja by l/Jafa, where each fa is 
a nowhere vanishing holomorphic function on U a. Indeed, the corresponding 
new transition functions will differ by the co boundary of the 0-cocycle formed 
by the fa· 
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Reversing the argument shows that H 1 (M, 0*) and Pic(M) are naturally 
isomorphic. Thus, the second part of (5.1) is given by Div(M) --+ Pic(M) 
and the (connecting) homomorphism associates to a divisor V on M, given 
by local defining functions fa, the line bundle whose transition functions are 
defined by Ua/3 := Ia/ ftJ· We will denote the line bundle which corresponds to 
V by [V]. We will denote the group operation in Pic(M) by® because it cor
responds to the tensor product of line bundles, and we write tensor powers as 
simple exponents. The fact that [·] : Div(M) -t Pic(M) is a homomorphism 
then leads to the following formulas 

[V + V'] = [V] ® [V'] [kV] = [V]k, 

for V, V' E Div(M) and k E z. 
The final piece of information contained in (5.1) is exactness at the level of 

H 0 (M, M* /0*) ~ Div(M): it says that (V] is (isomorphic to) the trivial line 
bundle M x Con M precisely when Vis a principal divisor, i.e., when Vis 
the divisor of a meromorphic function. A useful notion in this context is linear 
equivalence of divisors: two divisors V and V' are linearly equivalent, denoted 
V""' V' when V- V' is a principal divisor. Thus, the exactness of (5.1) at the 
level of H 0 (M, M* /0*) says that divisors lead to isomorphic line bundles, 
precisely when they are linearly equivalent. For example, let w1 and w2 be two 
holomorphic n-forms on M, where dim M = n (such ann-form is also called a 
top-form). There exists a meromorphic function f on M, such that Wt = Jw2, 
sometimes written as f = wt/w2. Then (wt) - (w2) = (f) so that the zero 
locus of w1 and of w2 are linearly equivalent divisors, (w1 )""' (w2); conversely, 
if w is a top-form then any effective divisor which is linearly equivalent to (w) 
is the zero locus of a top-form on M. It follows that all top-forms on M define 
one and the same line bundle on M. This line bundle is called the canonical 
bundle of M, denoted KM, while any divisor (w), with w a top-form on M, 
is called a canonical divisor. Holomorphic sections of KM are holomorphic 
n-forms, so that OM(KM) = !tM-, which implies that we have, for any line 
bundle C on M, a natural sheaf isomorphism 

(5.3) 

To finish this section we list some other general facts on the cohomology of 
line bundles and we apply it to the Poincare Residue map. The holomorphic 
Euler characteristic x(C) of a line bundle Cover a compact complex manifold 
M is the integer 

x(C) = L( -1)PhP(M, O(C)), 
p;;J:O 

which is a topological invariant of C and M. In particular the holomorphic 
Euler characteristic of the trivial line bundle over M is denoted by x( 0 M) 
and is a topological invariant of M. A very useful theorem for computing di
mensions of cohomology groups which are related to holomorphic differential 
forms is the Kodaira-Serre Duality Theorem. 
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Theorem 5.1 (Kodaira-Serre Duality). Let M be a compact complex 
manifold of dimension n. For any p, q with 0 ~ p, q ~ n there is a natural 
non-degenerate pairing 

In particular, hq(M, {}P) = hn-q(M, nn-P). 

To see how this pairing comes about, let us first recall the Dolbeault Theorem, 
which states that for any p, q E N there is a natural isomorphism 

Hq(M, {}P) ~ H~·q(M), 

where M is any complex manifold (the Dolbeault cohomology groups H~·q ( M) 
are the complex analogs of the de Rham cohomology groups, see [69, Chapter 
0.2]). At the level of the Dolbeault cohomology groups the pairing is given 
by the ordinary wedge of forms. This pairing is non-degenerate (on closed 
forms) when M is compact, since by the Hodge Theorem, the Dolbeault co
homology groups H~·q(M) are in turn isomorphic to the groups 1lp,q(M) of 
harmonic (p, q)-forms on M (when M is compact); this isomorphism is not 
natural since it involves the choice of a hermitian metric. 

The fact that hq(M, {}P) = hn-q(M, nn-p) is still valid when p or q are 
larger than n, because in that case all cohomology groups vanish. Thus, we 
have on a compact complex manifold of dimension n that hq(M, {}P) = 0 as 
soon as q > n or p > n. In the case of Kahler manifolds, a more general 
statement on the vanishing of cohomology groups is given by the K odaira
Nakano Vanishing Theorem. 

Theorem 5.2 (Kodaira-Nakano Vanishing). Let C be a positive line 
bundle on a compact Kahler manifold M. Then Hq(M, {}P(C)) = 0 when
ever p+q > n. 

Let us explain the elements that appear in this theorem and show how they 
are related. If we fix a hermitian metric on a line bundle C then the curvature 
form B.c of the metric connection on Cis a closed (1, 1)-form. We say that 
C is a positive line bundle, if there exists a metric on C such that the (1, I)
form (i/27r)8.c is positive. In terms of complex local coordinates z1, •.. ,zn 
( n = dim M) this means that 

B.c = L hii(z)dzi 1\ dzi, 
i,j 

where the matrix (hii(z)) is positive Hermitian for each z. The de Rham 

cohomology class of {,(e.c depends on Conly, and not on the chosen metric. 
Indeed, consider the exponential sheaf sequence 
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We are interested in the following part of its long exact sequence, 

The cohomology class c1 (.C) is called the Chern class of .C and it is a topolog
ical invariant of .C because the metric was not used to construct it. The line 
bundles .C on M with trivial Chern class, c1 (.C) = 0 form a subgroup of the 
Picard group, denoted Pic0 (M). The Chern class is related to the curvature 
form by 

c1(.C) = [ ~ec], 
where the latter denotes the cohomology class of {(ec. 

Any complex manifold M admits many Hermitian metrics, i.e. Hermitian 
inner products on the complex tangent spaces. The real part ~g of such a 
metric g gives a Riemannian metric on M, while -!~9 gives a positive (I, I)
form won M. The metric g is called a Kahler metric when w is closed, and a 
Kahler manifold is a complex manifold, equipped with a Kahler metric. The 
2-form w then makes Minto a (real) symplectic manifold. 

We now recall the Poincare Residue map and we specialize it to the case 
of a Kahler manifold. Let M be a compact complex manifold of dimension n 
and let V be a non-singular analytic hypersurfaee of M. We define a map of 
sheafs 

PR: nM(V)--+ .n!Jy- 1. 

To do this, let U ~ M be an open subset, small enough such that V admits a 
local defining function f on U. For wE S7'M(V)(U) a meromorphic n-form on 
U with at worst a simple pole along V, let w be a holomorphic (n- I)-form 
on U such that 

df -
w = f 1\w. 

We have that wlunv is independent of the chosen w, since dflunv = 0, and 
we define PR(w) := wlunv. If (z1, ... , Zn) is a system of local coordinates on 
U then w can be written as 

gdz1 1\ ... I\ dzn 
w= 

f 
where g is a holomorphic function on U. Then the Poincare Residue of w is 
given by --PR(w) = ( -I)i-1 gdz1/\ .. . I\ dzi 1\ ... I\ dzn I , 

8jf8zi f=O 
(5.5) 

where i is chosen such that 8 f j 8zi f:. 0 (besides this, the choice of i is 
irrelevant, as follows easily from differentiating f = 0). 
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Applied to global sections, the Poincare Residue map associates to any mero
morphic n-form on M with a simple pole along V at most, a holomorphic 
(n-1)-form on V, called its Poincare Residue. From the exact sheaf sequence 

we get a long exact sequence 

o ----t H 0 (M,nn) ----t H 0 (M,nn(V)) ----t H 0 (v,nn- 1 ) 

----t H 1(M, nn) ----t H1(M, nn(V)) ----t 
(5.6) 

If we assume that M is, in addition, a Kahler manifold, and that [V] is 
positive, then H 1(M, nn(V)) = 0, in view of the Kodaira-Nakano Vanishing 
Theorem, so that 

The integer h0 (V, nn-l) is the dimension of the space of top-forms on V 
and is called the geometric genus or simply the genus of V, denoted g(V). 
By Kodaira-Serre Duality and by the symmetry of the Hodge diamond for 
compact Kahler manifolds (see [69, Section 0. 7]) we have 

(5.7) 

so that the genus of V is given by 

The right hand side of this equation will be computed more explicitly later 
in the case when M is a complex torus. 

5.1.3 Projective Embeddings of Complex Manifolds 

In order to describe how line bundles lead to projective embeddings we need 
the notion of a section of a line bundle, which we will also rephrase in terms of 
divisors. Let M = {Ua} aEJ be a complex manifold, let C be a (holomorphic) 
line bundle on M and let {Ya/3} a,ftEJ be transition functions for C. A (global) 
section of C is given by a set of holomorphic functions sa defined on each 
Ua such that Sa = 9af3Bf3 for 01., fJ E I. For U an open subset of M we define 
OM(C)(U) to be the sections of CIU. Equipped with the natural restriction 
maps, OM(C) becomes a sheaf, the sheaf associated to C. When C is the 
trivial line bundle over M then OM(C)!:::! OM. Also, when C = [V] then we 
write OM(V) for OM(C). 

We can express the space H0 (M, O(V)) of global sections of [V] in terms 
of divisors by using 

L(V) := {! E M*(M) I(/)~ -V}. 
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Writing V = Li niVi, where all analytic hypersurface Vi are irreducible and 
disjoint, L(V) is the vector space of functions holomorphic on M \ V, with 
at worst a pole of order ni along Vi when ni > 0 and a zero of order at least 
-ni when ni ~ 0. Let so be a holomorphic section of (V) for which (so) = V 
and let f E L(V). Then fso provides another holomorphic section of (V) 
and every section of (V) is obtained in this way. This means that we have an 
isomorphism 

(5.9) 

This isomorphism is not natural since it involves the choice of s0 . 

When M is compact, the vector space H0 (M, 0(£)) of sections of£ over 
M is finite-dimensional, for any line bundle £. The projective space that is 
associated to H0 (M, 0(£)) is denoted by P H0 (M, 0(£)). We associate to 
£ a holomorphic map from (an open subset of) M into the dual projective 
space (P H0 (M, 0(£)))*. 

To describe this map, let U denote the open subset of M consisting of 
those points p E U for which there exists at least one section of£ which does 
not vanish at p (notice that since the transition functions are non-vanishing, 
the question whether or not a section vanishes at p makes sense, as does the 
ratio of two sections at p, although sections do not have a value at p). For 
p E U, denote by Hp those global sections of 0(£) that vanish at p, 

Hp := {s E H0 (M,O(£)) I s(p) = o}. 

Clearly, Hp is a hyperplane of H0 (M, 0(£)), hence we can associate to it a 
point n; of the dual projective space (P H0 (M, 0(£)))*. If U is non-empty 
then we get a holomorphic map 

pi-t H* p 

which is called the Kodaira map associated to£. A point p EM at which all 
sections of £ vanish is called a base point of £ and the set of all base points 
is called the base locus of£. In terms of a basis (so, ... , SN) of H 0(M, 0(£)) 
the Kodaira map cpc is given explicitly given by 

cpc: p E U t-t (so(p): · · ·: SN(p)) E pN !::~ (PH0 (M,0(£)))*. 

If£= (V) and if (l,zl,····zN) is a basis of L(V) then the restriction of 
cpv := 'P[v) to M \ V can also be written as 

'P'D :p EM\ V t-t (1: Zl(P): · ··: ZN(P)) E pN_ 

If M admits a line bundle £ which is base point free and which defines 
a holomorphic embedding of M into some pN, then one says that M is 
projective. 
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This is equivalent to saying that M admits a holomorphic embedding into 
some projective space. Indeed, suppose that <p : M --+ pN is any holomorphic 
embedding of M into pN, such that the image of M by <p is not contained in 
a hyperplane of pN. We may pull the hyperplane bundle 1l on pN (1l is the 
line bundle corresponding to any hyperplane of PN) back toM to find a base 
point free (since M ~ H) line bundle £on M, such that the Kodaira map 
associated to £ is precisely the given embedding (in fact, let H be a generic 
hyperplane of pN and let V := H n <p(M), then <p = <pv). Therefore, the 
above definition is equivalent to saying that M is projective when it admits 
a holomorphic embedding in some projective space. 

The Kodaira Embedding Theorem gives conditions under which <p.c defines 
an embedding. 

Theorem 5.3 (Kodaira Embedding). If£ is a positive line bundle on 
a compact complex manifold M, then for some positive integer the K odaira 
map <p_ck embeds M into pN. Moreover, M possesses a positive line bundle 
if and only if M has a closed positive (1, 1)-form w with cohomology class 
[w] E H 2 (M, Z). 

Since c1 (£) is an integral cohomology class we have that a (positive) line 
bundle gives rise to a closed (positive) (1, 1)-form w whose cohomology class 
is integral. The converse is however also true: if w is a (positive) (1, 1)-form, 
whose cohomology class is integral, then there exists a (positive) line bundle 
on M such that c1 (£) = [w]. In fact, the homomorphism~* in (5.4), which is 
induced by the inclusion (of sheafs) ~ : Z --+ 0 M, corresponds to taking the 
(0, 2)-part of win the Hodge decomposition, hence ~*[w] vanishes, because w 
is a (1, 1)-form. By exactness of (5.4) at H2(M, Z) we conclude that [w) is in 
the image of c1, i.e., [w] = c1 (£) for some line bundle £. 

A line bundle £for which the Kodaira map <p.c embeds M in projective 
space is called a very ample line bundle, while it is called an ample line bundle 
when some positive power of£ embeds. A divisor Von M is called (very) 
ample when [V) is (very) ample. We say that an ample line bundle £ is a 
normally generated line bundle if the canonical map 

is surjective for every n ~ 2. Letting £ = [D] this can be rephrased in terms 
of L(D) as the surjectivity of the map Symn L(D) --+ L(nD) which maps a 
monomial, consisting of an unordered collection of elements of L(V) simply to 
their product, which is an element of L( nV). In plain words, if the line bundle 
[V) is normally generated then every function on M with a pole of order n at 
worst along Vis a product of n functions with a simple pole at worst along V. 
It can be shown that a line bundle which is normally generated is very ample, 
but the converse is not true, in general. We will encounter concrete examples 
of this when analyzing the algebraic geometry of certain integrable systems. 
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A closed positive {1, 1)-form w whose cohomology class [w] belongs to 
H 2(M, Z) is called a Hodge form. In these terms the Kodaira Embedding 
Theorem states that a compact complex manifold M is projective if and only 
if M has a Hodge form. Since the {1, 1)-form which is associated to a Kalller 
metric is positive and closed, the Kodaira Embedding Theorem admits the 
following specialization to Kalller manifolds. 

Theorem 5.4. Let M be a compact Kahler manifold. If the cohomology class 
of the {1, 1)-/orm of its Kahler metric is rationG,l, then M is projective. 

Conversely any holomorphic subvariety M of pN inherits a Hermitian metric 
from the Fubini-Study metric on pN, The associated {1, 1)-form w is positive 
and closed, so that M is a Kahler manifold. Since the cohomology class of 
w is moreover integral, Theorem 5.4 completely characterizes non-singular 
projective varieties. They are also characterized in terms of the size of their 
field of meromorphic functions, as stated in the following theorem. 

Theorem 5.5 (Moishezon). A compact Kahler manifold of dimension n 
is projective if and only if it admits n algebraically independent meromorphic 
functions. 

The adjective "projective" for complex manifolds that can be embedded in 
projective space pN suggests that their image in pN, which is a priori just a 
complex submanifold of pN, is a projective variety, i.e., the zero locus of a set 
of homogeneous polynomials. That this is so follows from the fundamental 

Theorem 5.6 (Chow). Any closed analytic ~mbset of pN is a projective 
variety. 

By an analytic subset we mean any subset that. is locally given as the zero 
locus. of a collection of holomorphic functions. The Chow Theorem is part of 
the G.A.G.A. principle, which states that any globally defined object in or on 
an algebraic variety that is locally analytic is globally algebraic (see [153]). 
The Chow Theorem is a consequence of the Weientrass Preparation Theorem, 
which we will also use later. Let C { x1, ... , Xn} denote the ring of convergent 
power series, i.e., germs of analytic functions, at 0 E en. 
Theorem 5.7 (Weierstrass Preparation). Iff E C{x1, ... ,xn} does 
not vanish identically on the Xn axis, i.e., the1-e exist a E C* and d E N 
such that 

/{0, ... , 0, Xn) =ax~+ 0 {x~+l) , 
then f admits a unique factorization 

I = u(x~ + a1x~- 1 + · · · -1- ad), 

where u E C {x1, ... , Xn} with u(O) f; 0 and ai E C {x1, ... , Xn-d with 
ai(O) = 0 for 1 ~ i ~d. 

As a corollary, each analytic hypersurface is locaHy given as the zero locus of 
a holomorphic function x~ + a1 x~- 1 +···+ad, which is a polynomial in (at 
least} one of its variables. 
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5.1.4 Riemann Surfaces and Algebraic Curves 

A complex manifold of dimension 1 is called a Riemann surface. As topo
logical spaces they are orientable surfaces, hence a compact Riemann surface 
F is a sphere with g handles. The integer g is called the topological genus 
of r and is related to its Euler characteristic x(F) by x(F) = 2 - 2g. The 
topological genus ofF is most often computed from the Riemann-Hurwitz 
formula, which relates the Euler characteristics of two Riemann surfaces n 
and F2, related by a ramified cover 1r : F1 -t F2 of degree n. The formula 
reads 

x(n) = nx(r2) - L (v11"(p) - 1), 
pEF1 

where v11"(p) is the ramification index of 1r at p (to compute v11"(p), write 1r in 
terms of local coordinates x and u, centered at p and at 1r(p) as u = xd, then 
d is the ramification index; it equals 1 except for a finite number of points 
p E n, the ramification points). In particular, if 1r : F1 -t F2 is a double 
cover, then 

g(n) = 2g(F2) - 1 + ~#branch points. (5.10) 

In particular the number of branch points of a double cover is always even. 
We claim that the topological genus of r equals the (geometric) genus 

of r, i.e., r admits precisely g independent holomorphic differentials, g = 
h0 (F, {}1 ). Indeed, the short exact sequence of sheaves on r 

0 -t C -t Or ~ n} -t 0, 

gives a long exact sequence in cohomology, namely 

o-+ H 0 (F,C)-+ H 0(F,O)-+ H 0 (F,f11 ) 

-t H 1 (F,C)-+ H 1(F,O) -t H 1 (F,f11 ) 

-t H 2(F,C)-+ 0, 

where H 2 (F, 0) = 0 follows from Kodaira-Serre Duality. The latter also 
implies that 

and that 

Therefore, counting dimensions in the above exact sequence, we find 

0 1 1 1 h (r,n) = 2h cr,c) = 9, 

proving the claim. 
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Divisors on a compact Riemann surface r are particularly simple, because 
they are finite (formal) sums of points on r, i.e., Div(r) is the free group 
on r. There is a natural homomorphism deg : Div(r) -+ Z, defined by 

Iff is a meromorphic function on r then df lf is a meromorphic function 
with residue at p E r equal to the order of vanishing off at p so that, by 
Stokes' theorem 

deg{!) = 0, for any f E M(r). 

As a corollary, linearly equivalent divisors on r have the same degree. We 
may therefore define the degree of a line bundle .C on r as the degree of any 
divisor V for which .C = [V]. 

With this definition deg(.C) corresponds to the Chern class c1 (.C) under the 
natural isomorphism H2 (M, Z) ~ Z, where M is equipped with its natural 
orientation, and .C is positive if and only if it has positive degree. For example 
the canonical bundle on r and any canonical divisor on r have degree 2g- 2. 
In this respect, notice that since dimr = 1, the sheaves n} and Or(ICr) are 
naturally isomorphic. 

Any compact Riemann surfacer is a projective variety, as follows from 
Theorem 5.4. Indeed, it is a Kahler manifold because any metric on r is 
Kahler (the differential of its associated (1, 1)-ti)rm w has degree three, so it 
is zero). In order to make the cohomology class of w rational (or integral) it 
suffices to multiply the metric by an appropriate constant (one can e.g. mul
tiply the metric with a constant such that the integral of w over r equals 1). 
It follows that compact Riemann surfaces and non-singular projective curves 
are essentially the same objects, except that a specific line bundle on r has 
to be chosen to realize rasa projective curve. The dimension of the space 
of sections of a line bundle .C = [V] on r is given by the Riemann-Roch 
Theorem. 

Theorem 5.8 (Riemann-Roch). Let r be a compact Riemann surface of 
genus g, let V be a divisor on r. Then the following equivalent formulas hold: 

(i) x([V]) = x(Or) + degV, 
(ii} h0 (r, O(V)) = h0 (r, !11 (-V)) + degV- g + 1, 

We show how the equivalence of (i) and (ii) follows from the Kodaira
Serre Duality Theorem (Theorem 5.1). The holomorphic Euler characteristic 
x(.C) of .C equals 

(5.11) 

because hq(r, O(.C)) = 0 when q > dimr = 1. 
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Furthermore, we have as in Theorem 5.1 that H 1 (F,O(.C)) is canonically 
isomorphic to the dual of H 0 (F,fl1 (.C- 1 )) so that 

x(.C) = h0 (r, O(.C))- h0 (r, D1 (.C-1 )). 

Taking for .C the line bundle [V] and the trivial line bundle over r, this gives 
respectively 

x([V]) = h0 (F,O(V))- h0 (r,n1 (-V)), 
x(Or) = h0 (F,O)- h0 (F,fl 1 ) = 1- g, 

proving the equivalence of {i) and {ii). 
As an application of the Riemann-Roch Theorem, take for V a canonical 

divisor, [V] = Kr and use fl}( -Kr) ~Or, as follows from (5.3), to find 

h0 (r, O(Kr)) = h0 (r, 0) + degKr- g + 1 = 2- g + degKr. 

Therefore, 

giving the announced formula for the degree of the canonical bundle. 
Most compact Riemann surface of genus g > 2 can be embedded in pro

jective space in a canonical way, namely by using their canonical bundle Kr. 
Suppose that r has genus g ;;:: 2 and let (w1, ... , Wg) be a basis of H 0 (r, {} 1 ). 

In terms of a local coordinate z, we can write Wi = fi(z)dz, and the Kodaira 
map ZJCr is given by 

ZJCr : r -t pg-1 

P 1--t (JI(P): · · ·: fg(P)). 

This map has no base points by the Riemann-Roch Theorem, hence Z/Cr 

is an embedding when it is injective and immersive. A compact Riemann 
surface for which the above map is not an embedding is called a hyperelliptic 
Riemann surface (a compact Riemann surfaces of genus 1 being called an 
elliptic Riemann surface), while any curve whose (compact) Riemann surface 
is hyperelliptic is called a hyperelliptic curve (one speaks of an elliptic curve 
in the genus 1 case). Hyperelliptic Riemann surfaces are characterized as 
follows. 

Theorem 5.9. Let r be a compact Riemann surface of genus g;;:: 2. 

{1) r is hyperelliptic if and only if it has a non-constant meromorphic func
tion f for which (f) + P + Q ;;:: 0, for some points P, Q E F; 

{2) r is hyperelliptic if and only if r is the Riemann surface of an algebraic 
curve, given by an affine equation of the form y2 = f(x), where f is a 
monic polynomial of degree 2g + 1 or 2g + 2 without multiple roots; 

{3) If g = 2 then r is hyperelliptic. 
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A point P on a compact Riemann surface of genus g is called a Weierstrass 
point if there exists a function which has a pole of order at most g at P and 
which is holomorphic elsewhere. A hyperelliptic Riemann surface r of genus 
g has 2g + 2 Weierstrass points which are the points for which there is a 
function with a double pole in one point only: if 

2g+2 

y2 = II (x -Xi) 
i=1 

is an equation for an affine model r<o) of r, then the Weierstrass points are 
the points Pi := (xi, 0), where i = 1, ... , 2g + 2, i.e., they are the branch 
points of the double cover (x, y) r--+ x. As function with a double pole at the 
point Pi only, one can take the function 1/(x- x(Pi)) = 1/(x- xi)· For 
i -:f. j the function (x- x(Pi))/(x- x(Pj)) has as divisor 2Pi- 2Pi so that 
2Pi "'2Pi> for any pair of Weierstrass points (Pi, Pi) on r. If r<o) is an affine 
model for r which is such that there is only one point 00 in r \ r<0)' so that 
r<o) is given by an equation 

2g+l 

y2 = II (x- Xi) 
i=1 

then oo is a Weierstrass point, x has a double pole at oo and the function 
x- Xi realizes the linear equivalence between 2Pi and 2oo, where Pi = (xi, 0). 

It is easy to construct explicitly a basis for H 0 (T, D1) if r is hyperelliptic: 
writing y2 = f(x) as above, the g independent differentials 

xi-1 dx 
Wi := ---

y 

are holomorphic, as is easily verified by picking a uniformizing parameter at 
infinity and at the Weierstrass points of r. Since these differentials are inde
pendent, they form a basis of the vector space of all holomorphic differentials 
on the Riemann surface. Thus, Kodaira map is given, on r(o), by 

~/Cr : r<o) -+ pg-1 

P r--+ (1 : x : · · · : xg-1 ) 

and we see why in this case the Kodaira map is not an embedding: the invo
lution which is defined on r<o) by (x,y) r--+ (x, -y) extends to an involution a 
on r, called its hyperelliptic involution; for any P E r we obviously have that 
P and a(P) are mapped to the same point by ~/Cr· The closure of ~/Cr (r(o)) is 
isomorphic to the projective line P and under this isomorphism the Kodaira 
map corresponds to the 2 : 1 cover of P, defined by x r--+ ( 1 : x). 

For non-hyperelliptic Riemann surfaces, one has the following theorem. 

Theorem 5.10 (Noether). Let r be a compact Riemann surface which is 
not hyperelliptic. Its canonical bundle Kr is normally generated. 
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We finish this paragraph with a lemma on Laurent tails that will be used 
in our analysis of Lax equations (Section 6.4). For V a divisor on r we 
introduce the quotient sheaf 

Ov(V) := Or(V)/Or. 

Writing V = E!=l niPi we can write a section 11 of Ov(V) as E!=l 'T/i where 
each 'T/i is a polynomial without constant term, and of degree at most ni 
in z;1, where Zi is any local parameter, centered at Pi· One calls each 'T/i a 
Laurent tail. Since L(V) = H0 (r, Or(V)), any element of L(V) leads to a 
collection of Laurent tails. The following lemma deals with the converse. 

Lemma 5.11. Let r be a compact Riemann surface and let 1J = E!=l niPi 
be an effective divisor on r. A section 11 = E!=l 'T/i of Ov(V) comes from an 
element of L(V) if and only if 

I 

L ResPi ('T/iW) = 0 
i=l 

for all holomorphic differentials w on r. 
One direction of the proof is immediate: if 11 is meromorphic on the curve r 
with (11) ~ -V, then by the residue theorem 

I I 

L ResPi ('T/iW) = L ResPi (11w) = 0 
i=l i=l 

for every holomorphic differential w. The other direction is an application of 
Riemann-Roch (see [17, Chapter 1.2] for a proof). 

5.2 Abelian Varieties 

By definition, an Abelian variety is a complex torus cr I A (A a lattice in cr) 
which is projective, i.e., which can be holomorphically embedded in projective 
space. A finite surjective group homomorphism¢: A-+ B between Abelian 
varieties A and B is called an isogeny and the two Abelian varieties A and B 
are said to be isogenous Abelian varieties, denoted A ~ B. The cardinality 
of the kernel of ¢ is called the degree of ¢, denoted deg ¢; it is the degree of 
¢as a holomorphic map. We often "forget" that the Abelian variety A has 
an origin; then we view A merely as a homogeneous space, acted upon by 
A itself. In this case we may still speak of an isogeny since, as we will see, 
a holomorphic map ¢ between Abelian varieties A and B (without origin) 
becomes a group homomorphism when picking an arbitrary point P as origin 
on A and its image ¢(P) as origin on B. 
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We will assume that the reader is familiar with the basic facts on complex 
tori, such as their characterization as connected compact complex Lie groups 
(yes, such groups are automatically commutative!) and the fundamental role 
that their universal covering space (which is an affine space) plays in their 
study. For example, a complex torus has in the neighborhood of any point a 
system of particularly simple coordinates, namely the coordinates that come 
from its universal covering space. They are unique up to a linear transforma
tion and are called linear coordinates; any translation in the group is, locally, 
described by a linear map in terms of linear coordinates. As another example, 
we give three different descriptions of the vector fields on complex tori (or 
Abelian varieties) that are fundamental in this book. 

Proposition 5.12. For a vector field V on a complex torus Tr the following 
conditions are equivalent. 

(i) V is holomorphic; 
(ii) V is translation invariant; 

(iii) V is constant in terms of some {hence any) system of linear coordinates; 
(iv) V is the projection of a constant vector field on the universal covering 

space cr of vr 0 

A vector field on vr satisfying the above conditions will be called a linear 
vector field on Tr . 

Notice that as a corollary any two holomorphic vector fields on Tr commute, 
and that the dimension of the vector space of holomorphic vector fields on Tr 
is r. In fact, this vector space is spanned by r commuting holomorphic vector 
fields V1 , ... , Vr which are the projections of r independent constant vector 
fields on the universal covering space cr of Tr. Therefore, we may intro
duce linear coordinates tt , ... , tr on (the neighbor hood of any point in) Tr, 
such that vi = oloti, i.e., such that for any holomorphic or meromorphic 
function f, defined on an open subset U of Tr, one has 

5.2.1 The Riemann Conditions 

We first explain what it means for a complex torus to be an Abelian variety, 
leading to several important notions and we refer to the Paragraphs 5.2.3 
and 5.2.4 below for particular classes of Abelian varieties. 

A complex torus cr I A, where A is a lattice, is a Kahler manifold: since the 
Euclidean metric on cr, which is Kahler, is translation invariant, it descends 
to cr I A. Therefore, the Moishezon Theorem (Theorem 5.5) implies 

Theorem 5.13 (Moishezon). A torus Tr = cr I A is an Abelian variety 
if and only if it admits r algebraically independent meromorphic functions. 
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On the other hand, according to the Kodaira Embedding Theorem, Tr is an 
Abelian variety if and only if it has a Hodge form w. By averaging w over 
the torus we may assume that w is constant with respect to any system of 
linear coordinates on Tr. Let (AI, ... , Azr) be a basis for A as a Z-module. 
In terms of the real coordinates XI, ... , xzr which correspond to this basis, w 
takes the form 

where each qii = -qii is a constant. Notice that such an w is automatically 
closed. Integrality of the cohomology class of w is equivalent to the fact that 
for all 1 ~ i, j ~ r the integral of w over the rectangle formed by Ai, Aj is 
an integer, i.e., that all qii are integers. The skew-symmetric matrix Q with 
entries qii defines a skew-symmetric quadratic form, which can be put in the 
form 

Q = ( 0 Ll.s), 
-.1., 0 

where (5.12) 

with all 8i positive integers such that 8i I 8i+l (1 ~ i < r). Indeed, since w is 
positive it is non-degenerate and each 8i is different from 0. For i = 1, ... , r 
we define the vector ei := Ai/ 8i. Then (ell ... , er) forms a complex basis 
for cr and the r X 2r matrix A, defined by 

A = (Aai) ~=l, ... ,r , 
t=l, ... ,2,. 

where 
r 

Ai = L Aaiea, 
a=l 

takes the form A = ( .::1., Z) . Notice that, by a slight abuse of notation, we 
use the same notation A for the lattice and for the matrix representing a 
basis of A with respect to a basis of cr (the i-th column of the matrix A 
is the coordinate vector of Ai with respect to ( e1, ... , er)). The matrix A is 
called the period matrix of the lattice A. Writing the Hodge form in terms of 
the complex coordinates (z1, ... , Zr) which correspond to ( e1, ... , er) we find 
that w is a (1, I)-form if and only if Z is symmetric and that the positivity 
of w is equivalent to ~z > 0. This gives precisely the famous 

Theorem 5.14 (Riemann conditions). A complex torus rr = cr /A is 
an Abelian variety if and only if there exists a Z-module basis for A and a 
complex basis for cr such that 

where .10 is a matrix over Z, of the form {5.12), and where Z is a symmetric 
matrix whose imaginary part is positive definite. 
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In tenns of the real coordinates (x1, ... , X2r) which correspond to the Z
basis for A, the Hodge fonn w takes the fonn 

r 

w = L dO<dxO< 1\ dxO<+r· 
0<=1 

The cohomology class [w] of w is called the polarization of the Abelian va
riety Tr and the pair (Tr, [w]) is called a polarized Abelian variety. The 
integers 61, ... , dr are called the elementary divisors of the polarization; they 
are invariants of the cohomology class [w]. Also, (61, ... ,6r) is called the 
polarization type of the Abelian variety. 

A polarization [w] is called a principal polarization when its type equals 
(1, ... , 1). A polarized Abelian variety whose polarization is a principal po
larization is called a principally polarized Abelian variety. Every polarized 
Abelian variety Tr is related to a principally polarized Abelian variety in 
at least two different ways. Indeed, if we write the period matrix of Tr as 
A1 = (Llr Z) and we define a new period matrix by A2 := (Idr Z) then the 
(lattice) inclusion A1 ~ A2 induces an isogeny cr I A1 --+ cr I A2 of degree 
IJ;=1 ai, which exhibits the Abelian variety Tr as an unramified cover of a 
principally polarized Abelian variety. Alternatively, the inclusion drA2 ~ A1 
induces an isogeny cr l(6rA2) --+ cr I A1 of degree n;=1 6rl6i, which exhibits 
the Abelian variety Tr as being covered by an Abelian variety which is con
formal to a principally polarized Abelian variety. 

As we explained in the previous section, the Hodge form is the curvature 
form of a positive line bundle £, which in turn comes from an ample divisor 
Von Tr, i.e., w = [(v'-T/27r)8.c] and C.= [V]. But not every (effective) 
divisor on an Abelian variety needs to be ample, and this is related to the 
reducibility of the Abelian variety, as we explain now. 

An Abelian variety Tr will be called an irreducible Abelian variety, when 
Tr does not contain any Abelian subvariety, otherwise it will be called a re
ducible Abelian variety. In this respect the following theorem is fundamental. 

Theorem 5.15 (Poincare Reducibility). Let Tr be an Abelian variety 
and suppose that Tr contains an Abelian subvariety B. Then there exists an 
Abelian subvariety C of Tr such that B n C is a finite subgroup of Tr and 
there exists a surjective homomorphism h : B E9 C ----t Tr with kernel B n C. 

In other words, the Poincare Reducibility Theorem states that if an 
Abelian variety contains an Abelian subvariety, then it is isogenous to a 
product of this subvariety and another Abelian subvariety. In this context 
we also wish to point out that if l/J : A --+ B is a holomorphic map between 
two Abelian varieties A and B then ¢is the composition of a group homo
morphism l/Jo : A --+ B, composed with a translation T : B --+ B. Thus, holo
morphic maps between Abelian varieties are group homomorphisms, upon 
picking appropriate origins, as we asserted at the beginning of this section. 
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The cohomology of complex tori, in particular Abelian varieties, can be 
computed explicitly because the (commutative!) group structure allows one to 
identify all tangent and cotangent spaces with the universal covering space of 
the torus, objects can be averaged over the torus to yield translation invariant 
objects in the same cohomology class and so on. Moreover, the canonical 
bundle on any complex torus is trivial, because the standard volume form on 
cr descends to Tr, yielding a top-form that has no zeros. It follows that the 
natural sheaf isomorphism (5.3) simplifies in the case of an Abelian variety 
Tr to 

(5.13) 

so that for example h0 (Tr, nr) = h0 (Tr, 0) = 1. As an application of (5.13), 
let us compute the Euler characteristic x(.C) of a positive line bundle .C = [V] 
on an Abelian variety Tr. It yields 

r r 
x(.C) = L(-1)PhP(Tr,O(.C)) = L(-1)PhP(Tr,nr(.C)), 

p=O p=O 

which simplifies in view of the Kodaira-Nakano Vanishing Theorem to 

(5.14) 

An Abelian variety Tr = cr I A has a natural involution ( -1)Tr' induced 
by the reflection about the origin of cr. The set of fixed points of ( -1 )Tr is 
exactly the 2-torsion subgroup (~A) I A C Tr of Tr. Elements of this subgroup 
are called half-periods and there are 22r of them. The quotient Tr I { -1 )Tr 
is a projective variety, called the Kummer variety of Tr. It has 22r singular 
points, which come from the half-periods. We will come back to the Kummer 
variety in Paragraph 5.2.3. 

5.2.2 Line Bundles on Abelian Varieties and Theta Functions 

In this section we explain how positive line bundles on an Abelian variety 
can be explicitly described in terms of multipliers and how their sections can 
be described by theta functions. Let Tr = cr I A be a complex torus and let 
.C be a line bundle on Tr. Then rr* .C is trivial ( 1r : cr --+ Tr) because cr is 
contractible. Hence, there exists a global trivialization 

tP : rr* .C --+ Cr X C. 

For z E cr, let us denote by { rr* .C) z the line of rr* .C that sits over z, and let 
t/Jz denote the restriction of tjJ to ( rr* .C) z; since the first component of t/Jz is 
constant (it is equal to z) we will think of t/Jz as taking its values in C. Since 
{rr*.C)z = (rr*.C)z+>. we get 

C ~ {rr* .C)z = {rr* .C)z+>. ~ C, 
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giving a linear automorphism C -+ C, i.e., multiplication by a non-zero 
number e.\(z). The functions {e.\ E O*(C9 )heA are called the multipliers 
of .C and they satisfy 

Conversely, multipliers which satisfy these relations define a unique line bun
dle with these multipliers. 

When the complex torus is a polarized Abelian variety (Tr, [w]) then a 
line bundle .C for which c1 (.C) = [w] can be described by using multipliers of 
a simple character in the following way. Since [w] is an integral cohomology 
class, a representative w of [w] and linear real coordinates (x1, ... , x2r) on cr 
can be chosen such that 

r 

w = L 6idXi 1\ dxr+i, 
i=1 

where the 6i are positive integers. Let (.X1, ... , A2r) be the basis of A, defined 
by dxi(Aj) = 6ij, where 1 ~ i,j ~ 2r and define linear complex coordinates 
(zl, ... 'Zr) on cr by dzi(Aj) = 6j6ij· Then we get the following theorem. 

Theorem 5.16. The line bundle .C on Tr with multipliers 

a= 1 ... ,r, 

has Chern class c1(.C) = [w]. Moreover, any line bundle .c' on Tr for which 
c1 (.C') = c1 (.C) is a translate (in Tr} of .C. 

The fact that the line bundle is given by simple multipliers allows us to 
construct explicitly its holomorphic sections; they can be seen as functions 
on cr which are periodic in r directions and "quasi-periodic" in r other 
directions. The number of independent holomorphic sections is given by 

r 

h0 (Tr,O(.C)) =II 6i, (5.15) 
i=1 

where ( 61, ... , 6r) are the elementary divisors of the polarization c1 (.C). For 
a line bundle defining a principal polarization, for example, there is only one 
section which, as a quasi-periodic function on cr, is given by the Riemann 
theta function 

t9(z) = L e1ri(l,Zl) e21Ti(l,z), 

zezr 
where we have written the lattice defining Tr as A= (Idr Z). Its divisor of 
zeros, denoted e, is determined uniquely by .c, hence up to a translation by 
c1 (.C) and is called the Riemann theta divisor. Also, observe that if an ample 
line bundle .C defines a polarization of type ( 61, ... , 6r) on Tr, then the line 
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bundle Ck has Chern class c1 (Ck) = kc1 (C), since c1 is a homomorphism (it is 
the connecting homomorphism in (5.4)). Therefore Ck defines a polarization 
of type (kch, ... , k6r) and 

r 

h0 (Tr, O(Ck)) = kr II Oi = kr h0 (Tr, O(C)). 
i=1 

Applied to an ample divisor D on Tr this means that 

dimL(kD) = kr dimL(D). 

The group of all line bundles of degree 0 on a polarized Abelian variety 
Tr is a complex torus, called its dual and denoted by Tr. If Tr corresponds 
to a period matrix ( Ll0 Z) then a "~al" basis can be picked such that the 
matrix defining the lattice defining Tr is given by 

(5.16) 

In this representation it is easy to check the Riemann conditions, which show 
that the dual is indeed an Abelian variety. For C a fixed positive line bundle 
on Tr one defines an isogeny between Tr and its dual by v 1--t c-1 0 r; C. 
Here, Tv denotes the translation in Tr over v; one may think of the line 
bundle r; C as the translate of C over -v. The degree of this isogeny is IT of; 
in particular, a principally polarized Abelian variety is isomorphic to its dual. 
Also, the dual of an irreducible Abelian variety is irreducible. 

If Tr is irreducible then the line bundle of any effective divisor is ample; 
moreover, we have the following theorem. 

Theorem 5.17 (Lefschetz). Let C be an ample line bundle on an Abelian 
variety Tr. Then en is very ample for n ~ 3. 

For example, if C defines a principal polarization on an irreducible Abelian 
variety Tr, then C3 induces a polarization of type (3, 3, ... , 3), and hence 
every irreducible principally polarized Abelian variety can be embedded in 
PH0 (Tr,O(C3 ))*, which is by (5.15) isomorphic to P 3r_ 1 . In the case of 
Abelian surfaces, the following theorem, which is due to Ramanan (see [145]) 
is an improvement of the Lefschetz Theorem in the case of Abelian surfaces. 

Theorem 5.18 (Ramanan). Let T 2 be an irreducible Abelian surface and 
let D be an ample divisor on T 2 defining a polarization of type ( c51, c52). Then 
D is very ample if one of the following conditions is satisfied. 

(1} 01 = 1 and Oz ~ 5; 
(2} 01 = 2 and 82 ~ 4; 
(3} c51 ~ 3. 

In the following theorem we describe when a line bundle on an Abelian variety 
is normally generated. The Lefschetz Theorem is a consequence of it (since 
normally generated line bundles are always very ample). 
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Theorem 5.19 (Koizumi-Mumford Criterion). Let C be an ample line 
bundle on an Abelian variety Tr. Then C3 is normally generated. 

The above Ramanan Theorem fails to hold when "very ample" is replaced 
by "normally generated". In fact, we will encounter examples of polarized 
Abelian surfaces (T2 , [w]) that are of polarization type (2, 4) but for which 
the line bundle that defines the polarization is not normally generated. 

We now turn to symmetric line bundles and symmetric divisors on Abelian 
varieties (for details, see [105, Section 4.6]). A line bundle C on an Abelian 
variety Tr is called a symmetric line bundle if ( -1) :j.r C !::!! C. Then ( -1 )Tr can 
be lifted to an involution ( -1).c on the total space of C. The latter involution 
is C-linear on the fibers of C and it can be normalized so that it is the identity 
on the fiber over the origin ofTr. Since the involution which (-1).c induces 
on the fiber over each half period is linear it is either identity or multiplication 
by -1. If it is identity the corresponding half period is called even, otherwise 
it is called odd; in particular, according to the above normalization, the origin 
is always an even half period. The induced involutions--+ ( -1).cs( -1)Tr on 
H0 (Tr, C) leads to a splitting of H0 (Tr, C) into ( + 1) and ( -1) spaces, whose 
elements are called even sections and odd sections, 

For an ample line bundle C on Tr, the dimensions of H 0 (Tr, C)+ and of 
H 0 (Tr' c)- are given by the following proposition. 

Proposition 5.20. Let C be an ample line bundle on an Abelian variety Tr. 
If .C induces on Tr a polarization of type (eSt, ... Os, Os+l, ... , Or), where o. is 
odd and 08 +1 is even, then h0 (Tr, C)+ is equal to one of the following: 

ho(Tr 1 C)+= !ho(Tr 1 C)+ f 2r-s-1 1 
2 

t: E {0,1, -1}. 

In either case, the formula for h0 (Tr, C)- follows from it. 

Since the symmetric line bundles C which we will consider come from explic
itly given divisors, we will translate the notion of a symmetric line bundle 
and its section in the language of divisors. A divisor (or curve) V on Tr is 
called symmetric if ( -1 ):j.r V = V, which means that the reflection of V with 
respect to the origin is V. The line bundle of a symmetric divisor is symmetric 
and the even and odd sections of a symmetric line bundle are symmetric divi
sors; therefore, working with symmetric divisors is just as general as working 
with symmetric line bundles. We will call a symmetric divisor even or odd 
according to whether it is defined by an even or odd section. When Tr is an 
Abelian surface (r = 2) then it is easy to see that an even (resp. odd) divisor 
V has even (resp. odd) multiplicity at the even half periods (in particular at 
the origin). 
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5.2.3 Jacobian Varieties 

Let r be a compact Riemann surface of genus g ~ 1 and view H1 (r, Z) as 
a subgroup of H 0 (r, D1 )* via the natural injective homomorphism 1/1 which 
maps 'Y E H1 (r, Z) to the linear map 

I/! ("f) : H 0 (r, D1 ) --+ c 
w I-t f'Y w. 

(5.17) 

The Jacobian or Jacobian variety of r is defined by 

(5.18) 

Jac(r) is a complex torus of dimension g because h0 (r, {11) = g and because 
H1 (r, Z) is a lattice in H 0 (r, D1 )*. Choose a basis w = t(w1, ... , w9 ) of 
H 0 (F,D1) and choose a symplectic basis for H1(F,Z), i.e., a system of 2g 
generators (A1, ... , A 9 , B1, ... , B 9 ) for H1(r, Z) such that Ai ·Aj = Bi ·Bj = 
0 and Ai · Bj = Oij, for 1 :::;; i,j :::;; g. Then the lattice A C C 9 consisting 
of all vectors in C 9 of the form f'Y w, with 'Y running through H1 (r, Z) is 
conveniently represented as the column space (over Z) of the matrix 

(5.19) 

called the period matrix of Jac(r) (with respect to the chosen bases). The 
first g x g block of the period matrix (5.19) is called the matrix of A-periods 
and the last g x g block the matrix of B -periods. Finally, A itself is called the 
period lattice of Jac(r). 

It can be shown that the matrix of A-periods is invertible, hence we 
may assume that it is equal to Id9 by switching to an appropriate basis 
for H 0 (r, {11 ). Writing the new period matrix as (Id9 Z) the matrix Z is 
symmetric and ~Z is positive definite. Thus 

Theorem 5.21. For any compact Riemann surface of genus g, the complex 
torus Jac(F) is a principally polarized Abelian variety of dimension g. 

The following converse also holds: every irreducible principally polarized 
Abelian variety of dimension 2 or 3 is the Jacobian of a compact Riemann 
surface of genus 2 or 3. In higher dimensions this is no longer true (as can be 
checked by an easy dimension count), and there is the famous Schotky prob
lem which asks for a characterization of those matrices Z for which (Id9 Z) 
is a Jacobi variety (see [125], [134] and [157]). 
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On the other hand, once one knows that a principally polarized Abelian 
variety is the Jacobian of a compact Riemann surface, the latter is uniquely 
determined by its Jacobian; this is the content of the classical Torelli Theo
rem. 

Since Jac(T) is a principally polarized Abelian variety of dimension g, the 
Lefschetz Theorem implies that it can be embedded in P 39 - 1 , by using the 
sections of [38]. However, the sections of [28] never embed Jac(r) in projec
tive space, but rather they embed its Kummer variety Kum(r) in projective 
space. An important particular case is that of the Kummer surface Kum(r), 
where r is a hyperelliptic Riemann surface of genus 2. The line bundle [28] 
that corresponds to twice the principal polarization on Jac(r) has in this 
case 4 independent sections and the associated Kodaira map, which maps 
Jac(r) into P 3 , factors through Kum(T), realizing the Kummer surface as a 
surface in P 3 • 

Being two-dimensional the image is given by a single equation; to compute 
the degree of this equation, we use the fact that this degree is given by 
fKum(r} n, where n is associated (1, I)-form ofthe standard Kahler structure 

on P 3 . Clearly this is twice the volume of Kum(r), which itself is half the 
volume of the Jacobi surface (with the polarization of type (2, 2)). For w = 

2dx1t\dx2+2dx3t\dx4 we get J w2 = 8, hence the Jacobi surface has degree 8, 
its volume is 4, the volume of Kum(r) is 2 and the degree of Kum(r) is 4. 
Since the ( -1) involution on an Abelian surface has 16 fixed points, its 16 
half-periods, its Kummer surface has 16 singular points. In the case of the 
Kummer surface Kum(r) one has, in addition, 16 planes in P 3 which touch 
Kum(r) along a conic. These 16 planes and the 16 singular points form a 
beautiful configuration on P 3 , called the 166 configuration (each of the 16 
planes contains 6 of the points and through each of the 16 points pass 6 of 
the planes). 

The 166 configuration is useful for determining an explicit equation for 
the Kummer surface, as a quartic in P 3 (see [105, Sections 10.2 and 10.3]), 
but it also shows up naturally, together with the Kummer surface itself, in 
the classical theory of the quadric line complex (see [69, Chapter 6]). For a 
Riemann surface r of genus bigger than 2 the Kummer variety Kum(r) is 
also embedded in projective space by the Kodaira map associated to [28], 
but it is only embedded as a hypersurface when r has genus 2. 

As an algebraic variety, the Jacobian of r also admits a definition in terms 
of divisors on r. Consider Div(T)/ "',the group of all divisors on r modulo 
linear equivalence. Since linearly equivalent divisors have the same degree, 
deg induces a homomorphism 

d Div(r) z 
eg rv: "' --+ ' 

whose kernel is called the algebraic Jacobian of r. In view of the basic cor
respondence between divisors and line bundles on r, the algebraic Jacobian 
corresponds to Pic0 (r), the group of line bundles of degree zero on r. 
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In order to link the two definitions of the Jacobian, consider the Abel
Jacobi map 

Ab: Div0 (r) -t CY 1 A 

V = E~=1 (Pi - Qi) I-t fv w := E~=1 J;; w mod A 

with w and A as defined above. In the sequel we will leave out "mod A" when 
it is clear that the Abel sum is taken modulo A. The Abel map Ab induces 
an injective map Pic0 (r) -t Jac(r), as follows from the following theorem. 

Theorem 5.22 (Abel). For any divisor V on r of degree 0, Ab(V) = 0 
if and only if V is a principal divisor, i.e., V = (!) for some meromorphic 
function f on r. 
Surjectivity of Ab is a consequence of the Jacobi Inversion Theorem, which 
we formulate in a stronger form. 

Theorem 5.23 (Jacobi Inversion). Let Q1, ... , Q9 be arbitrary points 
on r. For any v E J ac( T) there exist P1, ... , P9 such that 

Ab(P1 + · · · + P9 - Q1 - ... - Q9 ) = v. 

Combining the Abel Theorem with the Jacobi Inversion Theorem we see 
that Ab induces a bijection between Pic0 (T) and Jac(r). In terms of the 
algebraic Jacobian it is easy to describe an injective map of r into its algebraic 
Jacobian, which leads via the Abel map to an embedding of r into Jac(r). 
Namely for any fixed Q E r we associate to any PEr the divisor class [P
Q], which is injective in view of the Riemann-Roch Theorem. The resulting 
embedding is given by 

O.Q : r -t Jac(r) 

P 1-t Ab(P- Q) = J; w (5.20) 

In terms of the Abel map, there is the following beautiful description of the 
Riemann theta divisor. 

Theorem 5.24 (Riemann). Let P be an arbitrary point on r. There exist 
points Q1' ... 'Q g such that the theta divisor e of Jac(r) is given by 

e = {Ab(P1 + .. · + P9-1 + P- Q1 - .. ·- Q9 ) 1 P1, ... , P9-1 E r}. 

It follows that when g = 2 then the theta divisor is, up to a translation, the 
image of the embedding O.Q of r in its Jacobian. For an intrinsic description 
of the theta divisor, one considers the homogeneous space Pic9 - 1(T) of line 
bundles on r of degree g - 1. Then 

e = {.c E Pic9 - 1(r) 1 h0 (T,O(.C)) > o}. 

For this reason, one often calls Pic9 - 1(T), rather than Pic0 (r), the Jacobian 
of r. 
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We now state the universal property of the Jacobian. 

Theorem 5.25. Suppose that Tr is an Abelian variety and that r is a com
plex compact Riemann surface of genus g. Let Q E r, let 1 be a holomorphic 
map r --t Tr and denote the translation in Tr by an element v E Tr by Tv. 

There exists a unique group homomorphism i' : Jac(r) --t Tr such that the 
following diagram commutes 

Jac(T) --::--+- Tr 
'Y 

In view of the Jacobi Inversion Theorem it is clear that the homomorphism 
i' admits the following description: 

i' : Jac(T) --t Tr 

Ab(Ef=l pi- gQ) ~ Ef=l /(Pi)- g'Y(Q), 
(5.21) 

where the latter sum is, of course, a sum in Tr. Intuitively speaking, i' is 
obtained by extending 1 by linearity. 

Example 5.26. Suppose that r is an irreducible non-singular curve of genus 
g, contained in an irreducible Abelian variety Tr. If we fix any point Q E r 
and we apply the universal property of the Jacobian we get a group homo
morphism 

i' : Jac(r) --t Tr, 

which extends the embedding 1 : r --t Tr. Since the image of Jac(F) by i is 
a non-zero Abelian subvariety of Tr and since Tr is irreducible, the map i' 
is surjective. The dual homomorphism 

i' : rF -t Jac(F) 

has finite kernel, because rF is irreducible (as Tr is) and because i' has a 
non-trivial image (it contains r). Therefore, rF is isogenous to i'(Tr), which 
is an Abelian subvariety of Jac(r). By the Poincare Reducibility Theorem, 
Jac(F) contains another Abelian subvariety A such that Jac(r) is equal to 

rF EBA, up to an isogeny. Since Tr and Tr are isogenous, Jac(r) is also equal 
to Tr EB A, up to an isogeny, i.e., 

where A is an Abelian subvariety of Jac(F), of dimension g-r. 
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The universal property of the Jacobian says that the Jacobian of a Rie
mann surface can be defined by a universal property with repect to morphisms 
from the Riemann surface into Abelian varieties. The generalization of this 
universal property to higher-dimensional varieties leads to the notion of the 
Albanese variety (in the sense of Serre, see [154]). The definitions that we will 
give and the theorems that we will prove are valid in the algebraic as well 
as in the holomorphic category, because the target space of the morphisms 
that we will consider is always an Abelian variety; accordingly, the resulting 
universal object, the Albanese variety, will also be an Abelian variety. 

As we will see, the Albanese variety allows one to reconstruct an Abelian 
variety from any of its affine parts. This property will prove useful when we 
consider the families of affine parts of Abelian varieties that appear as the 
generic fibers of the momentum map of a.c.i. systems, see Chapter 6). 

Definition 5.27. ForM a given variety, a morphism J: M -+ Tr with target 
an Abelian variety Tr is called a universal morphism for M, if any morphism 
z : M -+ A, with A an Abelian variety, factorizes (uniquely) through Tr in 
the sense that there exists a commutative diagram 

where cp : Tr -+ A is an affine2 morphism. 

If f : M -+ Tr is a universal morphism for M then f ( M) spans the algebraic 
group Tr, but in general the dimension r of Tr is different from the dimension 
of M (see Example 5.29 below). The existence and uniqueness of a universal 
morphism for a given variety is stated in the following result. 

Theorem 5.28. For any algebraic variety M, a universal morphism J : 
M -+ Tr exists. Moreover, the couple (Tr, J) is unique up to isomorphism. 
The Abelian variety Tr (or, precisely, the isomorphism class of (Tr,J)) is 
called the Albanese variety of M and is denoted by Alb(M). 

Similar definitions and a similar result hold for other classes of target alge
braic groups such as (C*Y or extensions of an Abelian variety by an algebraic 
group (C*Y· 

Example 5.29. For a compact Riemann surfacer and for a point Q E r the 
natural inclusion map aQ : r -+ Jac(r), defined in (5.20), is a universal 
morphism for r. This follows immediately from the universal property for 
Jacobians (Theorem 5.25). Thus, Alb(r) ~ Jac(r). 

2 Affine in the sense that cp commutes with translations. 
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As we said, the main example that we will consider is the case in which 
M is an affine part of an Abelian variety, in which case the latter Abelian 
variety is the Albanese variety of M. This case is described by the following 
proposition. 

Proposition 5.30. Let Tr be an Abelian variety, and let M ~ Tr be an 
open subvariety. If z : M <-+ Tr is the inclusion, then (Tr, z) is the Albanese 
variety of M. As a consequence, any compactification A of M, where A is an 
Abelian variety, is isomorphic to Tr. 

Proof. Let 3: M--? Alb(M) be a universal morphism forM, so that we have 
a commutative diagram 

M ___..!___ Alb(M) 

~!· 
where <pis an affine morphism. We need to show that <pis an isomorphism. 
To do this we use the basic result which says that any rational function, 
defined on an open subset of a variety V, with target an Abelian variety, 
extends to the whole variety V. Applied to 3 : M ~ Tr --? Alb(M) we get 
a morphism 1/J : Tr --? Alb(M), with 1/J o z = J· Since 3(M) and z(M) span 
Alb(M) resp. Tr, it is clear that 1/J and <pare inverse to each other. D 

Notice that in the above proof M is any (Zariski-) open subvariety of Tr. It 
follows that the Albanese variety of M is a birational invariant of M. 

If M is, in addition, smooth and compact then the Albanese variety of M 
can be described in cohomological terms, as in (5.18), namely 

where H1(M, Z) is viewed as a subgroup of H0 (M, {}1)* as in (5.17); the 
morphism 3: M--? Alb(M) is given, formE M by the linear map (viewed 
as an element of H0 (M, {}1)* /H1(M, Z)) 

3(m): H0 (M,n1)--? C 

W 1-t J:::o w, 

where m0 is a base point on M. When M is smooth and compact then 
Pic0 (M) and Alb(M) are, in a natural way, dual Abelian varieties (see [69, pp. 
331-332]). 
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5.2.4 Prym Varieties 

As Jacobi varieties did, Prym varieties provide another important class of 
Abelian varieties, which are in certain cases principally polarized (some au
thors reserve the term Prym variety to those cases). Prym varieties arise in 
the context of Riemann surfaces having an involution. Suppose that r is a 
compact Riemann surface, which is equipped with an involution a. Let £ be 
the compact Riemann surface, which is the quotient of r by a and denote 
the quotient map r -t £ by 71'. 

Since 11' is a double cover, the Riemann-Hurwitz Formula (5.10) yields the 
genus g of F in terms of the genus go of £, 

g = 2go +n -1, 

where 2n denotes the number oframification points. The involution a extends 
linearly to an involution on Div(F), still denoted by a: for Pl, ... ,pN E F 
and a1, ... , aN E Z, 

a (t,aiPi) = t,aia(pi)· 

Notice that a respects the degree and that it sends principal divisors to 
principal divisors, since a sends (/) to (! o a), where f is any meromorphic 
function on r. Therefore a induces an involution on the Jacobian of r, which 
is still denoted by a. We will say that a divisor V of degree 0 on r is an odd 
divisor (with respect to a) if V + a(V) "' 0, which by the Abel Theorem 
means that Ab(V + a(V)) = 0 E Jac(F). The image under Ab of the odd 
divisors forms a subgroup of Jac(F) which is called the Prym variety of 
(F, a), denoted Prym(F/£). By the Poincare Reducibility Theorem there is 
an isogeny 

Prym(F/£) EB A---+ Jac(F), 

where A is an Abelian subvariety of Jac(F). 
The Prym variety can also be defined in the following way. The quotient 

map 11' : r -t £ extends uniquely to a group homomorphism Div(F) -t 

Div(£), still denoted by 11', simply by setting 11'(L: aiPi) = I: ai11'(Pi)· If V 
is a principal divisor on r then 11'(V) is a principal divisor on £. Indeed, if 
(/) = V then the product f(f o a) off with its conjugate (with respect 
to a) f o a is a-invariant, hence there exists a function g on £, such that 
go 11' = f(f o a); then (g) = 11'(V). It follows that 11' induces a surjective 
homomorphism 

Nm : Jac(F) ---+ Jac(£), 

which is called the norm map. The connected component of 0 of Ker(Nm) 
consists precisely of the odd divisors, i.e., it coincides with Prym(F/£) (see 
[131]). The dual homomorphism 

fuii : Jac(£) ---+ Jac(F) 
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yields, in view of the Poincare Reducibility Theorem, the isogeny 

Jac(F) ~ Prym(F/f) EB Jac(£). 

We wish to compute rather explicitly the period matrix of Prym(F/f) 
and deduce from it its polarization type, more precisely the polarization type 
that Prym{F/e) inherits from the principal polarization on Jac{F). We will 
exclude the case n = 0 (no branch points), which is slightly different from the 
present case, because on the one hand we will not encounter it later and on 
the other hand because that case is presented in a very comprehensive form 
in [17, Appendix C]. 

The space H0 (F, n1) of holomorphic differentials on F decomposes under 
a as 

H0 (r, n1) = H0 (F, n1)+ EB H0(r, n1)-

where elements of H0 (F, n1 )+ are called even differentials and satisfy a•w = 
w, while elements of H0 (F, n1 )-are called odd differentials and satisfy a*w = 
-w. Since a holomorphic differential on r is even precisely when it descends 
to e' we have that 

If V is an odd divisor then for any even differential w+ on r one has by 
Ab(V + a(V)) = 0 that 

r w+ =- r w+ =- r a•w+ =- r w+ = 0, 
lv lu('D) Jv Jv 

so that the period matrix of Prym(F/f) can be computed by integrating a 
basis for the odd cycles on r over a basis for the space of odd differentials. 
In order to construct a basis for the odd cycles, let Ai, Bi (i = 1, ... , go) 
be cycles on e whose homology classes form a symplectic basis for the first 
homology space of e. We may assume that none of these cycles passes through 
the branch points of 1r. As can be seen from Figure 5.1, they can be lifted 
via 1r to 4go cycles 

A1, ... , A90 , ih, ... , B90 , a(.Al), ... , a(A90 ), a(Bt), ... , a(B90 ) 

and this can be done in such a way that there exist additional cycles 

so that the homology classes of all of these 2g = 4go + 2(n- 1) cycles on r 
form a symplectic basis for H1(F, Z), i.e., the only non-trivial intersection, in 
homology, is given by 

Ai . i:Ji = a(Ai) . a(Bi) = ci . Di = 1. 
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1 

Fig. 5.1. If r is a double cover of£ then a symplectic basis can be chosen for 
H1(r,Z) from a symplectic basis for H1(£,Z). The genera of the two Riemann 
surfaces are related by g(r) = 2g(£) + n- 1, where 2n is the number of branch 
points of the cover. 

In order to construct a basis for the space of odd holomorphic differentials, 
let w1 , ... , w9 be differentials that are normalized with respect to the above 
symplectic basis, where we view the cycles Ai, u(Ai) and Cj as the "A-cycles", 
i.e., 

JA,. Wi = dij 
J 

i,j = 1, ... ,go, 

Ju(A;) Wi+go = dij i, j = 1, ... , go, (5.22) 

Jc. Wi+2go = dij 
J 

i,j=1, ... ,n-1. 

Then a basis for the space of even resp. odd holomorphic differentials is given 
by 

+ wi := Wi + Wi+oo• 

w; := Wi - Wi+go, 

w;+i := Wi+2go, 

i = 1, .. . ,g0 , 

i = 1, .. . ,g0 , 

i = 1, .. . ,n -1. 

On the other hand, a basis for the odd cycles is given by 

A!, ... ,A;0 ,C!, ... ,C;;_1,B!, .. . ,B;,D!, .. . ,D;;_1, 
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where Ai := .,t- o-(Ai) and Bi := fh- o-(Bi), fori = 1, ... , go, while Cj := 
Cj and Dj := Dj for j = 1, ... , n- 1. The period matrix of Prym(F/£) is 
in terms of the above basis the (g- g0 ) x (2g- 2g0) matrix 

(5.23) 

where i takes all values from 1 to go and j takes all values from 1 to n- 1. 
Using only the parity of the differentials w:; we can rewrite this period matrix 
as follows: 

(5.24) 

Using, in addition, the normalization (5.22) we find that this matrix has the 
form (..1 Z), where ..1 = diag(2, ... , 2, 1, ... , 1) (g0 times 2 and n- 1 times 
1) and where Z can be shown to be a symmetric matrix, whose imaginary 
part is positive definite. It follows that Prym(F/£) inherits from the principal 
polarization on Jac(r) a polarization of type (1, ... , 1, 2, ... , 2) (n- 1 times 
1 and go times 2). This polarization is twice a principal polarization when 
n = 1. A similar computation shows that this is also the case when n = 0 
(see (17, Appendix C]). 

Example 5.31. Suppose that r is a non-singular curve in an irreducible 
Abelian surface T 2 , and assume that r is a double (possibly ramified) cover of 

a non-singular curve£. We have according to Example 5.26 that T 2 is isoge
nous to an Abelian surface B, contained in Jac(F). But T2 is irreducible, 
hence B also. It follows that B, hence also T 2 , must be isogenous to an 
Abelian surface, contained in Prym(rj£) or in Jac(£). In particular, assume 
that £ is an elliptic curve and that the cover has four ramification points, so 
that r has genus three. Then Jac(£) =£is 1-dimensional, while Prym(F/£) 
is two-dimensional, hence T 2 is isogenous to Prym(F/£). 

Example 5.32. If an irreducible Abelian surface T 2 contains a non-singular 
curve V of genus 3 then it is isomorphic to the dual of Prym(V/£), where£ 
is some elliptic curve. In fact, let us denote by 'Y : V -+ T 2 the inclusion map 
and let ;y : Jac(V) -+ T 2 be the corresponding homomorphism, as given by 
the universal property of Jac(V) (Theorem 5.25). Then 'Y is surjective since 
T 2 is irreducible. The connected component of Ker 'Y is an elliptic curve, 
which is denoted by £. It leads to an exact sequence 

0 ---+ T2 ---+ Jac(V) ---+ £ ---+ 0, 
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where we have used that Jac('D) and£ are isomorphic (in a canonical way) 
to their duals. Now D injects naturally in its Jacobian and its composition 
with the surjective map p : Jac('D) -+ £ gives a covering map 1r : D -+ £. 
According to the definition of the norm map we have that p is the norm map 
of rr. Thus, f2 is isomorphic to the kernel of Nm: Jac('D) -+ £. Since T 2 is 
connected, f2 is isomorphic to Prym(DI£). By Riemann-Hurwitz the cover 
D -+ £ has four ramification points, so that the polarization on Prym('D I£) 
that is induced by the principal polarization on Jac(F) has type (1, 2). 

5.2.5 Families of Abelian Varieties 

We first make precise what we mean by a family of (affine parts of) Abelian 
varieties. 

Definition 5.33. Let F : V -+ S be a surjective morphism between con
nected algebraic varieties. We will say that F is an algebraic family of Abelian 
varieties (resp. of affine parts of Abelian varieties) if for any c E S the fiber 
F-1(c) is isomorphic to an Abelian variety (resp. to an affine part of an 
Abelian variety). We speak of a smooth algebraic family if, in addition, V 
and S are smooth. 

Smooth algebraic families of affine parts of Abelian varieties will show up 
when we get to a.c.i. systems (in Chapter 6 and the chapters that follow). For 
any construction that applies to a particular type of algebraic variety (such 
as an Abelian variety) one may wonder if the same thing can be done for a 
family of algebraic varieties of this type. For example, considering a surjective 
morphism 1r : V -+ S, between smooth algebraic varieties V and S, where all 
fibers of 1r are compact Riemann surfaces (i.e., 1r is a smooth algebraic family 
of compact Riemann surfaces) one may wonder if one can replace in this 
family every Riemann surface by its Jacobian, to obtain a smooth algebraic 
family 7f : V -+ S where 

for any c E S. The latter family is then called the relative Jacobian of 
1r : V -+ S or simply of V (one thinks of V as a Riemann surface, parametrized 
by the points of S), and is denoted by J ac(V IS). One defines similarly, for 
any surjective morphism 1r : V -+ S with smooth fibers, the relative Picard 
variety3 Pic0 (VIS) and its dual, the relative Albanese variety Alb(V IS); the 
latter satisfies a universal property, just like the Albanese variety (see Para
graph 5.2.3), where the universal morphism takes values in a family of Abelian 
varieties, rather than in a single Abelian variety. 

3 Recall from Section 5.1 that the Picard variety Pic(M) of a holomorphic mani
fold M is the group of holomorphic line bundles on M and the Pic0 (M) is the 
subgroup of Pic(M) that consists of the line bundles with trivial Chern class. 
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In general these relative objects exist, but only after replacing the base 
S of the family (the parameter space) by a non-empty Zariski open subset 
U ~ S. For the case of the Picard and Albanese varieties, which are the cases 
that we will use, the result is given by the following theorem (see [70) and [71) 
for a very general and abstract treatment of the relative Picard and Albanese 
varieties; they are in the latter referred to as Picard and Albanese schemes). 

Theorem 5.34. Let V and S be smooth algebraic varieties and assume that 
F : V --t S is a morphism with smooth fibers. Then there exists over a non
empty Zariski open subset U of Sa relative Picard variety Pic0 (F-1 (U)/U). 

We now state what we mean by a partial compactification of a family of 
affine parts of Abelian varieties. Such families will show up later in the con
text of integrable systems and their compactification will be important in 
Section 6.2.1. 

Definition 5.35. Suppose that F : V --t Sis a smooth algebraic family of 
affine parts of Abelian varieties. We say that F admits a partial compactifi
cation over a (Zariski) open subset U ~ S if there exists a smooth algebraic 
family F : V --t U of Abelian varieties, a morphism z : F-1 (U) --t V and an 
analytic hypersurface V on V such that such that 

(1) the following diagram commutes, 

u 

(2) z restricts to an isomorphism F-1 (U) --tV\ V. 

Notice that in view of Proposition 5.30, for any c E S the Abelian variety 
F-1 (c) that compactifies F-1 (c) is unique, up to isomorphism, and it is 
the Albanese variety of F-1 (c). This suggests that partial compactifications 
should be constructed via the relative Albanese variety. We do this in the 
following theorem by first constructing the relative Picard variety, as given 
by Theorem 5.34. The proof of this theorem was kindly provided to us by 
Jose Bertin. 

Theorem 5.36. Let F: V --t S be a smooth algebraic family of affine parts 
of Abelian varieties. Then there exists, for some non-empty Zariski open sub
set U of S a partial compactification ofF over U. This partial compactifica
tion is the relative Albanese variety Alb(F- 1 (U)/U). 
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Proof. We first make a (singular) partial compactification ofF overS; we do 
this by embedding Fin a projective family. This can be done as follows. We 
may assume the base S is an affine set because the theorem is to be shown 
only for an open subset U of S. Then we way assume that the total space 
V is also affine, simply by taking an affine open subset of V. Then taking 
generators for the algebras of regular functions on S and V, we may realize 
v as a closed subvariety of en X s. Then taking the closure v of v in the 
relative projective space pn x S, we get a projective compactification of our 
family, that is 

VcV~S 

the morphism 1r being projective. Note the variety V is no longer smooth. 
But we may desingularize it, by Hironanka's theorem. 

Precisely, there is a projective morphism W -t V which is a product of 
blow-ups, where W is smooth. Since V is non-singular the center of each of 
these blow-ups can be chosen in the boundary V- V; with this choice, Vis 
naturally isomorphic to an open subset of W. In conclusion, we can choose a 
projective compactification V c V ~ S, with V smooth. Since the map will 
be smooth over the fibers that do not contain the centers (there are a finite 
number of them) we may, after replacing the base S by an open subset U', 
assume that the morphism 1r : V -t U' is smooth and projective. 

By Theorem 5.34 the relative Picard variety exists, say over an open 
subset U ~ U', and the fiber over c E U is the Picard variety Pic0 (1r-1 (c)). 
Taking its dual we get the relative Albanese variety, whose fiber over cis the 
Albanese variety of 1r-1 (c) but also of F-1 (c), since we know the Albanese 
variety is a birational invariant. It follows that a partial compactification of 
F exists, at least over a Zariski open subset U of the base. D 

5.3 Divisors in Abelian Varieties 

In general, any ample divisor contains a lot of information about its ambient 
algebraic variety. The tools that will be developed in the Chapters 6 and 7 are 
based on this fact, in the particular case of effective divisors on irreducible 
Abelian varieties; recall in this respect that any effective divisor on an irre
ducible Abelian variety is ample. Let us first compute the restriction of the 
Kodaira map cpv to V', where V' is an irreducible component (taken with 
multiplicity 1) of a very ample divisor Von an irreducible Abelian variety Tr, 
where Vis assumed effective. To do this, we use a holomorphic vector field V 
on Tr. Let a be a section of [V] for which (a) = V and define for i = 0, ... , N 
a section of [V] by ai := Zia, where (1 = zo,z1, ... ,zN) is a basis for L(V). 
Let us denote by zo(t; 'D'), ... , ZN(t; V') the Laurent series of z0, ... , ZN with 
respect of V, starting at V' (see Paragraph 2.1.1), 

z·(t· V') = _!_ (z~o) + z~1>t + O(t2)) 
• ' tP • ' ' 
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where the coefficients z~k) are meromorphic functions on V', with z(o) f 0 

(but some of the zro) may be zero) so that p E N* is the multiplicity of V' 
in V. The specialization of the series zi(t; V') to a generic point m E V' will 
be denoted by zi(t; m); the coefficients z~i) are then also denoted by zii) (m). 
If the multiplicity of V' in V is 1, so that p = 1, then each zi(t; V') has at 
most a simple pole along V' and for a generic m E V', 

cpv(m) = lim(zo(t;m): z1(t;m): · · ·: ZN(t;m)) 
t-tO 

= limt(zo(t;m): z1(t;m): · ··: ZN(t;m)) 
t-tO 

= (o: zf0l(m): ·· ·: z~)(m)), 

so that the residues of the functions Zi embed a Zariski open subset U of V', 
since V is very ample. 

For points m' E V' \ U, i.e., points at which at least one of the functions 

z~o) has a pole, or for which all the above residues vanish, cpv(m') is computed 
from 

cpv(m') = lim cpv(m) = lim (o: zf0l(m): · · ·: z~)(m)), 
m-tm' m-+m' 

with the limit of course being taken in pN. If the multiplicity p of V' in V 
is larger than 1 then by the same argument the leading terms in t of those 
Zi(t; V') that have a pole of order p (and no less) along V', embed (a Zariski 
open subset of) V' in pN. 

Next, let us show that, in terms of certain variables, any holomorphic 
vector field on an irreducible Abelian variety is quadratic. Let V be an ef
fective divisor on an irreducible Abelian variety Tr and suppose that [V] is 
normally generated (in particular V is very ample). Also, let V be any holo
morphic vector field on Tr and write j for V[f]. Introduce for J, g E M(Tr) 
the Wronskian W(f, g) off and g with respect to Vas 

W(f,g) = jg- !iJ. 

We claim that if/, g E L(V) then W(f, g) E L(2V). To prove this it suffices 
to show that if f and g have a pole of order p along some irreducible analytic 
hypersurface V' then W(f, g) has a pole of order 2p (at worst) along V'. But 

ordt=O W(f, g)(t; V') ~ ordt=O f(t; V') + ordt=O g(t; V'), 

since the leading term of the series cancels out, and the result follows. Since 
[V] is normally generated the natural map Sym2 L(V) -+ L(2V) is surjective, 
and W(f, g) can be written as a quadratic polynomial in L(V). Let us apply 
this to a basis (z0 , ..• , ZN) of L(V). Fix any l such that 0 ~ l ~ Nand define 
Yi := zi/zt, where 0 ~ i ~ N. 
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Then 
N N 

. W(zi, zt) 1 ""' (i) ""' {i) 
Yi = z2 = z2 L..J ajk ZjZk = L..J aik YiYk, 

l I j,k=O j,k=O 

for some constants a}2. Thus, any holomorphic vector field on Tr is quadratic 
when expressed in terms of the ratios zo/zt, ... ,zN/zt, where lis fixed but 
arbitrary. Thus, if we are in an affine chart of pN defined by Zt =I 0, i.e., 
such that yo, ... , YN define affine coordinates, then the above provides in this 
chart a description of the vector field as a quadratic vector field, in terms of 
these coordinates. 

The fact that some elements of L(2V) can be constructed by taking the 
Wronskian of two functions in L(V) yields a useful tool for constructing 
embeddings of Abelian varieties in projective space. As was shown by Luis 
Piovan in [141] a basis of L(2V) may, in certain cases, be constructed from 
a basis of L(V) by adding these Wronskians to the products ZiZj of sections 
of L(V). 

Theorem 5.37 (Piovan). LetV be a symmetric divisor on a Jacobi surface 
Jac(r), and assume that [V] induces on Jac(r) twice the principal polariza
tion. If zo, ... , Z3 is a basis of L(V) and V is a generic vector field on Jac(r) 
then the products ZiZj and the Wronskians W(zi, Zj), where 0 ~ i ~ j ~ 3, 
generate L(2V). 

5.3.1 The Case of Non-singular Divisors 

We assume in this paragraph that V is a non-singular divisor on an irreducible 
Abelian variety Tr. We will relate its genus g(V), which we defined as the 
dimension of H 0 (V, nr-1 ), on the one hand to the polarization type that it 
induces on Tr, and on the other hand to its self-intersection. We will also 
explain how a basis for the above space H 0 (V, nr-1 ) can be computed from 
a basis of L(V) and a basis for the space of holomorphic vector fields on Tr. 
In the next section we will see how all this works for V singular, with g(V) 
replaced by the arithmetic genus. 

Theorem 5.38. Let V be a non-singular analytic hypersurface of an irre
ducible Abelian variety Tr and let ( <h, ... , 8r) denote the polarization type 
that V induces on Tr. Then the following string of equalities hold. 

. c1([Vj)T 'Dr 
x([V]) = d1m L(V) = 81 ... 8r = g(V) - r + 1 = 1 = - (5.25) r. r! · 

Proof. Since Tr is irreducible, [V] is a positive line bundle and the first 
equality follows from (5.14). The second equality follows from (5.15) by using 
(5.9). Since Tr is a compact Kahler manifold, g(V) is given by (5.8), which 
specializes to 

(5.26) 
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Indeed, h0 (Tr,rr) = h0 (Tr, 0)) = 1, as a consequence of (5.13), and 
h0 (Tr, nr-1) = r since JlO(Tr, nr-1) is spanned by the r forms dt1/\ .. . I\ 
~I\ ... 1\dtr, where the ti are linear coordinates on Tr. Using (5.14), the third 
equality in (5.25) follows from (5.26). Writing c1 ([V]) = [Ea 6adXa 1\ dxr+a] 
one finds 

c1 ([VJr = r!61 ... 6r[dx1 1\ ... I\ dx2r], 

so that, when interpreted as an element of Z, c1 ([VW = r!61 ... 6r. This yields 
the fourth equality in (5.25). Finally, c1 ([V]) is the Poincare dual of the cycle, 
carried by V and the wedge of (cohomology classes of) two-forms corresponds, 
under the Poincare Duality to the intersection of cycles. Therefore, 

C1([VJr = C1([V]) 1\ ... I\ c1([V]) = v. V·. ·V = vr, 
which leads to the last equality in (5.25). D 

We show in the following example how part of the string of formulas in 
Theorem 5.38 can be obtained in the case of Abelian surfaces from the general 
formulas for curves on algebraic surfaces. 

Example 5.39. Suppose that Vis a non-singular curve on T 2, which induces a 
polarization on T 2 of type ( 61, 62). The adjunction formula for a non-singular 
divisor V on a compact complex surface M, which expresses its canonical 
bundle in terms of its normal bundle and the canonical bundle on M, reads 

ICv = ICM ® Ov(V), 

which yields the following formula for the genus of V, 

g(V) = V · V + /CM · V + 1. 
2 

In particular, since /CT2 = 0 we have that g(V) = V;t + 1 for M = T 2. The 
Riemann-Roch theorem for line bundles on a surface tells you that 

V·V-ICM·V 
x([V]) = 2 + x(OM)i 

where the last term is, according to the Noether formula, given by 

1 
x(OM) = 12 (/CM · JCM + x(M)). 

For an Abelian surface T 2 the topological Euler characteristic x(T2) is zero, 
so that x( OT2) = 0 and 

V·V 
x([V]) = - 2- = g(V) - 1, 

which proves part of (5.25) in the case of an irreducible Abelian surface. 
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We now come to the construction of basis for the space of top-forms on V. 

Theorem 5.40. Let V be a non-singular analytic hypersurface of an irre
ducible Abelian variety Tr and let ( t1, ... , tr) be a system of linear coordinates 
on Tr. Choose a basis (zo = 1, Z1, ••• , ZN) of L(V) and define fori = 1, ... , r, 
a top-form on V by 

(5.27) 

Then 

Jtl(V, nr-1) =span { z~0)w1, ... , Z~)W1} E9 span {w1, ... ,Wr}, (5.28) 

where zr1), ... , z~) are the residues of the series Z1 ( t1 j V), ... , ZN ( t1 j V). 

Proof. Consider the exact sequence (5.6), which reduces for Tr by the 
Kodaira-Nakano Vanishing Theorem and by (5.7) to 

0--+ Ho(Tr,nr)--+ Ho(Tr,nr(V)) ~ Ho(v,nr-1) 
--+ Ho(Tr,nr-1)--+ 0. 

It follows that H 0 (V, nr-1) is the direct sum of the space of top-forms on 
V which are restrictions of holomorphic (r- 1)-forms on Tr, and the image 
of PR. Since the Poincare Residue of a holomorphic r-form is zero, 

where w is the top-form dt1/\ .. :1\dtr on Tr, and where we view H 0 (Tr, nr-1) 
as a subspace of H 0 (V, nr-1 ), by restriction. We have that h0 (Tr, nr-1) = r 
because a basis for the space of holomorphic (r -1)-forms on Tr is given by 
the forms dt1 1\ ... 1\ eft: 1\ ... 1\ dtr, (i = 1, ... , r). Substituted in (5.29) this 
yields, combined with (5.25), 

dimspan{PR(z1w), ... ,PR(zNw)} = g(V)- r = dimL(V) -1 = N, 

which shows that the Poincare Residues PR(z1w), ... , PR(zNw) are linearly 
independent. In order to compute PR(ziw), for i = 1, ... , N, consider the 
Laurent series4 of Zi with respect to a;ati, starting at v, 

4 We will see in Chapter 7 how the first few terms of these series can be explicitly 
computed for an important class of vector fields. 
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Then, by (5.5), 

PR(ziw) = dt2; ... 1\ dtr I 
ott (1/ Zi) D 

dt2 1\ ... 1\ dtr I {0) 

= a~l (h/z~o) + O(tf)) tt=O = zi WI, 

yielding the first factor in (5.28). For the second factor in (5.28), we restrict 

the above basis dh 1\ ... 1\ eft: 1\ ... 1\ dtr, (i = 1, ... , r), to V, which gives, by 
definition, the top-forms WI, ... , Wr on V. 0 

We will see in Paragraph 7.6.7 how the (r-1)-forms Wi, defined by (5.27), can 
be explicitly computed when an explicit basis for the space of holomorphic 
vector fields on Tr is known. 

5.3.2 The Case of Singular Divisors 

The divisors that we will encounter in this book will often be singular. All 
formulas and notions that cease to make sense (holomorphic differentials, 
genus, canonical bundle, Poincare Residue, ... ) admit a natural adaption in 
such a way that all the formulas from the previous paragraph still hold (in 
particular, they still make sense). This has been worked out in detail only in 
the case of divisors on a complex surface, i.e., in the case of curves, which 
is the only case that we will need. We present a few elements of this theory 
here and refer for a systematic treatment of it to [28]. 

Let V be a curve in a non-singular algebraic surface M. If V is non-singular 
and connected then its (geometric) genus g is given by g(V) = h0 (V, []I), 
which can in view of Kodaira-Serre Duality also be written as 

(5.30) 

Now (5.11) yields in the case of the trivial line bundle hi(V, 0) = 1- x(Ov), 
so that (5.30) becomes 

g(V) = 1- x(Ov). (5.31) 

Since x( Ov) makes also sense for singular curves, or even for arbitrary divi
sors on a smooth algebraic surface, the right hand side in (5.31) is defined to 
be the arithmetic genus ofV, denoted ga(D). Thus, ga(V) := 1-x(Ov). The 
geometric genus of Vis by definition the genus of the (minimal) desingular
ization of V. Thus, for an analytic hypersurfaces, ga(V) = g(V) if and only 
if V is non-singular; moreover, since x( Ov) is invariant under deformation, 
ga (V) is the genus of any smooth curve in M, which is a small deformation 
ofV. 
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Notice that since intersection multiplicities of divisors are also invari
ant under deformation, (5.25) implies that, for an effective divisor V on an 
Abelian variety T 2 , v2 

9a(V) = 2 + 1, 

and (5.25) still holds when g('D) is replaced by 9a(V). 

(5.32) 

Example 5.41. Suppose that Vis a non-singular analytic hypersurface of an 
irreducible Abelian variety T2 and consider kV, where k E N*. Since (k'D) 2 = 
k2V2 by the above formula, the arithmetic genus of k'D is given by 

9a(kV) = k2 (g('D)- 1) + 1, 

where g(V) = 9a(V) because Vis non-singular. 

A close investigation of the blow-up 1r : V --+ V near the singularities of V 
yields a relation between the geometric and the arithmetic genus of a singular 
divisor, as given in the following proposition. 

Proposition 5.42. Let V be an analytic hypersurface on an irreducible 
Abelian surface T 2 and let 1r : V --+ V be its normalization. Let V1, ... , V 8 

denote the irreducible components of V and denote the connected components 
of jj (which are the normalization of vl, ... , V8) by vl, ... , jj8· Then 

8 

9a(V) = L g(Vi) + 1 - s + x(Zv ), 
i=l 

where Zv is the quotient sheaf 11'•0v/Ov on V. 

Proof. Consider the normalization sequence of 1r, which is the exact sequence 
of sheaves on V, given by 

(5.33) 

where 1r: V--+ 'D. From its long exact cohomology sequence we have that 

x(Ov)- x(7r.Ov) + x(Zv) = o. (5.34) 

Now 

x(Ov) = 1- 9a(V), 
8 8 

x(7r.Ov) = L:x(Ov) = s- Lg(Vi), 
i=l i=l 

where s denotes the number of connected components of iJ. It suffices now 
to substitute these expressions in (5.34). 0 
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Remark 5.1,9. IfV1, ... , Vs are non-singular curves on an Abelian surface T 2 

and ~1 •..• , ~8 are any positive integers, then (5.32) implies that 

so that 

Ya (t ~ivi) = t ~~(g('Di) - 1) + ~ ~i~kX(Vi U V;) + 1. 
z=l z=l l~z<J~B 

We show how to compute x(Zv), which is the contribution by the singular 
points of a singular curve to its arithmetic genus. We will do this in the case 
of a planar singularity, i.e., the tangents to the s branches of V at m lie 
in a plane. Notice that the computation is completely local; if m1 , ... , mk 

denote the singular points of V then x(Zv) = L:~=l x(ZmJ, where Zm; is 
the restriction of Zv to a small neighborhood of the singular point mi. The 
integer x(ZmJ is an invariant of the singularity mi. Letting m be a singular 
point of V we have that x(Zm) = h0 ('D, Zm), which is in view of (5.33) the 
dimension of the space of (germs of) holomorphic functions on the different 
branches around m taken separately, modulo the (germs of) holomorphic 
functions on the curve 'D near m. Explicitly, let 'Di denote the i-th branch of 
Vat m, with local defining equation fi(x, y) = 0, where i = 1, ... , s, and let 
'Yi : U ~ C -t C 2 be a local parameterization of Vi at m, where U is an open 
neighborhood of the origin in C. These parameterizations, taken together, 
lead to a map 

.P : C[[x, y]]/ TI:=l /i(x, y) -t TI:=l C[[~i]] 
h(x,y) 1-t (ho'Yl(~l), ... ,ho'Ys(~8 )), 

which maps a germ of holomorphic functions on 'D at m to its value at each 
of the branches separately. It follows that x(Zm) is given by 

(5.35) 

Remark 5.1,1,. There is an alternative way to compute x(Zm), which goes as 
follows. Suppose that mo is a singular point of a curve 'Do, and explicitly 
blow the surface M up in a neighborhood of mo, with center m0 • Consider 
the proper (or strict) transform 'D1 of Vo, which is the closure of the inverse 
image, under the blow-up, of 'Do\ { m0 } • The points on V1 are called infinitely 
near points on Vo of the first order. The points over mo may or may not be 
singular points. If one of them is singular, call it m1 and do another blow-up, 



5.3 Divisors in Abelian Varieties 149 

now with center ml' which yields v2' the proper transform of vl' whose 
points are called infinitely near points of the second order. This may again 
produce singular points, and we may still have singular points left from the 
first blow-up (these are now viewed as points on V2; indeed a blow-up is 
a biholomorphism, away from its center). In any case, we repeat the above 
process, calling one of the singular infinitely near points Pi, doing a blow-up 
with center Pi and calling the proper transform Vi+l• whose points are called 
infinitely near points of order i + 1. It is a fundamental fact that we get only a 
finite number of singular (infinitely near) points in this way. Fori = 0, 1, ... , 
the order of mi on Vi is denoted by ei. With this notation, Clebsch 's Formula, 
states that 

(z ) -"' ei(ei- 1) 
X mo-L..J 2 ' 

i 

(5.36) 

where the sum is over as many terms as needed to get rid of all singularities, 
produced when blowing up recursively m0 and all its infinitely near singular 
points. For more details on this method we refer to [89, Chapter 9); the 
method will be illustrated in example 5.48 below. 

We show in the examples below how the data of Table 5.1 were computed. 

Table 5.1. For the simplest planar singularities we give the Euler characteristic x 
and the number 8 of branches at that point. 

singularity equation picture X 8 

node y2 = x2 X 1 2 

cusp y2 = xa < 1 1 

n-node yn = xn * (~) n 

tacnode y2 = x2n >-< n 2 

cusp y2 = x2n+l ~ n 1 
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Example 5.45. The simplest example of a singular point is that of a node, 
also called an ordinary double point or cronode, which is a double point with 
distinct tangent lines. We may assume that the singular point m is the origin, 
and that the equation of the curve is given (around 0) by V : y2 = x2 • The 
two branches are then given by v1 : y =X and v2 : y = -x. Let h(x, y) be a 
germ of a holomorphic function on V at 0. Since we can replace in the series 
for h all terms that contain yi with i ~ 2 by using the relation y2 = x2 , we 
can write h, up to irrelevant terms, as 

h(x, y) = ao + a1x + a2x2 + · · · + y(b1 + ~x + · · ·). 

A local parameterization for V1 and for V2 is given by 'Y1(~t) = (~1,~1) and 
'Y2(~2) = (~2, -~2)· This yields 

h o -yt(~t) = ao + (a1 + b1)~1 + (a2 + b2)~: + · · ·, 

h o 'Y2(~2) = ao + (a1 - b1)~2 + (a2 - ~)~~ + · · ·. 

Since all the coefficients of these two series, taken together, are independent, 
except for the leading ones (which coincide) we find from (5.35) that x(Zm) = 
1 and we have that s = 2, since there are two branches at 0. 

Example 5.46. The previous example is easily generalized to a curve V with 
ann-node (ordinary n-fold point), which means that at mit has at n branches 
with distinct tangents. We may assume in this case that m = 0 and that the 
equation of the curve is given (around 0) by V : yn = xn. The n branches 
are then given by Vi : y = eix, where e is a primitive n-th root of unity and 
i = 0, ... , n- 1. Let h(x, y) be a germ of a holomorphic function on V at 0. 
As above, we can write h, up to terms that are irrelevant, as 

h(x, y) = aoo + a10x + a2ox2 + · · · + y(au + a21X + · · ·) 

+··· 
+ Yn-1(an-1,n-1 + an,n-1X + · · ·). 

Using the local parameterization 'Yi(~i) = (~i' ei~i) for Vi we find 

h ( ) ( i ) ( i(n-1) ) n-1 o-yi ~i = aoo+ a10+e au ~i+· · ·+ an-1,o+· · ·+e an-1,n-1 ~i +· · · 

It follows that starting from the term in ~r- 1 all the coefficients of these n 

series are independent; for the term in~~, where 0 ~ j < n -1, there are only 
j + 1 independent constants that appear. Summing up for 0 ~ j < n - 1 we 
find that 

x(Zm) = (;) = n(n 2- 1). 
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Example 5.4 7. We now turn to a tacnode, which is a double point m at 
which two branches meet with common tangents at m. We may assume that 
an equation of the curve is given (around m = 0) by V : y2 = x 2n. The 2 
branches are in this case given by V1 : y = xn and V2 : y = -xn. A germ of 
a holomorphic function on Vat 0 can be written as 

h(x, y) = ao + a1x + a2x2 + · · · + y(b1 + b2x + · · ·). 

Local parameterizations 'Y1 and 'Y2 are given by 'Y1(~t) = (~1.~r) and 
'Y1(~I) = (~1, -~f). It is clear that in this case the first n terms of the series 
h('Y1 ( ~1)) and h('Y2 ( ~2)) are identical, and that the other terms are indepen
dent. Therefore, x(Zm) = n. 

Example 5.48. Our final example is that of an cusp, which is by definition 
a double point with only one branch. If V has a cusp at 0 then, locally, V 
is given by an equation y2 = x2n+1, where n ~ 1. A local parameterization 
of V around 0 is given by -y( ~) = ( ~2 , ~2n+l) and a germ of a holomorphic 
function on V at 0 can be written as 

h(x, y) = ao + a2x + a4x2 + · · · + y(b2n+1 + b2n+3X + · · ·). 

Upon substituting we find that 

h 0 -y(~) = ao + a2~2 + a4~4 + ... + a2n~2n + b2n+1~2n+1 + a2n+2~2n+2 ... ' 

and we see that there are n coefficients in the series that vanish, namely the 
coefficients of~. ~a. ... , ~2n- 1 . Therefore, x(Zm) = n. For this example, let 
us also illustrate Clebsch's method. We do a first blow-up of a neighborhood 
of (0, 0) by taking x1 := x and Y1 := yfx. The proper transform of V is 
then given by v1 : y~ = x~n-1 ' and notice that v1 has the origin as singular 
point (if n > 1), in fact it is a double point, just as (0, 0) on the original 
curve V. Repeating this procedure n times we get at Vn : y~ = x, which is 
a non-singular curve. Since each of the curves V, V1 , ... , Vn- 1 has a single 
double point, i.e., ei = 2 for i = 0, ... , n- 1 we get by Clebsch's formula 
(5.36) that x(Zm) = n, as before. 

For a non-singular curve V on a complex surface M the adjunction for
mula Kv = KM ® Ov(V) expresses its canonical bundle in terms of its 
normal bundle and the canonical bundle on M. For a singular divisor V on 
a non-singular compact surface M the sheaf Ov(V) still makes sense, so the 
canonical line bundle is formally defined as the sheaf Kv := KM ® Ov(V). 
One calls Kv the dualizing sheaf on V. If we tensor the exact sequence 

0 --t OM --t OM(V) --t Ov(V) --t 0 

with KM then we get the residue sequence 

0 --t KM --t KM ® OM(V) ....!:...t Kv --t 0. 
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Assuming V to be an analytic hypersurface, r admits the following descrip
tion, similar to the Poincare Residue map. Let w be a meromorphic 2-form, 
with at worst a single pole along V. Iff = 0 is a local defining equation for 
V then {on U) 

gdz11\ dz2 w= ;:.._ __ _ 
f 

where g is a holomorphic function on U. Letting v : iJ -+ V denote the 
normalization map of V we define 

, ( ) .. ( g dz2 I ) 
r w := v 8J!8z1 f=O ' 

a definition which is easily shown to be independent of the chosen local coordi
nates {z1 , z2). It follows that r' is a globally defined morphism of ICM®OM(V) 
into the sheaf of meromorphic 1-forms on the normalization V of V. This 
means, upon identifying r' with r that the sheaf of holomorphic 1-forms on 
V is, by definition, the sheaf of meromorphic differentials on V of the form 
r'(w). Notice that in the case of a torus, M = T 2 , the above definition sim
plifies to /Cv := Ov(V). Also, with this definition the number of independent 
holomorphic differentials is equal to the (arithmetic) genus of V, and a basis 
of the space of holomorphic differentials on V is computed as before from 
Theorem 5.40. 

Having the definition of holomorphic differentials at hand for singular 
curves we may now define, as before, an embedded curve V to be hyperelliptic 
if the Kodaira map, associated to its canonical bundle ICv fails to be an 
embedding. For non-hyperelliptic embedded curves, Theorem 5.10 still holds. 

Theorem 5.49 (Noether). Let V be a (possibly singular) curve, embedded 
in a smooth algebraic surface. If V is not hyperelliptic then its canonical 
bundle /Cv is normally generated. 



6 A.c.i. Systems 

Many integrable systems from classical mechanics admit a complexification, 
where phase space and time are complexified, and the geometry of the (com
plex) momentum map is the best possible complex analogue of the geometry 
that appears in the Liouville Theorem (Theorem 4.28). Namely, in many rel
evant examples the generic complexified fiber is an affine part of an Abelian 
variety (a compact algebraic torus, see Chapter 5) and the integrable vector 
fields are translation invariant, when restricted to any of these tori. Such 
integrable systems are the main topic of this book, and we will call them 
algebraic completely integrable systems, following the original definition of 
Adler and van Moerbeke (see [14]). 

A precise definition of algebraic complete integrability, and a natural gen
eralization of it, are given in Section 6.1, where we also present two elemen
tary examples, whose algebraic complete integrability can be shown without 
reference to abstract theorems. Two necessary conditions for algebraic com
plete integrability will be given in Section 6.2. When we get to the examples, 
then we will see that these conditions can be used in a very efficient way 
to single out, from a given family of Hamiltonians on a Poisson manifold, 
those that may lead to an algebraic completely integrable system. In many 
examples these conditions turn out to be sufficient. However, some extra 
techniques are needed to prove algebraic complete integrability. We aim in 
that direction when we prove, in Section 6.3, two complex versions of the 
Liouville Theorem. These theorems are geared towards the examples, but for 
a full implementation of these theorems we need to wait until Chapter 7. Lax 
equations, with a parameter, are a very common source of a.c.i. systems. This 
will be explained in Section 6.4, where we will explain the geometry of Lax 
equations with a parameter, and where we will prove a criterion, which gives 
necessary and sufficient conditions for the divisor map, corresponding to the 
Lax equation, to linearize the equations of motion (on the Jacobian of the 
spectral curve, defined by the characteristic polynomial of the Lax operator). 

The notion of an a.c.i. system will be further specialized in the next 
chapter to a particular type of a.c.i. systems in which everything can be 
computed explicitly. 

M. Adler et al., Algebraic Integrability, Painlevé Geometry and Lie Algebras
© Springer-Verlag Berlin Heidelberg 2004
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6.1 Definitions and First Examples 

The integrable systems that we will deal with in the rest of this book are 
complex integrable systems (M, {·,·},F), where M is a non-singular affine 
variety. Recall from Section 2.1 that the algebra of functions :F(M) that we 
consider on M is the algebra of regular functions, so that { · , ·} is a Poisson 
bracket on regular functions, and each Fi in F = (Ft, ... , Fa) is a regular func
tion. In the particular case of M being an affine space this means that :F(M) is 
just the algebra of polynomial functions on en' i.e., :F(en) = C[xl' ... 'Xn]· 

Definition 6.1. Let (M, {-,·},F) be a complex integrable system, where 
M is a non-singular affine variety and where F = (Ft, ... , Fa). We say that 
(M, {-,·},F) is an algebraic completely integrable system or an a.c.i. system 
if for generic1 c E es the fiber F c is an affine part of an Abelian variety and 
if the Hamiltonian vector fields XF, are translation invariant, when restricted 
to these fibers. In the particular case in which M is an affine space en we 
will call (en, { · , ·} , F) a polynomial a. c. i. system. When the generic Abelian 
variety of the a.c.i. system is irreducible we speak of an irreducible a.c.i. 
system. 

For certain examples of interest, that will not be treated in this book, the 
flow of the integrable vector fields induces on the generic invariant manifold 
the structure of a local group and the group law is algebraic, thereby cor
responding precisely to Painleve's original idea of algebraic integrability (as 
opposed to transcendentality, which leads to new functions, functions that 
are not obtained via algebraic manipulations, the inverse function theorem, 
and integration by quadratures). In order to cover these cases, we propose 
here the following definition that generalizes Definition 6.1. For the defini
tion and a characterization ofF~, see Definition 4.25, Proposition 4.27 and 
Remark 4.26. 

Definition 6.2. Let (M, {-,·},F) be a complex integrable system, where 
M is a {non-singular) affine variety, and where F = {Ft, ... , Fa)· We say 
that {M,{·,·},F) is a generalized a.c.i. system if for generic mE M the 
integrable vector fields Xp1 , ••• , XF. define the local action of an algebraic 
group on F~. 

Notice that the algebraic group is necessarily commutative because the vector 
fields XF, commute pairwise. 

When (M, {·,·},F) is an a.c.i. system, the generic fiber F c of the momen
tum map will constitute an entire invariant manifold F~, so that in this case 
the generic invariant manifold is an affine part of an {r-dimensional) Abelian 
variety. 

1 We use the standard terminology from algebraic geometry that "property P is 
true for generic q E N'' to denote that there exists a non-empty Zariski open 
subset U of the affine variety N such that property Pis true for every q E U. 
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Moreover, the integrable vector fields define the local action of cr on this 
affine part, and this action is algebraic because it coincides, by definition, 
with the natural local action of the Abelian variety on an affine part of itself. 
Therefore Definition 6.2 is indeed a generalization of Definition 6.1. 

In the two examples that follow we use elementary tools to prove their 
algebraic complete integrability, and we show, in addition, that the integrable 
vector fields define the local action of an algebraic group on F~ for all m E M. 
We conjecture that this is true for any generalized a.c.i. system. 

Example 6.3. On C 3 with coordinates (x, y, z) we consider the quadratic 
Poisson structure { · , ·} given by the following Poisson matrix. 

One easily checks that K := xyz is a Casimir and that M(l) is precisely 
C 3 minus the three coordinate axes (recall from Proposition 3.13 that M(s) 
denotes the open set of points where the rank of {- , ·} is at least 2s). As 
Hamiltonian we choose H := x + y + z. Then the Hamiltonian vector field 
XH is given by 

x=x(z-y), 
iJ=y(x-z), 
i = z(y- x). 

Then F := (H, K) is integrable because UF = M(l) \ Ll, is a dense subset 
of C3 , where Ll := {(a, a, a) I a E C}. Notice that C3 \ UF is precisely the 
locus where XH vanishes. The image of the three coordinate axes under the 
momentum map is the line K = 0, while the image of Ll is the cubic curve 
27 K = H 3 • Let us investigate all fibers of the momentum map. We fix m = 
(x0 , y0 , z0 ) E C 3 and we denote by h, k the values of the functions Hand K 
at this point: h := xo +Yo+ zo and k := xoyozo, and we let c := (h, k). We 
need to distinguish 4 cases for c, corresponding to 

( 1) a generic point of the H K -plane; 
(2) the intersection of the cubic curve and the line (the origin); 
(3) a point on the line, different from the origin; 
(4) a point on the cubic curve, different from the origin. 

See Figure 6.1. We will deal with each of these cases separately, in the above 
order. The first case is of course the generic case: the invariant manifolds and 
the flow can in each of the other three cases be seen as a limiting case of the 
invariant manifolds and of the flow for the generic case. 
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Fig. 6.1. The H K-plane, which contains the image points of the momentum map 
contains two special curves, the line K = 0 and the cubic curve 27 K = H 3 • The 
fibers Fe of the momentum map over points c = (h,k) in the HK-plane, and the 
local action, induced on it by the vector field XH, depend very much on whether 
(h, k) belongs to neither of these curves, to one of them or to both. The labels 
{1), ... , {4) correspond to the four different cases that we need to consider. 

• c = (h, k) E C2 , with h3 =f;27k and k =I 0. The fiber F c is given by 

x+y+z = h, 
xyz = k. 

We can rewrite this curve as an isomorphic affine curve in C 2 , to wit 

xy(h- x- y) = k. 

(6.1) 

Since h3 =f;27k this cubic curve has no singular points and it is an affine part 
of an elliptic curve. Moreover, since this curve is irreducible, and since XH 
does not vanish at any point ofF c, the fiber F c coincides with the invariant 
manifold F~. Let us consider2 the 1-form, corresponding to dt, i.e., 

dx dy dz w·- - -.- x(z- y) - y(x- z) - z(y- x) 

on F m· The conditions on hand k guarantee that w is holomorphic on F mi we 
check that w extends to a holomorphic 1-form on the smooth compactification 
ofF m, which is a compact Riemann surface of genus 1. To do this, notice 
that the points to be added correspond to the points where one or several of 
x, y, z tend to infinity. A closer inspection of (6.1) shows that precisely two of 
them must tend to infinity (in such a way that their sum remains finite) and 
that the other one must tend to zero. Hence there are 3 such points, which 
correspond under a cyclic permutation of the coordinates. 

2 In order to check by computation that these three expressions define the same 
1-form, eliminate one of dx, dy, dz from the differential of the equations in {6.1); 
however, since w = dt it is obvious that they define the same 1-form. 
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It therefore suffices to check our statement for e.g. the point at infinity, 
which is given in terms of a local parameter~ by (x,y,z) = (C1, -C1 +h+ 
0(~2 ), -k~2 + 0(~3 )). In terms of~ we find that w is given by 

d~ 
w = - --:---'--::::-:---::7" 

1-h~+0{~2 )' 

which means that w is holomorphic (and non-zero) at infinity, as we claimed. 
Now notice that the restriction of w to F m is the 1-form which is dual to the 
vector field XH, since 

( dx ) :i; 
(w, XH) = ( ) , XH = ( ) = 1. xz-y xz-y 

It follows that XH is a holomorphic, hence linear, vector field on the elliptic 
curve (Riemann surface). The local action is in this case the action of the 
elliptic curve on an affine part of itself. 

• c = (h,k) = (0,0). In this case the fiber Fe is given by 

x+y+z =0, 

xyz = 0. 

F c consists of three straight lines, passing through the origin of C 3, and it 
is the union of four invariant ~anifolds. Namely, if m = (0, 0, 0) then F~ = 
{m}; of course, XH vanishes at this point. Otherwise, say m = (xo, -xo, 0), 
with x0 f:. 0. The differential equation that describes XH on the line z = 0 = 
x + y (minus the origin) is given by 

which is easily integrated as 

x= -xy, 
iJ = xy, 
z = 0, 

( xo xo) 
(x(t), y(t), z(t)) = 1- xot' -1- xot' 0 · 

{6.2) 

(6.3) 

Hence the flow of the vector field is given by the following (local) action of 
the additive group C on that line (minus the origin) 

(g, (a, -a, O)) t-+ {(a-1 - g)-1, -(a-1 - g)-1, 0), 

and this action takes you from any point on the line, different from zero, to 
any other point on the line, different from zero. 
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• c = (h,k) = (h,O), with h -=f. 0. Again, Fe consists of three lines, 
but now they form a triangle. At each vertex of the triangle (the points 
(h, 0, 0), (0, h, 0) and (0, 0, h)) the vector field XH vanishes. Let us choose 
another point on one of the three lines, say m = (xo, yo, 0), with x0y0 -=f. 0. 
Let h := xo +Yo and consider the line 

x+y = h, 

z = 0. 

The differential equation that describes XH on this line is the same as in 
(6.2) and is now integrated as 

( xohe-ht yoh ) 
(x(t), y(t), z(t)) = -ht, -ht, 0 . 

Yo + xoe Yo + xoe 
(6.4) 

So Fe consists in this case, besides the vertices of the triangle, of three in
variant manifolds, each of which is a line, minus two points, and on each of 
which XH induces the following local action of C*, 

(g, (xo,Yo,O)) 1-t ((g(x()1- h-1) + h-1)-1, (g-1(Yo1- h-1) + h-1)-1 ,o). 
Notice that the algebraic group depends on the constants of motion only, 
as it should be, and that (6.3) is a limit of (6.4) as h --t 0 (implying that 
Yo --t -xo). 

• c = (h, k) = (3c, c3 ), where c -=f. 0. The fiber Fe is now given by 

x+y+z = 3c, 
xyz = c3 • 

This affine curve has precisely one singular point, the point (c, c, c), as one 
verifies immediately by rewriting the curve as an isomorphic affine curve 
in C 2 , to wit 

xy(3c-x-y)=c3 • 

Notice that the vector field vanishes at the singular point. Letting u := (y
c) f ( x - c) we find the following rational parameterization of Fe, 

( 1 u2 (1 + u)2 ) 
(x,y,z) = -cu(1+u)'-cl+u'c u · (6.5) 

It follows that Fe is a rational curve. Rewriting any of the differential equa
tions for XH in terms of u we find it = -c(1 +u+u2 ) which is easily integrated 
as 

1 H ea(t) - e-a(t) 

u(t) = -2- -2- ea(t) + e-a(t)' (6.6) 

where a:(t) = J?(k- tc) and k is the integration constant, which is related 
tom= (xo,yo,zo) -=f. (c,c,c) by 

2 ( 2 (Yo- c) 1 ) 
k = v'3 arctan v'3 xo _ c + v'3 . 
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If we substitute the expression (6.6) for u in (6.5) we find, after some 
simplification, 

(e2a(t) + 1)3 
x(t) = c e6a(t) + 1 

6ce2a(t) 
y(t) = c - -(1---H=-=3=-)e-4a--:(,...,-t)_+_2_e_2a.....,.(t-:-) _+_1_+_/=3=-=3 

6ce2a(t) 
z(t) = c- (1 + /=3)e4a(t) + 2e2a(t) + 1- H 

Thus, we find that if m =f: ( c, c, c) then on F~ the flow of the vector fields Xn 
corresponds to an action of C*, which finally amounts to e-cv'=3(tt +t2 ) = 
e-cv'=3t1 e-cv'=3t2 , with c constant. The algebraic group depends again on 
the constants of motion, i.e. on c, only. 

Example 6.4. For the second example, let A1, A2 and A3 be three arbitrary 
complex numbers, which will play the role of parameters in the system that 
we will describe. On M = C3 we take x, y and z as coordinates and we 
consider the quadratic vector field v on C3 , given by 

x = (A3 - A2)yz, 
iJ = (Al - A3)zx, 
i = (A2 - A1)xy. 

(6.7) 

They are Euler's equations, which describe the free rotation of a rigid body, 
usually referred to as the Euler top or Euler-Poinsot top (see Chapter 10 
for more on rigid bodies). We introduce the following abbreviation Aij := 
Ai - Aj and we suppose in the sequel that all Aij, with i =f: j, are non-zero 
because otherwise V is tangent to one of the coordinate planes, in which case 
the equations ( 6. 7) are linear differential equations and their integration is 
immediate. 

The vector field V admits then the following two independent constants 
of motion: 

1 
K := -(x2 + y2 + z2), 

2 
1 2 2 2 

H := 2(A1X + A2Y + A3Z ). 

Let {- , · h and {- , · h denote the linear Poisson structures defined by the 
following two matrices 

resp. ( ~ ~z ~x) . 
-y X Q 
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Then we have that V = {·,K}1 = {·,Hh, while {·,K}2 = {·,Hh = 0, so 
that Vis a hi-Hamiltonian vector field. Since 

dK 1\ dH = A32YZ dy 1\ dz + A13ZX dz 1\ dx + >.21XY dx 1\ dy 

the subset UF (where dK 1\ dH = 0) consists of C 3 minus the three coordinate 

axes. Notice that M(l) 2 UF, irrespective of which of the Poisson structures 

{-, ·}1 or {·, ·h is considered, so that UF n M(l) = UF. The image of these 
three axes by F consists of the three lines li, given by h = )..ik, where 1 :::;; 

i :::;; 3. Let k and h denote the values of K and H at m, where m E C 3 , and 
denote c := (k, h). We need to consider three cases (see Figure 6.2): 

(1) (k, h) does not belong to one of the lines li; 
(2) (k, h) belongs to precisely one of the lines li; 
(3) (k, h) = (0, 0). 

h = )..lk 

Fig. 6.2. In this case the K H-plane contains three special curves, which are straight 

lines through 0; cfr. Figure 6.1. 

• c = (k, k) E C 2 \ (h U l2 U l3). For any point m in the fiber F c the 
invariant manifold F~ coincides with F c, and is given by 

x2 + y2 + z2 = 2k, 

AIX2 + A2Y2 + A3Z2 = 2h, 
(6.8) 

which is a non-singular affine curve, because the differentials of the two equa

tions are independent at any of its points (indeed, F c is entirely contained 

in UF ). Replacing (6.8) by 

x2 + y2 + z2 = 2k, 

A13x2 + A23Y2 = 2(h- A3k), 
(6.9) 

we notice that the second equation in (6.9) defines a conic in C 2 , which is non

singular since h "I >.3 k; also the first equation in (6.8) defines F c as a double 
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cover of this conic, with 4 ramification points (there are no ramification points 
at infinity), yielding 1 as the genus of Fe, by Riemann-Hurwitz. 

The argument to show that the vector field is linear on the elliptic curve 
goes as in the first case, considered in Example 6.3. Namely, one considers 
the 1-form 

dx dy dz 
w := -- = -- = --

A32YZ A13ZX A21XY 
on F c, which is holomorphic because F c does not intersect any of the coor
dinate axes. Using a local parameter it is easily verified that the 1-form is 
holomorphic at the 4 points at infinity. Thus, V is a linear vector field on the 
elliptic Riemann surface and the local action, corresponding to the vector 
field, is the action of the Riemann surface on an affine part of itself. Solving 
(6.8) for y and z expresses w in terms of x only, and the integration of w 
amounts to an elliptic integral. 

• c = (k, h) E li \ {(0, 0)}. To simplify the notation, let us assume 
that i = 3. The second equation in (6.9) now reduces to 

(6.10) 

which describes two lines in C2 that pass through (0, 0). The fiber of F 
over (k, h) consists of two conics, intersecting in the two points that lie over 
(0, 0), i.e., in (0, 0, ../2k) and in (0, 0, -../2k), where V vanishes. Each of the 
conics, minus these two points, is an invariant manifold F~, as we show. Let 
(xo, Yo) =j; (0, 0) and substitute this initial condition in (6.10) to find that 
the latter can be written as y5x2 = x5y2, so that YoX = XoY (the other line 
does not contain the point (xo, yo)). Using this linear equation to eliminate y 
from the differential equations we arrive at the following quadratic equations 
on C 2 : 

• A32YO 
X = --XZ = J.1.1XZ, 
· A~0Yo 2 2 (6.1l) 
z= --x =J.1.2X. 

xo 

Notice that J.1.1J.I.2 = A21A13, since (yofxo)2 = -}..13/)..23· In order to solve this 
equation, take the derivative of the second equation, 

Z = 2J.L1J.1.2X2z = 2J.L!ZZ = (J.Llz2)' 

to find that the general solution is given by 

where a(t) := Cect and where C and c are constants, which relate to the 
initial conditions as follows: 
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Combined with Yox(t) = xoy(t) this yields the integral curve that starts at 
(xo, yo, zo). 

In order to check how the group depends on the initial condition, eliminate 
y from {6.9) to find that 

A21x2(t) + .X2sz2{t) = 2.X2sk, 

along the solutions (x(t), z(t)) of {6.11). If we substitute the above general 
solution in it, then we find c? = 2k.X1s, so that apart from a sign, the ex
ponential part of a(t) depends on the value of the constants of motion only. 
The sign depends on which one of the two fibers of the momentum map over 
(k, .Xsk) one picks. Thus, the algebraic group depends on the invariant mani
fold F~ only (and not on m itself). We conclude that on F~ the flow of the 
vector field V corresponds to the local action of C*, which again amounts to 
expc(t1 + t2) = expct1 expct2, with c constant. 

• c = (k, h) = {0, 0). This case is a further degeneration of the pre
vious case. Namely, both equations in (6.9) factor into two linear terms, so 
that the fiber consists of four lines li through {0, 0, 0). On each of the lines 
li the vector field takes the simple form :i; = vix2 , which is easily integrated. 
The fiber F c consist of 0 := {0, 0, 0), where V vanishes, and four lines, minus 
0, on which V induces the local action of the additive group C. 

Example 6.5. We will now consider a simple but non-trivial example of a gen
eralized a.c.i. system that is not an a.c.i. system. We take again C 3 as phase 
space with coordinates (x,y,z). The (quadratic) Poisson structure{·,·} is 
given by the following Poisson matrix, 

x~ ( ~ -:~ -~} 
We have that K := xz is a Casimir and that M(l} is C 3 minus the plane y = 0 
and minus the line x = z = 0. As Hamiltonian we choose H := x + y + z, 
which gives the following Hamiltonian vector field XH: 

:i:= -xy, 

iJ = y(x- z), 
z = yz. 

The locus where H and K are dependent is the line x = z = 0 so that F := 
(H, K) is integrable. Notice that the image of this line under the momentum 
map F is given by K = 0. To investigate the fibers of the momentum map we 
fix m = {x0 ,y0 ,z0 ) E C 3 and we denote by h,k the values of the functions 
H and K at this point: h := xo + Yo + zo and k := xozo, and we define 
c := (h, k). 
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We need to distinguish two cases (see Figure 6.3): 

(1) k =F 0; 
(2) k = 0. 

k 

e(l) 

k=O (2) h 

Fig. 6.3. The only special line in the H K-plane is in this case the line K = 0; cfr. 
Figure 6.1. 

• c = (h,k) E C2 , with k ;i 0. The fiber Fe is given by 

x+y+z = h, 

xz = k, 
(6.12) 

which is a non-degenerate conic; it can be written as x(h- x- y) = k. Using 
(6.12) we rewrite the equation :i; = -xy as :i; = x2 - hx + k, or also as 
u = u2 + C, where u := x- h/2 and C := k- h2 /4. It follows that 

u(t) = VCtan(VCt +c), 

where cis related to the initial condition by 

xo = h/2 + VCtan(c). 

This gives basically the same formulas as in the last case in Example 6.3 and 
it follows, as in that case, that the local action is given by the action of C* 
when C =F 0 and by the action of the additive group C when C = 0. Since 
we have just analyzed the fibers F c for generic c this proves that this is an 
example of a generalized a.c.i. system that is not an a.c.i. system. Notice that 
XH has two zeros on every fiber, which correspond to the points in F c for 
which y = 0 (these two points coincide when C = 0). 

• c = (h,O) E C2 • Then xozo = 0 so that xo = 0 or zo = 0. When 
x0 = z0 = 0 then XH vanishes and the action is trivial. If, say, z0 = 0 but 
x0 =F 0 then XH reduces to (6.2), hence we get the same action (6.3) and we 
arrive at the same conclusion as in that case. 

Notice that also in this example the vector field XH induces the local 
action of an algebraic group in the neighborhood of any point in phase space. 
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6.2 Necessary Conditions for Algebraic Complete 
Integrability 

In this section we give two different conditions for algebraic complete inte
grability. The first one, which goes back to Kowalevski, (see [102]) is based 
on the fact that the phase space of an a.c.i. system admits a partial compact
ification (at least semi-locally), to which the integrable vector fields extend 
to complete vector fields. The second one, which goes back to Lyapunov, 
(see [109]), is based on the fact that any solution to any integrable vector 
field of an a.c.i. system is single-valued, and similarly for any solution of the 
associated variational equation. Both criteria will be illustrated on several 
examples, allowing one to compare the specific characteristics of each one of 
them. 

6.2.1 The Kowalevski-Painleve Criterion 

We first introduce the notion of a (convergent or formal) Laurent solution 
to a polynomial vector field on en. We will then show that each of the 
integrable vector fields of an irreducible a.c.i. system on en admits one or 
several families of Laurent solutions (called balances), which will lead to a 
necessary condition for algebraic complete integrability, which we call the 
Kowalevski-Painleve Criterion. Applications of this criterion will be given in 
Sections 8.1, 9.2 and 10.1. 

Let us consider a polynomial vector field V on en. In terms of linear 
coordinates X1, ... , Xn it is described by a system of first order differential 
equations 

where h, ... , fn are polynomials. We often abbreviate (6.13) to 

x = f(x). 

Definition 6.6. An n-tuple of Laurent series 

1 ~ (k) k 
Xi(t) = tr• L...J xi t , 

k=O 

i = 1, .. . ,n, 

(6.13) 

(6.14) 

with r i E Z for i = 1, ... , n is called a formal Laurent solution to x = f ( x), or 
to V, if the formal substitution of (6.14) in each of the differential equations 
in (6.13) yields an equality of formal series. If, in addition, there exists f > 0 
such that (x1 (t), ... , Xn(t)) converges for 0 < ltl < f, then we call this formal 
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Laurent solution a convergent Laurent solution or simply a Laurent solution. 
Assuming in (6.14) that x~o) f. 0 we say that Xi(t) has a pole (resp. zero) of 
order lril if ri > 0 (resp. ri < 0). We say that a (formal) Laurent solution is 
strict if r :=maxi ri > 0, and we call r its pole order. 

Every Taylor solution is of course a Laurent solution and since the vector 
field is holomorphic, a convergent Taylor solution exist for any initial condi
tion. In fact, the Taylor solutions to (6.13) can collectively be written as one 
Taylor solution, depending on a certain number of independent parameters 
(in fact n); similarly, we will see that under certain conditions the Laurent 
solutions to (6.13) are naturally organized in families, each family depending 
on a certain number of independent parameters. In our case these families 
will always be analytic sets or algebraic sets, with the coefficients of the Lau
rent series being holomorphic resp. regular functions on them, so that the 
set of all strict Laurent solutions naturally breaks up into irreducible fami
lies, namely the subfamilies which correspond to the irreducible components 
of these analytic of algebraic sets. Each of these irreducible families of for
mal Laurent solutions is called a balance. Notice that the pole order of each 
balance, which is positive, depends in general on the balance. 

We say that a balance depends on d parameters if the underlying family 
has dimension d; it is understood that e.g. in the case of an affine variety of 
dimension d, more than d parameters may explicitly appear in the balance, 
but then they are related by the polynomial equations that define the affine 
variety. We say that a balance is a convergent balance if it yields a convergent 
Laurent series for any particular values of the parameters, belonging to some 
non-empty Zariski open subset. 

We will see in Section 7.1 how for an important class of differential equa
tions the decomposition of the set of all formal Laurent solutions (of a certain 
type) into balances can be explicitly computed, together with as many terms 
in the expansion as wanted. 

Definition 6.7. Suppose that Vis a polynomial vector field on en and let 
x(t) be a balance of V. We say that x(t) is a principal balance if it depends 
on dim(en) - 1 = n- 1 parameters. Otherwise it is called a lower balance. 

Example 6.8. We give a simple example that shows that not every polynomial 
vector field on en admits a balance. Taking n = 2 consider 

and notice that if (x(t), y(t)) is a balance then x(t) as well as y(t) must have 
a pole. This implies that y(t) has a simple pole, hence that y(t) cannot be 
the derivative of a Laurent series, leading to our claim. 

We will now show that an a.c.i. system always has principal balances. Intu
itively is is clear why this should be the case. 
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Consider a generic fiber F c of the momentum map of a polynomial a.c.i. 
system on en. By assumption, F c is an affine part of an Abelian variety T~, 
so there exists a holomorphic embedding IPc : T~ --+ pN, for some N, for 
example we may take the Kodaira map associated to a very ample line bun
dle on T~. Let Fi be one of the components of F and consider the inte
grable vector field XF; which extends, by the a.c.i. assumption, to a lin
ear vector field on T~. As was shown in Section 5.3, there exists a holo
morphic (quadratic) vector field Vi on pN which is tpc-related to XFo i.e., 
dcpc(XF;(m)) = Vi(IPc(m)) for any mE M. Let Vc be an analytic hypersur
face on IPc(T~) and let Zt, ... , ZN be local coordinates in the neighborhood of 
some point p E Vc. The Taylor series Zk o IPc(t; Vc), where k = 1, ... , n will 
depend on r- 1 parameters (which parameterize the generic point of Vc), 
yielding Laurent series Xj (t; Vc) which depend on r - 1 parameters. If Vc 
has been chosen as an irreducible component of T~ \ F c then at least for one 
value of j the Laurent series Xj(t; Vc) will have a pole. 

If this construction is done in a family, i.e., for c varying in an open subset 
of es, then it looks reasonable to expect that the above construction can be 
done uniformly in c, yielding Laurent series that depend on s + r- 1 = n- 1 
parameters. Intuitively speaking, these n -1 parameters correspond to initial 
conditions at the divisor at infinity that is to be adjoined to en to compactify 
the generic fibers F c at once into an Abelian variety. 

We wish to make this idea precise and give a rigorous proof of the fact that 
irreducible a.c.i. systems admit principal balances. To do this we first prove 
that the phase space of an a.c.i. system admits, locally on the base space, a 
partial compactification, and we show that the integrable vector fields extend 
holomorphically to this partial compactification. 

Theorem 6.9. Let F : en --+ es be a polynomial map such thatjor a generic 
c E es there exists an isomorphism Jc : F c --+ T~ \ Vc, where T~ is an 
irreducible Abelian variety, r = n- s, and Vc is an analytic hypersurface of 
T~. Suppose, in addition, that V is a polynomial vector field on en, which 
has the property that its restriction to the generic fiber F c is linear (i.e., it 
extends to a linear vector field on T~). For a generic co E es there exist 

{1} an open neighborhood U of co in es; 
{2} a non-singular algebraic variety M(U); 
{3} a holomorphic surjection 1r: M(U)--+ U; 
{4) an isomorphic embedding~: F-1(U) --+ M(U); 
{5} an analytic hypersurface V of M(U) 

such that 
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{1} the following diagram commutes, 

(6.15) 

{2) z: F-1 (U) --t M(U) \Dis an isomorphism; 
{3} for any c E U, the fiber 1r-1 (c) is a compactification of the fiber Fe in 

the sense that there exists an isomorphism Je which makes the following 
diagram commute, 

(6.16) 

Moreover, M(U) carries a holomorphic vector fieldV which is z-related to the 
restriction ofV to F-1 (U). 

Proof. Let U be a Zariski open neighborhood of co in cs, such that for any 
c E U one has that Fe is isomorphic to T~ \De. In the language of Paragraph 
5.2.5, we have over U a smooth family of affine parts of Abelian varieties. 
As we have seen in that paragraph (see Theorem 5.36), there is a partial 
compactification of this family over a possibly smaller Zariski open subset; in 
the sequel we will assume that U is small enough for the existence of a partial 
compactification ofF over U. We will give in the current proof an explicit 
construction of this partial compactification, from which it will be clear that 
it has all the properties that are stated in the present theorem. 

Under the isomorphism Fe ~ T~ \De the vector field VI Fe corresponds 
by assumption to a linear vector field on T~, whose flow will be denoted 
by P; it is obvious that this flow is complete. Consider on the affine variety 
F-1 (U) x C the following equivalence relation: (m, t) "' (m', t') if and only 
if F(m) = F(m') and Pt(m) = Pt' (m'). Define M(U) by 

M(U) := F-1(U) X c 
"' 

and define 1r: M(U) --t U by 1r((m, t)) := F(m), where we denote elements 
of M(U) by (m, t). Also, z is defined by z(m) := (m, 0). The commutativity 
of diagram (6.15) is obvious in view of these definitions. We have that M(U) 
is the space of orbits of the local action of C on F-1 (U) x C, given by 

tJ!: v ~ c X (F- 1(U) X C)--+ F-1 (U) X c 
(r, (m, t)) 1--t (Pr(m), t- r), 
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where, given any m E F-1 (U), the open subset V can be chosen such that 
(0, (m,O)) E V. Since M(U) is the space of orbits of a local action, to show 
that it is a manifold we need to show that it is Hausdorff and that the local 
action admits everywhere local sections that are biholomorphic. 

We first show that M(U) is Hausdorff (in the complex topology). To do 
this, let (m, t) :f (m', t') be two elements of M(U). We need to show that 
there exist disjoint saturated3 open subsets Wand W' of F-1 (U) x C, with 
(m, t) E W and (m', t') E W'. If F(m) :f F(m') then it suffices to take 
W := F-1 (W0 ) x C and W' := F-1 (W6) x C, where Wo and W6 are any two 
disjoint open subsets of cs, with F(m) E W0 and F(m') E W6. 

Assume therefore that (m, t) :f (m', t') but F(m) = F(m'). It is easy to 
see that, without loss of generality, we may assume that they are of the form 
(m,t) and (m',t), with m :f m'. Taking disjoint open neighborhoods Wo 
and W0 of (m, t) and of (m', t) in F-1 (U) x C, the saturated open subsets 
W := !li(C, Wo) and W' := !li(C, W6) are disjoint, hence do the job. It follows 
that M(U) is Hausdorff. 

The local action !li admits through any point a local section. In fact, let 
(mo, to) be an arbitrary point of F-1 (U) X c, and let v1 and v2 be neighbor
hoods ofO inc, resp. of (mo, to) in F-1(U) X c, such that v1 X v2 ~ v. Since 
the local action is on the second component just translation, the local action 
is transversal to the local hypersurface of v2' obtained by fixing the second 
coordinate to to. This hypersurface gives a chart around m0 by projecting on 
the first component, and since the local action is holomorphic (because ~ is 
holomorphic), the transition functions to the charts which are obtained by 
taking another hypersurface through (mo, to), transversal to the local action, 
will be biholomorphic. It follows that M(U) is a complex manifold. 

Using either of the above local charts it is obvious that z and 1r are holo
morphic. It is also easy to see that z is a biholomorphism onto its image: z is 
by construction injective, and if we take any point (m, 0) in the image of z 
then the local hypersurface W x {0} containing (m, 0), is biholomorphic to 
the neighborhood W of m. Notice that we can transport the local action of 
Con F-1(U) x C to a global (free) action of Con M(U). 

Suppose now that c E U is such that T~ is irreducible. We show that 
1r-1 (c) is biholomorphic to T~. Let us identify Fe with an open subset of T~ 
using the biholomorphism Fe~ T~ \'De. The map 

'1/Je : Fe X C -t T~ 

(m, t) 1--t ~t(m) 

is holomorphic and (m,t)"' (m',t') obviously implies that '1/Je(m,t) = 
'1/Je ( m', t'). Therefore '1/Je induces a map 1fie : F c~ c -t T~. Since T~ is ir
reducible the (holomorphic) integral curves that start from points on 'De go 

3 W being saturated means that W = p- 1 (A) for some open subset A~ M(U), 
where p: F- 1 (U) x C-+ M(U) is the quotient map. 
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immediately into ~(F c), i.e., for any m E 'De there exists T > 0 such that 
f>t(m) E ~(Fe) for any t such that 0 < ltl < T. In fact, iffor some m such aT 
would not exist then the integral curve through m would be entirely contained 
in 'De. The Zariski closure of this integral curve, which is a subtorus, hence an 
Abelian subvariety, would then also be contained in 'De. ButT~ is irreducible, 
hence it does not contain non-trivial Abelian subvarieties. Contradiction. 

The fact that the integral curves that start from points on V go imme
diately into ~(F c) implies that '1/Jc is surjective. Indeed, the surjectivity of '1/Jc 
is trivial for points in T~ \'De, while if m E V then we can, by the above, 
pick to such that P -to ( m) E T~ \'De, and then Pt0 ( P -to ( m)) = m. Thus, '1/Jc 
and ;fie are surjective. Since ;fie is injective this shows that ;fie is a bijection. 
Since Pt is a local biholomorphism, for small It I, the map ;fie is a holomorphic 
bijection, i.e., a biholomorphism. 

It follows from the uniqueness of the partial compactification that M (U) is 
the partial compactification ofF over U. In particular, ~ is an open embedding 
and V := M(U) \ ~(F- 1 (U)) is an analytic hypersurface of M(U) whose 
restriction to 1r-1 (c) is (isomorphic to) 'De. 

Finally, the easiest way to show that the vector field V can be transported 
to a vector field Von M(U) is by defining Vas the fundamental vector field 
that corresponds to the holomorphic action of e on M(U), that is defined 
by 

(T,(m,t)) 1--t (4'>r(m),t) = (m,T+t). 

It is clear that if we would have been given r > 1 commuting vector fields 
V1 , ... , Vr on en with the same properties as stated for V above, then we 
would have obtained r commuting vector fields vl, ... 'Vr on M(U). By 
linearity, if they are independent in one point ofF c then they are independent 
at all points of T c. D 

Remark 6.10. It is clear that if we would have been given r > 1 commut
ing vector fields V1 , ..• , Vr on en with the same properties as stated for V 
above, then we would have obtained r commuting vector fields V1 , ... , Vr on 
M(U). By linearity, if they are independent in one point ofF c then they are 
independent in all points of Tc. 

Definition 6.11. The manifold M(U), constructed in the theorem, is called 
the partial compactification of F (over U). The analytic hypersurface V is 
called the Painleve building of F, while each of its irreducible components 
is called a Painleve wall. For generic c E es the divisor 'De is called the 
Painleve divisor at c. 

The origin of the terminology "Painleve building" and "Painleve wall" will 
become more apparent when we show, in the next chapter, that in the case 
of weight homogeneous a.c.i. systems the Painleve walls are affine varieties 
of the form V x en; a Painleve building is then a finite collection of such 
walls that fit together nicely. Under the natural inclusion T~ <-+ M(U) the 
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Painleve divisor Vc gets mapped to the restriction of V to rr-1 (c); we will 
usually identify Vc with this restriction, without explicit mention. Similarly, 
the irreducible components of Vc will be identified with the restriction of the 
irreducible components of'D to rr-1 (c). 

Remark 6.12. The conditions of the above theorem can be weakened to 
Abelian varieties which are not necessarily irreducible, by demanding that 
V be generically transversal to the divisor Vc0 , or by constructing M(U) as 
the quotient of F-1 (U) x cr, where the action is defined by using r commut
ing vector fields, which are independent when restricted to F c, for generic c. 

We can now give a first criterion for algebraic complete integrability. 

Theorem 6.13 (Kowalevski-Painleve Criterion). Let (en,{·,·} ,F) be 
an irreducible, polynomial a. c. i. system, where F = ( F1 , ... , F8 ) and let 
(x1, ... , Xn) be a system of linear coordinates on en. Let V be any one of 
the integrable vector fields XF1 , ••• , XF •. For every 1 ::::; i ::::; n such that Xi is 
not constant along the integral curves ofV, i.e., Xi:= V[xi]-:f:. 0, there exists 
a principal balance x(t) = (x1 (t), ... , Xn(t)) for which Xi(t) has a pole. 

Proof. Since (en, { · , ·} , F) is an irreducible a.c.i. system, we may apply The
orem 6.9 on a (Zariski) open neighborhood U of a generic point c0 E C 8 , to 
construct a non-singular algebraic variety M(U) and a divisor Von it, with 
the properties that were stated in that theorem. The holomorphic vector field 
on M(U) that corresponds to V will be denoted by V. 

Since M(U) \ V is isomorphic to the affine variety F-1 (U) it is itself an 
affine variety, so that, under this isomorphism, the field of rational functions 
on M(U) coincides with the field of rational functions of F-1(U). As we 
think of F-1 (U) as being contained in M(U), via the embedding~, we will 
use the same notations X1, ... , Xn for the rational functions on M(U) that 
correspond to the coordinates X1, ••. , Xn on en. These functions have poles 
along the Painleve walls only. In fact, each regular function on en whose 
restriction to a fiber F c, with c E U, is non-constant, must have a pole along 
at least one of these irreducible components, by compactness of 1r-1(c). 

Suppose now that Xi is not constant along the integral curves of V in 
F-1 (U) and let V' denote one of the irreducible components of V on which 
Xi experiences a pole. Pick a generic point m on V' and let Y1, ... , Yn be 
generators for the algebra of regular functions of an affine neighborhood W 
of m in M(U). Since the algebra of rational functions of M(U) and the 
algebra of rational functions of en coincide we can write every Yk as a rational 
function in x1, ... , Xn and vice versa. The generators Y1, ... , Yn yield a system 
of holomorphic coordinates on Wand Vis holomorphic on M(U) 2 W, so 
that V is given, on W, by 

k = l, ... ,n, 

where G1, ... , Gn are holomorphic functions on W. Since each Yk is holo
morphic on Wand since Vis a divisor on M(U) we can consider the Taylor 
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series Yk(t) of Yk with respect to V, starting at V', 

00 

Yk(t) = L o:~l)ti' (6.17) 
l=n• 

Since Xk is a rational function of Yl, ... , Yn, 

R ( ) Pk(Yl,···,Yn) 
Xk = k Yl, · · · , Yn = ( ) • qk Yl, · · ·, Yn 

where Pk and qk are holomorphic functions, we find by substituting the series 
(6.17) in the latter 

" (.l(l) l 
Xk(t) = Pk(Yl (t), · · ·, Yn(t)) = L.Jl~r• /Jk. t = tr•-•• L &il)tl, &io) f; O, 

qk(Yl(t), ... ,yn(t)) Ej~s• 'Yi')ti l~O 
(6.18) 

yielding a Laurent solution Xk(t) for 1 ~ k ~ n. These Laurent solutions, as 
a whole, depend on n- 1 free parameters. Indeed, on the one hand the Taylor 
expansions y(t), given in (6.17) are parametrized by their initial conditions 
(t = 0) near m, i.e., by a neighborhood of m in the n- 1 dimensional vari
ety V'. On the other hand, the series y(t) can be recovered from the series 
x( t) since the functions Yk are rational functions in X1, ••• , Xn. Thus, the se
ries x1 ( t), ... , Xn ( t) must also depend on n - 1 free parameters, namely the 
parameters that describe V', and hence they are principal balances. 

As we will see in the next proposition the pole order of Xi along V' (recall 
that we assumed that Xi has a pole (of positive order) along V') equals the 
pole order of the Laurent series Xi(t). It follows that there exists a principal 
balance x(t) = (x1 (t), ... , xn(t)) for which Xi(t) has a pole, as claimed. 0 

When we want to be explicit then we will denote the principal balance (6.18) 
that corresponds to a Painleve wall V' by x(t; V'). More generally, for any 
f E F(Cn) we will write f(t; V') for its Laurent series, corresponding to V'; 
the latter is computed by substituting the principal balance x(t; V'), where 
i = 1, ... , n, in the definition off in terms of x1, ... , Xn· 

Proposition 6.14. Under the assumptions and notations of the previous 
theorem, let I be a polynomial function on en. The pole order of the prin
cipal balance f(t; V') in t equals, for generic c E U, the pole order of /1T~ 
along the Painleve divisor v~, where /iT~ is by definition fiFe' viewed as ~ 
meromorphic function on T~, via Jc {see {6.16}). 

Proof. Since V is transversal to V' at a generic point of V' we have that 
the pole that f(t;V') has in t equals the pole that f has along V', as a 
meromorphic function on M(U). When we restrict the series f(t; V') to a 
fiber rr-1(c), where c E U is generic, then the pole order remains unchanged 
and the result follows. 0 
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Notice that the corollary allows us to construct a basis of all functions with a 
certain pole structure along the irreducible components V' of V, from knowl
edge of all principal balances x(t). We will come back to this in Section 7.6 
and in the examples. 

The proof of Theorem 6.13 actually shows that there is a principal balance 
in the neighborhood of any point m of V' (any irreducible component of V) 
for which V' is non-singular at m and Vis not tangent (i.e., is transversal) 
to Vat m. 

Notice that the points where V is singular or where V is tangent to V 
constitute themselves a divisor in V. What happens to the principal balances 
in these points? 

To answer this question, let us look at the principal balances x(t) = 
x(t; V'), defined in (6.18). We show that the coefficients 8k1) are rational 
functions on V'. This is so because they can be recursively defined by dif
ferentiating Xk or x;1 (depending on whether Xk is holomorphic or has a 
pole along V') sufficiently many times using the polynomial vector field V 
and restricting the result to V'. For example, the leading coefficient of Xk is 
given, in case rk - Sk < 0 by 

1 1 d8 k -rk 1 1 [ 1 ] 
8io) = (sk- rk)! dtBk-Tk lt=OXk(t; V') = (sk- rk)! vsk-Tk Xk b,,' 

and the last formula clearly shows that 8k0) is a rational function on V'. 
Similarly, the leading coefficient of Xk is given, in case rk - Sk ~ 0 by 

( ) 1 dTk-Bk 1 
8 ° - Xk(t·V')- Vrk-sk (xk] 
k - (rk - Sk)! dtrk-Sk Jt=O ' - (rk - Sk)! lvt' 

showing that also in this case that 8k0) is a rational function on V'. For 
the higher coefficients one proceeds in the same way, taking higher order 
derivatives. It follows that (6.18) is of the form 

Xk(t;V') = tr,-sk LRk1)t1, 
l~O 

where every Rr) is a rational function on V' for 1 ~ k ~ n and l E N. 
Let us pick a generic c E C 8 and let us consider the restriction Rk1) lv' 

of these functions to the irreducible divisor V~ ofT~. This gives us rational, 
hence meromorphic, functions on v~ which are, by the compactness of v~ 
either constant or they have a pole along some divisor V~ ofV~. If, for generic 
c each element of 

{ 8~ i) II ~ l ~ n and i E N} 
is constant in V~ then the balance x(t; V~) cannot depend on n - 1 free 
parameters, hence at least one 8?) must have a pole along a divisor v~ of 
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D~ and so the principal balance x(t; D') must cease to make sense along a 
divisor D" of D'. 

Let us pick an irreducible component of D", which for simplicity of no
tation we also call D", and let us compute x(t; D") in exactly the same way 
as we computed x(t; D'). Namely let us pick a genuine m E D" and an ap
propriate chart with holomorphic coordinates Y1, ... , Yn, which are of course 
a different set of coordinates than the one that we have used for a generic 
point mE D'. 

Then once again we write the holomorphic vector field V in the holomor
phic coordinates Yl, ... , Yn and we compute y( t; D"), the Taylor series of the 
functions Yk with respect to V, starting at D". As before, use (6.18) to define 
x(t; D") and conclude as before that not only the n series y(t; D") but also 
the n series x(t; D") depend on n- 2 free parameters. 

The practical moral of the story is that in order to recompute the correct 
x(t; D') series at D" we must use a different coordinate chart: the problem 
lies not in the vector field but in the coordinates that describe it. 

Thus, besides principal balances, V must have balances which depend 
on n- 2 free parameters, and by repeating the argument, balances which 
depend on n - 3, ... , n - r = s free parameters; it stops at s because then 
the subvariety that corresponds to the balance is of dimension s, hence its 
restriction to the generic fiber 7r- 1 (c) is just a finite set of points, leading 
to one or several constant Laurent solutions and so the induction argument 
terminates at this point. 

Finally we observe that we may compute the series y(t; D") in two dif
ferent ways. Either by grinding out the full Taylor series y(t; D') from the 
holomorphic differential equations, written in the y coordinates; or, more 
efficiently, using the principal balances x(t; D') by noting that 

y(t; D") = y(t; D')lv" = y(x(t; D'))lv,_,v,· 

Namely, since y1 ... , Yn are by assumption holomorphic coordinates near m 
and since V is holomorphic we know by Theorem 2.1 that y(t; D') is holo
morphic in t and in mE D' and so, given m" ED" we may compute y(t; m") 
by taking the limit of y(t; mD, where m~ is any sequence in D' that tends to 
m". Indeed, by continuity of holomorphic functions we have that 

y(t; m") = lim y(t; mD = lim y(x(t; mD). 
m~~m" m~-+m11 

Since x(t; D") is computed from y(t; D") by (6.18) the lower balance x(t; D") 
can completely be computed using the principal balance x(t; D') and holo
morphic coordinates y on the neighborhood of a generic point of D". The 
same observation holds for the balances which depend on n - 3, ... , s free 
parameters. 

In summary we have shown the following theorem. 
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Theorem 6.15. Suppose that (en,{·,·} ,F) is an irreducible a.c.i. system, 
where F = (F1, ... , F,). Then any of the integrable vector fields Xp1 , ••• , XF. 
admits at least one balance that depends on k free parameters, for all k such 
that s ~ k ~ n - 1. All lower balances can be computed from the principal 
balances. 

Although the existence of lower balances of all dimensions is also a necessary 
condition for algebraic complete integrability (besides the existence of prin
cipal balances), it will in most of the examples be sufficient to examine the 
existence of the principal balances, as stated in Theorem 6.13. 

Example 6.16. Let us consider the following family of Hamiltonians 

1 ( 2 2) f 3 2 H = 2 Y1 + Y2 + 3x1 + X1X2, 

where f is an arbitrary complex parameter. The Poisson structure that we 
consider is the one that comes from the standard symplectic structure w = 
dx1 1\ dy1 + dx2 1\ dy2. Thus, the Hamiltonian vector field XH is given by 

±1 = Y1, 

±2 = Y2, 

• 2 2 Y1 = -~:x1 - x2 , 

Y2 = -2XlX2· 

We write this vector field as the following second order equation 

x1 = -Ex~ - x~, 

X2 = -2XlX2· 

(6.19) 

(6.20) 

We look for principal balances (x1 (t), x2(t)) to (6.20) for which x1 (t) or x2(t) 
have a pole. It is clear that x2(t) cannot have a pole of order larger than 2. 
For otherwise the second equation in (6.20) would imply that x1 (t) has a 
double pole, which contradicts the first equation in (6.20). So the pole order 
of x2 (t) is at most 2, and the first equation in (6.20) implies that the pole 
order of x1 (t) is also at most 2. Hence we will look for balances to (6.20) of 
the form 

i = 1,2. (6.21) 

Notice also that x 1 (t) cannot have a simple pole and that if x1 (t) has no pole, 
then neither x2 (t). So, if the above Hamiltonian His one of the Hamiltonians 
of an irreducible a.c.i. system then there must exist, in view of the Kowalevski
Painleve Criterion, a principal balance where x1 (t) has a double pole and 
x2 (t) has a double or simple pole, and there must exist a lower balance where 
xl(t) has a double pole (no conditions on x2(t)). 

In the language of Chapter 7, the vector field X H is a weight homogeneous 
vector field with weights v(x1 ,x2,y1,y2) = (2,2,3,3) and the above analysis 
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shows that all Laurent solutions to XH are weight homogeneous (see Defini
tion 7.2). The methods that we use here will be discussed in more detail in 
that chapter. 

If we substitute (6.21) in (6.20) then we find that the leading coefficients 
of the series satisfy the non-linear equations 

o = 6x~O) + f (x~O)f + (x~O)f, 
0 = x~o) (3 + x~0)). 

We find three non-zero solutions, namely 

( {o) (o)) _ (-~ o) xl ,x2 - , 
f 

which is valid only when t: ::J. 0, and 

( x(o) x(o)) - (-3 ±3 '2=€) ll2-, y£.-f. 

The subsequent coefficients x~k) and x~k), with k > 0, must satisfy 

(6.22) 

(6.23) 

L ((k- 2)(k- 3)x~k) + t (t:x~i)x~k-i) + x~j)x~k-j))) tk-4 = 0, 

k~O J=O 

L ((k- 2)(k- 3)x~k) + 2 tx~j)x~k-j)) tk-4 = 0, 

k~O J=O 

Notice that x~k) and x~k) appear linearly in the coefficients of tk-4 and that 

no x~l) and x~l) with l > k appear in the latter coefficients. Thus, we can 

solve the coefficients of tk-4 in these equations linearly for x~k) and x~k) , 
and this recursively for k = 1, 2, 3, ... In matrix form, 

( 
(k)) k-1 ( (j) (k-j) + (j) (k-j)) x1 ""' t:x1 x1 x2 x2 

K(k) {k) = - L.t 2 (j) (k-J) , 
x2 J=l xl x2 

where 

K(k) _ ( (k- 2)(k- 3) + 2t:x~0) 2x~0) ) 
- 2x~0) (k - 2)(k - 3) + 2x~0) · 

Notice that when k is not a root of det K(k) then the solutions x~k) and x~k) 
are unique, which implies that the free parameters will come in at those k 
where detK(k) = 0, assuming that these values are non-negative integers. 
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Thus, for a principal (resp. lower) balance, detK(k) must have three (resp. 
two) non-negative integer roots. For (x~o), x~0)) given by (6.22) we have that 

K 1(k)= ((k+1)(k-6) 0 ) 
0 (k- 2)(k- 3) - 12/e ' 

so that 
detK1(k) = (k + 1)(k- 6)(k2 - 5k- 6(2- e)fe. (6.24) 

For (x~o), x~0)) given by (6.23) we have that 

so that 

K 2 (k) = ((k- 2)(k- 3)- 6e 
±6v'2=f 

±6v'2=f) 
(k- 5)k ' 

detK2 (k) = (k + 1)(k- 6)(k2 - 5k + 6(2- e)). (6.25) 

A necessary condition for (6.20) to have a principal balance is that e is 
such that det K1 or det K2 has three non-negative integer roots. Now the 
sum of the roots {AI,A2} of the quadratic factors in (6.24) and in (6.25) is 
5, so that these roots are either {0, 5} or {1, 4} or {2, 3}. This means that 
eE{1,2,~,6}. 

Notice that iff= 4/3 then detK1(k) = (k + 1)(k- 6}(k2 - 5k- 3) so 
that (6.22) can in this case not lead to a (lower or principal) balance. But the 
two solutions in (6.23) cannot lead to different balances (i.e., to a principal 
balance and to a lower balance), as they lead to series ( x1 ( t), x2 ( t)) that only 
differ in the sign of x2(t). Similarly, if e = 2 then the solutions (6.22) and 
(6.23) coincide, hence lead to a single balance. Therefore, only the values 
e E {1, 6} can lead to an irreducible a.c.i. system. It is known that these two 
values for e lead indeed to an a.c.i. system. 

6.2.2 The Lyapunov Criterion 

An interesting feature of a.c.i. systems is that their solutions, with any initial 
conditions, are single-valued. The fact that the solutions to a differential 
equation are not single-valued, in general, comes from the fact that analytic 
continuation of solutions usually depends on the (homotopy class of) the 
path along which the solution is analytically continued, and not just on the 
endpoints. Let us illustrate on a very simple example how things may go 
wrong. 

Example 6.17. Let us consider on c• the holomorphic differential equation, 
given by x = 1/(2x). We pick the solutions with initial condition x = 1 
for t = 0. We find that these solutions satisfy x 2 (t) = t + 1. For t in a 
small neighborhood of 0 (say ltl < 1/2) we have a holomorphic solution, 
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namely x(t) = Jl+l, where the choice of the square root is unambiguous 
because we have specified that x(O) = 1; its Taylor series is given by x(t) = 
1 + t/2 +0(t2). We wish to consider the analytic continuation of this solution 
to t = -2. Therefore, consider the two half-circles, given by the following 
parameterizations: 

/'1: [0, 1]--+ C: {) M t(fJ) = -1 + e.,..v'=I.?, 

/'2 : [0, 1]--+ C: {) M t(fJ) = -1 + e-.,..v'=I!?. 

Let us denote y(fJ) := x(t(fJ)). Along ')'1 we have that y 2 (fJ) = e.,..v'=I.?, so 

that y(fJ) = e.,..v'=I!?/2 , since y(O) = 1. Then y(1) =A, which means that 
x( -2) =A. However, along /'2, y(fJ) = e-.,..v'=I!?/2, so that y(1) =-A, 
which means that x( -2) = -A. Thus, the solution x(t) is not a single
valued function oft. 

It is obvious from the definition of algebraic complete integrability that 
the solutions are in such a case single-valued, whenever the initial conditions 
are taken generic, since they are meromorphic functions. We show in the 
following theorem, whose proof is due to Luc Haine (see [75]) that this implies 
that the solutions that correspond to any initial conditions is single-valued, 
and that a similar result holds for the analytic continuation of the variational 
equation, associated to a particular solution. This criterion was first used, 
without proof, by Lyapunov, who showed that the only integrable tops whose 
solutions have "good" analytic properties belong to the classical list, that 
consists of the Euler top, the Lagrange top and the Kowalevski top (see 
Chapter 10). 

Theorem 6.18 (Lyapunov Criterion). Let (en, {·,·},F) be an a.c.i. 
system and let F be an arbitrary element ofF. All solutions to the integrable 
vector field V := XF are single-valued. Moreover, if')' : [0, 1] --+ C is any 
closed path and x(t) is a solution to V that is holomorphic in a neighborhood 
of the path, then the analytic continuation along 'Y of the solution to the 
variational equations which correspond to the solution x( t), is single-valued. 

Proof. Let m0 E en be arbitrary and consider the solution x(t; m0 ), defined 
for t sufficiently close to to, for which x(to; mo) = mo. Consider two paths 
'Yi: [0, 1]--+ C (i = 1,2), with to= /'1(0) = /'2(0) and t1 := /'1(1) = /'2(1). 
Let us assume that the solution x(t; mo) can be analytically continued along 
both paths, and denote the analytic continuation along 'Yi by x(i) (t; m0 ). We 
need to show that x{ll(t1;mo) = x<2l(t1;mo). Notice that we know that this 
is true if m0 is chosen generic, because each component xi(t; m0 ) of x(t; m0 ) 

is then a meromorphic function (oft), by algebraic complete integrability. 
Consider small tubular neighborhoods V1 and V2 of the two paths ')'1 and ')'2 ; 

the neighborhoods are chosen small enough so that x(i) (t; m0 ) is holomorphic 
for t E Vi, where i = 1, 2. There exists a small neighborhood U of m0 and 
there exist fori= 1, 2 holomorphic functions x(il(t; m) on Vi xU, with t E Vi 
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and m E U such that, for any fixed m E U, x( i) ( t; m) is a solution to V, with 
initial condition x(i)(to;m) = m. We have that x(l>(t1;m) = x(2>(t1;m) for 
m in a dense subset U' of U. By continuity of x(l} and x(2) it follows that 
x(1>(tl;mo) = x(2>(tl;mo). 

We now turn to the variational equation, associated with a solution 
x(t; mo) that will be fixed throughout the rest of the proof. Define fi := V[xi], 
so that the differential equations for V are explicitly given by Xi = fi ( x). Then 
the variational equation for V around x(t) is the linear, but non-autonomous, 
equation on en' given by 

. ~ 8fi 
~i = L....J -8 . (x(t;m0))~i• 

j=l x, 
i = 1, ... ,n. (6.26) 

They are the linearized equations of the vector field V in the following sense: 
choose any non-zero u E en and for small f > 0, write the Taylor series for 
Xi(t; mo + w) and for fi(x(t; mo + w)), 

~ox· xi(t; mo + w) = Xi(t; mo) + f L....J 8 ~ (t; m0 )uj + 0(E2 ), 
j=l u, 

fi(x(t; mo + w)) 

~ ar ox· = fi(x(t; mo)) + f L....J ~(x(t; mo)) O J (t; mo)Uk + 0(f2). 
j,k=l Xj Uk 

Substituting this in Xi = fi(x) the term that is independent off cancels, 
while the linear term in f gives precisely (6.26), where 

~ox· 
~i(t) := L....J OU~ (t; mo)Uj· 

j=l J 

(6.27) 

Since x(t; m) is single-valued for any m in a neighborhood of mo, the func
tions ~i(t), defined by (6.27) are also single-valued, and this for any u E en. 
Varying u we find all solutions of the variational equation, since for fixed 
small t the matrix ~(t; m0) is invertible, as V is holomorphic. It follows 
that all solutions to this variational equation are single-valued. Since the so
lution x(t; m0 ) was arbitrary, this shows that the analytic continuation of any 
solution to the variational equation, associated to any solution of the original 
equation is single-valued. D 

Example 6.19. Let us treat Example 6.16 by using Theorem 6.18. Thus, we 
consider 

on e4 , with the standard symplectic structure. In order to use Theorem 6.18 
we need (a) particular solution(s) to the Hamiltonian vector field (6.19). 
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We start out with the simple solution 

The variational equation4 that is associated to this solution is given by 

e1 = 6, 
e2 = ~4, 

e3 = 126/t2 , 

e4 = 126/(t:t2 ). 

(6.28) 

Letting ('TI1(t), ... ,'f/4(t)) = (6t2 ,6t2 ,6t3 ,~4t3 ) we can rewrite this linear 
equation in the matrix form 

0 

2 

0 

12/t: 

1 0 l ['T/1] 0 1 'f/2 

3 0 'T/3 

0 3 'T/4 

(6.29) 

Clearly, the solutions to (6.29), and hence to (6.28) can only be single-valued 
when the square matrix in (6.29) is diagonalizable, with integer eigenvalues, 
in particular when its characteristic polynomial 

X1(k) = (k + 1)(k- 6)(k2 - 5k + 6- 12/t:) 

has only integer roots. Let us also consider the solution 

with corresponding variational equation, in the matrix form 

[
'T/1] ( 2 'T/2 1 0 

=-
'T/3 t 6t: 

'T/4 -6~ 

0 

2 

-6~ 

6 

1 OJ ['T/1] 0 1 'T/2 
3 0 'T/3 . 

0 3 'T/4 

(6.30) 

The solutions to (6.30) can again only be single-valued when the square 
matrix in (6.30) is diagonalizable, with integer eigenvalues, in particular when 
its characteristic polynomial 

X2(k) = (k + 1)(k- 6)(k2 - 5k + 6(2- t:)) 

has only integer roots5 . 

4 See the next chapter for more information on how to compute and integrate the 
variational equation, associated to a solution. 

5 Notice that while x1(k) = detK1(k) and x2(k) = detK2 (k) (see (6.24) and 
(6.25)), as will be explained in Chapter 7, we use these polynomials in the two 
criteria in a very different way. 
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Summarizing, if we want all solutions to the variational equation associ
ated to any solution to 6.19 to be single-valued, then E must be such that the 
two polynomials 

Pl(k) := k2 - 5k + 6(1- 2/E), 

P2(k) := k2 - 5k + 6(2- E), 

have only integer roots. The discriminants of p1 (resp. of P2) must be non
negative, more precisely, since the two roots of p1 (resp. of P2) have 5 as their 
sum, it must be the square of an odd integer. Since disc(P2) = 1-24(1-E) EN 
we have that E;;:: 1. Also, disc(pl) = 1 + 48/E EN, so that 1 < disc(pl) ::;,; 49, 
and since this discriminant must be the square of an odd integer we must 
have that disc(pl) E {9, 25, 49}, which corresponds to the values E E {1, 2, 6}. 
Notice that, besides the possibility of E = 2, these are precisely the values of E 

that we have found by using the Kowalevski-Painleve Criterion to this family 
of Hamiltonians (see Example 6.16). It is not clear how, using the Lyapunov 
criterion, this case can be excluded. In fact, forE= 2 numerical data suggest 
that this case is not Liouville integrable, but a rigorous proof that this case 
is not Liouville integrable is not known. 

Remark 6.20. The Lyapunov Criterion (and its proof) is also valid for gener
alized a.c.i. systems, because they also have the property that the solutions 
that correspond to generic initial conditions are single-valued. 

6.3 The Complex Liouville Theorem 

In this section we will prove a complex (holomorphic) version of the Liouville 
Theorem (Theorem 4.28). Our assumptions (especially in Theorem 6.22) are 
geared towards the examples. 

Theorem 6.21 (Complex Liouville Theorem I). Suppose that M is an 
r-dimensional complex compact manifold and let V be an analytic hypersur
face on M. Suppose that M \ V admits r holomorphic vector fields V1, ... , Vr 
with the following properties. 

(1) The vector fields commute pairwise, [Vi, Vj] = 0 for 1 ::;,; i, j ::;,; r; 
(2) At every point mE M \ V the vector fields V1, ... , Vr are independent; 
(3) V1 extends to a holomorphic vector field 1:\ on M; 
(4) The integral curves o{V1 that start at points m E V leave V immediately. 

Then M is a complex torus of dimension r and the vector fields V1, ... , Vr 
extend to r commuting, everywhere independent holomorphic vector fields 
vl, ... 'Vr on M. If M admits, in addition, r algebraically independent mero
morphic functions then M is an Abelian variety. 
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Fig. 6.4. The flow of the holomorphic vector field V1 is used to extend the holo
morphic vector field V2, ... , Vr in the neighborhood of any point of 'D. 

Proof. We first extend v2, ... , Vr to holomorphic vector fields v2, ... , Vr on 
M (see Figure 6.4). Let m0 E V and, using assumption (4}, let f be such that 
if 0 < ltd < f then !P~~) (mo) ~ V, where !P(l) denotes the flow of V1. Fix t1 
such that 0 < lt1i < f and let U be an open neighborhood of m~ := !P~~) (m0) 

in M \ V and let V := !P~]1 (U). We have that V1, •.. , Vr are holomorphic 

commuting vector fields on U which are independent on U, and that !P~]1 is 
a biholomorphic map from U to V. Therefore, fori = 1, ... , r the r vector 

fields VI := ( !P~]1 ) * Vi are holomorphic commuting vector fields which are 

independent on V; notice that V~ = V1 (on V). For any point mE V \ V the 
fact that vl and vi commute on v \ v implies that 

so that the commuting vector fields VI extend the vector fields Vi holomor
phically to V. By uniqueness, the vector fields Vi extend to commuting, ev
erywhere independent holomorphic vector fields on all of M, which we denote 
by Vi. Since M is compact, the flow of each of the holomorphic vector fields 
Vi on M is complete. 

We can now repeat part of the proof of the Liouville theorem (Theo
rem 4.28) and use the completeness and commutativity of the vector fields 
vl •..• , Vr to define an action cr X M -t M by 

thereby exhibiting M as a compact quotient of cr by an additive subgroup, 
i.e., as a compact complex torus. If M admits n independent meromorphic 
functions then, by Moishezon's Theorem on Tori, (Theorem 5.13) M is an 
Abelian variety. 0 
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In the examples we will typically have r independent commuting vec
tor fields on an affine variety A (a non-singular irreducible component of a 
fiber F c of the momentum map), which we will embed in projective space via 
a regular map <p : A -t pN. We will want to prove that A is an affine part of 
an Abelian variety Tr and that the given vector fields are linear vector fields 
on Tr, by showing that the closure6 <p(A) of the image of A in pN, together 
with the image vector fields, satisfies the conditions of Theorem 6.21. How
ever, nothing guarantees that <p(A) is non-singular; moreover, it is in general 
difficult to check this in concrete examples. Therefore we give a version of 
the complex Liouville Theorem which does not assume, but instead implies 
that the closure is non-singular, i.e., that it is a complex manifold. 

Notice that, even if A is indeed an affine part of an Abelian variety Tr 
there is of course no hope that <p will lead to an embedding of Tr, unless <p 
is very special; we will deal with this issue in Paragraph 7.6.5. 

Theorem 6.22 (Complex Liouville Theorem II). Let A C cs be a non
singular affine variety of dimension r which supports r holomorphic vector 
fields vl' ... 'Vr and let <p : A-t eN c pN be a regular map; here eN c pN 
is the usual inclusion of eN as the complement of a hyperplane H in pN. 
We define Ll := <p(A) \ <p(A) and we decompose the analytic subset Ll as 
Ll = Ll' U Ll", where Ll' is the union of the irreducible components of Ll 
of dimension r - 1 and Ll" is the union of the other irreducible components 
of Ll. Assume the following. 

{0} <p: A-t eN is an isomorphic embedding; 
{1) The vector fields commute pairwise, [Vi, VJ] = 0 for 1 ~ i,j ~ r; 
{2} At every point mE A the vector fields V1, ... , Vr are independent; 
{3} The vector field <p. V1 extends to a vector field'):\ which is holomorphic 

on a neighborhood of Ll' in pN; 
{4) The integral curves of V1 that start at points m E Ll' go immediately 

into <p(A). 

Then <p(A) is an Abelian variety of dimension r and Ll" = 0, so that <p(A) = 
<p(A) u Ll'. Moreover, the vector fields 'P• V1, ... , <p. Vr extend to holomorphic 
vector fields on <p( A). 

Proof. We verify that <p(A) is a smooth manifold. Then the assumptions im
ply that the holomorphic vector fields 'P• V1 , •.. , <p. Vr satisfy the conditions of 
Theorem 6.21 and we may conclude that <p(A) is an Abelian variety which is 
equipped with r commuting holomorphic vector fields V1, ... , Vr that extend 
'P• V1, ... , 'P• Vr· 

6 It is a fundamental fact that we don't have to specify whether the closure is 
taken with respect to the Zariski topology or with respect to the usual (complex) 
topology, because for subsets such as rp(A) they coincide (rp(A) is an example of 
a constructible set in pN, and for constructible subsets of pN the Zariski closure 
coincides with the usual closure, see [135, §1.10]). 
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1. Let mo E Ll'. We show that <p(A) is smooth at m0 • Conditions (3) and 
(4) imply that there exists an open neighborhood of mo in pN On which V1 
is holomorphic and non-vanishing. Denoting the flow of V1 by !fi(l), we can 
choose such a neighborhood U and a (small) t1 E C, such that !li~~)lu is a 
biholomorphism onto an open neighborhood V of !li~~) (mo) in pN, which is 
disjoint from Ll, and such that !li~~) (mo) E <p(A). The image of H n U by !li~~) 
will be denoted by H'; it is an analytic hypersurface (divisor) of V. We will 
show that !li~~) restricts to a bijection between (U \ H) n <p(A) = U n <p(A) 
and (V \ H') n <p(A) = (V n <p(A)) \ H'. Since !li~~> is a biholomorphism it 
restricts then also to a bijection between their closures (in U, resp. in V), 

!fig> : U n <p(A) +---+ (V n <p(A)) \ H'. 

Now (V n <p(A)) \ H' = V n <p(A) since H' is an analytic hypersurface of V 
and since <p(A) is closed in V (recall that V n Ll = 0). Also, U n <p(A) = 
U n <p(A), since U is an open subset of pN, Now V n <p(A) is a smooth 
submanifold of V and 4i~~) is a biholomorphism, hence 4i~]1 (V n <p(A)) = 
U n <p(A) is a smooth submanifold of U, implying that <p(A) is smooth at 
m0 , as was to be shown. In order to show that !Iii~) restricts to a bijection 
between (U \H) n <p(A) and (V \ H') n <p(A) it suffices, since !li~~) restricts 
to a biholomorphism between U \ H and V \ H', to show that the integral 
curves of V1 that start at points in <p(A) remain in <p(A). This follows from 
the fact that V1 is tangent to <p(A) at all points of <p(A): the integral curve 
that starts at p E <p(A) will be locally contained in <p(A), hence the entire 
integral curve will be contained in the (Zariski) closure <p(A) of <p(A). 

2. We now show that Ll" = 0. When dim A = r = 1 then Ll" is empty 
for dimensional reasons, so we assume that r ~ 2. First notice that the 
irreducibility of <p(A) implies that <p(A) is irreducible. Since <pis an isomor
phic embedding we have that Ll is a hyperplane section of <p(A), namely 
Ll = <p(A) n H. Therefore, Ll is the support of an ample divisor on an ir
reducible projective variety of dimension at least 2, hence it is connected 
(see [78, Cor. III.7.9]). But in this case, there must be one of the irreducible 
components of Ll" which has a non-zero intersection point mo with Ll'. But 
we know that <p(A) is smooth in a neighborhood U of mo E Ll'. The intersec
tion Ll n U is an analytic hypersurface of the variety <p(A) n U, and the latter 
is smooth at mo. But then each of the irreducible components of Ll n U is of 
codimension 1. Contradiction. 

We conclude that <p(A) is a non-singular projective manifold, and it ver
ifies the conditions of Theorem 6.21. The conclusion follows. 0 
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6.4 Lax Equations with a Parameter 

In this section we will consider Lax equations with a parameter and we will 
show that they are closely related to a.c.i. systems. In particular we will prove 
a criterion which gives necessary and sufficient conditions for the divisor map 
(defined below) to transform the isospectral flow defined by the Lax equation 
to a linear flow on the Jacobian of the spectral curve. The proof that we give is 
based on arguments that first appeared in [165] and [7]. For a cohomological 
interpretation of this proof, see [68]. The different notions related to Lax 
equations with a spectral parameter and to this criterion will be illustrated, 
as they are developed, using one example that is at the same time very simple 
and very rich. 

We first define the notion of a Lax equation with a parameter and we 
introduce the example. 

Definition 6.23. Let M be a finite-dimensional affine subspace of the loop 
algebra L{gl{ N)) = gl{ N) [ b, b -1] . A Lax equation with parameter b on M is 
given by a differential equation on M of the form 

X{b) = [X {b), Y(b)] , {6.31) 

where X {b) is a typical element of M, 

m 

X{b) = L Xibi, Xi E gl{N) form'~ i ~ m, 
i=m' 

and 
n 

Y(b) = ~ YJb', Yj E gl(N) for n' ~ j ~ n, 
j=n' 

the entries of each Yj being polynomial functions of the entries of some (or 
all) of the xi. 
Remark 6.24. By multiplying X {b) by a sufficiently high power of b we may 
always suppose that X {b) is polynomial in b; said differently we may assume 
that M is a finite-dimensional subspace of gl{N)[b]. However, we will not 
use this assumption in what follows, as it is often unnatural. Notice that this 
property does not hold for Y(b). Also, often M will be contained in g[b] where 
g is a non-trivial Lie subalgebra of gl{N). 

Remark 6.25. The Lax equation {6.31) depends only on Y(b) modulo matri
ces that commute with X{b), so that we may e.g. add to Y(b) an arbitrary 
polynomial in band in b-1 , whose coefficients are powers of X(b). 

Remark 6.26. The definition is easily adapted to Lax representations with 
spectral parameter (see Definition 4.42). 
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Example 6.27. Ford;;;:: 2 let Md denote the vector space of all trace-less 2 x 2 
matrices 

X (b) = ( v(b) u(b)) 
w(b) -v(b) 

where u(b), v(b) and w(b) are elements of C[~] of degree at most d. Letting 
Y(b) := X(O)/b it is easy to see that 

X(b) = ~[X(b),X(O)] (6.32) 

defines a Lax equation with parameter on Md. 

Proposition 6.28. Given a Lax pair 

X(b) = [X (b), Y(b)], 

the functions qkz which are defined by the coefficients of the characteristic 
polynomial of X(b), 

det(SldN-X(b})=SN+ L qkzbkf. 
O ... I<N 
-l' ....... l 

(6.33) 

are constants of motion of {6.91}. The plane algebraic curve, associated to 
each X(b), 

Fx := { (b,S) E c x c I det(SldN -X (b))= o}, 

is preserved by the flow of {6.91}. Similarly, for each X(b) the variety of 
matrices Ax C M defined by 

Ax:= {X'(b) I X(b) and X'(b) have the same characteristic polynomial} 

is preserved by the flow of (6.91}. For X such that Fx is smooth, let us denote 
its smooth compactification by Fx and let 

{Pt, ... ,ps} := Fx \ Fx 

denote the points at infinity. At each of these points b has a zero or a pole, 
i.e., (possibly after relabeling) we have that 

1:::;; i:::;; s' 

s' + 1:::;; i:::;; s 
(6.34) 

where f..ti > 0 fori= 1, ... , s. 
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Proof. The proof of the first part is formally identical to the proof in the case 
of Lax equations (without a parameter), given in Example 4.3. The statement 
about the zeros and poles of b at infinity is the only remaining part. When 
Fx is smooth, it admits a unique non-singular compactification that we have 
denoted by Fx. The parameters S and b in the equation det(S IdN -X {b)) = 0 
for Fx aremeromorphicfunctions onFx with poles on {p1, ... ,p8 } = Fx\Fx 
only and at each of these points at least one of S and b have a pole. Moreover, 
if S has a pole at a point p E Fx then b must have a pole or a zero at that 
point p; indeed, using the fact that qkl = 0 for l ~ N, we have that if b would 
not have a zero or pole at that point, zN would be the dominant term in 
(6.33) and would not be compensated by another term. This shows that if b 
does not have a pole at some point Pi E Fx \ Fx then is has a zero at that 
point. 0 

Definition 6.29. Each of the curves Fx {or Fx) is called a spectral curve 
and each of the varieties Ax is an isospectral variety; when Ax is smooth, 
we also use isospectral manifold. 

Notice that the spectral curve and the isospectral variety both depend on 
the values of the constants of motion qii only. For that reason we often write 
Fe and Ae instead of Fx and Ax, where c is the vector of values of qij on 
X = X {b). In the examples, discussed in this book, the spectral curve Fe is 
non-singular for generic values of c. 

Example 6.30. In the case of Example 6.27 we have that 

IS - v(b) -u(b) I = 'S2 - ( u(b)w(b) + v2 (b)) 
-w@ s+v(b) 

so that we have 2d + 1 constants of motion, which are the coefficients of 
the polynomial u@w(b) + v2 (b), which has degree 2d. In fact, the leading 
coefficients of each of u{b), v{b) and w(b) are also constants of motion, since 
the right hand side of the Lax equation is a polynomial in b of degree less 
than d. It is easy to see that this yields a total of 2d+3 independent constants 
of motion. For any X E Md the spectral curve Fx is given by 

For generic X it is a non-singular affine curve of genus g = d- 1. When d = 2 
then it is an elliptic curve, otherwise it is hyperelliptic. 

Having investigated the spectral curves and the isospectral manifolds we 
now turn to the eigenfunctions of X (b). 

Proposition 6.31. Let X@ E M where M is a finite-dimensional affine 
subspace of gl{N)[b,b-\ and suppose that for generic X@ EM the affine 
curve Fx is non-singular and that for generic {b, S) E Fx, the eigenspace of 
X {b) with eigenvalue S is one-dimensional. 
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(1) If we denote by Llkl(~, X{b)) the cofactor of ~ldN -X(b) corresponding 
to the (k, l)-th entry then 

r. ( T . Lllk(~, X {b)) 
€(~, X(.,)) := 6, ... , €N) wzth f.k = Lln {~, X(b)), (6.35) 

is the unique eigenvector of X(b) with eigenvalue~' normalized at 6 = 1. 
The f.k 's are rational functions in (b, ~) and in the entries of the coeffi
cients Xi of X(b). 

(2) When X(b, t) flows according to X (b) = [X(b), Y(b)], the corresponding 
eigenvector f.(t) := f.(~,X(b,t)) satisfies the autonomous equation 

(6.36) 

where Y := Y(b,X(b,t)) and A is a scalar function ofb, ~' t, 

A:= A(b,~,t) = A(b,~,X(b,t)) = (Y(b,X(b,t))f.(~,X(b,t))) 1 
= "'N_ Y(r. x(r. t)) Ll11 (~,x(b,t)) . 

L..JI-1 "' "' 11 Llu(~,x(b,t)) 
(6.37) 

(3) The order of A, viewed as a meromorphic function on Fx, at the points 
Pi is given, independently oft, by 

{
-nf.l· 

ordp, (A) ~ • 
n'f.li 

1 ~ i ~ s' 

s' + 1 ~ i ~ s. 
(6.38) 

Proof. Under the assumption that for generic (b,~) E Fx, the eigenspace of 
X (b) with eigenvalue ~ is one-dimensional, we solve for the eigenfunction f. = 
f.(~,X(b)) by Cramer's rule, yielding (6.35). Clearly the f.k are rational func
tions in ~, b and thus, meromorphic on the curve Fx. The meromorphic func
tions f.k = €k(~,X(b)) evolve, as X evolves according to (6.31), but they are 
always meromorphic functions on the same curve. To verify the precise form 
of their evolution, we compute, setting X(t) := X(b, t), f.(t) :=f.(~, X(b, t)) 
and Y(t) := Y(b, X(b, t)), that 

0 = ((X(t)- ~ldN)f.(t)). 

= X(t)f.(t) + (X(t)- ~IdN )~(t) 
= (X(t)Y(t)- Y(t)X(t))f.(t) + (X(t)- ~ldN )~(t) 

= (X(t)- ~ldN)(Y(t)f.(t) + ~(t)), 

implying that Y(t)f.(t) + ~(t) is an eigenvector of X(t) corresponding to the 
eigenvalue~· Since, by the assumption, (X(t) -~ ldN )-1 (0) is one-dimensional 
for generic (b,~) E Fx, the vector Y(t)f.(t)+~(t) must be proportional to f.(t), 
i.e., there exists A= A(b,~, X(b, t)) such that 

(6.39) 
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To see the precise form of A, look at the first component of the equation 
above; using ~1 = 1, this yields A= (A~h = {Y~h. and, spelled out, this is 
(6.37). It follows that A is a rational function in b and S, whose coefficients 
are functions of the entries of X(b, t). 

~ l 
To prove (6.38), first replace~ by~= ~/b , where lis large enough so as 

to guarantee the holomorphy off at the points Pi E Fx \ Fx, where b has a 
pole, i.e., 1 :::;; i :::;; s'. Substituting ~ = {bl into {6.39) yields 

. n 

f + 'E Yibif- A(b.s,t)f = o. {6.40) 
i=n' 

First {6.38) holds at P!.z if A has no pole at Pii so, let A have a pole at Pi· 
Picking a component ~k having no zero at Pi, or at least the one with a 
minimal zero of order J1- at Pi, the leading contribution of {6.40) at Pi is given 
by 

N 

bn L(Yn)klf, - Afk 
1=1 

and thus, the divisors at Pi read7 

n ordp, (b) + v = ordp, (A) + ~-'• with v ~ ~-'• 

implying ordp,(A) ~ nordp,(b). At the other points PiE {Ps'+l•····P8 }, we 
know that b vanishes, so we may consider f = ~bt with l sufficiently large so 
as to make ~bt holomorphic at all those points, yielding the same equation 
(6.40). A similar argument leads to ordp, (.X) ~ n 1 ordp, (b), establishing (6.38). 
0 

Example 6.92. In the case of Example 6.27 we have that the generic affine 
curve Fx is non-singular and that for a generic matrix X (b) in Md the 
eigenspace corresponding to a generic point in Fx is one-dimensional. 6, as 
computed from {6.35), can be written in the following two equivalent forms: 

e - s- v(b) - w(b) 
2 - u(b) - S + v(b) · 

Then (6.36) becomes 

( s-~<b> ) + ~ ( :~~ _:~~~) ( s-!ijbi ) = A ( s-~<b> ) , 
u(b) u( ) u{b) 

from which we find that A is given by 

, _ !( {O) c {O)) _ v(O)u(b)- u(O)v(b) ~ u(O) 
" - b v + ._2u - bu(b) + b u(b) . 

7 If (Yn)kk =I- 0, we have IL = v. 
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Proposition 6.33. Let X@ = [X@, Y(b)] be a Lax equation on M, as 
before. Fort E C, with iti small, the unique integral curve X(b, t) to 

X@= [X(b), Y(b)], with X(b,O) = Xo(b), (6.41) 

is given by 
X(b, t) = U(b, t)X(b, O)U(b, t)- 1, 

where U(b, t) is the unique solution to 

(6.42) 

U(b,t) = -Y(b,t)U(b,t), with U(b,O) =ldN. (6.43) 

The solutions X(b, t), Y(b, t), U(b, t) of (6.41) and (6.43) are all holomorphic 
in t for iti small and in b at all points (b,~) E Fe. The same holds true for 
the matrix Z(b, t), defined by 

U(b, t) = ldN -tY(b, 0) + t 2 Z(b, t). (6.44) 

Moreover, the matrix U(b, t) acting on the normalized eigenvector ~(0) := 
~(~,X(b,O)) is a multiple of the normalized eigenvector ~(t) := ~(~,X(b,t)), 
namely 

U(b, t)~(O) = (1 - tA(b, ~' 0) + t2 g(b, ~' t)) ~(t). (6.45) 

with 

N 

A(b,~,O) = LYH(b,X(b,O))~I(~,X(b,O)) 
1=1 

N 

g(b,~, t) = L Zll(b, t)6(~, X(b, 0)) 
1=1 

Proof. Since equation (6.31) is a system of equations for each entry of Xi, 
namely 

(Xi)ik =polynomial in (Xt)pq for all e,p,q, 
we have that the solution of such a system (i.e., with holomorphic right 
hand side) is holomorphic in t for ltl sufficiently small. Since the Yi's are 
polynomial in the entries of the Xj's and polynomial in b, b-1 , the function 
Y(b, t) is holomorphic in t and b for ltl small and (~,b) E Fe. Therefore, 
solving equation (6.43) also leads to a solution U(b, t) holomorphic in t and 
b for it! small and (~,b) E Fe; this yields (6.44). 

We omit for the moment the dependence on b from X, Y, U and~· Let 
U(t) be the solution to {6.43), for ltl small. Then 

{U(t)-1)" = -U(t)-1U(t)U(t)- 1 = U(t)- 1Y(t), 

as follows from differentiating the matrix identity U(t)U(t)- 1 = IdN, and we 
have that 
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(U(t)- 1 X(t)U(t)). 

= (U(t)- 1). X(t)U(t) + U(t)- 1 X(t)U(t) + U(t)- 1 X(t)U(t) 

= U(t)- 1Y(t)X(t)U(t) + U(t)- 1(X(t)Y(t)- Y(t)X(t))U(t) 

-U(t)-1 X(t)Y(t)U(t) 

= 0. 

So we find that 

U(t)-1 X(t)U(t) = U(0)- 1 X(O)U(O) = X(O) 

showing (6.42). If we multiply (6.42) on the right by U(t)~(O) then we find 
that 

X(t)(U(t)~(O)) = U(t)X(O)~(O) = U(t)S~(O) = ~(U(t)~(O)), 

which means that U(t)~(O) is an eigenvector of X(t) corresponding to the 
eigenvalue ~· Since it is assumed that for generic (b, ~) E rx, the eigenspace 
of X (b) with eigenvalue~ is one-dimensional, we find that 

U(t)~(O) = f(t)~(t). 

To compute f(t), using the expression (6.44) for U(t), one finds, remembering 
~(t) := ~(~, X(b, t)), with ~(th = 1, and Y(b, t) := Y(b, X(b, t)), 

f(t) = (f(t)~(t)h 
= (U(t)~(O)h 
= ( (IdN -tY(b, 0) + t2 Z(b, t)) ~(0)) 1 

= 1 - t (Y(b, 0)~(0)) 1 + t 2 ( Z(b, t)~(O)) 1 

N 

= 1 - t-X(b, ~' 0) + t2 L Zu (b, t)~t (0) 
1=1 

yielding (6.45), ending the proof of Proposition 6.33. 0 

Example 6.34. In the case of Example 6.32 we have that 

U(b t)~(O) = (1- t (v(O)u(b) - u(O)v(b) + 1 u(O)) + t2 h(t)) ~(t) 
' bu(b) b u(b) lt=o ' 

where, for generic~ and b, the function h(t) is holomorphic, for small It!. 

We now define the divisor map, which is for fixed values of the constants 
of motion c, a map from the isospectral variety Ac to the variety of effective 
divisors of a certain degree on rc. For simplicity we will assume that c is 
chosen such that rc is non-singular and such that Ac is connected. For l = 
1, ... , Nand for an open subset U of rc, denote by (~t)u the divisor of zeros 
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and poles of e1, restricted to U. For a generic X (b) E Ae, with corresponding 
normalized eigenvector e, let Vx be the minimal effective divisor on Fe such 
that 

(et)rc ;;::: -Vx, for alll = 1, ... , N; 

by continuity, d := deg(Vx) is independent of X= X (b) E Ae and thus, Vx 
defines an effective divisor of degree din Fe for any X = X (b) E Ae. The point 
is to study the motion of the divisor Vx in Fe, when X (b) is moving in Ae. 
Roughly speaking, Vx is the divisor of poles of the normalized eigenvector 
e(S; X (b)) on Fe, not at oo. Note for non-generic X (b) the divisor Vx may 
contain one or several of the points Pi at infinity. 

Definition 6.35. In terms of the above notation, the divisor map is defined 
as 

. d
Ze : Ae --+ D1v (Fe) 

X(b) 1-7 Vx 

Example 6. 96. Continuing our example, since 6 = 1 we only need to inves
tigate the poles of the function 

If we define x1 ... , Xd to be the d zeros of u(b) (with the understanding that 
some of the Xi may coincide, according to the multiplicity of the correspond
ing root of u(b)) and we let Yi := -v(xi) then the d points (x1, Yl), ... , (xd, Yd) 
yield the minimal divisor V such that (e2) + V;;::: 0 on Fe. 

When X (b) evolves according to (6.31), the image of X(b, t) under Ze 
evolves on Divd(Fe) and will be denoted by Vx(t)· We show in the following 
proposition that the transition function of the line bundle of Vx(t) - Vx(o) 

is given by the function 1 - t>. + t 2 g( t), and we express this function in terms 
of .>., up to terms that are quadratically small. 

Proposition 6.37. Let c be such that Fe is non-singular and such that Ae is 
connected. Let X(O) = X(b, 0) be a generic element in Ae such that Vx(o) ~ 
Fe C Fe and let (Uo, Uoo) be an open cover of Fe such that 

{1} Uoo \ Uo is a neighborhood of the points PI, ... ,p8 ; 

{2} Uo \ Uoo is a neighborhood of the support of Vx(o). 

We have for ltl small enough and g(b,s, t) := E~1 Zu(b, t)e,(o), 

(1 - t>.(b, S, 0) + t2 g(b, S, t)) Uo = Vx(t) - Vx(o) (6.46) 

and 
(1- t.>.(b,S,O))u0 = V~(t)- Vx(o), (6.47) 
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for divisors Vx(t) and V~(t) in Uo, which are O(t2 )-close; i.e., for every 
holomorphic differential w, 

(6.48) 

Proof. From (6.45) we have 

U(b, t)~(O) = (1- t>.(b,~, X(b, 0)) + t2g(b,~, t))e(t), (6.49) 

where U(b, t) is holomorphic for small itl and (b,~) E Fe. Since 'Dx(o) is the 
minimal divisor of affine poles of ~(0) and since U(b, t) is holomorphic and 
near IdN for small it! we have that 'Dx(o) is the minimal divisor of affine poles 
of U(b, t)~(O), which is the left hand side in (6.49). But 'Dx(t) is the minimal 
divisor of affine poles of ~(t). It follows that the zeros of 1- t>. + t2g cancel 
all the poles of ~(t) that are not poles of'Dx(o), leading to (6.46). Taking the 
difference of (6.46) and (6.47) we find 

V~(t) - 'Dx(t) = (1- t>.)u0 - (1- t>. + t2 g(t))u0 

_ ( 1-tA(b.s.o> ) 
- l-tA(b,~,O)+t2 g(~,b,t) Uo . 

(6.50) 

Consider an arbitrary holomorphic differential w on Fe and let F;_ denote 
a canonical dissection of Fe, i.e., the simply connected open subset of Fe, 
obtained by removing a system of simple curves that generated the first 
homology group of Fe. We may assume that these curves are disjoint from 
the points in Vx(t) and from the points in V~(t) (tis fixed). Choosing a point 

Po E F;_ we consider the function 'lj;(p) = J:O w, which is well-defined because 
F;_ is simply connected. Then, by a standard residue calculation, looking at 
poles and zeros of the function in bracket (6.50) in the region U0 := Uo n F;_, 
we have on the one hand, 

1 t ( 1 - t>.(b, ~' 0) ) 1V'x(t) '¢ dlog 2 = w, 
21rv'-I 8u0 1 - t>.(b, ~. 0) + t g(~, b, t) Vxc•> 

and, on the other hand, using the fact that the ratio in the log behaves like 
O(t2), as a function oft on au;, we have 

1 1 'lj;dlog( 1-t>.(b,~,O) ) =0(t2). 
21rA !au· 1- t>.(b.~,o) + t2g(~,b,t) 

0 

Comparing the two formulas establishes (6.48). 0 
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Lemma 6.38. Consider a point p E C, a holomorphic differential w in a 
neighborhood V of p and a holomorphic function u in V \ {p} with a pole of 
order n at p. Consider t small enough, so that then points Pj(t), solution of 

u(pi(t)) + c 1 = o, j = 1, ... ,n, 

all belong to V. Then, for small t, 

n r;(t) L }, w = -tResp(wu) + O(t2 ). 

j=l p 

Proof. Let w = d'lj; with .,P(p) = 0. Then, for any closed path 'Y enclosing the 
zeros PJ(t) of u + t-1 , 

1 n r;(t) 1 n 1 n 1 

t L: J., w = t L:.,p(pj(t)) = t L:aesp;(t) :! .,p 
j=l p j=l j=l u t 

n u' 1 1 u' 
= L Resp;(t) 1 + tu 'ljJ = 27ri l, 1 + tu 'ljJ dz. 

j=l ~ 

From the computation above it follows that 

d n 1P;(t) 1 n lp;(t) 
lim -d "" w = lim - "" w 
t-tO t {;;: p t-tO t {;;: p 

= -2
1 . 1 u'.,Pdz = --2

1 . 1 uw dz = -Resp(uw), 
m lr 1r~ J~ 

ending the proof. D 

Choose a divisor Do E Divd(Fc) and a basis (w1, ... , w9 ) of holomorphic 
differentials on Fe and let w := (w1 , ... , w9 ) T. Define the linearizing map 

Jc : .Ac --+ Jac(Fc) 

l 'Dx 

X~ w. 
'Do 

For example, one may choose a base point q on Fe and take 'Do:= dq. Then 
the linearizing map is given by 

d r; 
Jc(X) = L Jo WE Jac(Fc), 

i=l q 

where Vx = q1 + · · · + qd. 
In what follows we will emphasize that .X only depends on t through its 

explicit dependence on X(~), as given in (6.37). 
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Theorem 6.39. Along the integral curves X(t) of the Lax equation X = 
[X, Y] the derivative of the linearizing map is given by 

d {Vx(tl 8 

d }
1 

w = L Resp; A(b, S, t) w. 
t Vx(o) i=l 

(6.51) 

Proof. For iti sufficiently small, the points PiJ(t), which are close to Pi and 
are defined by 

1 8 O"i 

(--A) = v~(t) - Vx(o) + L L(pij(t)- Pi) 
t i=l j=l 

are all contained in U00 , by (6.47). Note the second summation is only non
zero whenever A has a pole at Pi and that, by (6.38), 

1 ~ i ~ s' 
s' + 1 ~ i ~ s. 

Let w be the (column) vector ofholomorphic differentials (w1, ... ,w9 ) on rc. 
For fixed (but small) t we have that ( t - A) is the divisor of a meromorphic 
function, hence 

{V'x<•> W + t f: 1p;;(t) W 

lvx(o) i=l j=l Pi 

belongs to the lattice of periods of rc; since it vanishes fort= 0, it does for 
all t, and 

d 1V'x(t) d 8 u; 1Pii(t) 8 

lim -d w = - lim -d '"''"' w = '"'Resp, .X w, 
t--+0 t V HO t L.J L.J L.J 

X(O) i=l j=l Pi i=l 

in view of Lemma 6.38. Remember that the divisor Vx(t) is the divisor of 
zeros of 1-tA(b,s, 0) +t2g(b,S, t) in Uo and is O(t2)-close to the divisor V~(t)• 

i.e., J:g,x<•> w = O(t2 ), by (6.48). Thus 
X(t) 

~I rVx(t) w = ~I [V'x(t) w + ~I rVx(t) w 
dt t=O lvx<o> dt t=O lvx<o> dt t=O lv'x<•> -~I [V'x(t) w 

- dt t=O lvx<o> 
8 

= LResp, A(b,s,o) w. 
i=l 

Since the argument can be repeated at every t, the result follows, as A depends 
on t only through its explicit dependence on X(b). D 

Remark 6.40. If A does not have poles in rc \rc, the right hand side of (6.51) 
vanishes. 
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Theorem 6.41 (Linearization Criterion). The map Jc linearizes the 
isospectral flow X= [X, Y] on Ac, that is to say 

{Vx<tJ 8 

}
1 

w = t 'L:Resv1 .X(~.~.x(~,O)) w, 
Vx(o) i=l 

(6.52) 

if and only if there exists for each X E Ac a meromorphic function ifJ x on 
- . s' 1 s 
Fe wzth (ifJx )rc ~ -n Li=l Jl.iPi + n Li=8 '+1 J.tiPi 1 such that for all Pi 1 

( . 1 d,\(~, ~. X) ) ( l 1 ,~,. ) Laurent tad o dt at Pi = Laurent tai o "'x at Pi , (6.53) 

where (remember) 

d,\(~.~. X) = ~ (~ y, (r. ~ X(r. t)) Lhz(~, X(~, t))) 
dt dt {:t 11 9 ' 7 ' 9 ' L111 (~,X(~, t)) ' 

d/dt being computed using the Lax equation X= [X, Y]. 

Proof. <=: Since f/Jx is a meromorphic function with poles Pi, we have that 
f/Jx w is a vector of meromorphic differentials and so the sum of its residues 
vanishes: 

8 

'L:Resp; f/Jx w = 0. 
i=l 

Thus, using the hypothesis, 

8 

0 = 'L:Resp; f/Jx w 
i=l 

~ Re d-X(b, ~.X) ... = LJ Sp; dt W 
i=l 

d 8 

= -d L: Resp; ,\(~.~.X) w 
t i=l 

using Theorem 6.39. 

It implies that _ddt fvVx<t> w is constant along any integral curve of the differ
x<o> 

ential equation X= [X, Y] and so for all t 

and so 
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1'Dx(t) 8 

w = t '2:: Resp, A(b,S, X(b, 0)) w + constant, 
'Dx(o) i=l 

with the constant equal to zero, upon evaluating both sides at t = 0. 
:=:} The relations (6.52) and (6.51) together imply that all along the 

trajectory 

d r'Dx(t) 8 

constant = d JT w = '2:: Resp, A(b,S, X(b, t)) w 
t 'Dx(o) i=l 

and so 

d ~R '(r. X(r. )) - ~R dA(b,S,X(b,t)) _ d L..t esp, A •JoS, 1}, t w = L..t esp, d w = 0. 
t i=l i=l t 

Now, Lemma 5.11 guarantees the existence of a function ¢x(t) having the 
Laurent tails given by property (6.53) and holomorphic otherwise; so, by 

(6.38) we have the inequality (¢x )rc ~ -n 2:::~ 1 J.tiPi + n' 2:::=8'+1 J.tiPi, end
ing the proof of Theorem 6.41. 0 

Example 6.42. Returning to our example, we have found in Example 6.32 
the following explicit expression for A, 

'(r. ) = ~ ( (O) c (O)) = v(O)u(b) - u(O)v(b) i u(O) 
A I},S b v + "'2 u bu(b) + b u(b) · 

The curve Fe has the form S2 = eob2d(l + O(b-1 )), where Co is different from 
zero, for generic c, so rc has two points at infinity, which are given in terms 
of a local parameter c;- by 

.... -1 
I}=' ' 

Writing A in terms of this local parameter yields that A has a simple zero at 
c;- = 0, so it is holomorphic at infinity. 

Corollary 6.43. Suppose that b has no zero at infinity and that there exists a 
polynomial p(x, y, z) whose coefficients are arbitrary constants of the motion, 
and that there exists an algebraic function .P, whose coefficients are arbitrary 
constants of the motion, such that 

where Co is a lower triangular matrix, and where the matrices C1, C2, ... are 
arbitrary. If ~/b has no pole at the points Pi then the Linearization Criterion 
is satisfied by taking ¢x = 0. 
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Proof. Since~+ Y(b)~ = ..\(b,S)~ and since the first component of~ is nor
malized to 1, ..\ is the first component of Y(b)e. In view of (6.54), ..\ is the 
first component of .P(p(A,b, b- 1 ))~ +(Co+ T + ... )~. 

But 
!P'(p(A,b,b- 1 ))~ = !P'(p(S,b,b- 1 ))~ 

since ~ is an eigenvector of A with eigenvalue i· Therefore, 

..\ = !P'(p(S,b,b-1)) + (Co)u + (Cb~h + (c;;h + ... (6.55) 

We claim that the Laurent tails of ..\ at each of the points Pi is independent 
oft. In fact, the first term in (6.55) clearly has no pole, being independent of 
Sand b, while the remaining terms do not have a pole at the points Pi, since 
we have assumed that ~/b has no pole at the points Pi· It follows that the 
choice f/Jx = 0 satisfies (6.53). D 

Remark 6 .. 44. In the examples that we will treat in this book the function 
!P' is always the identity, but in some cases, such as the Neumann system, 
one needs a non-trivial !P'. For a list of such examples, see [7, Theorem 4.3, 
page 302]. 

Remark 6.45. It may happen that Jc not only linearizes the isospectral flows 
on Ac, but even trivializes them, i.e., the induced vector fields are zero (the 
corresponding flow is identity). For a non-trivial isospectral flow this cannot 
happen when Jc is a finite map. When Jc is not a finite map it suffices to 
check that the induced (linear) flow in one point is non-trivial to know that 
the linearized flow is non-trivial on the generic torus Ac. 

Example 6.46. In the case of Example 6.42 we can also apply Corollary 6.43. 
Namely, if we write 

i=O 
then we see that (6.32) can also be written as 

Now Eo~; 1 Xibi- 1 is easily written in the form (6.54), because 
"' 

This gives a second proof that the example of this section satisfies the Lin
earization Criterion. 



7 Weight Homogeneous A.c.i. Systems 

In this chapter we introduce a class of a.c.i. systems for which everything 
can be explicitly computed. For these systems, which we will call weight ho
mogeneous a.c.i. systems, phase space is always en' and a system of linear 
coordinates on en can be chosen in such a way that everything (the poly
nomials in involution, the Poisson structure, the commuting vector fields) 
becomes homogeneous upon assigning weights to each of these coordinates. 
For these systems we will provide methods by means of which one can reveal 
the whole geometry of the system and prove (or disprove) algebraic complete 
integrability. 

We show in Section 7.1 that weight homogeneous formal Laurent solutions 
can be effectively (algorithmically) computed: after the zeroth step (the indi
cia! equation) each subsequent term in the Laurent solution is determined as 
the solution of a linear algebra problem, which we encode by introducing the 
Kowalevski matrix. In particular, if a free parameter enters at step k then k 
belongs to the spectrum of the Kowalevski matrix. We also establish a few 
simple, but useful, first properties of the Kowalevski matrix and of the indi
cia! locus. We show in Section 7.2 that weight homogeneous formal Laurent 
solutions are always convergent. The Kowalevski matrix will be related in 
Section 7.4 to the grading of the algebra of constants of motion of a weight 
homogeneous vector field, as introduced in Section 7.3. We introduce in Sec
tion 7.5 the notion of a weight homogeneous a.c.i. system and we provide in 
Section 7.6 computational tools (algorithms) to compute basically everything 
for a weight homogeneous vector field. We finish this chapter by providing, 
in Section 7.7, for this class of a.c.i. systems a method which allows us to 
prove (or disprove) that a given Liouville integrable vector field is one of the 
integrable vector fields of a weight homogeneous a.c.i. system. 

The implementation of the algorithm, given in Section 7. 7 depends heavily 
on the techniques that are presented in Section 7.6. The algorithm will be 
illustrated several times in the examples that follow in the rest of the book. In 
order to make this chapter more readable we have chosen a simple but non
trivial example, which will be used to illustrate every concept and technique 
in this chapter, as they are introduced. This example, which we will introduce 
in Section 7.1, is in the literature known as the periodic 5-particle Kac-van 
Moerbeke lattice (see [92] and [53]). 

M. Adler et al., Algebraic Integrability, Painlevé Geometry and Lie Algebras
© Springer-Verlag Berlin Heidelberg 2004
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7.1 Weight Homogeneous Vector Fields and Laurent 
Solutions 

The integrable systems that we will deal with in the rest of this book 
are weight homogeneous in a sense that we will define below. First, let 
us recall the classical definition of a weight homogeneous polynomial. Let 
v = (v1, ... , vn) be a collection of positive integers without a common 
divisor. Such a v is called a weight vector. We say that a polynomial 
I E F(Cn) = C[x1, ... , Xn] is a weight homogeneous polynomial of weight 
k (with respect to v) if 

l(t111 X1, ... , t"n Xn) = tk l(xl, ... , Xn) 

for all (x1, ... , xn) E en and t E C. Notice that in this case 81 j8xi is weight 
homogeneous of weight k- Vi. The weight k of I will be denoted1 by ro{!); 
moreover, when writing ro{!) it is implicit in the notation that I is weight 
homogeneous. With this convention, we define for k E N, 

,r(k) :={FE F(Cn) I ro(F) = k} · 

Clearly, the choice of a weight vector v induces on C[x1, ... , Xn] the structure 
of a graded algebra, 

00 

C[x1, ... , Xn] = EB ,r(k), 

k=O 

i.e., every polynomial is in a unique way a finite sum of weight homogeneous 
polynomials, and :F(k) :F(l) ~ :F(k+l), for k, l E N. For fixed k an explicit 
basis for ,r(k) is easily written down. The dimension of ,r(k) is given by the 
following proposition, whose proof is an easy application of the theory of 
generating functions, hence is left to the reader. 

Proposition 7.1. The dimension of ,r(k) has the following generating func
tion: 

n 1 oo 

II --. = "'"" (dim :F(k)) tk. 
1- t"• L-1 

i=l k=O 

We now define the notion of weight homogeneity for polynomial vector fields 
on en. 

Definition 7.2. A polynomial vector field on en, 

(7.1) 

Xn = ln(Xl, · · ·, Xn), 

1 n and v will always he fixed, which allows us to keep the notations simple by 
not adding the dependence on n and v. 
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is called a weight homogeneous vector field of weight k (with respect to v) if 
each of the polynomials /I, ... , f n is weight homogeneous (with respect to v) 
and if w(/i) = Vi+ k = w(xi) + k for i = 1, ... , n. Thus, t = time has weight 
-k, so to speak. A weight homogeneous vector field of weight 1 will be simply 
called a weight homogeneous vector field (these are the most important vector 
fields in what follows). If (7.1) is a weight homogeneous vector field then a 
Laurent solution to (7.1) of the form 

i = 1, ... ,n, (7.2) 

with x{O) ':/; 0, is called a weight homogeneous Laurent solution. 

Remark 7.3. Weight homogeneous Laurent solutions are by definition strict 
Laurent solutions (meaning that x(o) ':/; 0, see Definition 6.6), so they always 
have a positive pole order. We will see in Section 7.2, that a weight homoge
neous Laurent solution to (7.1) of the form (7.2) is automatically convergent; 
this is why (already) we dropped the adjective "formal". 

Remark 1.4. When all weights are equal (to 1) the above terminology is sim
plified by replacing "weight homogeneous" by "homogeneous". Thus, our 
terminology is such that a vector field Xi = f (X) on en is called a homo
geneous vector field if and only if each fi is a homogeneous polynomial of 
degree 2. 

Example 7.5. We now introduce the example that will serve as "fil rouge" 
throughout this chapter. We consider C 5 with linear coordinates x1, ... , X5 

and we put Xi+5 = Xi fori E Z. The periodic 5-particle Kac-van Moerbeke 
lattice (see (92] and (53]) is given by the quadratic vector field 

(i=1, ... ,5), (7.3) 

which we will denote by vl, and it admits the following three independent 
constants of motion, 

F1 = x1 + xz + X3 + x4 + X5, 

F2 = XIX3 + X2X4 + X3X5 + X4Xl + X5X2, 

F3 = XIX2X3X4X5. 

(7.4) 

If we assign to each Xi the weight 1, i.e., w(xi) = 1, then (7.3) becomes a 
weight homogeneous vector field, actually a homogeneous vector field, and 
the weights of the invariants (7.4) are given by w(FI) = 1, w(Fz) = 2 and 
w(F3 ) = 5. The dimension of F(k) can in this case be simply obtained from 

(7.5) 
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A vector field that commutes with (7.3) is given by 

X~ = Xi(Xi+2Xi-l - Xi+JXi-2), (i = 1, ... , 5). (7.6) 

It is weight homogeneous of weight 2. Both vector fields and their constants 
of motion are invariant with respect to the order 5 automorphism u of C 5 , 

which is defined by u(xi) = Xi+l· Notice that (7.3) can be written as a Lax 
equation (with parameter) X (b) = [X (b), Y (b)], where 

0 X1X2 0 0 

0 0 X2X3 0 

X(b) = 

0 X1 0 0 b-1 

1 0 X2 0 0 

0 1 0 xa 0 

0 0 1 0 X4 

Y(b) = 0 0 0 X3X4 

0 0 0 0 

x5b 0 0 1 0 0 0 

as is easily checked by direct computation. It is easy to fit this Lax equation 
in the AKS scheme, and to show, using Corollary 6.43 with !li(z) = z2 , that 
it satisfies the Linearization Criterion. 

We show in the following proposition how, for k ~ 1, the k-th term of a 
weight homogeneous Laurent solution (to a weight homogeneous vector field) 
can be computed recursively from the previous terms x<0>, ... , x<k-1). It will 
follow that it is sufficient to compute the first few terms of a weight homo
geneous Laurent solution to be sure that these terms are indeed the first few 
terms of a formal Laurent solution (it will be automatically convergent, see 
Section 7.2). This property is precisely what makes the family of all weight 
homogeneous Laurent solutions computable; for Laurent solutions that are 
not weight homogeneous (e.g., for Laurent solutions to vector fields that are 
not weight homogeneous), it is neither clear with which pole order to start for 
each of the functions, nor how to organize the computation of the subsequent 
terms of the Laurent solution (see however Remark 7.9 and Paragraph 7.6.2). 

Proposition 7 .6. Suppose that V is a weight homogeneous vector field on 
en, given by 

(i=1, ... ,n), 

and suppose that 

Xi(t) = t~; f x~k)tk' 
k=O 

(i=1, ... ,n) (7.7) 

is a weight homogeneous Laurent solution for this vector field. Then the lead
ing coefficients x~o) satisfy the non-linear algebraic equations 

li1X~O) + fi ( X~O), ... , X~O)) = 0, 

(7.8) 

(0) f ( (0) (0)) - 0 llnXn + n X1 , ••• , Xn - , 
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while the subsequent terms x~k) satisfy 

( kldn -K (x<0l)) x(k) = R(k), (7.9) 

where x<kJ = (x\k)), and R(k) = (Rr)); each R~k) is a polynomial, 
(k) R(k) 

Xn n 

which depends on the uariables xi1), ••• , x~) with 0 ~ l < k only (the explicit 
ualue of R~k) will be giuen in (7.14) below). Also, the (i, j)-th entry of the 
( n X n) -matrix K is the regular function on en' defined by 

ar 
V" .. ·- -' + v·o·. "''3 . - a , '3 , 

Xj 
(7.10) 

where o is the Kronecker delta. 

Proof. Consider the weight homogeneous Laurent solution (7.7) to (7.1) and 
introduce for (3 = ((31, ... , f3n) E Nn the following notations lf31 := E~ f3i and 
(3! := n~=l f3i! and 

af3 1 af3l .. · af3 .. 1 
axf3 := axf1 ••• ax~" . 

Define Ui(t) := Lk~l x~k)tk, so that ,... 

(7.11) 

where 1 ~ i ~ n. Then we have on the one hand by weight homogeneity of 
/i and by Taylors's Theorem that 

tv;+lfi(x(t)) = h ( x<o) + U(t)) (7.12) 

= li ( x(O)) + L ;, ~;; ( x<o)) uel (t) ... ug .. (t), 
lfJI~t 

while on the other hand, 

tv;+lxi(t) = L(k- vi)x~k)tk, 
k~O 

(7.13) 

as follows from (7.7). Comparing the constant terms in (7.12) and in (7.13) 
yields (7.8), since the constant term in the series Ui(t) is zero. 
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In order to compare the other terms in the series (7.12) and (7.13) we 
expand the sum in (7.12) as a series in t, which gives for I.BI = 1 the contri
bution 

while the terms that correspond to I.BI > 1 yield Ek~2 R(k}tk, where .... 

(7.14) 

Noticing that Rk involves only the coefficients x~1) with 0 :::;; l < k, (1 :::;; 
i :::;; n), we find that a comparison of the coefficients of tk leads to n linear 

t . £ (k} (k} t 't equa IOnS 10r X 1 , .•. , Xn , 0 WI 

(k- v·)x\k} = ~ {)fi (x<0>) x(k} + R\k) • , LJ {)x . 3 , , i = 1, ... , n. 
j=l 3 

These equations are easily rewritten in the form (7.9), by introducing the 
matrix JC (see (7.10)). 0 

Definition 7.7. The set of equations (7.8) is called the indicial equation 
of V. Its solution set (which is an algebraic set in en) is called the indicia[ 
locus, and is denoted by I. Then x n matrix /C, defined in (7.10) is called 
the K owalevski matrix. 

Remark 7.8. JC will only be evaluated at elements of I; the elements of JC, 
restricted to I, are regular functions on I. 

Remark 7.9. Proposition 7.6 is valid for vector fields that are almost weight 
homogeneous in the following sense. We assume that we are given, as before, 
a weight vector v = (v~, ... , vn) on en and we assume that each of the 
functions /i, that appears in the differential equation Xi = fi(x), can be 
written as h = fi + JI', where !I is weight homogeneous, of weight Vi + 1 
and all terms in fi' have a weight that is at most Vi. Notice that, in this case, 
the equations Xi= ft(x) define a weight homogeneous vector field on en. It 
is easy to see that the presence of the terms JI' does not affect the indicial 
equation, and that the subsequent terms x~k} still satisfy Equation (7.9), but 
with a right hand side R(k} that is slightly different. 
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Example 7.10. In the case of Example (7.5) the weight homogeneous Laurent 
solutions of vl are of the form 

(i = 1, ... '5), 

and the indicia! equation is given by 

(i = 1, ... ,5). 

The following simple observations are useful for determining the indiciallocus 
from these equations. If all x~o) are different from zero then 1+x~~\ -x~~1 = 0 
fori= 1, ... , 5, which yields after summing up 5 = 0, a contradiction. Taking 
into account the automorphism a we may at first assume that x~o) = 0 and 

that x~o) # 0 to find one piece of the indiciallocus; the entire indiciallocus 
is then found by using the automorphism a. The indicia} equation then takes 
the simpler form 

1- x~o) = 0, 

x~o) (1 + x~o) - x~o)) = 0, 

x~o) (1 + x~o) - xi0)) = 0, 

x~o) (1 + x~o)) = 0. 

There are two solutions, depending on whether x~o) is equal to zero or not. 
Explicitly we find the following two points in the indicia} locus, m4 := 
( -1, 1, 0, 0, 0) and m5 := ( -2, 1, -1, 2, 0), where the labels 4 and 5 have been 
chosen with respect to the position of the zeros. The other eight points mi 

and m~ in the indicial locus are obtained by using the order 5 automorphism 
a, for example 

m1 := (0,0,-1,1,0) and m~ := (0, -2, 1, -1, 2). 

At these points the Kowalevski matrix is given by 

1 0 00 0 5 0 0 0 0 

0 2 00 0 -20 2 0 0 

K(ml)= 0 -101 0 K(mD= 0 1 0 -10 (7.15) 

0 0 1 0 -1 0 0-1 0 1 

0 0 0 0 2 -2 0 0 2 0 

At the other points mi and m~ the Kowalevski matrix is obtained by cycling 
the rows and the columns of the above matrices. 
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It is plain from the proposition that the nature of the spectrum of K 
will have pronounced implications on the algebraic complete integrability of 
a weight homogeneous integrable system. Indeed, if we want that a given 
m E I leads to a principal balance (a family of Laurent solutions, depending 
on n- 1 free parameters), then K(m) must haven- 1 non-negative integer 
eigenvalues (with multiplicities; n is the dimension of phase space) to account 
for the n- 1 free parameters, a strong condition! In fact, we show in the next 
proposition that -1 is always an eigenvalue of K, so that, for m E I as above, 
all other eigenvalues must be (non-negative) integers. 

Proposition 7.11. For any m which belongs to the indicial locus I, the 
K owalevski matrix K( m) of a weight homogeneous vector field always has -1 
as an eigenvalue. The corresponding eigenspace contains ( 111 m1, ... , lin mn) T 

as an eigenvector. 

Proof. The proof is similar to the proof of Euler's Formula for homogeneous 
polynomials. Let±= f(x) be a weight homogeneous vector field on en, and 
let m = ( m1, •.. , mn) E I be arbitrary. We need to show that 

( lllffil) (K(m) + Idn) : = 0. 

llnffin 

(7.16) 

To show this, fix any i with 1 ~ i ~nand consider 

which is valid for all t E e and for all x = (x1, ... , Xn) E en. Taking the 
derivative of this identity with respect to t at t = 1 we get 

valid for any x E en. If we substitute m for x in this equation and we use 
the indicia! equation fi(m) = -vimi then we get 

which is precisely the i-th line of (7.16). Since i was arbitrary we have shown 
(7.16). 0 
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We also mention the following property of the Kowalevski matrix. 

Proposition 7.12. If x = f(x) is weight homogeneous and divergence free, 
the latter meaning that L:~=l 8fif8xi = 0, then the trace of its Kowalevski 
matrix is given by 

n 

Trace(K(m)) = L vi, 
i=l 

independently of mE I. 

Proof. This is obvious from the definition (7.10) of K. 0 

Example 7.13. In the case of Example 7.10 we easily verify from (7.15) that 
K(ml)mJ = -mJ and that K(mDm~ T = -m~ T. The vector field is diver
gence free, so that the trace of the matrices (7.15) is equal to 5. 

Each point in the indicia! locus leads to an integral curve of V, defined 
for t =f. 0, a fact that will prove useful in the analysis of the spectrum of K; 
(Section 7.4). 

Proposition 7.14. Let m be an arbitrary element of the indiciallocus I of 
a weight homogeneous vector field x = f ( x) . Then 

m(t) := (m1 , ... , mn) 
tVl tVn 

is a solution to x = f(x), fort =f. 0. 

Proof. By direct substitution, the equation at step zero is precisely the in
dicia! equation while all equations after the indicia! equations are trivially 
satisfied. 0 

For future use (see Section 7.5), we also spell out the relation between the 
(Zariski) tangent space at a point min the indicia! locus and the null space 
of K(m). 

Proposition 7.15. Consider the indicial locus I of a weight homogeneous 
vector field x = f ( x) and let m E I be arbitrary. The dimension of the Zariski 
tangent space Tmi to I at m equals the dimension of the null space of K(m). 

Proof. Let us first recall that if M c en is the affine variety defined by 

j = 1, .. . ,l, 

where G1, ... , G1 are arbitrary polynomials, then the Zariski tangent space 
T mM to M at m = ( m1, ... , mn) E M is by definition the affine subspace of 
en given by 

j=1, ... ,l. 
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It is isomorphic to the tangent space to M at m when M is smooth at m, 
otherwise it is of larger dimension than the tangent space to M at smooth 
points of M close to m. Since I is given by (7.8) the Zariski tangent space 
T mi is given by the following set of equations 

j = 1, .. . ,n, 

which we can write by using the Kowalevski matrix in the following compact 
form: JC(m)(x- m) = 0. Thus, the tangent space Tmi is the affine sbbspace 
of en which passes through m and whose associated vector space is the null 
space of JC(m). D 

Example 7.16. In the case of our example, the indicia! locus consists of 10 
isolated points (each taken with multiplicity 1), so that the dimension of the 
Zariski tangent space T mi to I at any point m E I is zero. This is consistent 
with the fact that det JC(mi) = -4 =I 0 and det JC(mD = 20 =I 0. 

In the following proposition we spell out how the family of all weight homoge
neous Laurent solutions has a natural structure of an algebraic set. The family 
of Laurent solutions that corresponds to any of its irreducible components 
(which is an affine variety) is, in analogy with the terminology introduced in 
Paragraph 6.2.1, called a weight homogeneous balance. 

Proposition 7.17. Consider a weight homogeneous vector field V on en. 
Suppose that for any irreducible component I' of the indicia[ locus I of V 
the characteristic polynomial ik Idn -JC(m)l is independent of m E I'. Then 
the set of all weight homogeneous Laurent solutions to V is parametrized by 
a finite number of affine varieties (of varying dimensions) r(i). For any one 
of these affine varieties r(i) the coefficients that appear in the corresponding 
weight homogeneous balance are regular functions on r(i). 

Proof. Let l denote the largest integer eigenvalue of all matrices JC(m), where 
m runs through I, which is finite since I has only a finite number of irre
ducible components. Let 

i = 1, ... ,n, 

where all coefficients x~k), with 1 ~ i ~ n and 0 ~ k ~ l, are undetermined. 
If we substitute these in the differential equations x = f(x) for V, then we 
get n(l + 1) polynomial conditions on these n(l + 1) coefficients, by equating 
the coefficients of the first l + 1 powers of t. This yields an algebraic subset 
r of en(l+l)' whose points are in one-to-one correspondence with the weight 
homogeneous Laurent solutions to V; in fact, since l is the largest integer 
eigenvalue of all matrices JC(m), where m runs through I, all further coeffi
cients of the series follow uniquely from the previous ones, by Proposition 7.6. 
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Decomposing Fin its irreducible components yields the affine varieties F(i). 

The first l + 1 coefficients of each xi(t) are obviously regular functions on F, 
while for the other ones this follows from (7.9), upon using the fact that 
(kidn -K (m)) is invertible fork> land mE I. 0 

In order to compute the affine varieties F(i) in practice, it is preferable to 
use a different method than in the proof of the above proposition (even when 
one is using computer). Namely, let I' be an irreducible component of I and 
define, in a first step, F :=I' (along the way, F will be modified). By assump
tion, the characteristic polynomial x(k; F) := lk Idn -K:(m)l is independent 
of mE F. In the following steps, as governed by (7.9) (with k = 1, 2, ... ) we 
can uniquely solve (7.9) with k = 1, 2, ... to find x~1 ), x~2), ••• as a regular 
function ofF, as long as x(k; F) is different from zero. Suppose now that k 
is the smallest positive integer for which x(k; F) = 0. We first enlarge F to 
F X en, where we view the unknowns xik), ... , X~k) as coordinates on en. 
Then the equations (7.9) define an algebraic subset ofF X en, which we 
decompose in its irreducible components F(i). We pick any one of these F(i) 

and we define x( k; F( i)) := x( k; F); for the sake of repeating the construction, 
redefine F now by F := F(i) (in order to obtain all weight homogeneous bal
ances, this and what follows will have to be done for each F(i) (separately)). 
Notice that the new F may have larger dimension than the old one (the di
mension of F is the number of parameters these first terms of the balance 
depends on). We can now go on and solve (7.9) uniquely for k + 1, k + 2, ... , 
until we hit another zero of x(k; F), in which case F will get modified again. 
Once we get past the largest eigenvalue, F will not change anymore and we 
are done. 

Definition 7.18. The weight homogeneous balance that corresponds to the 
affine variety F(i), as given by Proposition 7.17, is denoted by x(t; F(i)). For 
m E F(i) the balance specializes to a Laurent series that will be denoted 
by x(t; m). Each of the affine varieties F(i) that corresponds to a principal 
balance, i.e., depends on n -1 parameters, is called an abstract Painleve wall 
of V, while their union, which is an algebraic subset whose irreducible com
ponents are the F(i), is called the abstract Painleve building of V, denoted F. 

Remark 7.19. In most of the examples the varieties F(i) are (some of) the 
original irreducible components of the indiciallocus I, multiplied by some eN 
(where N depends on i). This is so, because in those examples the algebraic 
equations (7.9) can be solved polynomially for xik), ... x~k) in terms of the 

previous xi'), ... x~) (taking some of the x~k) as free parameters), because the 
adjoint conditions which need to be satisfied when x(k; F) = 0 turn out to 
be automatically satisfied, and so we merely gain free parameters at step k 
with no further restrictions on prior x~l), coming from the adjoint condition. 
See Proposition 7.22 below for a general statement. 
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Remark 7.20. The condition that for each irreducible component I' of the 
indicial locus the characteristic polynomial lk Idn -K(m)l is independent of 
m E I' may seem a strong condition, but it is satisfied for the indicial locus 
of any a.c.i. system (see Proposition 7.32). 

Example 7.21. In the case of our example, we find the following weight ho
mogeneous balance, starting from m1 = (0, 0, -1, 1, 0), the remaining terms 
are uniquely determined from what is given below: 

x1 (t; ml) = d + O(t2), 
x2(t; ml) = bt + O(t2), 

1 1 
x3(t; ml) = -t +a- 3(a2 + 2b + c)t + O(t2), 

1 1 
X4(t; ml) = t +a+ 3(a2 - b- 2c)t + O(t2), 

xs(t; ml) = ct + O(t2). 

(7.17) 

It is a principal balance, because there are four free parameters a, ... , d. The 
corresponding abstract Painleve wall is denoted by r(l) and is isomorphic 
to C 4 • Two of the free parameters, a and d, enter at step 1, while the other 
two, b and c, enter at step 2, which is consistent with the fact that 1 and 2 are 
double roots of the characteristic polynomial of K(m1 ). Using the automor
phism a we find in total 5 abstract Painleve walls, which constitute together 
the abstract Painleve building, where the Painleve wall that starts from mi 

is denoted by r(i). Indeed, since the only non-negative roots of K(mD are 
1, 2 and 5, with corresponding free parameters a, band c, the weight homo
geneous balance that starts at any of the m~ is not a principal but a lower 
balance. We give the first few terms of the lower balance that starts at m~, 
the remaining terms being uniquely determined from what is given below: 

x1(t; m~) = ct4 + O(t5), 

2 a 1 
x2(t; m~) = - t + 2a- (a2 + b)t + 5(a2 + 3b)t2 + 10 (a2 + b) 2t 3 + O(t4), 

x3(t; m~) = ~+a- bt- ~(a2 + 3b)t2 + 110 (a4 + 6a2b + 7b2)t3 + O(t4), 

x4(t; m~) =-~+a+ bt- ~(a2 + 3b)t2- 1
1
0 (a4 + 6a2b + 7b2)t3 + O(t4), 

xs(t; mD = ~ + 2a + (a2 + b)t + ~(a2 + 3b)t2- 1~ (a2 + b)2t3 + O(t4 ). 

We have printed more terms here than for the principal balance because, when 
we want to compute the term in t 0 of the series, obtained by substituting the 
series in the constant of motion F3, i.e., in x1X2X3X4X5, then we need as many 
terms in the series as given. The lower balance that starts at the other points 
mi are found by using the automorphism a. 
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We show in the following proposition that the affine varieties that parame
terize the weight homogeneous principal balances, i.e., the abstract Painleve 
walls, are of a simple, "wall-like" form. This implies, in particular, that these 
walls and the corresponding weight homogeneous principal balances can eas
ily be computed. 

Proposition 7.22. Let V be a weight homogeneous vector field on en. 
{1} For every weight homogeneous principal balance x(t; r') ofV, the abstract 

Painleve wall r' is of the form r' = I' x CP, where I' is an irreducible 
component of the indicial locus I that does not contain any singular point 
of I, and where p = n- 1 -dim I'; accordingly, x(t; r') will often be 
denoted by x(t;I'). 

{2} For such a I', the characteristic polynomial x(k; m) is independent of 
m E I', and the matrices /C.( m), m E I' are diagonalizable. 

Proof. Suppose that x(t) is a weight homogeneous balance of V which de
pends on n -1 parameters (principal balance). Since -1 is always an eigen
value of the Kowalevski matrix (see Proposition 7.11) and since the number 
of new parameters that can appear at step k are bounded by the multiplicity 
of k as an eigenvalue of the Kowalevski matrix, the coefficient x(k) of x(t) 
must depend on a number of new parameters, which is exactly equal to the 
multiplicity of k as an eigenvalue of the Kowalevski matrix /C.(m), where m is 
any particular value of x<0>; for otherwise we can never get at a dependence 
on n-1 parameters. Any such m is contained in the indiciallocus; restricting 
the family, if necessary, we may assume that these values are contained in a 
single irreducible component I' ~I. Using Proposition 7.15, we have that 

dimi' =dim null space of /C.(m), with mE I' generic 

~ mult. of 0 in the spectrum of /C.(m), formE I' generic 
~ mult. of 0 in the spectrum of /C.(m), for any mE I'. 

Therefore, if a weight homogeneous principal balance contains mo as a value 
of x<0> then 

dim I' = mult. of 0 as eigenvalue of /C.(m0), 

and the number of parameters that appear at step 0 is dim I', which means 
that the values of x<0l contain a neighborhood U of m0 in I'. We claim 
that every m E I' appears as a value of x<0>. In fact, by the above, the 
characteristic polynomial of /C.(m) is independent of m form E U, since all 
its roots must be integers and yet it must vary continuously with m E U, 
hence it is independent of m for m E I'; in fact it is just given by lli ( k- ki)P; , 
where Pi and mi are integers. Apply now the algorithm given after the proof 
of Proposition 7.17, starting with I' and let us focus on what happens at the 
k-th step, where k is the first positive eigenvalue of /C.(m), mE I'. 
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We know that for generic mE I' the right hand side R(k)(m) is contained 
in the image of K(m)- k Idn: the adjoint condition is automatically satisfied, 
otherwise we will lose some of the previously gained free parameters and never 
end up with n- 1 free parameters in the balance. Since K(m) and R(k)(m) 
depend algebraically on m it follows that the right hand side R(k) (m) is 
contained in the image of K(m)- kldn for all mE I'. It means that before 
going to the next step, I' will simply be replaced by I' x CP, where p denotes 
the multiplicity of k as an eigenvalue of K(m), mE I'. Notice also that this 
is the situation that we described in Remark 7.19. 

We now show that I' is non-singular. Since the multiplicity of 0 as an 
eigenvalue of K(m) is independent of m E I' the dimension of the Zariski 
tangent space Tmi is also independent of mE I' (again by Proposition 7.15). 
This means that every point m of I' is a non-singular point (of I). 

It is now also easy to see that K(m) is diagonalizable, formE I'. Indeed, 
besides -1, which is a simple eigenvalue (with one-dimensional eigenspace), 
each eigenvalue admits an eigenspace whose dimension is equal to the multi
plicity of the eigenvalue in the characteristic polynomial; in terms of a basis 
for en which is constructed from a basis of each of the eigenspaces, the ma
trix K( m) is diagonal. This diagonal matrix contains -1 and the n - 1 other 
eigenvalues of K(m) as is entries, which are integers, independent of mE I'. 
0 

Remark 7.23. In comparing Propositions 7.17 and 7.22, notice that in Propo
sition 7.17 we describe all weight homogeneous balances, but under the as
sumption that for any irreducible component I' of the indicia! locus I of 
V the characteristic polynomial lkidn -K(m)l is independent of mE I'. In 
Proposition 7.22 this assumption is absent, but only the weight homogeneous 
principal balances are described. Moreover, in the latter proposition the de
scription of the abstract Painleve walls is more explicit, and is given in terms 
of the indicia! locus. 

Example 1.24. Returning to our example, we have seen that each of the 
Painleve walls r(l), ... r(5) is a linear space C 4, i.e., the corresponding irre
ducible component I(i) of I is just a point (the point mi)· The Kowalevski 
matrix K(ml) gets diagonalized by the invertible matrix 

10 2 1 -1 

10 1 2 1 

00 0-3 0 

0 1 0 0 0 

0 0-3 0 0 

whose columns are a complete set of eigenvectors of K(ml), corresponding 
respectively to the eigenvalues 1, 1, 2, 2 and -1. 
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7.2 Convergence of the Balances 

The following theorem states that weight homogeneous balances are conver
gent (for small, non-zero ltl). The proof is inspired by [61]. 

Theorem 7.25. Let V be a polynomial vector field on en which is weight 
homogeneous. If x(t) is a weight homogeneous balance to V, then x(t) is 
convergent (for small, non-zero ltl). 

Proof. Let x(t; r) be any weight homogeneous balance of V, let m0 E T and 
let To be any compact subset ofT that contains an open neighborhood of m0 
in T (for the choice of topology on T, see Remark 7.26 below). We prove the 
stronger statement that the Laurent series converges uniformly on To. To do 
this, define 

(7.18) 

where A is the largest integer eigenvalue of the Kowalevski matrix K(m) with 
m E To. Let us write the vector field V as before as Xi = fi(x), where i = 
1, ... , n. By analyticity, there are real constants Nz and N3, with Nz, N3 > 
N1, such that for any m E To and for any k ~ A + 1 

Applying these estimates to (7.9) and to (7.14) leads for 1 ~ i ~ n and 
k ~ A + 1 to the recursive estimate 

n 
Hk)(m)j ~ N3 L NJ~I II jx)uit)(m)j· .. jx;ui!li)(m)j. 

1.81>1 j=l 
ui1>0 

L: <Tjl=k 

where m E T0 • Define now the series 

00 

V(t) := N1t+ Laktk, 
k=2 

where the coefficients ak E R are defined inductively by a1 := N 1 and 

fork~ 2. 

llk := N3 L 
1~1>1 
<Tji>O 

L: <Tjl=k 

n 

N~l II a<Tjl ••• lluillj , 

j=l 

(7.19) 
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The series V(t) majorizes 

Ui(t;m) := I:x~k)(m)tk 
k~l 

for all 1 ~ i ~ n and for any m E ro, i.e., we have that lx~k)(m)l ~ ak 
for i = 1, ... , n, for k E N* and for m E Fo. Indeed, if k ~ A then (7.18) 
yields lxik)(m)l < N1, and N1 ~ ak, as is clear from the definition of ak, N2 

and N3. Fork~ A+ 1 we proceed by induction: assuming lx~i)(m)l ~ aj, for 
j < k, for 1 ~ i ~ n, and formE Fo we may estimate each x)u;l)(m) in the 
right hand side of (7.19), which gives 

n 

Hk)(m)l ~ N3 L NJ.BI II a.,.;1 ... a.,.;~;= ak, 
1.81>1 j=l 
u;1>0 

L;u;,=k 

Finally from the definition of the ak one observes that 

i=2 

so that the series V(t) satisfies 

n 

NJ.BI II a.,.;l .•. a.,.;~; 
j=l 

which amounts to a quadratic equation for V; solving for V yields the desired 
majorant for the functions Ui, which therefore converge for ltl sufficiently 
small. Since Xi(t; m) = r"; (x<0> + Ui(t; m)), see (7.11), the Laurent series 
x(t; m) converges for ltl sufficiently small, t :f: 0, and m E F0 • D 

Remark 7.26. We have seen that if x(t; r) is a principal balance then r is 
an affine variety, hence has a decent topological structure, and that usually 
the other balances also have this property. The compact subset F0 can then 
be taken with respect to the complex topology. If r does not have a nice 
structure, just give it the discrete topology and take V := mo; then the proof 
establishes simple convergence of the series, as asserted. 
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7.3 Weight Homogeneous Constants of Motion 

Let V be a weight homogeneous vector field on en and write, as before, F for 
V[F], where FE F(en) = C[x1, ... ,xn], and Xi= fi(x), where i = 1, ... ,n. 
Define 

1i := { F E F(en) I F = 0} . 
In view of the Leibniz rule, 1l is a subalgebra of F(en), which we call the 
algebra of constants of motion or the algebra of first integrals of V. For FE 
F(en) we have that F E 1l if and only if 

n 8F L:-8 .fi=o. 
i=l x, 

(7.20) 

Notice that the algebra of polynomial constants of motion of Vis generated 
by weight homogeneous constants of motion. Indeed, if F is any polynomial 
constant of motion of x = f(x), write F = Ei Fj, where ro(Fj) = j. Then 

Ei Pi= P = 0, implies that Fj = 0, because ro(Fj) = ro(Fj) + 1 = j + 1. It 
follows that 1l is graded by weighted degree, 1i = $jeN1f.U), where 

'H.(j) := {FE F(en) I F = 0 and ro(F) = j}. 
Clearly, for a given degree j a basis for 1f.U) is easily calculated. In the exam
ples we will often have weight homogeneous constants of motion F1, ... , F8 of 
V which generate 1l (as an algebra). If they are independent (in the sense of 
Definition 4.11) then we can, as in Proposition 7.1, compute the dimensions 
dim 1f.U) as the coefficients of the following generating function: 

8 1 00 . . 

II = """ (dim 1f.Ul) tJ. 1- tto(Fj) LJ 
j=l j=O 

(7.21) 

If F1, ... , F8 are weight homogeneous constants of motion then we may as
sociate, as in Section 4.1, to each c = ( c1, ... , c8 ) E es the affine variety2 

A., := {X E en I Fj (X) = Cj for 1 ~ j ~ s} . 

By weight homogeneity, A., injects naturally in some weighted projective 
space p~' which is by definition the quotient of en+l by the action, given 
by t · (xo, ... ,xn) 1--t W'0 xo, ... ,t"nxn), where vo := 1. When all Vi are equal 
to 1 we recover the definition of the standard projective space pn. 

2 In the present case the functions Fi are not in involution, in fact there is no 
Poisson structure (yet), so there are no commuting vector fields on Ac and so 
on. Hence the slightly different notation for these varieties than the notation F c 

from Section 4.1. 
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Thus, we may consider 

Ac := { (zo: Z1 : · · ·: Zn) E P~ I F;(zl, ... , Zn) = c;z;'(F;) for 1 ~ j ~ s}, 

which is well-defined by weight homogeneity. Notice that the intersection of 
Ac with the hyperplane at infinity (defined by zo = 0) is independent of the 
choice of c. Thus, we denote 

Aoo := { (0 : Z1 : · · · : Zn) E P~ I F; (zl, ... , Zn) = 0 for 1 ~ j ~ s} . 

We show in the following proposition that the indicia! locus I of a weight 
homogeneous vector field injects naturally in Aoo. 

Proposition 7.27. Let x = f(x) be a weight homogeneous vector field on 
en. Let (m1, ... , mn) be an element of its indiciallocus I. Then (0 : m1 : 
· · · : mn) E Aoo. The resulting map injects I in Aoo C P~. 

Proof. FormE I, consider the solution 

to x = f(x), which is defined for t =F 0 (See Proposition 7.14). Since each 
F; is a constant of the motion, F;(m(t)) is a constant (i.e., it is independent 
oft). Now 

F;(m(t)) = F; (m1, ... , mn) = rw(F;) F;(ml, ... , mn)· 
t 11l t"" 

Since w{F;) > 0 and since Fi(m(t)) is independent of t it follows that 
Fi(m1, ... , mn) = 0, for j = 1, ... , 5, as asserted. We prove that the map 

t : I --+ Aoo c P~ 
(ml, ... ,mn) I-+ (0: m1: ···: mn) 

is injective; for doing this, notice that (0 : m1 : · · · : mn) and (0 : t 111 m1 : · · · : 
t 11" mn) represent the same point in P~, for any t E C*. Suppose therefore 
that (m1, ... , mn) and (t111 m1, ... , t 11"mn) both belong to the indiciallocus I, 
for some t E C*. In view of (7.8) and since w(fi) = vi + 1 this means that 

Viffli + /i(ml, .. ·, ffln) = 0, 
Vimi + tfi(ml, ... ,mn) = 0, 

for some t E C* and for 1 ~ i ~ n. Since at least one of the mi is different 
from zero, the above equations imply t = 1, proving injectivity oft. D 
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Example 7.28. In the case of our example the constants of motion F1, F2, F3 
were chosen (weight) homogeneous. In this case the varieties Ac embed in 
projective space P 5 and Aoo C P 5 is the (singular) curve, given by 

0 = xo, 

0 = X1 + X2 + X3 + X4 + X5, 

0 = X1X3 + X2X4 + X3X5 + X4X1 + X5X2 1 

0 = X1X2X3X4X5. 

We see that Aoo consists of five conics, each of which is contained in one 
of the hyperplanes x; = 0, where i = 1, ... , 5 (they are all contained in the 
hyperplane xo = 0). We will denote the conic that is contained in x; = 0 by 
Ci, where i = 1, ... , 5. For example, the conic C1 is given, in the plane 

(xo = 0) n (X1 = 0) n (X2 + X3 + X4 + X5 = 0) 

by (x4 + xs) 2 = X3X4. Each point mi is mapped by z to an intersection point 
of three of the conics, namely the conics Ci-1 , Ci and Ci+l· Moreover, the 
conics C;-1 and Ci+1 are tangent to each other in z(mi). This accounts for all 
intersection points of the conics (see Figure 7.1). Each of the points m~ ... , m~ 
gets mapped into precisely one of the conics, namely m~ gets mapped to the 
conic C;. 

Ms 

Fig. 7.1. Letting 0; denote the conic in the hyperplane x; = 0 of P 5 and M; := 
z(m;) we have that 0; contains the points M;-t, M; and Mi+t, where 0; meets the 
other 4 curves. These conics are permuted by the projective transformation that 
cyclically permutes the homogeneous coordinates x1 , •.. , x5 on P 5 . 
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7.4 The Kowalevski Matrix and its Spectrum 

In this section we investigate the spectrum of the Kowalevski matrix K-, 
going with a weight homogeneous vector field V. The matrix K-, which was 
defined in (7.10), appeared when computing, for k > 0, the k-th term of a 
weight homogeneous balance of V. We will spell out the relation between 
the spectrum of K- and the degrees of the weight homogeneous constants 
of motion of the vector field. Throughout the section a polynomial vector 
field Von en, given by x = f(x) is fixed and we assume it to be weight 
homogeneous (with respect to v). We denote, as before, by 1£(k} the vector 
space of constants of motion of V that are weight homogeneous of weight k, 
where kEN*. 

We define for any k E N and for any m E I, the following subspaces 
of (en)• (the dual space of en) and of en: 

d1£~) := { dF(m) I F E 1£(k}} ~ T:'n en ~ (en)*' 

E~) := { v E en I (k ldn -K-(m))1v = 0, for some l ~ 1} ~ en' 

Ann {E~>) := { ¢ E (en)* I (¢,v) = 0 for all vEE~)}. 

By linear algebra, 

and 
dimE}/:) = multiplicity of k in the spectrum of K(m), 

where m E I. Notice that if the algebra of constants of motion is generated 
by the weight homogeneous constants of motion F1, ... , F8 and m E I then 
d1l~) = 0 for all k such that k ~ { w(FI), ... w(Fs)}. To prove this, it suffices 
to point out that if F and G are two constants of motion and m E I then 
d(FG)(m) = F(m)dG(m) +G(m)dF(m) = 0 because any constant of motion 
vanishes on I. 

Example 7.29. In the case of our example, we have for m1 E I that 

dFI(mi) = dx1 + dx2 + dx3 + dx4 + dxs, 

dF2(mi) = dx2- dxs, 

dF3(mi) = 0, 

so that dimd1l~~ = 1 fork E {1, 2}, and is 0 for all other values of k. The 
generalized eigenspaces of K-(ml) are trivial (see (7.15)), except for 
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0 1 0 0 

0 0 -3 0 
E{l) =span 

ffll 1 0 E(2) =span 
ffll 2 1 

1 0 1 2 

0 0 0 -3 

The annihilators of these subspaces are given by 

Ann ( E~!) = span { dx2, dx3 - dx4, dxs}, 

Ann ( E};!) = span { dx1, dx2 + dx3 + dx4 + dxs, dx2 + 2dx3 - dx4} . 

At the points m~, ... , m~ each of the differentials is different from zero, so 
that dimdr£~? = 1 fork= 1, 2, 3 and 1 ~ i ~ 5. 

We show in the following theorem that if we have p constants of motion of 
weight k, whose differentials are independent at m E I, then k is an eigenvalue 
of /C(m) of multiplicity at least p. The proof is based on arguments that are 
due to Yoshida (see [176]). 

Theorem 7.30. Consider the weight homogeneous vector field x = f(x) 
on en. For any k E N and for any m E I the following hold. 

{1} d1l~> ~ nz# Ann ( E~); 
{2} dimd1£~) ~dimE!!>. 

As a consequence, if we have p constants of motion of weight k whose differen
tials are independent at m, then k is an eigenvalue of IC(m) with multiplicity 
at least p. 

Proof. The proof of {2} follows easily from {1}, since 

dimE}/;>= dim Ann (E9E~) =dim (nAnn ( E~>)) . 
l# l#k 

The proof of {1} will be given in a number of steps. Throughout the proof m 
is an arbitrary element of the indiciallocus I, and F is a weight homogeneous 
constant of motion of x = f(x). Recall from Proposition 7.14 that 

(7.22) 

is a solution to x = f(x). We consider the variational equation 

~i = (d/i(m(t)), ~), (7.23) 

going with this solution. 
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1. We first show how the solutions to (7.23) are related to K:(m), the 
Kowalevski matrix at m. Precisely, we claim that if, for some "' e C, the 
vector 'fl(t) satisfies fortE C near 1 the linear equation 

t'lj(t) = (K:(m)- "'Idn)'T/(t) (7.24) 

then 
i = 1, . .. ,n, (7.25) 

is a solution to the variational equation (7.23). To see this, let us write out 
the latter equation explicitly in terms of coordinates as 

i: ~ aJi ( t-Ill t-Il )t: .. i = L.J -a . m1 , ... ,mn " .. 3• 
j=l XJ 

i = 1, ... ,n . (7.26) 

Substituting (7.25) for ~i in (7.26) leads to 

n aj 
T/i(t)t~-lli + (,- Vi)1]i(t)t~-ll;-l =La i. (m1C111 ' ••• 'mnt- 11" )'T/j(t)t~-llj 

j=l XJ 

n aj 
= L a i. (ml' ... 'mn)C"i -l+llj 'T/j (t)t~-llj' 

j=l XJ 

where we have used that 

ro (!;;) = ro(fi)- ro(xi) =Vi+ 1- Vj. 

If we divide both sides by t~-v;-l then we find 

and we notice that the right hand side is precisely the i-th line of (7.24), 
proving our claim. Notice that (7.24) can also be written as 

'fl1(s) = (K:(m)- ,Idn)'fl(s), (7.27) 

where s = ln t, and the prime denotes the derivative with respect to s. The 
latter equation is a homogeneous linear equation with constant coefficients, 
hence is easily solved. It follows that the solutions to the variational equation 
that is associated to a solution that comes from a point min the indiciallocus 
I can be written down explicitly in terms of the spectrum of the Kowalevski 
matrix K:(m). 
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2. We now show ifF is a constant of motion of x = f(x) then for any 
solution x(t) of x = f(x) the linearization of F along this solution is a 
constant of motion of the variational equation (7.26), associated to x(t). Since 
the linearization ofF along x(t) is 

n {)F L a-:(x(t))~i(t) 
i=l x~ 

this means that we claim that the latter is independent of t, when F is any 
constant of motion of x = f(x). Indeed 

where the last line was obtained by using (7.20). 
3. We now apply the result of step 2 to the solutions x(t) and ~(t) that 

were considered in step 1. Namely, we take x(t) as in (7.22), and we choose 
any 'fJ and "' that satisfy (7.24), yielding ~(t), as given by (7.25). Let F be 
any weight homogeneous constant of motion of x = f(x) of weight k. In view 
of step 2 we may conclude that 

t ~:. (x(t))rJi(t)t~<-v; 
i=l ' 

(7.28) 

is independent oft. Since w(8Ff8xi) = w(F)- Vi= k- vi it follows that 

(7.29) 

is independent of t. 
4. We specialize step 3 further by picking a particular initial condition 

at t = 1 (which in (7.27) corresponds to s = 0) for rJ(t). Let p be any 
eigenvalue of JC(m), different from w(F) = k and let 'f}o be any eigenvector 
with eigenvalue p, i.e., 'flo E Er,g) \ {0}. 
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The solution 17(s) of (7.27) for which 17(0) = 1Jo is by the spectral theorem 
a polynomial ins, hence the solution 17(t) of (7.24), which equals 1Jo fort= 1, 
is a polynomial in ln t. So, with this choice of solution, each 1Ji(t) in (7.28) is 
a polynomial in ln t and (7.29) is independent oft. This simply means that 

n f:)F 
(dF(m), 17(t)) = tt f:Jxi (m)1Ji(t) = 0; 

taking t = 1 we have that 

(dF(m), 1Jo) = 0, 

which yields dF(m) E Ann(E~)). Since p '# w(F) = k, but is otherwise 

arbitrary, it follows that dF(m) E n1#Ann(E~)). Moreover, since FE 

1{_(k) is arbitrary, we have that 

d1£~) ~nAnn (E~). 
I# 

This finishes the proof of Theorem 7.30. D 

Example 7.31. In the case of our example, the multiplicity of 1, and of 2, in 
the characteristic polynomial of K:(mi) is equal to two. This is strictly larger 

than the dimensions of d1lg~ and of d1l~~ , which are both equal to one. 
However, the multiplicity of 1, 2 and 5 in the characteristic polynomial of 

K:(m~) is 1, which coincides with the dimensions of d1lm(l!, d1l(2! and d1l(5/. 
1 ml ml 

Proposition 7.32. Let V : x = f(x) be a weight homogeneous vector field 
and let I denote its indicial locus. Let m(t) denote the solution to V that 
corresponds to a point m E I, as in Proposition 1.14. If all solutions to 
the variational equation corresponding to m(t) are single-valued then K:(m) 
is diagonalizable and all eigenvalues of K:(m) are integers. In particular, if 
the weight homogeneous vector field V is one of the integrable vector fields 
of an a.c.i. system then for any m E I, K:(m) is diagonalizable and all its 
eigenvalues are integers. 

Proof. Let us reconsider the variational equation (7.23), associated to m(t). 
According to (7.24) and (7.25), this equation admits as solution the function 

~(t), defined by ~i(t) := 1Ji(t)t-v• (i = 1, ... , n), where 17(t) is any solution to 

trj(t) = K:(m)17(t). (7.30) 

To analyze the latter equation, one chooses a basis in which K:(m) takes the 

Jordan form. For a block of size d, with >. on the diagonal and all ones one 
above the diagonal and, say, corresponding to indices i = 1, ... , d the general 

solution to (7.30) is given by 
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r11(t) = t>-P(log(t)) 

where Pis an arbitrary polynomial of degree d-1, and 112(t), ... , 11d(t) follow 
from '7i+l (t) = ti]i(t), valid fori = 1, ... , d- 1. Thus, e(t) is single-valued iff 
each 17i(t) is single-valued (i = 1, ... , d) iff d = 1 and each A is an integer. 
This proves the first part of the proposition. In the case of an a.c.i. system 
Theorem 6.18 implies that every solution to the variational equations are 
single-valued, so the first part of the proposition applies to that case. D 

We finish this section with another useful theorem that allows one to 
express some of the free parameters of any weight homogeneous balance of V, 
directly in terms of the constants of motion of V. We first define these free 
parameters. 

Definition 7 .33. Suppose that a1, ... , ap are free parameters that first ap
pear in a weight homogeneous balance x(t) at level k and suppose that there 
exist constants of motion F1, ... , Fp, of order k, such that 

i = 1, ... ,[3. 

Then these parameters are called trivial parameters, while all other free pa
rameters are called effective parameters. 

Proposition 7.34. Let x = f(x) be a polynomial vector field on en which 
is weight homogeneous, and let k ;;:: 1. Let 

i = 1, . .. ,n, (7.31) 

be the first k terms of a weight homogeneous balance, as constructed in Propo
sition 7.17. Form a generic value of x(o), assume that k is an eigenvalue of 
K(m), that the restriction of kldn -K(m) toE~) is diagonalizable and that 
R(k) is identically in the range of k Idn -K(m) (see {7.g)). Then among the 
dimE~) free parameters that enter at step k, there are precisely dimd1i~) 
of them that can be chosen as trivial parameters. 

Proof. Given (7.31), let U(t) := E;=l xWti, where x(k) is for the moment 
arbitrary, and substitute Xi(t) = rv; (mi + Ui(t)) into a constant of motion 
F for which w(F) = k. We have by weight homogeneity ofF that 

F(x(t)) = rk F(m + U(t)) 

where the latter can be expanded by Taylor's Theorem as 
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Since F(x(t)) is independent oft, all coefficients of ti with i < 0 vanish, so 
that 

F(x(t)) = ~ ;~ (m)x)k) + Ll(k) + O(t), 

where Ll(k) is a polynomial which contains only terms that involve x<1>, with 
0 ~ l < k. The terms in O(t) will disappear when x(t) is continued to a full 
balance, so they are irrelevant and we write 

F(x(t)) "':t aF (m)x(k) + Ll(k), 
i=I 8Xj 3 

(7.32) 

with the understanding that "' is an equality when x(t) is completed into a 
balance. In view of Theorem 7.30 we have that 

d1l!!> ~nAnn (E~>) ~ (E}::>)*, 
l~k 

so we can pick F1 ... , F13 E 1£(k), where fJ := dim d1l!!), as well as a basis 
v1 , ••. , v'Y of E}/:>, where 'Y := dimE}/:) such that 

l~i,j~fJ. (7.33) 

Let u(k) be a particular solution to the k-th step equation (7.9), so that the 
general solution to (7.9) is given by 

1' 

x(k) = u(k) + L aivi, (7.34) 
i=l 

where the ai are arbitrary. We keep the parameters a/3+1, ... a, free and we 
show how the other ones ( a 1 , ... , a13) can be written linearly in terms of free 
parameters a 1, •.• a13 such that Fi(x(t)) = ai for 1 ~ i ~ fJ. 

To do this, consider (7.32) for the constant of motion Fi (which has 
weight k), writing Ll~k) for Ll(k) and substitute (7.34) for x(k). 
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where we used (7.33) to obtain the last line. Notice that O:i appears linearly 
in Fi(x(t)) and that no other element of 0:1, ... ,o:fJ appears in it. Therefore 
we can make Fi(x(t)) "' ai (which means that Fi(x(t)) = ai when the first 
terms for x(t) are continued to a formal series) by replacing O:i by ai plus 
previous data and a linear combination of O:tJ+l, ... , O:-y involving previous 
data. Finally, no other of the free parameters that show up in the k-th step 
can be a trivial parameter. Indeed, since for any other constant of motion F 
of weight k the vector dF(m) is a linear combination of the vectors dFi(m), 
with i = 1, ... , (3, it suffices to see what happens to a constant of motion F 
of weight k for which dF(m) = 0. In this case we have according to (7.32) 
that F(x(t)) "' Ll(k), so its value is independent of x<k) and cannot be equal 
to any of the free parameters that first appear at level k. D 

Remark 7.35. Suppose that we have s independent constants of motion 
F1, ... , F8 of weighted degrees kt ~ k2 ~ .. · ~ k8 • Suppose that x(t; m) 
is a (lower) balance that depends on s free parameters, which enter precisely 
at the steps kt, ... , k 8 (including multiplicities). If for generic c = ( Ct, ... , C8 ) 

the affine variety defined by Fi(x(t; m)) = Ci is non-empty then it consists of 
a single point and all free parameters are trivial parameters. To show this, 
let us denote k := kt and let us assume that k1 = k2 = · · · = kt :j:. kt+l· 
According to (7.32) 

(7.35) 

where Ll(k) is constant. Since this linear system has a solution for x(k) 
when c is generic, the square matrix in (7.35) is invertible and the system 
has a (unique) solution for all c. This allows us to express the coefficients 
x~ k > , · · · , x ~ k > uniquely in terms of the constants c1 , ... , c1, so that each of the 
free parameters that enter at step k are trivial. One concludes by recursion. 

Example 7. 36. Still in the case of our example, the principal balance x( t; m1) 
depends on 4 free parameters, two of which are trivial parameters. If we 
substitute the balance (7.17) in F1 = Ct and in F2 = c2 then we find a= 
(c1 - d)/2 and c = b- c2- d(ct- d). If we substitute these values for a and 
c in (7.17) then x(t; mt) depends now on the free parameters c1, c2, band d 
and it has the property that F1 (x(t; mt)) = Ct and F2(x(t; m1)) = c2. In this 
way we have replaced c and d by the trivial parameters c1 and c2. The same 
can be done with all parameters a, b and c in the lower balances we find that 
the lower balances just depend on the constants of motion. Notice that this 
is a particular case of Remark 7.35 because the invariants have degree 1, 2 
and 5 which corresponds precisely to the Kowalevski exponents of /C(mi). 
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7.5 Weight Homogeneous A.c.i. Systems 

Before introducing the notion of a weight homogeneous a.c.i. system we define 
what it means for a Poisson structure to be weight homogeneous. Weight 
homogeneous Poisson structures will turn weight homogeneous Hamiltonians 
into weight homogeneous vector fields (of some weight). 

Definition 7.37. Let v = (v1, ... , vn) be a weight vector and let {·, ·} be 
a polynomial Poisson structure on en. We will say that { · , ·} is a weight 
homogeneous Poisson structure of weight tv{ { · , ·}) = P (with respect to v) if 

ro{{xi,Xj}) =Vi+ Vj- 2 + P. 

for all1 ~ i,j ~ n. 

Our definition of the weight P of a weight homogeneous Poisson structure 
is such that for a homogeneous Poisson structure {all Vi equal to 1) it is 
equal to the (common) degree of the polynomials {Xi, xi}, in particular it 
is always non-negative. Thus, if all weight are equal to 1, a {non-trivial) 
constant Poisson structure on en (see Example 3.3) has degree zero, a Lie
Poisson structure (see Section 3.5) has degree 1 and so on. 

Remark 7.98. For general weight homogeneous Poisson structures the weight 
may be negative. Consider indeed on e 2 with coordinates z1, z2 and with 
weight vector v = {3, 2) the constant Poisson structure, given by {z1, z2} = 1. 
Its weight is -3. 

Example 7.39. Consider on e 5 the Poisson structure that is defined by 

where 1 ~ i, j ~ 5. Its Poisson matrix in terms of x1, ... , X5 is explicitly given 
by 

0 -X1X2 0 0 X5X1 

X1X2 0 -X2X3 0 0 

0 X2X3 0 -X3X4 0 

0 0 X3X4 0 -X4X5 

-X5Xl 0 0 X4X5 0 

It is obvious that{-,·} is (weight) homogeneous of weight 2 {recall that in this 
example all weights are equal to 1). The rank of{·,·} is 4. More precisely, the 
rank is 0 on the five 2-planes, which are defined by three non-consecutive Xi 

being zero (i.e., the plane x1 = x2 = X4 = 0 and its image, under all powers 
of a); the rank is 2 on the ten 3-planes which are given by Xi= Xj = 0, where 
1 ~ i < j ~ 5. On the remaining open subset the rank is 4. 
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It is easy to see that this yields a Poisson bracket with respect to which 
the periodic 5-particle Kac-van Moerbeke lattice is Liouville integrable. In 
fact we recover the vector field V1, given by (7.3), from{·,·} by taking F1 = 
Xt + x2 + · · · + xs as Hamiltonian, while we recover the vector field (7.6), 
which we will denote by v2, by taking F2 = XtXa +x2X4 +xaxs +x4Xl +xsX2 
as Hamiltonian. Also, Fa= X1X2XaX4Xs is a Casimir. Since F1, F2 and Fa are 
independent, the Kac-van Moerbeke vector field (7.3) is indeed an integrable 
vector field. 

Notice that the image under the momentum map of the five two-planes 
where the rank drops to two is contained in the Zariski closed subset ca = 0. 
Proposition 7.56 implies that the vector fields V1 and V2 are independent at 
each point of the generic fiber of F = ( F1, F2, Fa). 

The Poisson bracket of two weight homogeneous polynomials is a weight 
homogeneous polynomial, when the bracket is weight homogeneous. This is 
shown in the following lemma. 

Lemma 7.40. Let{-,·} be a weight homogeneous Poisson bracket of weight 
P on en. Iff and g are weight homogeneous polynomials then {/, g} is weight 
homogeneous and its weight is given by 

tv ( {!, g}) = tv(/) + tv(g) - 2 + P. 

Proof. For any i, j such that 1 ~ i, j ~ n we have that 

Since {!, g} is a sum of such terms the result follows. 0 

As a corollary, we express the condition for a weight homogeneous polyno
mial that its Hamiltonian vector field (with respect to a weight homogeneous 
Poisson structure) is weight homogeneous. 

Lemma 7 .41. Let { · , ·} be a weight homogeneous Poisson structure on en 
and let F be a weight homogeneous polynomial. The Hamiltonian vector field 
Xp is weight homogeneous (of weight 1} if and only if 

tv( { · , ·}) + tv(F) = 3. (7.36) 

Proof. For i = 1, ... , n we have in view of the previous lemma that 

Thus, tv(xi) = vi+ 1 if and only if (7.36) holds. 0 
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Thus, in order for a Hamiltonian vector field to be weight homogeneous (of 
weight 1), the degree of the Poisson structure (which may be negative) must 
be at most two; if the degree is two then the Hamiltonian must be linear, 
for a Lie-Poisson structure the Hamiltonian must be quadratic and so on. In 
view of Lemma 7.41, we define a weight homogeneous a.c.i. system as follows. 

Definition 7.42. An a.c.i. system (en,{·,·}, (F1, ... Fa)) is called a weight 
homogeneous a. c. i. system (with respect to v) if { · , ·} and all the polynomials 
F1, ... Fa are weight homogeneous with 

(1) For at least one of the Fi, say for F1, we have that w( { ·, ·}) + w(Fl) = 3, 
so that Xp1 is a weight homogeneous vector field; 

(2) All principal balances of Xp1 are weight homogeneous. 

Remark 7.1,3. It is not clear if condition (2) in Definition 7.42 follows from 
the other assumptions. In any case, a counterexample is unknown. 

Example 7.1,1,. We are not yet ready to show that the periodic 5-particle Kac
van Moerbeke lattice is a weight homogeneous a.c.i. system, although we have 
already many elements: we know already that it is Liouville integrable, we 
have a weight homogeneous Poisson structure { · , ·} and the vector field Xp1 

is weight homogeneous. Suppose that 

1 00 

X·(t) =- ~x\i)ti •- 1 5 
z tr L....J ' ' • - ' ••• ' ' 

j=O 

is a Laurent solution to (7.3), with r > 1 and x~o) ::j:. 0 for some i. If we denote 
the pole order of x,(t) by Ti (so that in particular r = m~ ri) then we have 
for i = 1, ... , 5 and 8 E N that 

R Xi(t) ts { -Ti, 8 = 0, 
eSt=O Xi(t) = 0, 8 > 0. 

On the other hand, if we use (7.3) then we find 

Rest=O Xi((t)) ta = Rest=O (Xi-1 (t)- Xi+l (t)) t 8 = x~~~a- 1 ) - x~~~s- 1 ). 
Xi t 

We conclude that 

(k) (k) { -ri, k = r - 1 X· 1 - X·+l = (7.37) 
,_ ' 0, 0 ~ k ~ r - 2. 

If, say, xio) ::j:. 0 then (7.37), with k = 0, implies that xi0) = x~o) = ... , so 
that all x~o) ::j:. 0 and Ti = r fori= 1, ... , 5. But then (7.37), with k = r- 1, 
yields 

(r-1) (r-1) _ ( · 1 5) 
xi-1 - xi+1 - -r, z = ' ... ' ' 

which is impossible, since summing these equations up yields 0 = 5r ::j:. 0. 
This shows that all Laurent solutions to (7.3) are weight homogeneous. 
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7.6 Algorithms 

In this section we present a few algorithms which provide for a weight ho
mogeneous vector field on en concrete information on its algebraic complete 
integrability, the nature of the fibers of the momentum map, the divisor at 
infinity, and so on. They will be most effective in the case of two-dimensional 
systems (i.e., the fibers of the momentum map are complex surfaces), in 
which the algorithms lead to a powerful tool for proving that a given two
dimensional system is algebraic completely integrable (see Section 7.7). 

All techniques given here will be illustrated on the example of the periodic 
5-particle Kac-van Moerbeke lattice, that was introduced in Example 7.5, 
and for which a lot of data has already be computed in the previous sections. 
These techniques will be essential when we get to the main examples of 
this book. 

7.6.1 The Indicia! Locus I and the Kowalevski Matrix 1C 

We assume that Vis the polynomial vector field x = l(x) on en, which is 
weight homogeneous with respect to 11 = (v1, ... , vn)· The indiciallocus I, 
which was defined in Proposition 7.6, is an algebraic subset of en which 
contains the leading terms of all possible weight homogeneous balances to V. 
It is given by n non-linear algebraic equations 

lliXiO) + fi ( X~O), .. • , X~O)) = 0, i = 1, . .. ,n, 

where It, ... , In are the components of I. The indiciallocus breaks in general 
up in several irreducible components of varying dimension. These irreducible 
components have to be determined explicitly, together with their dimension. 
Also, the intersection and incidence pattern of these components, as well 
as their singularities should be determined. From a certain point of view 
this step is the most difficult one; indeed no feasible algorithm is known for 
decomposing an algebraic set (given by explicit equations) into its irreducible 
components. This step should be done by hand and with a lot of care, since 
missing even one point in the indicia! locus may mean that one is going 
to miss a balance, indispensable for revealing the algebraic geometry of the 
system and for eventually proving that it is a.c.i. 

For m E I the Kowalevski matrix /C( m) is easily computed from its 
definition, 

IC(m)ij = 881i (m) + lliOij· 
Xj 

In fact, it is natural to consider the Kowalevski matrix for a whole irreducible 
component I' of I. Using the explicit equations for I', the characteristic 
polynomial x(k; m) of /C(m), with m E I', follows from a direct computation. 
Recall that -1 is always a root of x(k; m). 
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As we have seen in Theorem 7.22, I' can only lead to a principal balance if 

(1) x(k; m) is independent of mE I'; 
(2) x(k; m) has n- 1 non-negative integer roots; 
(3) /C(m) is diagonalizable for all mE I'; 
( 4) I is non-singular at all points of I'. 

Thus, one should for every irreducible component I' of I check these con
ditions, i.e., conditions (2)-(4), since (1) is a consequence of (2) (because 
-1 is always an eigenvalue). Also, one should make a list of the eigenvalues 
(with their multiplicities) of the corresponding Kowalevski matrix. If one of 
the above conditions is not satisfied it does not mean that the system is not 
a.c.i., because this component may lead to a lower balance (see e.g. Example 
7.45 below). However, if for none of the components I' of I the above four 
conditions are simultaneously satisfied, then V is not one of the integrable 
vector fields of a weight homogeneous a.c.i. system. Moreover, if for one of 
the solutions to the indicia! equation the Kowalevski matrix is not diagonal
izable with integer roots, then, by Proposition 7.32, V cannot be one of the 
integrable vector fields of an a.c.i. system. As we will see, these conditions 
are strong enough to single out the golden needles hidden in the haystack of 
all weight homogeneous systems of a certain type. 

Example 7.45. In the case of the periodic 5-particle Kac-van Moerbeke lat
tice we have already determined in Example 7.10 the indicia! locus and 
the Kowalevski matrix. We have shown that the indicia! locus consists 
of ten points m1, m~, ... , m5, m~, where m1 = ( -1, 1, 0, 0, 0) and m~ = 
( -2, 1, -1, 2, 0), the other points being determined by using the automor
phism a-. It is readily computed from (7.15) that x(k; ml) = (k + l)(k-
1)2 (k- 2) 2 and that x(k; m~) = (k + 2)(k + 1)(k- 1)(k- 2)(k- 5). There
fore, the points mi satisfy the above four conditions (see Example 7.24 for 
condition 3), but the points m~ don't. 

7.6.2 The Principal Balances (for all Vector Fields) 

Suppose that I' is one of the irreducible components of I for which the above 
four conditions hold. We first show how to compute the principal balance for 
V that corresponds to I', if it exists, and then we explain how the result is 
used to compute the principal balance for any other vector field on en that 
has "good" properties at infinity (the latter vector field needs not be weight 
homogeneous). Let 

p 

x(k; m) = (k + 1) II (k- ki)~'', mE I', 
i=l 

where for i = 1, ... , p the eigenvalue ki is a non-negative integer and /-Li 
denotes its multiplicity (we assume these eigenvalues to be ordered, so that 
kp is the largest eigenvalue of x(k; m)). 
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We explain how to compute the first few terms of the series that starts 
at I'. For l = 1, 2, ... , we consider the Laurent polynomials 

i = 1, ... ,n, (7.38) 

where x(0 ) is an arbitrary element of I', and where the other terms x(l) will be 
determined recursively by substituting these Laurent polynomials (up to the 
term in x{l)) in the differential equations :i; = f ( x), and equating coefficients 
oft in the resulting equations. Notice that since x(o) E I' ~ I the coefficients 
of cv•-1 in the i-th equation cancel out, so the first non-trivial equations 
come from the coefficients of cv• in the i-th equation, where i = 1, ... , n; 
these equations already appear when taking l = 1 and they are linear in x{l). 

Their solution should depend on f..ll free parameters if k 1 = 1; otherwise 
they are uniquely solvable for x{l) in terms of x(o). This step is called step 1. 
Having successfully completed step 1 we move on to step 2 where we consider 
now the coefficients of cv•+1 in :i; = f(x), which will determine x(2), then 
we move to step 3 and so on. Notice that we could at each step also use the 
general formulas (7.9) and (7.14) to compute the next term in the series, but 
in practice it is easier to compute them by substituting the above Laurent 
polynomials (7.38) in :i; = f(x) and solving linearly for the components x~ 1) 
of x(l). 

Remark 7.46. If we wish we can choose at the step ki each trivial parameter 
equal to the value of one of the constants of motion of weight ki, evaluated 
at these Laurent polynomials, as explained in Theorem 7.34. In general this 
does not simplify the balances, so that we advice to do it after enough terms 
of the series have been computed (also not all constants of motion may be 
known, but they will be found in a further step). 

The process of computing the first terms of the balance should be at 
least continued until the step kp, yielding at least the first kp + 1 terms 
of x(t; I'). In order to be sure that the terms that we have computed extend 
to a principal balance it is necessary and sufficient to check that the number 
of free parameters that come in at step ki is indeed equal to f..li. We know that 
if we compute further terms, then the original terms will remain unchanged 
and that no other free parameters will show up. In addition, we know that 
the coefficients of x(t; I') generate the algebra of regular functions on I' x CP, 
where p = n -1- dim I'. From Theorem 7.25 we know that the series x(t; I') 
is convergent for small, non-zero jtj. 

Remark 1.41. The lower balances that are weight homogeneous are found 
in the same way since, by definition, they also start at points in the indicia! 
locus. However, in some of the examples that we will treat, the lower balances 
will not be weight homogeneous. 
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For certain examples that we will consider, we will need the first few 
terms of the principal balance for some other vector field on en. In gen
eral this vector field will not be weight homogeneous, so we cannot use the 
previous method. In order to justify the method that we will present, let 
us assume that we have a weight homogeneous a.c.i. system (en, { · , ·} , F), 
where F = (F1, ... , F8 ) and that the vector field V1 := Xp1 is a weight homo
geneous vector field. This implies that we can compute each of the principal 
balances x(t; V') algorithmically. Let V2 := Xp2 denote the vector field for 
which we wish to compute its principal balances xi(t2; V'). According to 
Proposition 6.14 the pole order of Xi(t; V') equals the pole order of xi(t2; V'), 
so that we know at which pole order each of the principal balances of V2 

start. However, this is not sufficient for computing the first few terms in an 
efficient way, because the k-th term of the series cannot be computed from 
the previous terms, instead the computation of the k-th term will impose 
constraints on the previous terms, and this in a way that is hard to control 
in general. Therefore we propose a method that yields the different terms of 
each balance of v2 immediately, from the corresponding balance of vl. 

Let us pick one of the Painleve walls V' and let us first assume that 
f E .r(en) is holomorphic in a neighborhood of a generic point of V', i.e., 
f(x(t; V')) is a Taylor series, where x(t; V') is a weight homogeneous principal 
balance of V1 , that has been computed with the usual method. Since V2 and 
f are holomorphic in a neighborhood of a generic point of V', we have by 
Taylor's Theorem that 

~ . tJ, 
f(t2; V') = ~ V~[f]L,, j~ (7.39) 

is the Taylor series off with respect to V2, starting at V'. The computation of 
the coefficient of ~ is done as follows: first compute the repeated application 
of the vector field V2 on f. Since we know V2 = Xp2 explicitly in terms of the 
coordinates x1 , ... , Xn of phase space this gives an explicit formula for JUl := 
V4 [!] as a rational function on phase space en. Since V2 is holomorphic in a 
neighborhood of a generic point of V' the same is true for JUl. In order to 
compute the restriction of f(i) to V', write the first few terms of JUl (t; V'), 
the Taylor series of JUl with respect to V1, starting at V'. This is done by 
substituting the first few terms of the principal balance x(t; V') of V1 in JUl. 
To restrict the series JUl ( t; V') to V' it then suffices to substitute t = 0 in 
f(j) (t; V') {the latter is holomorphic in t (for It I small) and on a neighborhood 
of a generic point of V'). This yields the Taylor series j(t2; V'). 

We have assumed that f was holomorphic in a neighborhood of a generic 
point of V'; if this is not the case, but 11 f is holomorphic in a neighborhood 
of a generic point of V', then take 1 If instead of f, find the series 1 If ( t2, V'), 
as above, and then invert the series to find the Taylor series of f with respect 
to v2' starting at 'D'. In this way, taking for f each of the functions Xi' or its 
inverse 1lxi we find explicit formulas for the principal balance x(t2; V'). 



7.6 Algorithms 233 

In practice we will not know that we are dealing with an a.c.i. system and 
hence that the vector field v2 is holomorphic in the neighborhood of a generic 
point on V' (the Painleve wall V' will not even be defined). But in this case 
we will actually be in the process of proving (or disproving) the algebraic 
integrability of the integrable system at hand. We may then perform the 
above computation for any of the integrable vector fields XF;, we check if it 
is still a principal balance, i.e., if it formally solves the differential equations 
that describe the vector field, and if it depends on the right number of free 
parameters. If this is not the case then we know that the given integrable 
system is not algebraic completely integrable and we are done. In the cases 
that we will consider this will never happen. ; in fact we will consider the 
restriction of the principal balances (and of the vector fields Vi) to the level 
sets F c of the momentum map, and we will show that explicitly that the 
restriction of the vector fields Vi to the generic fiber of the momentum map 
extends to a holomorphic vector field on a neighborhood of a divisor that will 
play the role of a Painleve divisor. The above procedure is then still justified 
and yields a convergent (for small jt2 1 =I 0) Laurent series, that is a solution 
to the differential equation that describes v2. 

The reader has guessed that for computing a reasonable number (say the 
above kp + 1) of terms of a principal balance one is almost forced to use a 
(powerful!) computer algebra program. In fact, even for the simplest a.c.i. sys
tems the computation of the balances should be done with (truncated) series, 
because the product of two Laurent polynomials is very different (in size!) 
from the product of those two Laurent polynomials, viewed as truncated se
ries. Moreover, during the computation the relations between the generators 
of I' have to be used at all times, for example to find a formula for x(k). 

Example 7.48. For our example, the principal balances for V1 have already 
been given in Example 7.17. We give here the first few terms of x(t2;ml), 
as computed from (7.17), using (7.39) with f = Xi or with f = x;1 . For 
xa, X4 and xs the computation is immediate, since these do not have a pole 
when x(t; ml) is substituted in them; for x1 and x2 one first has to do the 
computation for the inverted series 1 I x1 ( t; m1) and 1 I x2 ( t; m1). 

X1 (t2; m1) := d(1 - (b + c)t2 + O(t~)), 
1 

x2(t2; ml) := bdt2(l + 2(2ad- b + c)t2 + O(t~)), 

1 1( 2 xa(t2; ml) := - dt2 (1- 2 2ad- b- c)t2 + O(t2)), 

x4(t2; ml) := d!2 (1 + ~(2ad + b + c)t2 + O(t~)), 

xs(t2; m1) := cdt2(1- ~(2ad- b + c)t2 + O(t~)). 
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Remark 7.49. The above method can be used to compute the principal bal
ances for any linear combination 2:~=1 ai vi of the integrable vector fields vi. 
If we consider e.g. in the case of the periodic 5-particle Kac-van Moerbeke 
lattice, the vector field a V1 + fJV2 then we find the following series for x5 , 

Notice that, in the general case, if one substitutes u = 1 in the principal 
balance that corresponds to 2:~=1 ai vi' then one gets the first few terms of the 
series in a1, ... , ar of any of the phase variables; the parameters a1, ... , ar 
that appear in it are dual to the vector fields V1 , ... , Vr, so that the series 
give a solution to each of these vector fields. For the above example, if the 
coordinates that are dual to v1 and v2 are denoted by t1 and t2' so that 
Vi= 8j8ti, fori= 1, 2, then the above series for X5 is, in terms of t1 and t2, 
given by 

and similarly for (x1, x31, x,41, x5)(t1, t2; ml), leading to a description of the 
meromorphic functions Xi in terms of coordinates on the universal covering 
space of the T~. 

7.6.3 The Constants of Motion 

If a basis for the constants of motion is not known one can easily find, for 
every k ~ 0, the polynomial constants of motion of weight k (recall that a 
basis for the constants of motion can always be chosen weight homogeneous). 
There are in fact two ways of doing this and both have their advantages. 

The first one is to write down to most general element H of :F(k), i.e., the 
most general weight homogeneous polynomial of weight k, and then comput-
ing 

and expressing that the resulting polynomial (i.e., each of its coefficients) is 
identically zero. This gives a collection of linear equations on the dim :F(k) 

unknown constants in H (a generating function for dim:F(k) is given by 
Proposition 7.1). Thus, all weight homogeneous constants of motion of a given 
weight are easily calculated by linear algebra. If some of them are already 
known (for example those which are products of previously found constants 
of motion) they are easily excluded from the search by taking some of the 
dim :F(k) coefficients in H equal to 0. 
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A second way of finding the constants of motion of weight k uses the 
(first k terms of the) balances going with all the irreducible components 
I(1), ... ,z(d) of I which lead to a principal balance (in particular which 
satisfy the 4 conditions above (Paragraph 7.6.1)). Take, as before, the most 
general weight homogeneous polynomial H of weight k. If we express that 

H(xt(t;I(i)), ... ,xn(t;I(i))) = O(t0), i = 1, ... ,d, 

then we get a linear system of algebraic equations in the unknown coefficients, 
which is easily solved. At this point, a crucial check has to be done if we find 
some solutions. Namely, we need to check if ii = 0 to be sure that H is 
indeed a constant of motion. If so, we are fine, but if not, what does it mean? 
Then H would be a holomorphic function whose restriction to the fibers of 
the momentum map is holomorphic, is not constant, and is bounded at the 
divisor at infinity of these fibers ... more precisely at the components of the 
divisor at infinity that we have found. So, assuming that the system is a.c.i., 
there must be at least one principal balance that is missing, on which H has 
a pole. Since our algorithm gives all weight homogeneous balances it means 
that the system, if a.c.i., possesses principal balances which are not weight 
homogeneous, in particular it is not a weight homogeneous a.c.i. system. At 
this point no general methods are known to find such principal balances; the 
reader should convince himself that in the weight homogeneous case one has 
no idea with what order of poles to start for each function and, what is worse, 
all terms of the Laurent series that have been computed up to a certain step 
are most likely to be modified in one of the next steps (we even do not want 
to mention convergence). On the other hand, no weight homogeneous3 vector 
field has ever been encountered with a principal balance that is not weight 
homogeneous (for the lower balances this however does happen). To conclude, 
if one is really only interested in finding the constants of motion one may just 
use the first (quicker, less subtle) method, but in all other cases it is better 
to use the second one, because one verifies at the same time if no principal 
balances are missing. 

Example 7.50. In the case of the periodic 5-particle Kac-van Moerbeke lattice 
we have given in Example 7.5 three independent constants of motion and we 
know from Example 7.39 that there are no other, independent constants 
of motion. In fact, the following stronger result is true: every polynomial 
constant of motion must be a polynomial in F1 , F2 and F3 . For a proposition 
from which this will follow easily at the end, see [169, Proposition 3.7]. As 
a corollary, we can use Formula 7.21 to compute the number of linearly 
independent constants of motion of degree 1, 2, ... , namely we get 

~ ( . (k)) k- 1 ~ dtm 1i t - (1- t)(1- t2)(1- t5) (7.40) 

= 1 + t + 2t2 + 2t3 + 3t4 + 4t5 + 5t6 + 6t1 + 7t8 + O(t9). 

3 The same applies to almost weight homogeneous vector fields, see Remark 7.9. 
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7.6.4 The Abstract Painleve Divisors Fe 

In order to motivate our definition of the abstract Painleve divisors, which 
are algebraic subsets of the abstract Painleve building, we first assume that 
V is, besides being weight homogeneous, one of the integrable vector fields 
of a weight homogeneous a.c.i. system (en,{-,·}, F), say V = XFu where 
F = ( F1, ... , F8 ). Define 

A:= max{w(Fi) I i = 1, ... ,s}, 

and suppose that the first A+ 1 terms (i.e., up to and including step A) of a 
principal balance x(t; V') have been computed, where V' is a Painleve wall 
of V. By weight homogeneity, 

F(x(t; V')) = F ( .. , C"i t, x~i)ti + O(t-'+1 ),-.) 

= t--'F (···,f=x~i)ti, ... ) +O(t), 
•=0 

so that the coefficient of t 0 can be computed by substituting only these first 
A+ 1 terms in F; this one coefficient yields F(x(t; V')) because, since F is a 
constant of motion, all coefficients in t of F(x(t; V')) vanish, except for the 
coefficient of t0 • 

If we perform this substitution for each of F1, ... , Fs then we find s al
gebraic relations Fi(x(t; V')) = ci between the n- 1 free parameters and 
the s values Ci of the constants of motion Fi. Their common solution gives 
(if c = ( c1, ... , Cr) is chosen generically) an affine variety of possible initial 
conditions for a solution of V that lives for non-zero small t in the fiber F c 

of the momentum map. Therefore, this affine variety is a Zariski open subset 
of one of the irreducible components of the Painleve divisor Vc. The explicit 
equations of the irreducible components of Vc are very useful: for example, 
if the fibers F c of the momentum map are two-dimensional, then this di
visor will be an algebraic curve and, as we have seen in Chapter 5, much 
of the geometry of an Abelian variety is encoded in the hyperplane sections 
that it contains. If we repeat this for each Painleve wall then we will find 
all irreducible components of Vc. We will see in the next paragraph how to 
determine explicitly how the different irreducible components of the Painleve 
divisors Vc intersect (for generic c) and how they live in the Abelian variety; 
but by now we are only able to compute explicit equations for the irreducible 
components of the Painleve divisors. 

Suppose now that we do not know whether or not we are dealing with an 
a.c.i. system. So all that we have at our disposal is a weight homogeneous 
vector field on en' for which we have determined all weight homogeneous 
principal balances. 
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Let x(t; r') be such a balance and suppose that the first A+ 1 terms of it 
have been computed, as in the case of an a.c.i. system. If we substitute these 
series in the equations Fi = c;, where the constants Ci are fixed, but generic, 
then we find again s algebraic relations between the n - 1 free parameters 
and the s values Ci of the constants of motion Fi. This gives us for generic 
c = ( c1, ... , Cs) an algebraic set in the abstract Painleve building, which is 
similar to the Painleve divisor at c, so we call it the abstract Painleve divisor 
at c; in the case of an a.c.i. system each irreducible component of the abstract 
Painleve divisor at c is isomorphic to a Zariski open subset of an irreducible 
component of the Painleve divisor at c. We denote the abstract Painleve 
divisor at c by Fe and the irreducible component of Fe that corresponds to 
a Painleve wall r' is denoted by r~. The restriction of the principal balance 
x(t; r') to Fe, which is obtained by imposing the algebraic relations on the 
free parameters, that define rc, is denoted by x(t; r~). 

Example 7.51. In the case of the periodic Kac-van Moerbeke system we find 
an equation for the abstract Painleve divisor at c by substituting (7.17) in 
the equations Fi = Ci, i = 1, ... , 3, to wit 

2a+d=cl, 

b - c + 2ad = c2, 

bed= -Cg. 

This yields an affine curve rJ1>, which is contained in the abstract Painleve 
building C4 • By linearly eliminating a and c from these equations we find 
that rJll is isomorphic to the plane curve 

bd(b- C2 + d(cl -d))+ Cg = 0, 

which is non-singular for generic values of c1 , ... , c3 . Viewing the completion 
of this curve as a double cover of P 1, via the map (b, d) 1-t d, we find by 
Riemann-Hurwitz that the genus of rJl> is two. rJ1> has three points at 
infinity, corresponding to d = 0 or d = oo, denoted by oo, oo' and oo". In 
terms of a local parameter c; a neighborhood of these points is given by 

00: 

oo' : 

oo": 

d = c;-1, 

b = c;-1' 

d = c;-1, 

b = c 2 - c1C1 + c2- csc;3 + O(c;4), 

d = -csc;2 - c2csc;3 - ~c3c;4 + O(c;5 ), 

b = c3c;3 + c1c3c;4 + O(c;5). 

(7.41) 

It is clear that, if we use any other principal balance x(t; mi) then we get an 
affine curve rJil, which is isomorphic to rJI>. Thus, the abstract Painleve 
divisor rc consists in this case of five isomorphic curves of genus two; these 
non-singular curves are affine curves and each of them is compactified into a 
Riemann surface by adding three points. 
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7.6.5 Embedding the Tori T~ 

We now show how the balances are used to embed the tori T~ explicitly 
into projective space. As in the previous paragraph, we first assume that we 
are dealing with a weight homogeneous a.c.i. system (en,{-,·}, F), where 
F = ( F1, ... , Fs), and that V is the weight homogeneous vector field XF1 • Let 
x(t;V<1)), ... ,x(t;V(d)) be the principal balances, where V(1), ... ,V(d) are 
the Painleve walls. We recall from Proposition 6.14 that for any polynomial 
HE C[x1, ... , xn] the pole (in t) of the series H(x(t; V(i))) for generic c E C 8 

is precisely the pole that HIFa has, viewed as a meromorphic function on the 
completion of F c (which is an Abelian variety). Thus, for any polynomial of 
weight (at most) k we can find out exactly what is the pole structure of its 
restriction to the generic fiber of the momentum map, by using the first k + 1 
terms in the balances x(t; V(1)), ... , x(t; V(d)). We will specify the (maximal) 
pole structure by a vector p =(pi, ... , Pd), where each PiE N; we call such a 
vector a pole vector. The idea is then to search, for k = 0, 1, 2, ... , all weight 
homogeneous polynomials z0 , .•• , ZN of weight k such that Zj(x(t; V(i))) has 
a pole of order at most Pi, for i = 1, ... , d and j = 0, ... , N. For a given 
weight k this is a finite process, as the vector space of all polynomials of a 
given weight k is finite-dimensional; we will see later for which k to stop. 

Let us consider, for generic c, the completion T~ of the fiber F c, where 
we denote the irreducible components of the Painleve divisor Vc by V(i), for 
i = 1, ... ,d. According to Proposition 6.14 the found polynomials, restricted 
to F c, correspond to sections of the line bundle 

[P1 vi1)] ® · · · ® [Pdvid)] , (7.42) 

on the completion ofF c (which is an Abelian variety). 
Now V~1 ) U · · · U V~d) is the divisor to be adjoined to F c to complete it 

into an Abelian variety, so that the line bundle will be very ample as soon as 
it is the cube of the line bundle of an effective divisor (Theorem 5.17). Since 
for irreducible Abelian varieties any effective divisor is ample, it suffices to 
take p such that I:i Pi ;;::: 3 to be sure that (7.42) is very ample. Moreover, 
the number of independent polynomials (independent when restricted to the 
completion ofF c) can be computed from (5.15) when the polarization type 
that each of the V~i) induces on the tori is known. 

If we have found a collection of independent functions with at most a sim
ple pole along Vc then we can easily construct from them several functions 
with at most a double pole along Vc. One obvious way of getting such func
tions is just by taking the product of two functions (not necessarily different) 
with a simple pole along Vc. Another way is by taking Wronskians: as we 
explained in Section 5.3 the Wronskian of two functions with a simple pole 
at worst along Vc is a function with a double pole at worst along Vc. 
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Recall in this respect Piovan's Theorem (Theorem 5.37) which says that, 
in the case of a symmetric divisor on a Jacobi surface, which induces twice 
the principal polarization, these two constructions lead to a basis of L(2Vc), 
when the vector field Vis generic. Notice that the fact that this is only true for 
a generic vector field is not a restriction in practice, because in the examples 
one always has explicit formulas for all (two in the case of Jacobi surfaces) 
vector fields. 

Things are quite different if we do not know whether or not we are dealing 
with an a.c.i. system (which will usually be the case). We will discuss this in 
detail in Section 7.7, in particular in Paragraph 7.7.1. Therefore, in the next 
example, we will just give a list of functions that embeds the tori T~, and we 
explain later how this list was found and why it provides an embedding. 

Example 7.52. In the case of the periodic 5-particle Kac-van Moerbeke lattice 
we have that the five principal balances Xi(t; F(i)) (i = 1, ... , 5) have at worst 
a simple pole in t. One obvious choice of p would be p = (1, 1, 1, 1, 1) but it 
leads to an embedding of the tori in a very large projective space, namely 
in P 24 . Therefore, we take a smaller (but less symmetric) pole vector, namely 
p = {3, 0, 0, 0, 0). It leads to the following independent functions Zi, which we 
give together with the first few terms of their series Zi(t; mt). 

zo := 1, 

Z1 := X3X4 = - t~ + ~(a2 - b +c)+ O(t), 

z2 := X1X3X4 = _!!:.._ + ~{2a2 + b- c)+ O(t), 
t2 6 

1 a 
Z3 := X3X4(X2 + X3) =--- + 0{1) t3 t2 ' 

2 d ad d 
Z4 := X1X3X4 = t 3 - ""j2 + 2t (b +c)+ 0{1), (7.43) 

Z5 := X1X3X~ = - ~ - ~: + ~ (b +c)+ 0{1), 

2~ d 
Za := X1X3X4((x1 + X5)X3- (Xl + X2)x4) = t3 + t2 (b +c)+ 0{1), 

2 2 bd bd( ) ( -1) 
Z7 := X1X2X3x 4 = t 3 + t2 d- a + 0 t 1 

zs := x1x3x~((x1 + x2) 2 + x1x5) =-~ -~(ad+ 2b +c)+ O{r1). 

As we will see later, for generic c the map defined by 

(xl, ••• , X5) E F c 1-t {1 : Z1 : • • • : zs) 

extends to a holomorphic embedding of T~ into P 8 . 
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7.6.6 The Quadratic Differential Equations 

We know from Section 5.2.2 that if zo, ... , ZN are meromorphic functions 
that correspond to a basis of sections of a projectively normal line bundle 
on an Abelian variety Tr, then any holomorphic vector field on Tr extends 
to a vector field on the embedding space pN, and that moreover, this vector 
field is quadratic (in any of the standard affine charts Zi f:. 0). Recall also 
from that section that for any effective divisor V on an Abelian variety one 
has that [3'D] is always projectively normal, though [V] or [2'D] may already 
be projectively normal. When analyzing a weight homogeneous vector field, 
hoping to prove that it is a.c.i. one is therefore tempted to try to construct 
these quadratic differential equations. Indeed, if one shows that they do exist 
one has actually shown that the vector field extends to a holomorphic vector 
field on pN, in particular to a neighborhood of the divisor at infinity, one of 
the essential conditions in the complex Liouville Theorem (Theorem 6.22). 

Let us consider as above a weight homogeneous vector field V on en which 
is described by x = f(x). Suppose that the Wronskian W(zi, Zj) = ZiZj-ZiZj, 
with Zi, Zj polynomials in the Xk is expressible as a quadratic polynomial, 

N 

W(zi,Zj) = L af}zkZI (7.44) 
k,I=O 

where each a:fj depends on the values c = ( c1, ... , c8 ) of the constants of 
motion F1 , ..• , F8 (only); upon restriction to the generic fiber F c of the mo
mentum map the afj are just constants and the above quadratic polyno
mials have constant coefficients. Each a:fj is weight homogeneous of weight 
Vi + Vj - vk - v, + 1, since 

ro(W(zi,Zj)) = ro(ZiZj- ZiZj) =Vi+ Vj + 1, 

while ro(afjzkzt) = ro(a:fj) + vk + v,. On the coordinate chart (zi f:. 0) C pN 
the functions z0f Zj, .•. , ZN / Zj are a system of coordinates, and the quadratic 
differential equations are given in terms of these coordinates by 

If the coefficients a:fj are polynomials (in F1, ... , F8 ) then they can easily 
be found from (7.44) by substituting for each a:fj the most general weight 
homogeneous polynomial of degree Vi+ Vj- vk- v, + 1 in F1, ... , F., i.e., 

kl - "" Rkl Fil pi· 
Q!ij - .l...J !Ji,j;it ... i, 1 ' ' ' B I 

where the sum runs over all s-tuples of non-negative integers (it, ... , is) for 
which 
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8 

L ipw(Fp) = Vi +vi - vk - v1 + 1, 
p=l 

and where each /3t~;h ... i. E C is to be determined. This is done by writing 
both sides of (7.44) in terms of the original variables Xi which yields, by 
equating the coefficients of the xi in both sides, a (big) system of linear 
equations, which is easily solved. If the first few terms of one of the principal 
balances x(t;I') has a rather simple form, then it may be simpler in the last 
step to replace the Xi by that principal balance and the constants Ci in terms 
of the free parameters and to equate powers in t in the result (each coefficient 
in twill be a polynomial which depends on a number of free parameters, hence 
they have to be equated as polynomials in the free parameters). Alternatively, 
we can also work directly with the Zi and deduce the coefficients a:~J in 
(7.44) by substituting the principal balances for the Zi, following the above 
procedure for the Xi. 

For proving algebraic complete integrability it is, as we will see, enough to 
prove the existence of the quadratic differential equations, without actually 
computing them. We will give in Paragraph 7.7.2 a practical way to check 
their existence. 

Example 7.53. We write the quadratic differential equations in two different 
charts in P 8 • We start with a first chart, which is the one in which we can 
take the original embedding variables z1, ... , z8 as affine coordinates (recall 
that Zo = 1). Then vl can be written as the following quadratic4 differential 
equations. 

i1 = z2 + 2z3- c1z1, 

i2 = Z4- zs, 
i3 = Z4 + 2zs- 3z~ + c1z3- 2c2z1, 

i4 = -3zlz2 + c1z4 + ~(c3- c2z2- za), 

is = 3zlz2- c1zs - ~(c3 - c2z2 + za), 

ia = (2z1 + c2)(z4 + zs) - 4z~ - 2c1z1z2, 

i1 = 3z2zs + c1z1 + ~(3zlza- 3c2z1z2 - c3z1), 

is = -3z2(Z4 + Z5- C1Z2) + C3Z1 + ~c2(za - C2Z2 + C3). 

For the second chart, which corresponds to Z1 :/; 0, we define Yi := Zi/ z1, for 
i = 0, ... , 8, and we obtain the following quadratic differential equations. 

4 In order to make these equations purely quadratic, use zo {which equals 1); the 
first equation e.g. should be written as %1 = zo(z2 + 2zs - c1z1). In the other 
chart, use Yl {which also equals 1). 
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Yo= -y2- 2y3 + c1, 

iJ1 = o, 
Y2 = -(y4 + Y5) - 2YoY7- Y2(Y2 - c1), 

Y3 = Y~ + 2YoY7- Y5- C1Y3 + c2, 

Y4 = Y2(c2- Y4- Y5)- Y3Y5- c3yo, 

Y5 = YB + Y5(2Y2 + Y3) - C2Y2 + c3yo, 

YB = 2(y~ + Y4Y5 + Y~) - (Y4 + Y5)(2c1Y2 + c2) + (c2Y2 - c3yo)(c1 + Y2), 

Y7 = Y7(Y3 + 2y2 - c1yo) + c3, 

iJs = Y2Y7 + Y5Y6 - Ys(Y2 + Y3) - C1Y5(Y4 + Y5) + C~Y2Y5 - C3YOY5· 

7.6.7 The Holomorphic Differentials on 'De 

In this section we show, following an idea by Luc Haine (see [74]), how the 
holomorphic one-forms dtlln, ... , dtrl-o on an irreducible analytic hypersur
face V (which is singular or not) in an Abelian variety Tr can be computed; 
the ti in this expression are any system of linear coordinates on Tr. We will 
mainly be interested in the (r- I)-forms 

(7.45) 

These have several applications: the locus of tangency of a I ati on v is the 
locus where Wi = 0. Indeed, a;ati is tangent to v at a smooth point m 
precisely if U;(m) = 0, where j(t1, ... , tr) = 0 locally defines V, but then 

so that wi(m) = 0. Also, we have seen in Section 5.3 that in order to compute 
a basis of the holomorphic differentials on a divisor V on an Abelian variety 
Tr, we need to compute precisely the holomorphic differentials wi. 

Our computation, which is done in the context of integrable systems, 
depends in an essential way on the fact that we have at our disposal explicit 
equations for the vector fields. We assume that Vis a very ample divisor, with 
each component having multiplicity 1 (i.e., Vis an analytic hypersurface). 

Let (y0 , ... , YN) be a basis of L(V), which is chosen such that Yo is one 
of the functions that has the largest pole along V, among all functions of 
this basis (such a choice of basis exists, even if Vis not irreducible; in fact a 
generic basis of L(V) has this property). We write the Laurent solutions of 
the functions Yi with respect to all of the irreducible components V' of V col
lectively as one Laurent series, i.e., we write Yi(t; V) = t :Ei~O y~ilti, where 

each of the YJi) is a regular function on V. Because of the above assumption 

on y0 we have that the restriction of ya0 ) to any of the irreducible components 
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of V is non-zero, but this needs not be true for y~o) when i > 0; the fact that 
the series start at C 1 at worst comes from the fact that each component ofV 
has multiplicity 1. We will denote the r independent integrable vector fields 
by V1, ... , Vr. The functions yl/yo, ... ,yN/Yo are holomorphic, so that the 
functions YdYo, ... , Yr/Yo can be picked to define a holomorphic chart for 
generic m E V, since L(V) embeds Tr, and we have 

(
d (ll!.)) (V1 [ll!.] · · · Vr [ll!.]) (dt ) Yo YO Yo 1 

d ( ~) ~ v, i ~ l .. v, i ~ l d;, . 
{7.46) 

We restrict (7.46) to V. For the left hand side we have, 

d ( Yi ) I = d ( y~O) ) ' 
Yo 1J y~O) 

as follows by putting t = 0 in the Laurent series ~ ( t; 'D) of the function 
Yi/Yo, which is holomorphic in a neighborhood of a generic point of V, using 
dtlv = 0. For the entries of the square matrix in (7.46) we first compute the 
functions Vi [Yi/Yo] in terms of the original phase variables x1 ... , Xn, which 
can easily be done because we know explicit formulas for the vector fields 
Vj and for the embedding functions Yi in terms of the phase variables. Since 
these vector fields and these functions are holomorphic in a neighborhood 
of a generic point of 'D we can then compute the restriction of Vi[Yi/Yo] 
by first substituting the Laurent series x1 { t; V), ... , Xn ( t; V) for x1, ... , Xn in 
Vj[Yi/Yo] and then putting t = 0. For V1 this can be done in a slightly simpler 
way, namely we can use the fact that Vd/] = ¥t(t), giving 

[ Y ] 
d y· y<o>yP> _ y~o)y(l) 

vl Yoi I~ = - ....!.(t) = 0 ' ' 0 
~ dt lt=O Yo (y~0> )2 

This leads to explicit formulas for the one-forms dh lv, ... dtrlv on V, hence 
also for their wedges, such as the top-forms w1, ... , Wr. Of course the fact that 
we picked the yl/yo, ... , Yr!Yo correctly is equivalent to the determinant of 
the matrix in {7.46) being different from zero for generic mE V. 

Example 7.54. Suppose that r = 2, with V a curve in T 2 , where all com
ponents have multiplicity 1 when V is viewed as a divisor. We use the 

above method to compute w1 = dt2Jv and w2 = dt1 Jv. Let us suppose that 

yo, Y1 = 1 and Y2 = y have been chosen as above with Yo having a simple 
pole on each of the irreducible components of V and such that 1fy0 and 
yfy0 define a holomorphic chart around a generic point of 'D. We denote the 
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residues of y and of Yo as series in t by y(o) resp. y~o), as before. Applying 
the methods explained above, we consider 

(7.47) 

which we solve for dt1 and dt2 , and which we restrict to V, to find 

where <5 is the determinant of the square matrix in (7.47), restricted to V, 

which is non-zero by the above assumptions on y(o) andy. It follows that 

(7.48) 

The zeros of w 1 resp. w2 provide the points of tangency of the vector fields V1 

and V2 respectively. Since the degree of the canonical bundle on V is 2g - 2, 
the tangency locus of vl consist of 2g- 2 points, including multiplicities, and 
similarly for the tangency locus of v2 . 
Example 7.55. In the case of the periodic 5-particle Kac-van Moerbeke lattice 
we have chosen (3, 0, 0, 0, 0) as pole vector, so in this case the divisor is not 
an analytic hypersurface, but it is three times an analytic hypersurface and 
the above method does not work. The holomorphic differentials on the curve 
can in this case be constructed at from the equation of the curve because the 
curve is hyperelliptic of genus two. 
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7. 7 Proving Algebraic Complete Integrability 

We will now present an effective method for proving the algebraic complete 
integrability of a weight homogeneous a.c.i. system, by using the principal 
balances to (one of) the weight homogeneous vector field(s). The algorithms 
that we will give are very effective in the case of two dimensions, but they 
may be less so in the case of higher dimensions because the dimension of the 
smallest projective space in which a higher dimensional Abelian variety can 
be embedded is very large (39- 1 for a g-dimensional Jacobian). 

We suppose that we are given on en a weight homogeneous Poisson struc
ture { · , ·} of rank 2r and s := n - r independent weight homogeneous poly
nomials F = ( F1, ... , F8 ), which are in involution with respect to {- , ·}. Then 
(en, { · , ·} , F) is integrable in the sense of Liouville. The independent inte
grable vector fields are denoted by V1, ... , Vr, where we assume that V1 is 
weight homogeneous (i.e., it has weight 1). As usual we will denote the weight 
vector by v = (v1 , .•• , vn)· For generic c E es we wish to check if the fiber F c 

of the momentum map is (up to isomorphism) an affine part of an Abelian 
variety T~ and if the Hamiltonian vector fields V1, ... , Vr are linear on T~. 

The method that we give consists in using the weight homogeneous prin
cipal balances to V1 to show that the conditions of the complex Liouville 
Theorem (Theorem 6.22) are satisfied. Let us first see which of these con
ditions are automatically satisfied; then we will discuss in detail the other 
conditions and we will point out what exactly has to be checked in each 
of the examples. Since c is generic we have by Sard's Theorem that F c is 
non-singular. Assume now that for generic c the fiber F c is, in addition, ir
reducible, so that it is a non-singular affine variety; if F c is not irreducible 
then what we explain next has to be done for each of its irreducible com
ponents separately. On F c we have by Liouville integrability r commuting 
vector fields V1, ... , Vr. 

If the Poisson structure is symplectic, so n = 2r, then these vector fields 
are independent at every point of the generic fiber of the momentum map 
since a symplectic structure yields an isomorphism between tangent vec
tors and covectors in each point of phase space, and since the differentials 
dF1, ... , dFr are independent at all points of a generic fiber of the momen
tum map. 

If the Poisson structure is not symplectic (which may happen even if 
n = 2r) then things are very different. In fact, the integrable vector fields may 
become dependent at one or several points of every fiber of the momentum 
map. For the example of the periodic Kac-van Moerbeke system we have 
shown in Example 7.39 that the two vector fields are independent at every 
point of the generic fiber of the momentum map. However, many systems that 
are not a.c.i. are different in this respect; for example, each of the integrable 
vector fields of the non-periodic Toda lattice and of the non-periodic Kac
van Moerbeke system (see Example 6.5) have a non-empty zero locus, when 
restricted to any of the fibers of the momentum map. 
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In the following proposition we give a sufficient condition for the indepen
dence of the integrable vector fields at every point of the generic fiber of the 
momentum map. This condition will be satisfied in all the examples that we 
will study. In the case of a regular Poisson manifold (e.g. a symplectic man
ifold) one has that M(r) = M so that the given condition is automatically 
satisfied. 

Proposition 7 .56. Let (en, { · , ·} , F) be a Liouville integrable system of 
rank 2r, where each Fi in F = ( F1, ... , Fr) is assumed to be a polynomial. 
If the image of F{M \ M(r)) is contained in a Zariski closed subset of C 8 , 

different from c•' then for generic c E c• the vector fields XFl, ... , XF. are 
independent at each point of the fiber F c. 

Proof. Let C denote a Zariski closed subset of c• such that F{M\M(r)) c C, 
with C =j C 8 • Then F-1{C8 \C) C M(r}• so that for generic c E C 8 one has 
Fe C M(r}· Since for generic c E C 8 one also has that Fe C UF it follows 
that for generic c E C 8 , F c C UF n M(r). Proposition 4.12 implies that the 
vector fields XF1 , ••• , XF. are independent on the fibers ofF over such c. 0 

Thus, we suppose that conditions (1} and (2} in Theorem 6.22 are verified. 
The first thing to be done is then to construct, for generic c, an embedding 
'Pc : F c --t pN, which satisfies the adjunction formula, thereby making its 
extendibility to an embedding ofT~ plausible (as long as the adjunction 
formula is not satisfied the embedding surely does not extend to an embedding 
ofT~ in pN). This will be explained in Paragraph 7.7.1. 

Given the "to be" embedding, we proceed to write down the quadratic 
equations for one of the vector fields, say for V := (cpc)• V. To do this it may be 
necessary to enlarge the constructed embedding, taking functions that have 
higher poles at infinity; see for example the Kowalevski top (Section 10.3). 
Having found the quadratic differential equations we are done with condition 
(9) because these vector fields are holomorphic on all of pN. As we will 
prove in Paragraph 7.7.2, it is enough to construct the quadratic differential 
equations in two different charts Zi =j 0 of pN. 

The last thing to be checked is that the flow of V which starts at any 
point of .:1~ (in the notation of Theorem 6.22) goes into 'Pc(F c) immediately. 
For this, see Paragraph 7.7.3. Then we can conclude that the projective clo
sure 'Pc(F c) of cpc{F c) is an Abelian variety and that the commuting vector 
fields ( 'Pc) * V1 , ... , ( C()c) * Vr extend to holomorphic vector fields V 1 , ... , V r on 
'Pc(F c)· The polarization type that is induced by the divisor at infinity can 
in certain cases be read off from the divisor itself (for example, if the divisor 
is a non-singular curve of genus 2 then it induces a principal polarization on 
the Abelian surface in which it lives, its Jacobi surface), in other cases we use 
an extra argument, based on Proposition 5.20. This gives a complete descrip
tion of the algebraic integrability of the integrable system. Notice that, at this 
point, everything that we have constructed formally (the balances, Painleve 
architecture, embedding, ... ) can be identified with the corresponding object 
that can be constructed for the a.c.i. system. 
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7. 7.1 Embedding the Tori T~ and Adjunction 

Given an integrable system (Cn, { · , ·} , F), where F = (Ft, ... , Fs) we wish 
to construct, for generic c, a map 'Pc from F c into some projective space pN 
which, in case the integrable systems turns out to be a.c.i., embeds the 
Abelian variety of which F c is an affine part; the latter means in practice 
that the projective closure 'Pc(Fc) of 'Pc(Fc) is an Abelian variety (embed
ded in projective space). In order to construct such a map 'Pc (if it exists) 
we construct a polynomial map en -t eN whose restriction to a generic F c 

has the main properties of the Kodaira map associated to a very ample line 
bundle on an Abelian variety. 

Let x(t; r<1l), ... , x(t; r<d)) denote the weight homogeneous principal bal
ances. We know from Proposition 7.22 that each of the Painleve walls r(i) is 
of the form I(i) x CP•, where I(i) is an irreducible component of the indicial 
locus I, and where Pi= n-1-dimi(i). By the same proposition, each of the 
coefficients of the principal balance x(t; r<il) is a regular function on r<i). We 
choose a pole vector (PI, ... , Pd), with Pi ~ 0 for i = 1, .. . , d. We introduce 
the vector space of polynomials in x1, ... , Xn with no harder pole than rP• 
when evaluated on x(t; F(il), where 1 ~ i ~ d, 

Zp is an 1i-module, i.e., if z E Zp and H E 1i (1i is the algebra generated 
by F1 , ... , Fs) then zH E Zp. Moreover, if S ~ Zp and if 1i(S) denotes the 
1i-module generated by S, then 

span { ziFc I z E S} = span { ZiFc I z E 1i(S)} . 

Since we are looking for polynomials z E Zp whose restrictions to F c are 
independent, we will content ourselves in finding elements of Zp that are not 
merely independent over C, but that are independent over 1i. In order to 
organize the computation - which tends to be enormous, even for simple 
systems - one naturally searches such elements by weight. To do this we use 
the grading 

00 

C[x1, ... , Xn] = E9 :F(k). 

k=O 

Namely, denote z~k) := Zp n :F(k) and suppose that we have constructed a 
maximal set of elements z0, ... , Zj of EB~-:~z~k) that are independent (over 1i). 
By multiplying these elements with a basis of EEJ~=O Ji(k), in all possible ways 
that yield a product of weight l, we construct a maximal set of linearly 
independent (over C) elements in Z~l), where each of them is dependent over 
1i on the elements of Zp that we have already obtained. These elements 
can, by direct computation, easily be extended to a basis (over C) of Z~l), 
by adding elements Zj+l, ... ,zi'· Then zo, ... ,zi' forms a maximal set of 
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elements of EDi=oz~k), which are independent over 1£. The number j'- j of 
independent elements that are added at level l is given by: 

l-1 

(z := dim ( z~t) 1 ED~-:,~ 1£(1-k) z~k)) = dim z~l) - 2: (k dim 1£{1-k). (7.49) 
k=O 

This formula allows one to compute recursively the (l, because the dimension 
of the space 1£(l) follows from (7.21) and the dimension of z~l} is found by 
taking the most general general polynomial of weight l and expressing that 
it belongs to Zp. 

The main problem is then: for which l do we stop? We answer this in a 
negative way, indicating when we should certainly not stop; see also Para
graph 7.7.2 for an alternative indication of when to stop. Let us suppose 
that we have constructed N + 1 elements z0 = 1, z1, ... , ZN of Zp which are 
independent over 1l and that the 1£-module spanned by them contains all 
elements in Zp of weight at most l. We consider for generic c the regular map 

cpe: Fe~ pN 

m 1-+ (1: z1(m): · · ·: ZN(m)). 

To begin with, we will of course increase l until cpe is an isomorphic embedding 
of Fe· Once this has been achieved we substitute each of the Laurent series 
x(t;r(l>), ... ,x(t;F(d)), restricted to Fe in this embedding and we lett~ 0. 
This yields, in the case of F(i}, an injective map 

cp~i>: rJi> ~ pN_ 

The closure of the image of this map, cp~i) ( F( i)) will be denoted by V~i). 
Notice that the extension of cp~i) to the smooth compactification of rJi) is 
not necessarily an embedding, it does not even need to be injective (we will 
see examples ofthis). As we have seen in Section 5.3, if cpe extends to an em
bedding ofT~ then V(i) is one of the irreducible components of the Painleve 
divisor on T~, which corresponds to the linear vector field (cpe)• V on T~ . 
Thus, we must first increase l until the dimension of the image of each of these 
divisors is r- 1. Next we must make sure that the total divisor Et=l PiV~i) 
satisfies the adjunction formula, i.e., we must have that 

9a (t PiV~i)) = N + r, 
t=l 

(7.50) 

Indeed, according to Theorem 5.38, if the N + 1 functions that we have 
constructed provide the Kodaira map that corresponds to Et=l V~i), so that 

dim£ (E~=1 PiV~i>) = N + 1, then 
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Ua (t Pi'D~i)) - r + 1 =dim L (t Pi'D~i)) . 
•=1 •=1 

Therefore we must increase l until (7.50) is satisfied. When this occurs we 
stop, because experience indicates that increasing l will not lead to new func
tions (over 1i). 

Example 7.57. In the case of the periodic 5-particle Kac-van Moerbeke lat
tice, we have chosen p = (3, 0, 0, 0, 0) in order to keep the size of N down. Let 
us first construct the functions that were given in (7.43). Thus, we look for 
a basis (over 1i) of the polynomials which have a triple pole at most when 
x(t; m1 ) is substituted in them, and no pole at all when x(t; mi) for 2 ~ i ~ 5 
is substituted in them. The result is given in the Table 7.1, where we compute 
for small k the following data, corresponding to the different columns (in that 
order). 

1. dim :F(k), the number of independent polynomials of weight k, which is 
computed from (7.5); 

2. dim H(k), the number of independent constants of motion of weight k, 
which are the coefficients of the series (7.40); 

3. dim z~k)' the number of linearly independent polynomials which have a 
triple pole at most when x(t; m1 ) is substituted in them, and no pole 
at all when x(t; mi) for 2 ~ i ~ 5 is substituted in them (i.e., p = 
(3, 0, 0, 0, 0)). This is done by explicitly substituting the series (x; mi) 
in the most general polynomial of weight k; for doing this a computer 
program is very useful; 

4. The number of elements in z~k) that are dependent of the previous 
ones over 1i. This is computed from the previous data by the formula 
"'i-1 r. d' '11(i-j). 
wj=O '>J 1m n. ' 

5. (k is the number of new elements at level k, and is computed as the 
difference of the two previous columns, see (7.49); 

6. The last column gives a choice of these new functions; their explicit ex-
pressions were given in Example 7.52. 

We fix a generic c = ( c1 , c2 , c3 ) E C 3 and we consider the map 'Pc : F c -t P 8 

given by (x1 , ... , x5 ) f-t (z0 : ... : zs). Notice that since c is generic we 
may assume that c3 i- 0. Then F c does not intersect any of the hyperplanes 
Xi = 0. Then the map 'Pc is birational (not biregular!) on its image, since we 
have 

(7.51) 

while x3 is recovered from F1 = c1 . The leading terms of the series (7.43) of 
the functions Zi lead to an embedding of the abstract Painleve divisor rJ!l 
(see Example 7.51), given by 

cp~1 ) : (b, d) f-t (0 : 0 : 0: 1 : d: -d: 2d2 : bd: -d3), (7.52) 
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Table 7.1. The polynomials of weight at most 7 which have a triple pole at 
most when x(t;m1) is substituted in them, and which have no pole when any 
of x(t; m2), ... , x(t; ms) are substituted in them. 

k dim.F(k) dim1£<"l d. z<"> liD p # dep (k indep. functions 

0 1 1 1 0 1 zo 

1 5 1 1 1 0 -
2 15 2 3 2 1 Zl 

3 35 2 5 3 2 z2, za 

4 70 3 9 7 2 Z4,Z5 

5 126 4 13 12 1 Z6 

6 210 5 19 17 2 Z7 1 Z8 

7 330 6 24 24 0 -

which is obviously also an embedding of the affine curve rJI>. Similarly, the 
Taylor(!) series z(t; m2), ... , z(t; ms) lead to four different embeddings of the 
(. h" ) ffi r.<2) r,(S) t . 1somorp 1c a ne curves c , ... , c , o w1t 

cp~2): (b,d) f-t {1: -b: 0: -bd: 0: be: e3 : 0: be(e+ d2 )), 

cp~3): (b,d) f-t {1: 0: bd: 0: ~: 0: bd(2ad- b): 0: 2ab2d), 

cp~4) : {b, d) f-t {1 : 0: -ed: ed: 0: -e~ : cd{e + 2ad) : (7.53) 
-(cd)2 : -oo2(4a2 - b)), 

cp~5) : (b, d) f-t {1 : e : 0 : 2ae : be : 0 : -ea : -bc2 : bc2), 

where we recall that a= (e1 - d)/2 and c = b- e2 - d{e1 -d). Since bd =I 0 
(in fact, bed = -ea) we see at once that the five image curves are disjoint. 
However, these images are not complete, being just the embedding of the 
affine curves rJ•>, so we check if maybe their closures {in projective space) 
intersect. In order to do this, we compute the image of oo, oo' and oo" under 
each of the above five embeddings. This is done by substituting the local 
parameterizations {7.41) in the embeddings (7.52) and (7.53). The result is 
given in Table 7.2. 

In this table the points P, are the following points in P 8 (some of them 
depend on c, but we do not add this dependence in the notation). 

pl = {0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0), 

p2 = {0: 0 : 0: 0 : 0: 0: 0: 0: 1), 

Pa = {1 : 0: 0 : 0: 0 : 0: ea : 0: -e1ea), 

P4 = {1 : 0 : 0 : 0 : 0 : 0 : -ea : 0 : 0), 

P5 = (0: 0: 0: 0: 0: 0: 0: 1: -1). 
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Table 7.2. The images of the points at infinity on the curves rJil under the five 
embeddings of these curves, given by (7.52) and (7.53). 

r;il) r;i2) r;i3) r;i4) r;is> 

00 Ps pl p2 Pa p4 

oo' pl p2 Pa p4 Ps 

oo" p2 Pa p4 Ps pl 

Denoting c,o~i} ( rJ i)) by 'D~i}, we see that V~i) contains the points Pi-1 , Pi and 
pi+1 and that each v~i) intersects its neighbor v~i+1 ) in two different points 
Pi and Pi+1, while being simply tangent to the divisors 'D~i-2} and V~i+2) at 
Pi-1 and Pi+! respectively. The resulting Painleve divisor is represented in 
Figure 7.2. Notice that the geometric divisor of the five genus 2 curves is very 
similar to the one in Figure 7.1, where the curves are conics in P5 . In fact, 
the Abelian surfaces T~ that we have constructed are the singular surfaces 
Ac C P 5 , blown up along Aoo (see Section 7.3). 

Fig. 7.2. The Painleve divisor 'De of the Kac-van Moerbeke system consists of five 
genus two curves that intersect in five points, each of which is a triple point of 'De, 
with two of the curves being simply tangent and the third transversal to the other 
two. To make the picture exact the two points labeled P1 need to be identified, 
as well as the two points labeled Ps, and this should be done in such a way that 
the curves 'D~5l and 'D~2 l are tangent, as well as the curves 'D~4) and 'D~1 ) at these 
points. It follows from Proposition 5.42 that 9a('De) = 26. 
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Let us now verify the adjunction formula for the present embedding, given 
by the functions zo, ... , za. The genus of D~1 ) is two, because it is the image 
of a genus two curve under an embedding. Since the pole vector that we have 
chosen is (3, 0, 0, 0, 0) we need to compute the arithmetic genus of 3D~l), 
which is, according to Example 5.41, given by 9a(3D~1)) = 32 (2 -1) + 1 = 10. 
This is indeed N + r = 8 + 2, as demanded by the adjunction formula. 
Therefore, this is a good place to stop (in fact the last line of Table 7.1 
indicates that no new functions are found at weight 7). 

7.7.2 Extending One of the Vector Fields XF 

We suppose now that an embedding ofF c in pN has been constructed, as in 
the previous paragraph. In order to apply the Liouville Theorem (Theorem 
6.22), we wish to extend one of the vector fields, say (<pc)• V, to a neigh
borhood of D~, which is defined, as in Theorem 6.22, as the union of all 
(r- I)-dimensional components of De, where the latter is in our case given 
by De := <pc(F c) \ <pc(F c). If the pole vector is chosen large enough and F c 
is indeed an affine part of an irreducible Abelian variety then we know from 
Section 5.3 that any linear vector field on F c extends to a quadratic (hence 
holomorphic) vector field on all of pN; to be precise, it extends to a vector 
field which is quadratic in each of the standard charts Zi -::/= 0 of pN. Since 
we are trying to prove algebraic complete integrability we will therefore try 
to prove that ( <pc) * V extends to all of pN. A priori holomorphicity has to be 
shown in each of the charts Zi-::/= 0. However, in view of the following lemma, 
it is sufficient to do this for two different charts Zi =I= 0, ZJ =I= 0. 

Lemma 7.58. Suppose that Vis a vector field on pN which is holomorphic 
in two different charts Zi =I= 0 and Zj =I= 0. Then V is a holomorphic vector 
field on pN, i.e., it is holomorphic in any chart Zk =I= 0. 

Proof. A holomorphic vector field V on a smooth manifold M is a derivation 
which is characterized by the fact that for any m E M and for any open 
neighborhood U of m, the function V[F] is a holomorphic function on U, for 
any holomorphic function F on U. Let M = pN, let m E pN and choose 
any open neighborhood U of m in pN. If V is holomorphic on the open 
subset Zi -::/= 0 and is holomorphic on the open subset Zj =I= 0 then V[F] is 
holomorphic, away from the codimension two subset Zi = Zj = 0. 

But recall that Hartog's Theorem says that if V ~ U are open subsets 
such that the codimension of U\ V in U is at least two, and G is a holomorphic 
function on V, then G extends (uniquely) to a holomorphic function on U. 
Applied to our case, with V = U \ {zi = Zj = 0} we find that V[F] extends 
to a holomorphic function on U, so that, by the above characterization, Vis 
a holomorphic vector field on U. Since U is an arbitrary open subset of pN 
the vector field V is holomorphic on pN. 0 
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Example 7.59. In the case of the periodic 5-particle Kac-van Moerbeke lat
tice, we have already written the vector field V as a quadratic differential 
equation in two different charts in Example 7.53. It follows from Lemma 7.58 
that V is a holomorphic vector field on all of P 8 . 

In order to apply the complex Liouville Theorem it is, strictly speaking, not 
necessary to construct the quadratic vector fields explicitly in two such charts; 
it is sufficient to prove their existence, which is in certain cases easier. The 
following proposition shows how this can be done in certain cases. 

Proposition 7.60. Let x = f(x) be a weight homogeneous vector field on 
en and suppose that each of its d principal balances is weight homogeneous. 
We suppose that zo = 1, Z1, ... , ZN E Zp, where p = (1, 1, ... , 1) and we write 
the d principal balances collectively as one family of Laurent solutions 

For 0 ~ i,j ~ N the Wronskian W(zi,Zj) is a quadratic polynomial in 
z0 , ••• , ZN with coefficients in the algebra 1i of weighted homogeneous poly
nomial constants of motion if the following two conditions are satisfied. 

{1} The 1i-module generated by (zo, ... , ZN) contains all elements of Zp 
of weight at most 2S + 1, where S is the maximum of the weights of 
Zl, ... ,ZN; 

{2} The expression z~o) z?)- z]0 ) z~ 1 ) can be written as a quadratic polynomial 
. (O) (O) 'th ffi . t . '11 
~n z0 , ••• zN, w~ coe cten s m n. 

Proof. With i, j as above we have that 

Zi(t)zj(t)- Zi(t)zj(t) = (z)0)z~l)- z~0)zY)) C 2 + 0 (r 1 ). 

In view of {2} there exist elements a~J E 1i, where 0 ~ k, l ~ N such that 

N 
z(o) z(l) - z~o) z~l) = "" a~!zk(o) z1(o) 

J • • J ~ •J • 
k,l=O 

It follows that the Laurent series 

N 

zi(t)zj(t)- zi(t)zi(t)- L a~Jzk(t)z,(t), 
k,l=O 

which is the Laurent series of ZiZj - ZiZj - Ef.t=O a~Jzkzl, has at most a 
simple pole in t. Since S is, by definition, the maximum of the weights of 
z1, ... , ZN, we have that 
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N 28+1 

ZiZj- ZiZj- L a~jzkZI E EB z~s). 
k,l=O s=O 

Using (1}, the latter is a linear combination of the zi, with coefficients in 1l. 
Using zo = 1 to rewrite this as a quadratic polynomial in the zi the result 
follows. D 

Remark 7.61. By Lemma (7.60), in order to explain that V extends to a 
holomorphic vector field on all of pN it suffices to check that W(zi, Zj) is a 
quadratic polynomial in terms of the Zk and this for 0 ~ i ~ N and for two 
different values of j and thus, it suffices to check this condition for 2N - 1 
values of (i,j). 

7.7.3 Going into the Affine 

We will now show how to check condition (4) in Theorem 6.22. We suppose 
as before that we have constructed a map 

<{Jc: en~ pN 

m 1-t (1: z1(m): · · ·: ZN(m)), 

which restricts for generic c E cs to an isomorphic embedding of the fiber F c, 

which we assume for simplicity to be connected (otherwise the procedure 
below has to be repeated for every irreducible component of F c)· Remem
ber that /{)c gave rise, for each of the d weight homogeneous principal bal
ances x(t; F(i)), to a holomorphic map t.p~i) : rJi) ~ pN, whose image is 
(r - !)-dimensional. We denote, as before, by V~i) the analytic hypersur

face <p~i)(rJi)) of t.pc(Fc), where i = 1, ... ,d. As we already pointed out 
these hypersurfaces have the following properties. First, since t.pc is a regular 
map, the above closure can be taken with respect to the complex topology 
or with respect to the Zariski topology, because both yield the same re
sult (see [135, §1.10]). Second, when r ~ 2 then 'De, which was defined as 
'De:= t.pc(Fc) \ C,Oc(Fc), is connected (see [78, Cor. III.7.9]); the case r = 1, in 
which 'De simply consists of points, will be excluded in the present discussion, 
see Remark 7.65 below. Since C,Oc is an isomorphic embedding of Fe, we have, 
in addition, that 

in particular Vc is contained in the subspace zo = 0. Thus, if z;(m), 1 ~ j ~ 
N are finite, we must be in the affine C,Oc(F c)· 
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Let us denote the distinct irreducible components of Vc of maximal di
mension, that are different from the d components v~l)' ... 'v~d)' if any, by 
V~d+l), ... , v~ii). Such components may indeed exist, i.e., it may happen that 
d < d: nothing guarantees that each divisor V~i) is found from a weight ho
mogeneous balance. 

We first show that we flow immediately into the affine, C,Oc(F c), when 
we start from points in uf=1 c,o~i) ( rJ i)). Let us consider a principal balance 
x(t; r(i)), let P be any point in c,o~i) (rJi)) and let p E rJil be such that 

c,o~i) (p) = P. We need to show that 4't(P) E C,Oc(F c) for ltl small and non
zero, where 4' denotes, as before, the flow of the holomorphic vector field V 
on pN, To prove this, recall on the one hand from Section 7.2 that the weight 
homogeneous Laurent series Xj(t;p) are convergent for small and non-zero ltl, 
and on the other hand that the embedding functions Zj are polynomials in 
the phase variables x1, ... ,xn. Thus, we may pick € > 0 such that Zj(t;p) 
is finite for j = 1, ... , N and for t such that 0 < ltl < €. For such a t we 
therefore have that 4't(P) does not belong to the hyperplane z0 = 0, hence 
it gets mapped into C,Oc(Fc), as was claimed. 

Remark 7. 62. In the special case where at least one of the Pi is zero, as in 
our Kac-van Moerbeke example, where p = (3, 0, 0, 0, 0), C,Oc is an embedding 
but not an isomorphic embedding. By construction, for 2 ~ i ~ 5 all the 

functions z i are finite on c,o~i) ( rJ i)), since Pi = 0, and so Vc ~ { z0 = 0} . 
Thus, to check in such a case that the flow starting at Vc immediately goes 
into the affine C,Oc(F c), we must actually check using the series z(t; rJil) that 
the xi ( t; rJ i)) are finite, for It I -::/:- 0 small, which is about the same effort as 
above. 

The varieties rJil are not compact, so K(i) := V~i) \ c,o~i) (rJil) is not 
empty, where i = 1, ... , d. For points in K(i) no general argument guarantees 
that the flow goes into the affine immediately, hence this has to be checked in 
every example. We first explain how to do this in the case of two-dimensional 
integrable systems (r = 2), where clearly K := ut=l K(i) consists of a finite 
number of points. Let Po be one of the points of K, say Po E K(i), and let 
us consider the Laurent series Zj(t; rJil), which is obtained by substituting 
the principal balance x(t; r<il), restricted to F c, in Zj. We denote by Po one 

of the points of the smooth compactification rJil of rJil for which 

lim c,o~i){p) =Po; 
p--+po 

notice that Po needs not be unique, since c,o~i) needs not extend to an embed
ding of its smooth5 compactification. 

5 Recall from Theorem 7.22 that all Painleve walls FJil are non-singular, hence 

they admit a smooth compactification. However, the divisors V~i) = c,o~;>(rJil) 
may be singular, as we will see in the examples. 
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For j = l, ... ,N, write 

where l is chosen minimal, i.e., zj0 ) =I 0 for at least one j. Among the j for 

which z)0) =I 0, choose the index a for which zi0)(rJi)) has the largest pole 

asp -t Po in rJi). Then, for any j the limit 

z ·(t· r,(i)) 
lim lim 1 ' c. 

p-+po HO Za(t; rJ')) 

is finite, and thus, Za =I 0 defines a chart about P0 • Since Vis holomorphic on 
pN it follows that Vis holomorphic in the coordinates Yi = Zj / Za, 0 ~ j ~ N. 

Now the series Yi(t; rJi)) solve, for ltl small and non-zero, the differential 
equations that describe V in the chart z0 =I 0, hence we may identify these 
series with the (Taylor series) solutions to V in the chart Za =F 0. 

Explicitly, we have for p E rJi) close to Po that the series y1(t;p) equals 
the series Yi(t; <,?c(p)), where the latter is the Taylor series of Yi with respect 
to V, starting at <t?c(p). Since the latter series admits a limit, which is nothing 
but Yi(t; Po) the series Yi(t;p) admits a limit asp -t Poi we will denote it 
by Yi(t;Po)· Suppose now that we can show that Yo(t;Po) =I 0 (as a series 
in t) then it follows that all Zj(t;Po) are finite (for ltl small and non-zero), 
because z1 = y1 fy0 and we are done. Hence, we only need to check in the 
two-dimensional examples that for any principal balance x(t; r(i)) the Taylor 
series 

Yo(t; r~i)) := 1 (i) = :~::::ak(p)tk, 
Za(t; Fe ) k~O 

(7.54) 

has a non-zero limit when p E FJi) tends to Po, and this for enough points Po 
so as to cover all points inK. Notice that, as a bonus, the above computation 
yields the lower balance that goes with Po E K. 

When r > 2 one takes instead of m an irreducible component of K and 
one performs the same check, where p tends now to a generic point of the 
boundary of <t?c(rJi)). This will guarantee that the flow which starts from 

any point on 'D~i) goes into the affine immediately, except for a subvariety of 
codimension at least two (i.e., if the test is successful). Since the zero locus 
of a holomorphic function is of codimension one this property extends, by 
Hartog's Theorem, over that subset and the flow of V, starting from any 
point on 'D~i) goes into the affine immediately. It suffices therefore, when 
r > 2 to do the check for a generic boundary point of <,?c(di)), which makes 
the test also in the higher dimensional case feasible. 
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Example 7.63. As we pointed out in Example 7.57, we need in the case of 
the periodic 5-particle Kac-van Moerbeke lattice do a little bit more work, 
because the map <fJc is not an isomorphic embedding. We will do the check 
for one of the points, say for P1 = (0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0), see 
Table 7.2. Since the only non-zero entry corresponds to Z3 we must substitute 
the parameterization (7.41) of a neighborhood of oo' in 1/ z3(t; ml) and we 
must show that its limit, for<;-+ 0, is non-zero. Since z3 (t; ml) = {s-- ~ + 
0(1) we have that 

z31 (t; m1) = t3(1 +at+ O(t2 )) = t3 ( 1 + ~(c1 + C3<;2 + 0(<;3))t + O(t2)) , 

(7.55) 
which yields, in the limit<; -+ 0, the series t3(1 + c1t/2 + O(t2)), which is 
different from zero. This means that, starting from P1 we do not flow into 
the divisor D~1 ). In order to show that we flow into the affine <pc(F c) we show 
that zl/z3(t;m1) and z2 /z3(t;m1) have also a non-zero limit, as<;-+ 0, and 
so by (7.51) all the xi(t; ml) are finite for itl # 0 small, showing explicitly 
that we flow into the finite from P1. For the first one this is trivial since 

as follows from (7.43). For the second one the computation is longer, since 
the first terms of the series z2 / Z3 ( t; ml) vanish when taking the limit, in 
fact three more terms are needed in (7.43) in order to find a non-zero term; 
besides this fact, which only makes the computation longer, the calculation 
is trivial and we only state the final formula, 

• Z2 C3 5 6 hm -(t; m1) = --4 t + O(t ). 
(-+0 Z3 

Repeating the argument for the other points Pi proves that we flow into the 
affine, starting from any of the points in D~1 ) u ... u D~5). 

Let us assume now that we have successfully completed the above check, 
so that we know that the flow of V goes into the affine immediately, when 
starting from any of the points of D~i), where i = 1, ... , d. If we can show 
that there are no other points in De, i.e., that d = d then we are done. 
Since De is connected (being the hyperplane section <pc (F c) n { zo = 0} of the 

irreducible variety <pc(Fc)), there must be at least one point Po in Uf=1 D~i) 
which belongs to uf=d+l D~i), if the latter is non-empty; therefore Po E D~i) 
for some i = 1, ... , d. We first show that there exists a neighborhood U of Po 
in <pc (F c) and an E > 0 such that 

(7.56) 
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where ~ denotes the flow of V on pN. Since Po belongs to vii) it flows into 
the affine immediately. By precisely the same argument as in the first part of 
the proof of Theorem 6.22 we have that IPc(Fc) is smooth at Po, and hence 
in a neighborhood V of Po in IPc (F c). We consider the restriction of V to V 
(recall that Vis tangent to IPc(F c), hence it is tangent to its closure IPc(F c) 
at smooth points) and we consider local coordinates (t, s2, ... , 8r) = (t, 8) 
in a neighborhood V' ~ V of Po such that V = 8f8t in this neighborhood, 
which can be done since V does not vanish at Po. Let V" ~ V' be an open 
neighborhood of Po in tpc(Fc) and let f > 0, both chosen small enough to 
guarantee that ~t(V") ~ V' for any t with ltl < f. Notice that the flow ~ 
takes on V" the simple form ~t(to, 8) = (t +to, 8). The subset vii), which is 
a divisor of tpc(F c), is locally - say on V" - given as the zero locus of a 
holomorphic function, which is a monic polynomial in t, i.e., vii) is given by 
Qk = 0 where 

Qk(t, s) := tk + ak-1 (8)tk- 1 + ... + ao(8), 

the coefficients a1 being holomorphic functions in 8 = ( 82, ... , 8r) (only), that 
vanish at 8 = 0. Indeed, this is an immediate application of the Weierstrass 
Preparation Theorem (Theorem 5. 7): we only need to check that the t-axis 
(given by 8 = 0) is not contained (locally) in vii), but this is so since Po flows 
into the affine immediately. Let 8 > 0 be chosen such that for any 8 in the 
polydisk B6 := {8118!1 < 8 for 2 ~ l ~ r} the k solutions t to Qk(t,8) = 0 all 
satisfy It I < E/2, which can be done since the coefficients of Qk are continuous 
functions of 8. Consider 

U := {(t,s) E V" lltl < E/2, 8 E B6}. 

If (t, s) E U then, by definition, there exists to E C with Ito I < f/2 such 
that Qk(t0,8) = 0, i.e., such that (to,8) E viil, and ltl < f/2. Then (t,8) E 

~t-t0 (to, s), where It- to I < f and (to, s) E vii). Thus, if (t, 8) E U then 

showing (7.56). 
Let U be a neighborhood of Po in tpc(Fc), as in (7.56), and let us suppose 

that Vis transversal to one of the branches of vii) at Po, where 1 ~ i ~d. 
If this is not the case one looks for a linear combination of the vector fields 
V1, ... , Vr, with this property; in this case, i.e., when we need to replace v by 
this linear combination we need to check for the latter that it is holomorphic 
(by exhibiting the quadratic differential equations), as we did for V. In fact, 
such a linear combination does not need to exist, but it does exist in all the 
examples that we will treat; for the case in which such a V does not exist, 
see Remark 7.66 below. 
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Defining a as before and letting Yi := Zj / Za for j = 0, ... , N the above 
transversality condition at Po can be checked by the following rank condition. 

=r. 

For example, if r = 2 then it is enough to show that there exist j =/; k such 
that 

=/;0, 
~(t· r<il) f!n.(t· F(i)) 
8t ' 8s ' 

~(t· r<il) f!n.(t· r<il) 
8t ' 8s ' I•=•=O 

where we have written sa simply ass. 
By the implicit function theorem, the fact that V is transversal to one 

of the branches of V~i) at Po implies that ( t, sa, ... , sr) is a system of holo
morphic coordinates on a neighborhood of Po in cpc(F c), where the coordi
nates sa, ... , sr come from coordinates on the chosen branch of V~i) at Po. 
As before, the solution to V starting on the branch of V~i) will consist of 
holomorphic functions Yi(t, sa, ... , sr) of their arguments. Note that since 
Zj = Yi/Yo, 0 ~ j ~ N, we have that Zj is finite whenever Yo is finite and 
then we are in the affine (as usual in the case when cpc is not an isomorphic 
embedding we must work slightly harder to check we are in the affine). If we 
write 

Yo ( t, sa, ... , Sr) = a~' ( t, s) + at£+1 ( t, s) + · · · , 
where a, is the sum of all monomials of degree l in the series, and where 
a~'(t, s) is not identically zero, then p, = p,(yo; Po) is the multiplicity of Vc 
at P0 , since y0 is the locally defining function of Vc. Since Vis transversal to 
Vc at a generic point of each irreducible component of Vc that meets at Po 
(since they all flow into the affine cpc(Fc)), we can compute the multiplicity 
of y0 restricted to these components, which is just the generic pole of Za along 
each of these components (the ones that we have found from the principal 
balances, v<1l, ... , V(d), as well as the other ones, V(d+l), ... , v<Jl). Thus, if 
we only consider the first group and we check that 

p,(yo; Po) = L p,(V~i)' Po) (pole order of Za(t; rJil)) ' 
l~i~d 

(7.57) 

where p,(V~i), Po) is the multiplicity of P0 on V~i), then we have shown that 
there cannot be any more components of Vc of codimension 1 which contain 
Po other than those corresponding to the d principal balances that were found 
(otherwise such a component would raise the multiplicity above p,(y0 , Po)). 
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For a point P E cp~i) (rJi>) this condition holds automatically, since the 
defining Za one picks at such a point will look like 

z~(t· r(i)) = ~ + 0 0 0 

~ ' c tl ' 
0 1 t1 

Yo(t; rJ'>) = - = - + ... , 
Za C 

where c f. 0, so that J-l = l and our condition is satisfied. It follows that we 
only need to check the multiplicity condition (7.57) for the infamous set of 
points 

d d 
K := U KCi) = U v~i) \ cp~i) (rJi>), 

i=l i=l 
to conclude that V~i) with d + 1 :::;; i :::;; d' does not exist and so Vc = 
r.::=l v~i). 
Remark 7.64. In the case when we have an embedding 'Pc: Fe-+ pN which 
is not an isomorphic embedding, the latter arguments need to be trivially 
modified. For example in the Kac-van Moerbeke lattice we have that Vc ~ 
{ Zo = 0} n 'Pc (F c) is replaced by 

Vc ~ ( {zo = 0} U {zi/z3 = 0} U {z2/z3} = 0) n 'Pc(Fc), 

and thus, if we are in a chart U defined e.g. by z3 , so that Yi = zifz3 , 0:::;; 
j:::;; 8, then 

U n Vc ~ {Yo = 0} U {Yl = 0} U Y2 = 0, 

and YoY1Y2 = 0 is a local defining function for the divisor at Po. The multi
plicity condition (7.57) would now become 

2 

J-L(Yo;H) + J-L(YI;PI) + J-L(Y2,Pl) = L L (zero order ofyi(t;rJi>)), 
j=O l<;;i<;;5 

Vi'l3PI 

(7.58) 
i.e., the multiplicities of the Yo, Yl, Y2, due to their generic polar behavior on 
the Painleve divisors containing P1 must agree with the multiplicity coming 
from Yi(t, s2), 0 :::;; j :::;; 2. In order to do this check, first compute the left 
hand side in (7.58) by writing for j = 0, 1, 2 the series Yi(t; rJi>) in terms of 
the local parameter c;, given in (7.41), that parameterizes a neighborhood of 
oo'. This gives 

y0 (t; rJ1>) = -t3 + a4 (t, c;) + .. . 
y1 (t; rJ1>) = -t + a2 (t, c;) + .. . 
Y2(t; rJ!>) = -cac;2t + a~(t,c;) + ... , 

so that the left hand side in (7.58) evaluates to 3 + 1 + 3 = 7. On the other 
hand, the functions yo, Y1 and Y2 have a respective zero of order 3, 1 and 1 
along V~l), as is read off at once from the principal balances Zj(t; rJ1>), giving 
a contribution 5 to the right hand side in (7.58). 
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Similarly one reads off from the principal balances zi(t; rJ2l) and zi(t; rJ5l) 
that neither Yo nor Y1 have a zero along V~2) and V~5), while Y2 has a simple 
zero along V~2) as well as along V~5), so that the right hand side in (7.58) 
adds up to 7, as required. 

Remark 7. 65. We have explained how to check that we go into the affine 
when r f. 1 (r is the dimension of the fibers of the momentum map). In 
the one-dimensional case this is however simpler. Suppose that we have an 
equation for an affine curve and an embedding for this curve into projective 
space. In this case we can determine all points that will form the divisor Vc 
by computing the image of the points at infinity, precisely as we did in the 
general case. Then we must check that the number of (principal) balances 
equals the number of points in Vc. 

Remark 7. 66. We have assumed that there exists a linear combination V of 
the vector fields V1, ... , Vr, which is transversal to one of the branches of 
V~i) at P0 . It is however possible that such a V does not exist. Consider for 
example the case in which v~i) is a curve which is singular at P0 , but with 
only one branch (a cusp y2 = x3 is the easiest example) and that this is the 
only irreducible component of Vc through Po that we have found using the 
principal balances. In this case we cannot use the parameters on the divisor 
to build a system of holomorphic coordinates on a neighborhood of Po. In 
this case, take the parameters h, ... , tr that are dual to the vector fields 
V1 , ... , Vr, which are certainly holomorphic coordinates in a neighborhood 
of P0 , if the system is a.c.i., and write y0 as a series in these parameters (we 
explained how to do this in Remark 7.49; it should in this case also be checked 
in our usual way that any linear combination of the vector fields V 1, ... , V r 

is holomorphic). Then the multiplicity of Vc at Po can again be read off as 
the degree of the first non-zero term in the series Yo ( h, ... , tr). 
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Examples 



8 Integrable Geodesic Flow on SO ( 4) 

8.1 Geodesic Flow on 80(4) 

8.1.1 From Geodesic Flow on G to a Hamiltonian Flow on g 

Let G be a (real) Lie group. A left invariant metric on G is completely 
specified by an inner product(·,·) on its Lie algebra g. Namely, if we denote 
by L 9 left translation in Gover g E G and if we denote the inner product 
on T9G by (·, ·)9 , then left invariance means that 

(8.1) 

for any X 9 , Y9 E T9 G, where e EGis the identity element in G. Identifying 
TeG with g we will write in the sequel (·, ·) for (·,·)e. We consider geodesic 
flow on G with respect to (·, ·)9 and we use the calculus of variations to 
rewrite the variational equations of geodesic flow as a Hamiltonian vector 
field on g. We assume for the computation that follows that the reader is 
familiar with the basics of the calculus of variations (basically the definition 
of the variational derivative and the Euler-Lagrange equations); see [1] for a 
quick introduction. In order to make the computation more readable we will 
assume in the sequel that G is a semi-simple Lie group, embedded in GL(g) 
by the adjoint representation Ad. Then (8.1) can be written in the simpler 
form 

(X9 ,Y9 ) 9 = (g- 1X9 ,g-1Y9 ). 

and the Killing form (·I·} on g ~ g[(g) is given by 

(X I Y} = Trace(XY). 

Let us consider an arbitrary curve g : [a, b] -+ G : t ~ g(t) in G. Then g 
is a geodesic if and only if it minimizes (locally) the length functional, given 
by 

l(g) = lb (g(t),g(t))g(t)dt, 

which is the same as minimizing the energy functional 
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(the 1/2 is irrelevant but comes in handy later). Let I denote the symmetric 
endomorphism of g, which is defined by 

(I(X) I Y) = (X, Y) , X,YEg. 

Then we have to minimize 

lib l(9) = 2 a (I(9- 1(t)g(t)) I 9-1(t)g(t))dt. 

The Euler-Lagrange equations are given by 

t5F d t5F 
159 = dt t5g, (8.2) 

where ~F and ~~ are the variational derivatives in the direction of 9, resp. g. 
Hence V:e compute, using the fact that I is symmetric, and using the prop
erties of Trace, 

so that 

1 
t5gF = 2t5g (9-1g I I(9-1g)) 

= - (9-1 09 9-1 g I I(9-1 g)) 

= -(89l9-1gi(9-lg)9-1), 

t5F - = -9-1gi(9-1g) 9-1 = -wx9-I, 
09 

where we have defined 

w := 9-1g, and X:= I(w). 

Similarly, 

which gives in terms of the above notation 

8F _ I( -1 . ) -1 _ X -1 t5g - 9 9 9 - 9 . 

(8.3) 

(8.4) 

If we substitute (8.3) and (8.4) in the Euler-Lagrange equations (8.2) then 
we find that 

O = (- JF + .5!_ t5F) 9 09 dt 8g , 

= (wx9-1 + :t(xg-1)) 9 

=wX+X-Xw. 
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We conclude that geodesic flow on G is governed by the following two 
equations: 

X= [X,w], 

iJ = gw, 

where X = I(w). The first one of these equations is non-linear, but au
tonomous and should be solved first for X, which also gives w; the second 
equation becomes then a linear, non-autonomous equation, which can be 
solved for g, giving the geodesic. Thus, the first equation, which defines a 
vector field V on g, is the more fundamental one and is the one that will be 
studied here in a few cases. In fact, in the previous discussion, g was a real 
Lie algebra, but we will study the complexification1 of V (on the complexi
fication of g). Somewhat imprecise, we will refer to the vector field V (or its 
flow) on gas geodesic flow on g (whether V and g are real or complex). 

Suppose now that H is an arbitrary quadratic form on g. Recall from 
Section 3.5 that its gradient at X (with respect to (·I· ) ) is the element 
'V H(X) E g, defined by 

('V H(X) I Y) = (dH(X), Y). 

By non-degeneracy of (·I·) we can find, for any given w (which is a linear 
function of X, namely w = J-1 (X)), a quadratic form H such that 'V H (X) = 
w = J-1 (X). Therefore, we may restate the problem of studying geodesic flow 
on g by the problem of studying the vector field given by the Lax equation 

X = [X, 'V H(X)], {8.5) 

where H is a quadratic form on g. As we pointed out in Section 3.5 such a 
vector field is Hamiltonian with respect to the Lie-Poisson structure on g. 

8.1.2 Half-diagonal Metrics on n{4) 

We now turn to the case of so(4). We represent an element X of so(4) by 
a skew-symmetric matrix, X = (Xiih~i.i~4, Xii = -Xii• and we identify 
so(4) with its dual by using (X I Y) = 'Iface(XY). If we denote by Eii the 
matrix which has a 1 at position {i,j) and zeros elsewhere, then (3.33) yields 

Notice that the gradient is independent of X, because the function Xii is a 
linear function. 

1 Since we are dealing with a quadratic vector field on a real vector space, there 
is a natural way to complexify the vector space and the vector field. 
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It follows that the Lie-Poisson bracket on .so(4) is given by 

1 
{Xij, Xkl} (X) = 4 Trace(X[Eii- Eii, Etk- Ekt]) 

1 = 2 Trace(X[Eji, Etk]- X[Eii> Etk]), 

where 1 :::;; i, j, k, l :::;; 4. It follows that the Poisson matrix of the Lie-Poisson 
structure on .so ( 4) admits the following Poisson matrix, 

o X2a Xa1 X24 X41 o 
Xa2 0 X12 Xa4 0 X41 

1 X1a X21 o o Xa4 X42 

2 X42 X4a 0 0 X12 Xta 

X14 o x43 X21 o X23 

o X14 X24 X31 X32 o 

(8.6) 

where we have ordered the coordinates Xij as follows: X12, X13, X23 , X14, 
X 24 , X34 . A basis for the Casimirs for the Lie-Poisson structure on .so(4) is 
given by 

Q1 := -! Trace(X2) = I.: 1 ~i<i~4 X'k (8.7) 

Now .so(4) ~ .so(3) El1.so(3), leading to another system of natural coordinates 
on .so(4), namely define x = (x1, ... , xa) by 

Xij = -~(xk + Xk+a), xk4 = -~(Xk- Xk+a), 1:::;; i,j, k:::;; 3, (8.8) 

where (i, j, k) denotes any cyclic permutations of (1, 2, 3). In these new coor
dinates, the Poisson bracket takes the following simple form, 

{xi,Xj} = -EijkXk, 

{Xi+3, Xj+J} = -EijkXk+J, 

{xi,Xj+a} = {xi+3,Xj} = 0, 

(8.9) 

where 1 :::;; i, j, k :::;; 3, and where fijk is the skew-symmetric tensor for which 
t:123 = 1. In these coordinates Xt, .•. , x6 the Poisson matrix is given by 

(8.10) 

It follows from (8.9) that the rank of{·,·} is 4, except on the two three-planes 
Xt = x2 = x3 = 0 and X4 = xs = xa = 0, where the rank drops to 2 or to 0 
(at the origin). 
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In the Xi coordinates, a basis for the the Casimirs is given by 

Q~ := X~ + X~ + X~, 
Q~ :=X~+ X~+ X~. 

Since Q~ resp. Q~ evaluate to zero on the above three-planes, Proposition 7.56 
implies that for any integrable system that we consider on (so(4), {·,·})the 
two commuting vector fields will be independent on the generic fiber F c of 
the momentum map. 

Let us consider the most general quadratic form H on so(4), in terms of 
these coordinates. By means of the adjoint action (which respects the direct 
sum decomposition of so(4)), we may diagonalize each so(3) piece separately 
and so we may assume that H has the form 

1 6 

H = 2 L AiX~ + L P,ijXiXj+3 (8.11) 
i=l l~i,j~3 

so that H depends on 15 parameters. We will in the sequel only consider a 
special class, that we introduce now. 

Definition 8.1. A metric on so(4) is called a half-diagonal metric if it is 
given by a quadratic form 

1 6 3 

H = 2 L AiX~ + L P,jXjXj+J, (8.12) 
1 j=l 

where .A1, •.• , A6, 11-1, ••• , P.a E C. Setting Aij := Ai - Aj the above half
diagonal metric is called non-degenerate when 

.A12A2a.Aa1A45A56A64#Ll#L2P.a '# 0. 

Remark 8.2. This condition excludes the product of two Euler tops, because 
this corresponds to p,1 = p,2 = P,a = 0 (see Example 6.4). 

For the half-diagonal metric, given by the quadratic form (8.12), the 
Hamiltonian vector field XH := { · , X} takes the following form, as computed 
from (8.9). 

±1 = x2xa.Aa2 + X2X6/1-3- XaX5/1-2, 

±2 = xax1.A1a + xaX41J.l - XIX61J.a, 

X3 = X1X2A21 + X1X5P,2- X2X4P,1, 

x4 = X5X6A65 + XaX5P,a - X2X5P,2, 

X5 = X6X4A46 + X1X6P.1 - XaX41J.a, 

X6 = X4X5A54 + X2X4P,2- XIX5#Ll· 

Since the symplectic leaves are 4-dimensional, for the system to be Liouville 
integrable it must have a constant of motion, that is independent of the 
Hamiltonian Hand the Casimirs Q0 and Q1 (equivalently, the Casimirs Q~ 
and Q~). 
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8.1.3 The Kowalevski-Painleve Criterion 

The purpose of this section is to use the Kowalevski-Painleve Criterion (The
orem 6.13) to determine which non-degenerate half-diagonal metrics (see Def
inition 8.1) on .so(4) lead to an irreducible weight homogeneous a.c.i. system. 
This criterion selects three families of metrics, and each of them will be shown 
in one of the three subsequent sections to be algebraic completely integrable. 

Theorem 8.3. Let H be a quadratic form on so(4) which defines a non
degenerate half-diagonal metric on so(4), i.e., H is of the form 

with 
(8.13) 

where Aij := >.i - >.i. If XH is one of the integrable vector fields of an ir
reducible weight homogeneous a.c.i. system on (.so(4), {·, ·}) then the metric 
satisfies one of the following conditions: 

{1) >.14 = .>.25 = .>.36 and J.L~>.23 + J.L~A31 + J.L~.>.12 + .>.12.>.23.>.31 = 0; 
(2) 

( 2 2 2) _ EE ( (.>.23 - .>.56)2 (.>.31 - .>.64)2 (.>.12 - A45)2) 
J.L1, J.L2, J.L3 - p2 , , • ' ' ' ' ' "23"56 "31"64 "12"45 

with the following sign specification 

EE 
J.L1J.L2J.L3 = F 3 (.>.12 - .>.4s)(.>.23 - .>.sa)(.>.31 - >.a4), 

where E := .>.12.>.23.>.31 and E := A45As6A64 and F := A4aA32- .>.a5A13 =f. 0. 
(3) There exist constants p, q and square roots f1 and f2 of 1, with p E C* 

and q E C \ {0, ±1, ±1/3}, such that, up to a possible transposition 
(.>.12, .>.23, .>.31) H (.>.45, >.sa, A54), 

.>.12 = p(q- 1)3(3q + 1), 

.>.23 = 16pq3' 

.>.31 = p(1 - 3q)(q + 1)3, 

.>.45 = p(q- 1)(3q + 1)3, 

>.sa= 16pq, 

>.64 = p(1- 3q)3(q + 1), 

J.Ll = flp(q2 - 1)(9q2 - 1), 

J.L2 = 4E2pq(q- 1)(3q + 1), 

J.L3 = 4flf2pq(q + 1)(3q -1). 

The constant p is a common factor, which can be put equal to 1 by rescal
ing the metric. 
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Our proof is based on the following proposition, which is a consequence of 
the Kowalevski-Painleve Criterion (Theorem 6.13). 

Proposition 8.4. Let H be as in Theorem 8.3, namely H is a quadratic form 
on .so(4) which defines a non-degenerate half-diagonal metric on .so(4). If XH 
is one of the integrable vector fields of an irreducible weight homogeneous 
a. c. i. system on (.so( 4), {- , ·}) then the indicial locus of XH contains at least 
one curve. Moreover, a curve that is contained in the indiciallocus cannot be 
contained in one of the coordinate hyperplanes x~o) = 0. 

Proof. If XH is to be one of the integrable vector fields of an irreducible 
weight homogeneous a.c.i. system then, according to the Kowalevski-Painleve 
Criterion, XH must have a weight homogeneous principal balance. XH is a 
homogeneous vector field (i.e., the weight of each of the variables Xi as well 
as of XH is 1), so that the indiciallocus I c C6 is given by the equations 

-x~o) = x~0)x~0) ..\a2 + x~0)x~0) /La- x~0)x~0) /L2, 
X(O) _ X(O)X(O}l 3 + X(O)X(O) H X(O)X(O) H 

- 2 - 3 1 1\1 3 4 ,-1 - 1 6 r-3• 
-x(o) _ x(o)x(o)l + x(o)x(o) ~~. _ x(o)x(o) ~~. 

3 - 1 2 1\21 1 5 r-2 2 4 r-1' 
-x(o) - x(o)x(Oh + x(o)x(o) II. - x(o)x(o) II. 

4 - 5 6 "65 3 5 r-3 2 6 ,-2' 

(8.14) 

-x~o) = x~0>x~0) ..\45 + x~0>x~0) ILl- x~0)x~o) /La, 

-x~o) = x~o) x~o) A54 + x~o) x~o) /L2 - x~o) x~o) ILl· 

Proposition 7.11 implies that for each point x<0> in the indiciallocus I the 
Kowalevski matrix K(x<0>) has -1 as an eigenvalue. Thus, if we want a weight 
homogeneous principal balance, then for some x<0) E I, all other eigenvalues 
must be non-negative integers. Since XH is divergence free, Proposition 7.12 
implies that the sum of the eigenvalues of K(x<0>) must be 6 (the sum of the 
weights of all the variables). 

We claim that K(x<0 >) has 2 as a triple eigenvalue (at least), for any 

x<0> E I for which ( x~o), x~o), x~o)) :f; (0, 0, 0) and ( x~o), x~o), x~o)) :f; (0, 0, 0). 

In view of Theorem 7.30 this can be shown by proving that the three quadratic 
polynomials Q&, Qi and H have independent differentials at such a x<0l. In
deed, let x<0l E I\ {0}, and rewrite (8.14) as -x<0l = J(x<0l)[dH(x<0l)], where 
J denotes the Poisson matrix of (.so( 4), { · , ·}) in the coordinates x1 , ... , x6 , 

and [dH(x<0l)] denotes the column vector which represents dH(x<0l) in terms 
of these coordinates. Suppose that a1 , a2 and a3 are constants such that 
a1dQ&(x<0>) + a2dQHx<0>) + aadH(x<0>) = 0. Since Q& and Qi are Casimirs 
we have that J(x<0l)[dQ~(x<0l)] = J(x<0l)[dQi (x<0l)] = 0, giving 

0 = aaJ(x<0l)[dH(x<0l)] = -a3x<0>, 
which implies that a3 = 0 since x<0l :f; 0. Moreover, if x<0l E I is such that 
( x~o), x~o), x~o)) :f; (0, 0, 0) and ( x~o), x~o), x~o)) :f; (0, 0, 0) then dQ~(x<0l) 
and dQi (x<0l) are obviously independent, showing our claim. 
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Moreover, if at least for one of the principal balances the leading terms 
. fy ( (0) (0) (0)) ( ) ( (0) (0) (0)) sat1s x1 ,x2 ,x3 = 0,0,0 or x4 ,x5 ,x6 = (0,0,0) then p,1 = 

11-2 = l-'3 = 0, which is excluded by non-degeneracy. Let us show this in case 
( xi0), x~o), x~o)) = (0, 0, 0). The indicia! equation can then be solved to yield 
4 points, solutions to 

with 
(0) {0) (0) - 1 

xl x2 x3 - ' ' ' 
"12"23"31 

At these 4 points the Kowalevski matrix is given by 

1 x~o) A32 x~o) A32 0 -x~o) 11-2 x~o) l-'3 

x~o) -\13 1 x~o) -\13 x~o) 11-1 0 -x~o) l-'3 
(0) (0) 

x2 -\21 x1 -\21 1 -x~o) 11-1 x~o) 11-2 0 

0 0 0 1 x~o) l-'3 -x~o) 11-2 

0 0 0 -x~o) l-'3 1 x~o) 1-'1 

0 0 0 x~o) 11-2 -x~o) 1-'1 1 

(8.15) 

(8.16) 

(8.17) 

Using (8.15) and (8.16) it is easily computed that the north-west block of 
this matrix has characteristic polynomial (k - 2)2(k + 1), while the south
east block has characteristic polynomial 

(8.18) 

It follows that IK(x<0)) - k Ida I has -1, 1, 2, 2 as roots and two extra roots, 
which are the roots of the quadratic factor in (8.18). But these eigenvalues 
must be non-negative integers and their sum must be 6-4 = 2, leaving 1,1 
and 0, 2 as the only possibilities. If 0 is an eigenvalue then a free parameter 
must occur in the solution to the indicia! equation, but we just saw that the 
indicia! locus consists in this case of 4 points only. Hence we must have that 
1 is a triple eigenvalue of the Kowalevski matrix, which entails that 

p,~ -\2s + p,~-\31 + p,~-\12 = 0. 

If we want three free parameters to appear at step 1 then the south-east 
block of (8.17) must be the identity matrix (since the north-west block does 
not have 1 as an eigenvalue), by Proposition 7.22. But this is impossible by 
(8.15) and by non-degeneracy. 
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Summarizing, if the metric is non-degenerate then XH can only have 
principal balances if for some x(o) E I the spectrum of K(x(0l) has -1 as an 
eigenvalue and 2 as a triple eigenvalue. Since the sum of the other eigenvalues 
of K:(x(0l), which are non-negative integers, is 6- ( -1)- 3.2 = 1, this means 
that 0 and 1 are also eigenvalues, and that the indiciallocus contains a curve 
(corresponding to the free parameter that enters at step 0, i.e., the indicia! 
equation). 

Finally, let us show that the hyperplane section { x~0) = 0} n I cannot 

contain a curve if the metric is non-degenerate. If we substitute x~o) = 0 

in (8.14) then the second and third equations yield x~o) ( 1 + (JL1 x~0)) 2 ) = 0 

and x~o) = /Ll x~o) x~o). It is easy to see that x~o) = 0 implies either x~o) = 0 

or x~o) = x~o) = x~o) = 0, which only leads to points. Therefore, let us 

assume that x~o) =f 0 so that x~o) = ±Ax~o) and x~o) = ±A/ /Ll· Upon 
substituting in the first and in the two last equations of (8.14) we get the 
following linear system in x~o), x~o) and x~o), 

(8.19) 

Since at least one of the determinants I-:_JL2 =F~111L3 1 and I JL3 f 1 I is dif-
"'54 =Fv- ~/Ll JL2 "'54 

ferent from zero (by the non-degeneracy condition (8.13)) the rank of (8.19) 
is at least two and x~o) and x~o) are proportional to x~o) (the factors of pro
portionality are rational functions of the Aij and of the JLi)· It follows that 

the fourth equation in (8.14) is of the form a (x~o)f = x~o) = ±A/JL1 , 

which either has two solutions (if a =f 0) or no solutions at all (if a = 0). In 
any case, this shows that a solution to (8.14) with x~o) = 0 cannot depend on 

a parameter. This proves that the hyperplane section { x~o) = 0} n I cannot 

contain a curve. By symmetry, the result follows for all hyperplane sections 

{ Xlo) = 0} n I, where i = 1, ... '6. 0 

Let us assume that the parameters Aij and JLi that define the non-degenerate 
metric are fixed, and that these parameters are such that the indicia! locus 
contains an algebraic curve, which is not contained in any of the hyperplanes 
x(o) = 0. 
' 
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Then the algebraic set, defined by 

-X~O) = X~0)X~0)(A32 + J.L3W- J.L2V), 

-X~O) = X~O)X~0)(..\13 + J.L1U- Jl.3W), 

-X~O) = X~O)X~0)(..\21 + J.L2V- Jl.lU), 

-X~O) = X~0)x~0)u- 1 (Aa5VW + Jl.3V- J.L2W), 
(8.20) 

-x~O) = x~0)x~0)v- 1 (A46WU + J.LIW- Jl.3U), 

-x~O) = X~O)x~0)w-1 (A54UV + J.L2U- J.LIV), 

contains a curve, which we denote by E; (8.20) has been obtained from (8.14) 
by putting u := xi0) /x~o), v := x~o) /x~o) and w := x~o) /x~o). In the sequel, 
we view u, v and w as rational functions on E. We wish to express the fact 
that E is a curve in terms of u, v and w only. To do this, we compare the first 
and fourth equations in (8.20) to find a formula for u as a rational function 
of v and w; we also find such a formula for u by comparing the second and 
fifth equations in (8.20), and another one by comparing the third and sixth 
equations in (8.20). Altogether this gives the following three expressions for 
u in terms of v and w (as rational functions on E). 

J.L3V - J.L2W + Aa5vw A13v - J.L1 w- J.L3VW 1'1 v + ..\21 w + J.L2VW u- - -:.....;::_ _ ___;:;.:;.---....:......::-
- Jl.3W-J.L2v+..\32 - A4aW-J.LIV-J.L3 - J.LIW+A54V+J.L2 · 

(8.21) 
Note that, in (8.21), both the numerator and the denominator of the first 
equation cannot be identically zero on E, since we have shown that the curve 
cannot be contained in any of the hyperplanes Xi = 0. However, that could 
happen, say in the second equality. But then v and w would be determined 
and the first equation would yield u; from the first three equations in (8.20) 
we would only get a finite number of possibilities for x~o), ... , x~o), so we 
would not have a curve. Thus, as functions onE, all equations in {8.21) are 
meaningful as written. 

Comparing in {8.21) the third fraction with the first and the second yields 
a pair of equations in v and w, 

where 

A1 := J.L~ + A54Aa5, 

B1 := J.L11'2 + A54Jl.3, 

C1 := -J.L21'3 + Aa5J.Ll, 

D1 := J1.2(2..\25 - ..\14 - A3a), 

A2 := -J.Lll'2 + A54Jl.3, 

B2 := -J.L~ - A13A54, 

c2 := 1'11'3 + ..x4aJ.L2, 

D2 := J.L1(..\3a- ..\25), 

(8.23) 

and where - denotes the involution that permutes ..\1 with A4, and ..\2 with 
..\5 and ..\3 with Aa (recall that Aij = Ai- ..\;). 
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For future use we also define 

(8.24) 

which is invariant under the cyclic permutation 1 => 2 => 3 => 1. Its barred 
analogue is given by 

(8.25) 

Lemma 8.5. The indicial locus I is, away from the hyperplanes x~o) = 0, 
a finite {ramified) cover of the plane algebraic subset, defined by the two 
equations {8.22}. Therefore, I can only contain a curve if {8.22} contains a 
curve. 

Proof. The value of u in terms of v and w can be computed from one of the 
equations in (8.21). If we multiply the first three equations in (8.20) then we 
see that xio) x~o) x~o) can be expressed rationally in terms of u, v and w. Given 
this fact it is also seen that (xi0)) 2 can be expressed rationally in terms of u, v 
and w, simply by multiplying the first equation in (8.21) by xio). It follows 
in the same way from the second and third equations that (x~0)) 2 and (x~0)) 2 
can be expressed rationally in terms of u, v and w. It follows that, at least 
away from the hyperplanes x~o) = 0, the indiciallocus is a finite cover of the 
locus defined by (8.22). Since by Proposition 8.4 none of these hyperplanes 
can contain a curve, the claim follows. 0 

It follows that we need to analyze under which conditions on the coefficients 
A1 , ... , A6, J.ll, ... , J.L3 the algebraic subset, defined by the two equations in 
(8.22), contains a curve. Since each of the equations in (8.22) describes an 
algebraic curve (unless all of its coefficients are zero) the two equations can 
only define a curve in the following two cases. 

(1) The two equations in (8.22) are proportional; 
(2) The two equations in (8.22) have a common factor without being propor

tional. 

We will first analyze the first case. 

Proposition 8.6. The following three conditions are equivalent. 

{i} The two equations in {8.22} are proportional; 
{ii} A14 = A2s = A36 and P = 0; 

{iii} A14 = A2s = A36 and P = 0. 

Proof. The equivalence of (ii} and (iii) is an immediate consequence of the 
fact that A14 = A25 = A36 is equivalent to the three equalities A12 = A45 and 
A23 = As6 and A31 = A64 (P and P were defined in (8.24) and in (8.25)). 
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Suppose now that the two equations in (8.22) are proportional. Then the 
rank of 

( At Bt Ct Dt ~t ~t ~t) 
A2 B2 C2 D2 A2 B2 C2 

(8.26) 

is less than two. If we define P by (8.24) then we have the following identities, 
as follows at once from (8.23): 

-t At Ct 
=P, 1'2 

A2 C2 

A-t fh At = P +At (Aa6- At4), (8.27) 2t 
fJ2 A2 

-t Bt ct = P +A~ (A14- A2s), l't 
n2 c2 

where A~ := p.~ + Aa2At3· Thus, we have that P = 0 and that At(Aa6 -
At4) = 0 = A~ (At4- A25). Similarly, considering the barred analogues of these 
equations we have that P = 0 and that At(Aa6- At4) = 0 = A~(At4- A25). 
Thus, P = 0 = P and we only need to show that A14 = A25 = A36· This 
is obvious from the previous equations, except if At = 0 = At, or if A~ = 
0 = A~. If A~ = 0 = Ai, but At :f: 0 or At :f: 0 then we still have that 
Ata = A45, while A~ = 0 = A~ yields that p.~ + Aa2Ata = 0 = p.~ + A65A46· 
Thus, A32 = A65 and we are done. Similarly, if At = 0 = At, but Ai i: 0 or 
A~ =f. 0 we are done. So we only need to analyze the case 

At = At = A~ = A~ = 0. 

Then p.~ = A54A55 = A21A23 and p.~ = As6A46 = A23A13, which upon 
substitution in P = P = 0 yields p.~ = A54A54 = AatA2t· Substituting 
A45 = A45 + A55 and Ata = At2 + A23 in these equations we find that 
(At2, A2a, Aat) = ±(A45, As6, A54). We show that the minus sign is impossible. 
Suppose that (At2, A2a, Aat) = -(A4s, As6, A54). Then B2 = 2AtaA2t = B2 
(=f. 0) so that, by the rank condition, Bt = Bt. But this is impossible by 
non-degeneracy. 

In order to show that (ii) implies (i), notice that if At4 = A25 = Aa6 then 
Dt = D2 = 0 and that all 2 x 2 determinants of (8.26) are zero or divisible 
byP. D 

Having analyzed the case in which the two equations (8.22) are proportional, 
we now get to the case in which they are not proportional, but have a common 
factor. 
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Proposition 8.7. Suppose that the two equations in (8.22} have a common 
factor of the form v- t5w, without being proportional, and with t5 -:f; 0, then 

( 2 2 2) _ EE ( (-\23 - -\sa)2 (-\31 - -\a4)2 (-\12 - -\4s)2) 
Jtt' Jt2, Ji.3 - p2 \ \ ' \ \ ' \ \ 1\231\56 1\311\64 1\121\45 

{8.28) 

with the following sign specification 

where E := At2A23-\31 and F := -\4aA32 - -\asAt3· 

Proof. Substitute 8w for v in (8.22) and express that the resulting polynomial 
in w is zero, which expresses that the equations in {8.22) have a common 
factor v- 8w. The resulting equations on the coefficients are given by 

tSAi + ci = o, 
t52 Bi + 8Di - Bi = 0, 

8Ci +Ai = o. 
i = 1,2. {8.30) 

If we substitute {8.23) into three of these equations, namely in 8Ai + Ci = 0 
fori = 1, 2 and in 8C1 + A1 = 0 then we find three equations which are linear 
in J.t1, -\13 and A46, when A54 is written as -\sa - A46. We write them as the 
following linear system: 

{8.31) 

The determinant of the above matrix is A23A56JI.2{1 - t52). Let us assume 
for now that 8 -:f; ±1 so that, by non-degeneracy, this determinant is non
zero and we can solve (8.31) linearly for Ji.1, -\13 and ,\46· If we substitute 
the result in two other equations of {8.30), namely in t5C2 + A2 = 0 and in 
t52 B1 + t5D1 - B1 = 0, then these equations reduce to 

so that, again by non-degeneracy, we may conclude that 

(Jt3t5- Jt2}(Jt2tS- J.t3) 
8-\sa 

(8.32) 
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Substituting this value in (8.31) we can express f.Ll> A1a and A46 in the 
following compact form 

c5A~6 + ( c5JL2 - J.ta) ( c5J.ta - JL2) 
f.Ll = A55(82 - 1) ' 

A __ (c5JL2 - J.ta)2 - c52 A~6 
46 - A55(82 - 1) ' 

(8.33) 

JL2 - c5J.ta 
A1a = A45 c5(c5 ) . 

f.L2 - J.ta 

If we substitute (8.32) and (8.33) in the remaining equation of (8.30), namely 

in the equation c52 B2 + 8D2 - B2 = 0, then we find that that equation is 

automatically satisfied, so that we have the complete solution to (8.30). 
Again by direct substitution of (8.32) and (8.33), the following identities are 
seen to be satisfied: 

JL~(A45Aa2- Aa5A13)2 = A12Aa1A45A54(A2a- A55)2, 

JL~(A54A1a- A45A2t)2 = A2aA12A55A45(Aa1- A54)2, 

JL~(Aa5A21- As4Aa2)2 = Aa1A2aA54As5(A12- A4s)2, 

which proves (8.28). Finally, substitute in the relation I~~ ~:I = 0, which is 

a consequence of (8.30), the found values of JL~, •.• , JL~ to obtain the relation 

(8.29). 
We have assumed that c5 f. ±1. But when c5 = ±1 then A14 = A25 = A36 

and P = 0, as follows by direct computation from (8.30). By Proposition 8.6 
the two equations (8.22) are proportional, contrary to our assumption. D 

Remark 8.8. As in the prior case, P = P = 0, as follows from ih C2- .ihC1 = 
0 and A1C2- A2C1 = 0, themselves a consequence of (8.30). 

Proposition 8.9. Suppose that two equations in (8.22) have a common fac
tor of the form v - (aw + {3) without being proportional, and with a{3 f. 0. 

There exist constants p, q and square roots €1 and €2 of 1, with p E C* and 

q E C \ {0, ±1, ±1/3}, such that 

A12 = p(q- 1)a(3q + 1) 

A23 = 16pqa 

Aa1 = p(1- 3q)(q + 1)a 

A4s = p(q- 1)(3q + 1)a 

A55 = 16pq 

Aa4 = p(1- 3q)a(q + 1) 

f.Ll = €lp(q 2 - 1)(9q2 - 1) 

f.L2 = 4€2pq(q- 1)(3q + 1) 

J.ta = 4fl€2pq(q + 1)(3q- 1). 
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Proof. Let us suppose that both equations in (8.22) are divisible by the same 
factor v- (aw + (3), where a and (3 are independent of i = 1, 2, and a(J =/: 0. 
By looking at the top degrees we conclude that this means that these two 
equations can be written as 

where c5i = Bi/a = Ai/ (3, leading to the following equations 

Ai = f3c5i, 

Bi = ac5i, 

ci = f3Bi, 

Ci = -aAi, 

Di = c5i - (JAi - aBi, i = 1,2. (8.34) 

We deduce from them the following relations which are the ones that will be 
used in what follows: 

AiBici = -AifJici, 
-2 - - -2 2 - -

Ci (AiAi + BiBi)- AiBi = -AiBiCiDi. 

(8.35) 

(8.36) 

(8.37) 

To obtain the last equation, deduce from (8.34) that aAiBi = BiCi and that 
(JBi = Ci. Substituting this into 

first multiplied by - AiBlJi yields the desired expression. 
We will now investigate the equations in uw-space of the curve that is 

common to the two curves defined by (8.22). Since this common curve is given 
in vw-space by v = aw + (3, we get its equation in uw-space by substituting 
aw + (3 for v in the first equation of (8.21). This gives 

which we write as 

(8.38) 

where it is important that the linear term h ( w) is not identically zero and 
that the coefficients A55a and J.L3f3 are different from zero (by non-degeneracy 
and since a(J =/: 0). We claim that (8.38) must be divisible by a linear function 
~w + ry, with ~ =/: 0. 
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To show this, let us first point out that if any relation holds between 
u, v, w, the cycled relation holds between u, v, w by cycling u => v => w => 
u, 1 => 2 => 3 => 1 and 4 => 5 => 6 => 4, yielding similar, but equivalent 
equations, for v in terms of u and w, to wit 

(8.39) 

where i = 1, 2. The primed expressions A~, B~, ... refer to the expressions but 
cycled once, i.e., 1 => 2 => 3 => 1, 4 => 5 => 6 => 4. 

We have now three different equations (8.38) and (8.39) (with i = 1, 2) 

for the curve in uw space. If (8.38) is irreducible then (8.39) must fori = 1, 2 

be divisible by (8.38), since the latter is linear in u. But notice first that 
(8.39) does not have a constant term (a term that is independent of u and 
w), while (8.38) has such a term (which is different from zero). And notice 
also that the quotient must be independent of w because of the non-zero 
coefficient of w 2 in (8.38). Therefore, the quotient must be a multiple of u, 
which means that the two equations in (8.39) are proportional. But then we 
are in the case of Proposition 8.6, so that the two equations in (8.22) are 
themselves proportional, contrary to our assumption. It follows that (8.38) 

cannot be irreducible. Since it is linear in u, with a non-zero coefficient which 
is independent of u, (8.38) must be divisible by a linear function ~w + ry, with 

~ # 0. 
Upon dividing (8.38) by the factor ~w+ry we find that the common factor 

of the two equations (8.39) is of the form u- (a'w + {3'), with a' f3' ;i 0. But 
this means that we are in the same situation as in the beginning of this proof, 
but with respect to the shifted equation (8.39). This implies that the relations 
(8.35), (8.36) and (8.37), imply the same relations but shifted. Applying this 
to 

I A1 A21 2 2 2 
0 = - - = .A21 (.A23J.L1 + .Ae4J.L2 + .A12J.L3 + .A23.Ae4.A12) 

B1 B2 

we get the following three equations 

0 = .A23J.L~ + .Ae4J.L~ + .A12J.L~ + .A12A23Ae4, 

0 = .A23J.Li + .A31J.L~ + .A4sJ.L~ + .A23.A31A4s, 

0 = .AseJ.L~ + A31J.L~ + .A12J.L~ + .A31A12.As6· 

(8.40) 

A fourth equation, which is shift-invariant, is found from 11~ g~ I = 0, and 

is given by 

(8.41) 
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The consistency of the four equations {8.40) and {8.41) implies that ..1 = 0, 
with 

where 

A23 A54 .X12 At2A23A54 

A·- A23 A31 A45 A23A31A45 ,-2\-2,-2 
~ .- AftA56A64 

As6 A31 .X12 A31 .X12As6 

.Xs6 A54 A4s .Xs6.X64A4s 

= (1 - xy- yz- zx)2 - 4xyz(x + y + z- 2), 

·- .X12 ·- A23 ·- A31 x.--, y.--, z.--. 
A4s .Xs6 A64 

Moreover, the consistency implies that three of the four equations (8.40) and 
(8.41) can be solved linearly for (p.~, p.~, p.~).lf, say, the three equations (8.40) 
can be solved linearly for (p.~, p.~, p.~), i.e., 

.X23 A64 .X12 

L1o := .X23 A31 A4s ::f. 0, 

As6 .Xst At2· 

then {8.36), for i = 1, can be written after (partly) substituting the found 
values for (p.~, p.~, p.~), in the following simple form: 

4 -2 2 
P.tP.3(P.2- A12A23A4s.Xs6) + P.2EE F..1..10 = 0, 

where E and F were defined in Proposition 8. 7. Since ..1 = 0 this gives us an 
expression for p.~, which, together with its cycled forms, is given by 

P.t = At2A3tA4sA64, p.~ = A23A12As5A4s, p.~ = A31A23A54As6· (8.42) 

For any other three of the four equations {8.40) and {8.41) one finds the same 
result. The fact that the discriminant of ..1 in xis given by 

disc{L1, x) = 16yz(z- 1)2(y- 1)2 

suggests to choose p, q, r such that p2 = x, q2 = y and r 2 = z. This allows us 
to replace in all formulas the parameters A12, A23 and A31 by the parameters 
p,q and r: 

(8.43) 

The signs of p, q and rare chosen as follows. If we substitute (8.43) in {8.42) 
then we find that 

and the signs of p, q and r can be chosen such that 

(8.44) 
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A priori there is also the possibility of a common minus sign for each of 
the three formulas in (8.44), but this possibility is excluded by substituting 
(8.43) and (8.44) (or its alternative with a common minus sign) into the 
two equations in (8.36): only when substituting (8.44) are those equations 
satisfied. This fixes the signs of p, q and r up to a common ± sign. To fix the 
latter, multiply the three formulas in (8.44) to obtain that 

(f..'ll-'21-'3)2 = (pqr A4s.Xsa.Xe4)2. 

We now fix the common ± sign for p, q and r by demanding that 

f..'ll-'21-'3 = pqr.X4s.Xsa.Xe4· (8.45) 

As we already pointed out, if we substitute (8.43) and (8.44) in (8.36) 
then we find that these two equations are automatically satisfied. On the 
other hand, if we substitute them in any of the three equations in (8.35) then 
we find that each of them is (by non-degeneracy) equivalent to 

pq + qr + rp + 1 = 0. (8.46) 

If we substitute (8.43) and (8.44) in the two equations in (8.37) we find 
formulas that depend on f..'lf-'21-'3 only, hence we can eliminate the dependence 
on the 1-'i completely by using (8.45). The resulting equations are given by 

(p + q)(pq + l)((q + 1)2 .Xse +(p-I? A4s)- r(p -1)2(q + 1)2 .Xe4 = 0, (8.47) 

and 

(p + r)2 ((r - 1)2 Ae4 - (I + p)2 A4s)+ (8.48) 
(r- 1)(1 + p)(q(p + l)(r- 1) + (q2 - l)(p + r)).Xsa = 0. 

If we add to these two linear equations in A45, .Xsa and Ae4 the following 
obvious equation 

(8.49) 

then the determinant of the resulting linear system admits the following com
pact representation 

r(r + I)2(r- 1)3(q- 1)2(q + 1)4(3qr + q- r + 1) 
2 (q+r)5 ' 

where we have used (8.46) to eliminate p (linearly). By non-degeneracy the 
linear system admits a non-trivial solution for A45, .Xse and Ae4 = 0, hence the 
determinant vanishes. By non-degeneracy and since we assumed that the two 
equations in (8.22) are not proportional, we conclude that 3qr+q-r+ 1 = 0. 
Indeed, if r = 0 then .X31 = 0, which contradicts non-degeneracy; if r 2 = 1 
then (8.46) implies that p2 = 1 or that q2 = 1, which in either case implies, 
by (8.43), that .X14 = .X2s = A3e, so that by Proposition 8.6 the two equations 
in (8.22) are proportional (recall from (8.41) that P = 0); if q2 = 1 we arrive 
at the same conclusion. 
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Thus, 3qr + q- r + 1 = 0 which gives, together with (8.46) the following 
expressions for p and r in terms of q, 

q+1 
r=---. 

3q -1 

It follows that we can express all the parameters of the metric in terms of q. 
To do this, first solve the homogeneous linear system (8.47), (8.48), (8.49) 
for .A45 , .As6 and A64· Up to a non-zero constant factor (which we called pin 
the statement of the proposition) the solution is given by 

.A4s = (q- 1)(3q + 1)3, 

.As6 = 16q, 
A64 = (1- 3q) 3 (1 + q). 

The values of .A12, A23 and A31 then follow at once from it and from (8.43). 
Also, we get from (8.44) that 

f-Li = (q2 -1)2(9q2 -1)2, 

f..L~ = 16q2(q- 1)2 (3q + 1)2 , 

f..L~ = 16q2 (q + 1)2 (3q -1) 2 . 

Up to signs this lead to the values of the f..Li by taking square roots. A con
straint on the signs is found from (8.45), which, again by direct substitution, 
yields 

f..Llf..L2f..L3 = 16q2(9q2 -1)2(q2 -1)2. 

This leads to the formulas that were stated in the proposition. Conversely, it 
follows from direct substitution that the given formulas satisfy (8.35), (8.36) 
and (8.37) for any value of q (for q E {0, ±1, ±1/3} one of the parameters 
AiJ or f..Li vanishes, which is forbidden by non-degeneracy). D 

Proposition 8.10. Suppose that two equations in (8.22) are not propor
tional, but have a common factor of the form w- a, or of the form v- a, 
where a is constant. Then the indicial locus I cannot contain a curve. 

Proof. Let us assume that that we have a common factor of the form w - a. 
Notice that a f. 0 in view of Proposition 8.4. If we substitute a for w in 
(8.22) then we find the following relations on the coefficients. 

Aia+Bi = 0, 

Cia2 + Dia - Ci = 0, 

Bia + Ai = o. 
(i = 1,2) (8.50) 
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This leads to 

(8.51) 

Let us first assume that A55A46 - A32A13 :/; 0. Then we may solve (8.51) for 
f-L~ and f-L~· When we substitute the result in 

0 = I ~1 ~1 I- ~2 ~2 1 B1 A1 B2 A2 

= (J.Lt - f..L~) 2 - (A13A45 + .A12A45)f..L~ + (.A12.A23 + A45A55)f..L~ 

+A12A45(.A23A55 + A13A4a- 2J.L~), 

(8.52) 

then we find a quadratic polynomial in f-L~, whose solutions are given by 

2 2 ( .A23 - A55 ) 2 
f-L3 = A23 A55, and J.L3 = A13A45 A A 

13- 46 
(8.53) 

If we substitute the first possibility, f-L~ = A23A55 back into (8.51), then it 
simplifies to 

0 = .A65/-L~ + A13J.L~ + .A12A55A54, 

0 = A32f..L~ + A46f..L~ + A45 A32 A21, 

which is easily seen to have f-Lt = A54A21 and f..L2 = 0 as its only solutions. 
But this possibility is excluded by non-degeneracy of the metric. Consider 
therefore the second possibility in (8.53), and substitute it into (8.51). This 
gives 

There is one restriction on the signs of the f..Li, which follows from substituting 
these solutions in 

namely 

so that 
(8.55) 
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It then follows, by using A1 a+ B1 = 0 and (8.53) and (8.54) to solve for o:p.3, 
and then using (8.53) again to solve for o:2 we find 

_ l-'11-'21-'3 + As4P.~ _ , A23 - A56 and 2 _ A13 (8.56) 
0:1J.3 - - 2 - A13 1 0: - - • 

As4A6s + p.2 A13 - A46 A46 

If we substitute these formulas and (8.55) in the identity O:IJ.10:IJ.3 = o:2p.1p.3 
then we find 

A4s- A12 
o:p.1 = =fA13 A A . 

13- 46 
Consider now u, as given in the first equality in (8.21) (recall that we are 
looking for a curve in uvw-space), and notice that p.1 u is expressible in terms 
of o:p.1, o:p.3, p.1p.3, 11-2 and v only, for each of which we have found an explicit 
expression in terms of the Aij (recall that vis free and that w =a). Therefore 
we can compute p.1u by a direct substitution in (8.21), and we find that the 
result is independent of v, namely 

A12- A4s 
P,1U= -A13 A A . 

13- 46 

Finally we plug this and (8.56) into the right hand side of the second equation 
in (8.20) to find 

( A12- A45 A23- A56) 
A13 + 11-1 u - l-'30: = A13 1 - , , - , , = 0, 

A13 - A46 A13 - A46 

and so x~o) = 0. In view of Proposition 8.4 this means that if w - a is a 
common factor of the two polynomials in (8.22) and A6sA46 - A32A13 "# 0 
then the indicia! locus does not contain a curve. 

Let us now assume that A65A46- A32A13 = 0, but that A65A21- A32A54 "# 0. 
Then we proceed as in the previous case, except that we solve (8.51) for p.~ 
and p.~ and we substitute the result in (8.52). This gives 

2 , (A23 - A64)2 ±, A13 - A64 2 A13A~3 
1-'1 = A13 A46 ,P,2 = A23 A46 ,IJ.3 = ~-

A sign specification is again found from (8.54), namely 

A23- A64 
l-'11-'3 = ±A13A23 .....c:;;.::_,.,-~ 

A46 

We find p.1 a and p.3o: from A1 a+ B1 = 0, as above, yielding also 11-1 u, to wit 

A23 - A64 A13A23 
11-10: = =fA13 , = ±p.1u, l-'30: = -,-, 

A46 A64 

where o:2 = A13 /A46 , as in (8.56). Then again x~o) = 0, since 

( A23- A64 A23) 
A13 + 11-1 u - p.3o: = A13 1 + A64 - A64 = 0, 

excluding also this case. 
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We are left with the possibility 

A55A45 - A32A13 = 0 = A55A21 - A32A54. (8.57) 

If we write A54 = A54 - A55 then (8.57) implies, upon eliminating A65 , that 
A13 = A45€ and that A55 = Aa2t:, where t:2 = 1. If € = 1 then it follows that 
A14 = A25 = Aa6, and both equations in (8.51) reduce toP= P = 0. In view 
of Proposition (8.6) the two equations in (8.22) are proportional, which is 
contrary to our assumption. Therefore, € = -1, which means that A13 = -A46 

and A55 = -A32· In this case, first solve for any of the (proportional) equations 
in (8.51) for JL~ and notice that, upon substituting the found value in (8.52), 
the latter becomes a complete square, 

(JL~ - JL~ + A~2) 2 = 0. (8.58) 

This gives us a formula for JL~. Substitute now a= -BI/A1 , as follows from 
(8.50) in each of the two equations on the second line of (8.50) to find that 
JLi + Ai2 = 0, or that JLa = JL1JL2/(A2 -AI). If we substitute the second 
possibility in Aia + Bi, for i = 1, 2, we find aJLI/L2 = 0, which is impossible 
by non-degeneracy of the metric. Comparing the first possibility JLi + Ai2 = 0 
to (8.58) implies that JL2 = 0, which is also excluded by non-degeneracy. 

This shows that we cannot have a common factor of the form w - a, 
except possibly when we are in the case of Proposition 8.6. In other words, 
if the parameters that define the non-degenerate metric do not satisfy both 
A14 = A25 = Aa6 and P = 0, then a curve which is contained in the indicia! 
locus cannot be contained in a hyperplane of the form w =a. By symmetry, 
it can then also not be contained in a hyperplane of the form v = a or of the 
form u =a. In particular, if the two equations in (8.22) are not proportional 
then they also cannot have a common factor of the form v - a. 0 

We now assemble the previous propositions to prove the main theorem. 

Proof of Theorem 8.3. As we pointed out the two equations in (8.22) must 
define a curve, which means that they are proportional, or have a common 
factor (without being proportional). We dealt with the case of proportional 
equations in Proposition 8.6, which lead to the first case in Theorem 8.3. 
Suppose now that the two equations in (8.22) have a common factor </J(v, w), 
without being proportional. Since both equations are quadratic in v the factor 
is of degree 0, 1 or 2 in v. The case in which the degree in v is zero, i.e., the 
factor is of the form w-a, was treated in Proposition 8.10; we have seen that 
in this case the indiciallocus cannot contain a curve. The next possibility is 
that <jJ(v, w) is linear and monic in v. Looking at the equations (8.22) one 
sees that there are only the following possibilities: 

(1) </J(v, w) = v- a, with a# 0; 
(2) </J(v, w) = v- aw, with a# 0; 
(3) <jJ(v,w) = v- (aw + /3), with a/3 # 0; 
(4) </J(v,w) = v- w(aw + {3), with a# 0, 

where a and f3 are constants. 



8.1 Geodesic Flow on 80(4) 287 

We dealt with case (1)-(3) in Propositions 8.7, 8.9 and 8.10. Let us analyze 
case (4), i.e., we suppose that the two equations in (8.22) have a common 
factor of the form v- w(aw + {3), with a ':/; 0, without being proportional. 
If we substitute v = w(aw + /3) in these equations and we express that the 
resulting polynomial in w is zero, and so its coefficients are identically zero, 
then we find the following equations. 

Ai = 0, 

aBi + Ci = 0, 

2af3Bi + /3Ci + aDi = 0, 

/32 Bi + f3Di - aCi - Bi = 0, 

f3Ci + Ai = o. 

(i=1,2) (8.59) 

Notice that the last equation implies that P = 0 (see (8.27)). Since A1 = 
A2 = 0 we have (see (8.23)) that J.t~ = As4Asa and J.tl = As4J.t3/J.t2· Then the 
second equation in (8.59) implies that 

so that A14 = A36, by non-degeneracy. If we substitute this and a = 
-CI/B1 , f3 = -AI/Cl in aD1 - f3C1 = 0, gotten by subtracting 2/3 times 
the second equation from the third in (8.59), then we get 

.A~5 .Asa.A13(..\23 - .Asa)J.t2J.t~ = 0, 

so that .-\25 = A36, again by non-degeneracy. Thus, we have that P = 0 and 
that .-\14 = .-\25 = A36, which implies, according to Proposition 8.6, that the 
two equations in (8.22) are proportional. Which is contrary to our assump
tions, showing that the two equations in (8.22) cannot have a common factor 
of the form v- w(aw + /3), with a':/; 0 (except when they are proportional). 

In principle we need to consider now the cases in which ¢(v, w) is linear 
in v but not monic, i.e., its leading term is linear in w, leading to four cases, 
as above. We claim that each of these four cases corresponds to one of the 
cases ( 1) - ( 4). Let us show this for 

¢(v, w) = (f3'w + a')v- w. 

If the latter is a common factor of the two equations in (8.22) then they can 
be written as 

((f3'w + a')v- w)(v<Si + Biw + Ai)· 
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This leads to the following equations, coming from the coefficients of viwi: 

Ai = (3'8~, 
Bi = a.'8~, 

ci = !3' tJi. 

ci = -a.'Ai, 
-Di = 8~- (3' Ai- a.' Bi, i = 1,2. 

A simple comparison of these equations with (8.34) shows that these equa
tions are the barred duals of each other, hence leading to the same solutions, 
but with >.12 H A45 and >.23 H >.56 and >.31 H >.64· Notice that this leads 
to nothing new in Propositions 8.6 and 8. 7 because the conditions that are 
given there on the metric are invariant under this transposition. By the same 
means the case in which ¢(v, w) is a quadratic polynomial in v is shown to 
be dual to the case in which ¢(v,w) is independent of v. Therefore we have 
analyzed all possible cases and Theorem 8.3 is proven. 

Remark 8.11. When searching for half-diagonal non-degenerate metrics on 
so(4) which lead to an irreducible a.c.i. system we have only singled out 
those irreducible systems which admit a weight homogeneous principal bal
ance. A priori there might also exist such metrics which admit only principal 
balances that are not (weight) homogeneous, but no method is at present 
known to single out these cases. Interestingly enough, it can however be 
shown by direct computation that the mere existence of balances (not nec
essarily principal balances) already singles out a particular class of metrics. 
This is a consequence of the fact that if 

is a balance to (8.13), with x<0 ) -:f. 0 and r ;;<: 2, then x<0) must satisfy 
fi(x~o), ... , x~0)) = 0, for i = 1, ... , 6, where we have written the i-th equa
tion in (8.13) as Xi = fi(x1 , ... , x6)· The existence of a non-zero solution to 
the system of algebraic equation /i(x~o), ... , x~0)) = 0, where i = 1, ... , 6, 
implies, by direct computation, that the metric necessarily satisfies one of 
the following seven conditions. 

(1) >.23>.56 = (J..t2 ± J..t3)2, 
(2) >.31>.64 = (J..t3±J..t1)2, 
(3) >.12>.45 = (J..t1 ± /-t2)2' 
(4) 2.:~= 1 aiJ..tHJ..t~ + bi) + biJ..t~+1J..tL1 = o, 
where a1 = >.e5A32 and b1 = A54A12- A45A31, and a2,b2,a3,b3 are obtained 
from a1 and b1 by the cyclic permutation 
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8.2 Geodesic Flow on SO( 4) for the Manakov Metric 

8.2.1 From Metric I to the Manakov Metric 

In this paragraph we show that, except for some limiting cases, the case (1) 
of Theorem 8.3 corresponds to the Manakov metric. Recall that in case (1}, 
His given by 

1 6 3 

H = 2 LAiX~ + LJl.tX!Xt+3, 
i=1 l=1 

where the parameters defining the metric satisfy 

..\14 = ..\2s = ..\3s, 

J.t~..\23 + J.t~..\31 + J.t~..\12 + ..\12..\23..\31 = 0, 

with Aij := Ai- Aj. We have that, up to a Casimir, the metric is diagonal 
in the natural so( 4) coordinates Xii. Indeed, solving (8.8) for x1 , ..• , x6 and 
substituting the result in H yields2 

3 

H =~I: (..\i(Xjk + xi4)2 + ..\i+3(xjk- xi4)2 + 2J.ti(xJk- xj4)) 
i=1 

1 ~ 2 2) = 2 L....)(..\i + Ai+3 + 2J.ti)Xik + (..\i + Ai+3 - 2J.ti)Xi4 
i=1 

3 

+I: ..\i,i+3xjkxi4, 
i=1 

and we see that the last term is a multiple ofthe Casimir Qo (see (8.7)), since 
Ai,i+3 is independent of i (see (8.60)). In the sequel we drop this Casimir from 
Hand we write 

which means that the Aii are defined by 

A12 = 2(..\3 + Jl.3) - c, 

A23 = 2(..\1 + J.td - c, 

A13 = 2(..\2 + Jl.2) - c, 

A14 = 2(..\1 - Jl.1) - c, 
A24 = 2(..\2 - Jl.2) - c, 

A34 = 2(..\3 - Jl.3) - c, 

where c = ..\14 = ..\2s = A35. If we solve these equations linearly for Ai, Jl.i, i = 
1, ... , 3 in terms of the Aii• while treating c as a given constant, and we 
substitute the solution in condition (8.60), then the constant c disappears 

2 We use here again the convention that ( i, j, k) is any cyclic permutation of 
(1, 2, 3). 
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and we find that the constants Aij satisfy K(A) = 0, where K(A) is the 
cubic polynomial, defined by 

K(A) := A12A34(A23 + A14 - A13 - A24) 

+A23A14(A13 + A24- A12- A34) 

+A13A24(A12 + A34- A23- A14). 

(8.60) 

This defines a cubic hypersurface C in the six-dimensional vector space of all 
diagonal metrics. We claim that C contains a Zariski open subset U such that 
if A E U then there exist constants Ai, Bi, where i = 1, ... , 4, such that 

Bi -Bi 
Aii = Ai- Ai. (8.61) 

To see this, notice first that if such constants exist, then there also exist such 
constants with A4 = B4 = 0 and A3 = 1. It is then easy to solve (8.61) with 
1 ~ i < j ~ 4, but (i,j) =I (1, 2), for the Ai and Bi in terms of the Aij, giving 

A _ A34- A13 
1 - A A ' 14 ~ 13 

A _ A34- A23 
2 - A A ' 24- 23 

A3 = 1, 

B _ A34- A13A 
1- A A 14, 

14- 13 

B _ A34- A23A 
2- A A 24, 

24- 23 

The remaining equation, (8.61) with i = 1 and j = 2, is then equivalent to 
(8.60), so we have parametrized a Zariski open subset U of C, showing our 
claim. Since a metric on so( 4) which is of the form 

H - ! ""' Bi - Bi x2. 
- 2 L..J A- - A · '1' 

1~i<j~4 t 3 

is called a Manakov metric, it shows that, except for some limiting cases, the 
case (1} of Theorem 8.3 corresponds to the Manakov metric. 

The Liouville integrability of the Manakov metric follows from the fol
lowing observations, due to Manakov (see [110]; his statement is the n

dimensional generalization of the statements that we give here). First, let 
A1 ... , A4 be pairwise different, but otherwise arbitrary, and similarly for 
B1, ... , B4. If we define the symmetric matrix A by 

Bi -Bi 
Aii = Ai- Ai' 

then the following equality holds, for any 4 x 4 matrix X: 

[X,B]+[A,A·X] =0, (8.62) 

where A := diag(A1 , ... , A4) and B := diag(B1, •.. , B4) and where A· X de
notes the Kronecker product: (A· X)ii = AijXij· The proof of this statement 
is immediate. 



8.2 Geodesic Flow for the Manakov Metric 291 

His second observation is that, as a consequence of (8.62), the Lax equa
tion X = [X, A· X], which is the geodesic flow equation (8.5) with H the 
Manakov metric, is equivalent to the Lax equation with parameter 

(Ab +X).= [Ab + X,Bb +A· X]. (8.63) 

Again the proof is immediate, but notice that the combination of his two ob
servations yields, in view of Proposition 6.28, the integrability of the geodesic 
flow on so(4), defined by the Manakov metric. Indeed, the characteristic poly
nomial of X+ Ab is given by 

4 

lAb+ X- ~Id41 =II (Aib- ~) + Q1~2 + Q2~ + Q3b2 + Q~, (8.64) 
i=l 

where the two Casimirs Q0 and Q1 are given by (8.7), and Q2 and Q3 are 
given by 

Q2 :=- Ll~i<j~4(Ak + Al)XiJ, 

Q3 := Ll~i<j~4 AkAlX[j, 
where {i,j,k,l} = {1,2,3,4}. 

The four quadratic polynomials Q0 , ... , Q3 provide four independent con
stants of motion for V1, which is sufficient for its integrability. Indeed, the 
phase space is C6 , and since we have two independent Casimirs Q0 and Q1 

only, the rank of the Poisson structure being 4 at a generic point of C 6 , 

there can be at most 4 independent constants of motion and this number is 
the right number for Liouville integrability, see Definition 4.13. This means 
that the Hamiltonian H of V1 is necessarily dependent on these quadratic 
polynomials; in fact one easily verifies that 

(8.65) 

We now show that the Lax equation (8.63) satisfies the Linearization Crite
rion. We do this by verifying the conditions in Corollary 6.43. Let f(x) = 

I:~=O cixi be the cubic polynomial, for which f(Ak) = Bk, where k = 1, ... , 4. 
We claim that 

Bb + A · X = [ b/ ( Ab ; X)]+ , (8.66) 

which verifies condition (6.54). In fact, 

[~! ( Ab;x) L = [tc;~ ( A~;xrL 
= t.c; (A'~+ ~AixAi-i-1) 
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3 i-1 

= Bb+ I:cii:AiXAi-i- 1 , 

i=O j=O 

since f(A) = L~=O ciAi = B, and for 1 ~ k, l ~ 4 we have 

3 i-1 3 i-1 

LCiL(AiXAi-i-l)k1 = I:ciLA~Xk,A;-;-l 
i=O j=O i=O j=O 

3 i-1 

= xk, I:ci LA~A;-;-1 

i=O j=O 

3 Ai- Ai 
= xkl I:ci Ak- AI 

i=O k l 

= Xkl f(Ak) -/(A,) 
Ak-A, 

= Ak,xk,, 

since f(Ak) = Bk and Akl = (Bk - B,)f(Ak -A,). This proves (8.66). 
In order to verify the remaining conditions in Corollary 6.43, let us fix 

generic constants Co, ... , c3 and let us consider the smooth plane algebraic 
curve, defined by 

4 

II (Aib- S) + c1S2 + c2sb + c3b2 + ~ = o, (8.67) 
i=l 

and let X E so( 4) be such that the characteristic polynomial of Ab + X is 
given by the left hand side of (8.67), see (8.64). Four points p1 , ... ,p4 need 
to be added to this curve in order to complete it into a compact Riemann 
surface. Explicitly, these points are given, in terms of a local parameter ', by 

Pi: 
1 b= -, 
' 

(8.68) 

where each Ui depends on the values c1, ... , C3 of the constants of motion 
Q1, ... , Q3 only, namely 

in particular Ui ::fi 0, since X (and hence eo, ... , c3) is assumed generic. It 
follows that that b does not vanish at any of the points at infinity Pi, which 
is one of the conditions that needed to be checked. 
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The final condition to be checked is that ei/b is finite at each of these 
points. Denoting, as before, the (i,j)-th cofactor of Ab+X -~Id4 by Llii• we 
have that ei = Llli/Llu. For 6 at direct substitution of (8.68) in Ll12/Llu 
yields the following leading behavior at the points Pi· 

at Pt. 

at P2, 
6= 

at P3, 

X14X24/(A2 - A4) + O(~) at p4. 
u4 - X~4/(A2 - A4) - Xl4/(A3 - A4) 

Thus, 6 has a simple pole at worst at each of the point Pi and 6/b has no 
pole at all at these points. By symmetry the same holds true for e3/b and 
for e4/b so that, by Corollary 6.43, we may conclude that (8.63) satisfies the 
conditions of Theorem 6.41. 

8.2.2 A Curve of Rank Three Quadrics 

In this section we want to exhibit a remarkable property of the linear span 
of the quadratic constants of motion Qo, ... , Q3 of the Manakov metric. Re
call that these polynomials, which appear as coefficients in the characteristic 
polynomial of the matrix X + Ab, are given by 

Qo = X12X34 + X23X14 + X31X24, 

Ql = Lt~i<j~4 Xl;, 
Q2 =- Lt~i<j~4(Ak + A,)Xl;, 

Q3 = Lt~i<j~4 AkA,Xl;· 

(8.69) 

Consider the quadratic polynomial Q~< := :E~=O KiQi, which is a linear combi
nation of the Qi, where 1t =(~to: 1t1 : 1t2 : 1t3) is arbitrary3. For generic 1t we 
have that Q ~< defines a non-degenerate quadratic form, which will be identi
fied with Q~<. The matrix of QK. with respect to the coordinates x1, ... , x6 (see 
(8.8)) is a direct sum of three blocks, corresponding to the coordinate pairs 
Xi, xi+3 fori= 1, 2, 3. Namely, the block Ki that corresponds to Xi, Xi+3 is 
given by 

3 It is most natural to view K. as an element of P 3 , which we will do in the sequel. 
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where Ar = AiAk ±AiA4 and A~= Ai +Ak -Ai -A4 (recall that {i,j, k} = 
{1, 2, 3}). It follows that det(Q"') = fl~=l det(Ki) = 0 defines a surface of 
degree 6 in P 3' which consists of three quadratic cones cl u c2 u c3 in P 3' 
where Ci is given, for i = 1, 2, 3, by det(Ki) = 0, i.e., 

where {i,j,k} = {1,2,3}. The remarkable property, alluded to above, is that 
the intersection of these three quadratic cones is a curve, more precisely an 
elliptic curve, and that for each point of this curve the corresponding quadric 
has rank three (at most). To see this, it suffices to take the difference of any 
two of the equations (8.70) for the cones cl, c2, c3, which always yields, up 
to a non-zero constant, K1K3 - K,~ = 0. Thus, the intersection cl n c2 n c3 
consists of the projective curve C1 nC0 , where Co is the smooth quadric given 
by K.1K.3 - K.~ = 0. It is easily verified that the resulting projective curve£ is 
non-singular. In order to determine its genus, substitute the equation for Co 
in the one for cl to find that£ is birational to the projective curve 

4 

K,6K,~ = 4 II (K-2 - AiK-3), (8.71) 
i=l 

Notice that this curve is singular at (1 : 0 : 0 : 0); in fact this curve has 
two irreducible components, one of which is £, and the other one is the 
line K-2 = K.3 = 0. We read off from (8.71) that£ is a double cover of P 1 , 

ramified in four points (the points (K-2 : K-3) = (Ai : 1)), hence£ is an elliptic 
curve. For any point K E £, with K3 = 1, i.e., K = (Ko : K~ : K2 : 1) with 
,..,5 = 4 flt=1 (K-2 - Ai) we have that 

Ql< = K~Ql + K2Q2 + Q3 ± 2 rrt=l VK2- AiQo 

= L:~=l ( V(K-2- Ai)(K-2- A4)Xjk ± V(K-2- Aj)(K-2- Ak)Xi4 r, 
(8.72) 

so that each of these quadrics Q"' has rank three. Similarly, the two points 
of£ for which ,..,3 = 0, namely K. = (±2 : 1 : 0 : 0) lead to two rank three 
quadrics, to wit 

It is clear that it is very exceptional that a three-dimensional family of (gener
ically) rank six quadrics contains a whole curve ofrank three quadrics. Still, 
we will observe such a phenomenon for each of the three integrable geodesic 
flows that we will discuss. 

Four particularly simple quadrics are obtained by substituting K-2 = Ai 
in (8.72), where i = 1, ... , 4, and dividing by ITk;i)Aj- Ak)· 
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Namely we obtain the following four quadrics: 

(8.73) 

Their sum is zero, but any three of them are independent, having the same 
span as the span ofQ1 , Q2 and Q3 • Notice that, in terms of these polynomials, 
Formula (8.65) can also be written in the following form: 

Since the sum of the ~ is zero, H also be simply written in terms of the first 
three of them as 

8.2.3 A Normal Form for the Manakov Metric 

It is easy to get rid of the constants in the polynomials R; by rescaling the 
variables: fori= 1, ... , 3, let 

in which formulas we use again the convention that (i, j, k) is any cyclic 
permutation of (1, 2, 3), and the choice of sign of each of the square roots is 
irrelevant. In the new coordinates, the quadratic polynomials R1, R2 and R3, 

together with Q0 , take the following form. 

F1 = x~- x~ + x~, 
F2 = x~ - x~ + x~, 
F3 = x~ - x~ + x~, 
F4 = ax1x4 + f3x2xs + 'YXaX6, 

where a 2 + {32 + 'Y2 = 0. 

(8.74) 



296 8 Integrable Geodesic Flow on 80(4) 

The constants a, (3, "(are given by 

a= AoV A2- A1 y' A3- A4, 

/3 = AoV A1- A3y' A2- A4, 

'Y = AoV A3- A2V A1 - A4, 

(8. 75) 

where Ao is a constant that can be scaled in such a way that a/37 = 1 (at 
the cost of a simple rescaling of F4); in the sequel we will suppose that this 
scaling has been done. 

The vector field Xn and its commuting vector field are, in terms of the 
coordinates Xt, ... , X6, a linear combination of the following two commuting 
vector fields: 

Xt = axsx6, 

X2 = /3X6X4, 

X3 = "(X4X5, 

X4 = -/3X2X6 + "(X3X5, 

xs = -"(X3X4 + ax1x6, 

X6 = -ax1xs + f3x2x4, 

x~ = ax2x3, 

X~ = "(X4X6 + aX1X3, 

x~ = -f3x4X5 + ax1x2, 

X~ = -"(X2X6 - /3X3X5, 

X~= /3X3X4, 

X~= "(X2X4. 

(8.76) 

In the sequel we will call these V1 and V2 (in that order). They are Hamil
tonian with respect to the Poisson structure { · , ·}, defined by the following 
matrix: 

0 ~(/3- "()/X3 ~(/3 + 1)/3x2 0 -~(/3 + 1hx6 ~("(- /3)f3xr. 

-~(/3 -1)/x3 0 -ax1 /X6 0 (f3-,)x4 

-~(/3 + 1)/3x2 O!Xl 0 -/3xr, (/3 + /)X4 0 

0 -/X6 f3xr. 0 /X3 -/3X2 

~(/3 + rhx6 0 -(r+f3)x4 -1x3 0 O!Xl 

~(/3 -!)f3xs (!- f3)x4 0 f3x2 -ax1 0 
(8. 77) 

With respect to this Poisson structure, 2Vl corresponds to the Hamiltonian 
F1 + F2 + F3, while 2V2 corresponds to the Hamiltonian F1; two independent 
Casimirs are given by F4 and ("(2 - /32 )F1 + (3("( - /3)F2 + "(("( + /3)F3. As 
we pointed out in Paragraph 8.1.2 these two commuting vector fields are 
independent on the generic fiber of the momentum map. 

The integrable system (C6 , {·,·},F), where F := (F1, F2, F3, F4) provides 
a normal form for the integrable system defined by all Manakov metrics on 
so(4). Since the parameters (a, /3, r) that define the system satisfy a 2 + (32 + 
72 = 0 and a/31 = 1 this family of integrable systems depends only on one 
parameter. Since (a, (3, 7) will be fixed in the sequel we do not indicate the 
dependence of { · , ·} and F on (a, /3, 1) in the notation. 
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To finish this paragraph we make a few obvious but useful observations 
about this integrable system. The group of involutions on C6 , generated by 

O"l(Xl,···•X6) = (Xl,-X2,-X3,X4,-X5,-X6), 

0"2(X1, ... ,X6) = (-Xl,X2,-X3,-X4,X5,-X6), 
(8.78) 

leaves the vector fields V1 and V2 invariant, as well as all fibers F c of the 
momentum map. The involution T on C6 ' which is defined by 

has the property of reversing the sign of both vector fields, still leaving all 
fibers F c of the momentum map invariant. Of course, the composition of T 

with any of a1 or a2 (or both) has the same properties. 
There is also another involution 'T/ that we will use. It is defined by 

(8.79) 

and its main property is that it permutes the two vector fields vl and v2 (up 
to a constant). It has the following effect on the constants of motion: 

(8.80) 

so that 'T/ does not leave the fibers of the momentum map invariant. There is 
also another automorphism, which has order three, which is not an automor
phism of the integrable system itself (with parameters a, /3, 1), but with acts 
on the whole family of integrable systems, i.e., it permutes the parameters 
a, f3, 1. This automorphism, which will be denoted by 1r, is defined by 

7r(a, /3, !) = (/3, /,a). 
(8.81) 

1r acts on the constants of motion in the following way: 

(8.82) 

'IT does not change the vector field vl' but it changes the vector field v2 
to (f3V2- 1V1)/a. As we shall see the involutions represent additional alge
braic structure which can be used to reduce the work when carrying out the 
algorithms of Section 7.6, a point to keep in mind in general. 

8.2.4 Algebraic Complete Integrability of the Manakov Metric 

In this paragraph we will show that if the parameters a, f3 and 1 satisfy 
a2 + (32 + 12 = 0 and a/31 = 1, but are otherwise arbitrary, then the inte
grable system ( C6 , { · , ·} , F), defined in the previous paragraph, is algebraic 
completely integrable. We do this by using the methods that were developed 
in Chapter 7; see especially Sections 7.6 and 7.7. 
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The vector field V1 is homogeneous, so that the indicia! equation is given 
by 

0 = x~o) + ax~o) x~o), 
0 = x~o) + (Jx~o) xio)' 

0 = X~O) + 'YXiO) X~O)' 
0 - X(O) - (Jx(O) X(O) + -vx(O) X(O) 
-4 26 135• 

0 - X(O) - -vx(O) X(O) + O:X(O) X(O) 
-5 134 16• 

0 - x(o) - o:x(o)x(o) + (Jx(o)x(o) 
-6 15 24' 

If we put xi0) = aa and x~o) = (Jb and x~o) = 'YC then we find that the indicia! 
solution is given by 

x(o) = (-be, -ca, -ab, aa, (Jb, 'Yc), 

where a, b and c satisfy 

a(b2 - c2 - o:2 ) = b(c2 - a2 - (32 ) = c(a2 - b2 - 'Y2 ) = 0. 

If a = b = 0 then c = 0, since 'Y -::/:- 0, which leads to x(D) = 0. By symmetry, 
it follows that for a strict Laurent solution at most one of a, b, c is equal to 
zero, so that, in any case, 

(8.83) 

The equations (8.83) define a non-singular elliptic curve r(o) in C 3 . Indeed, 
r(o) is a 4 : 1 cover of C (with coordinate c), which is ramified at the eight 
points covering c = ±/3 and c = ±v'=Io:, and which is unramified at infinity, 
hence it has genus 1 by Riemann-Hurwitz. Notice that the conditions on 
(a, /3, 'Y) imply that these 8 points are all different. The involutions a 1 and 
a2 induce two involutions on r(o), which are given by the 4: 1 cover 

a1 (a, b, c) = (a, -b, -c), 

a2(a,b,c) = (-a,b,-c), 
(8.84) 

and the quotient of r(o) by the group, generated by these two involutions is 
another elliptic curve £, given by 

(8.85) 

where the quotient map, which is unramified, even at infinity, is given by 

p: r(o) --+ £ 

(a,b,c) t-+ (v,w) = (c2,abc). 

Notice that we used the same letter £ for the elliptic curve (8.85) as for the 
curve l of rank three quadrics (8.71). This is on purpose: l is a smooth 
compactification of £, as is shown in the following lemma. 
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Lemma 8.12. The Riemann surface that compactifies £, defined by (8.85), 
is isomorphic to the curve "t of rank three quadrics (8. 71). 

Proof. Both Riemann surfaces are double covers of P 1, ramified over four 
points, namely 0, (32, -a2 and oo for the Riemann surfaces that compactifies 
£ and A1 , ... , A4 for £. These elliptic Riemann surfaces will be isomorphic if 
and only if these four-tuples have the same cross-ratio, when taken in some 
order, because four-tuples on P 1 with the same cross-ratio correspond under 
a homography (projective transformation). Now the cross-ratio of A1, .•. , A4 

is given by 

while 

1 0 1 a 2 

(O,a2,-(32,oo) = 
1 -(32 1 -(32 (32 

-a2 _ (32 
1 0 1 a 2 

0 1 0 1 

Using (8. 75) we see that 

(32 (A1 - A3)(A2 - A4) 
- "(2 = (A1 - A4)(A2 - A3) 

so that indeed 
(A1, A2, A3, A4) = (0, a 2, -(32, oo ), 

which needed to be shown. D 

(32 
= - "(2 

The covers that we have obtained can be summarized in the following com
muting diagram. 

(0)~£ r unram 

·+~ 2+~ 
P l ~pl 

ram 

The 4 : 1 cover p : r(o) -+ £ maps the eight ramification points of c : r(o) -+ 
P 1 to two of the ramification points of v : £ -+ P 1 ; the two other ramification 
points of the latter cover correspond to v = 0, oo. 
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If we denote the Kowalevski matrix that corresponds to the point with 
parameters (a, b, c) by K.(a, b, c), then we have that 

1 0 0 0 a'YC af:Jb 
0 1 0 f:J'Yc 0 af:Ja 

K.(a, b, c) = 0 0 1 fJ'Yb a'Ya 0 

0 -fJ'Yc fJ'Yb 1 -7ab f:Jac 

a'YC 0 -a'Ya 7ab 1 -abc 
-afJb afJa 0 -fJac abc 1 

Its characteristic polynomial is given by 

lkld6 -K.(a,b,c)l = k(k2 -1)(k- 2)3 , 

independently of a, b and c. The first three terms of the principal balance are 
given by 

be 2 x1(t) = -T -da+ (bgf'Y+cf/fJ)t+O(t ), 
ca , 

x2(t) = -t- db+ (cefa + agf'Y)t + O(t2), 

ab 
X3(t) = -t- de+ (af / fJ + befa)t + O(t2), 

aa 2 
x4(t) = t + et + O(t ), (8.86) 

xs(t) = ~b + ft + O(t2), 

X6(t) = ~c + gt + O(t2), 

where d, ... , g are the new free parameters that come in at steps 1 and 2. 
Since 2 is the largest eigenvalue of the Kowalevski matrix these first few 
terms extend to a weight homogeneous principal balance. As we pointed out 
in Section 8.1, the three free parameters that appear in step 2 are trivial 
parameters, so they can be expressed linearly in terms of the values of three 
of the constants of motion, which is most easily done by substituting the 
series x(t) in Fi(x(t)) = Ci, for i = 1, ... , 3. Solving the resulting equations 
linearly for e, f and g we get 

e := ~a {2c1{c2 - 72) + c2{2c2 - 72) + c3(2b2 + {32 )) + V ~be, 
f := 1r(e), g := 1r2 (e), 

where 
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In this formula, the action of 1r on the parameters a, ... , d is defined by 

1r(a, b, c, d) := (b, c, a, d), 

so that in particular 1r(V) = V (see (8.82) for the action of 1r on the constants 
of motion). By direct substitution of the balance in F4 we see that F4(x(t)) = 
V/2, so that the equation of the abstract Painleve divisor of the fiber Fe, 
where c = (c1, ... , c4) is given by the algebraic curve Fe in C4, defined by 

a2 = c2 _ /32, 

b2=c2+a2, 

d2 + c1 b2~ + c2c2a2 + caa2b2 + 2abcc4 = 0, 

(8.87) 

where the first two equations are the ones that define the elliptic curve F(0) 

in C3, which appeared as the indiciallocus in step 0, and the third equation 
is V/2 = c4. Notice that F(o) is independent of the values of the constants of 
motion, unlike Fe, which explains our notation. 

Lemma 8.13. For generic c the affine curve Fe can be completed into a 
compact Riemann surface Fe of genus 9 by adding 8 points ooE1 E2 E3 at infinity, 
where t:~ = t:~ = t:~ = 1. The map Fe --+ F(0), which is defined for (a, b, c, d) E 
Fe by (a, b, c, d) r+ (a, b, c), is a double cover, whose 16 mmification points 
belong to Fe {they are different from the points ooE1E2 E3 J. 
Proof. The affine ramification points are found by substituting d = 0 in 
(8.87). By using the other two equations, the third equation in (8.87) can 
then be written in the form P2(c2) =abc, where P2 is a quadratic polynomial. 
Squaring the latter equation we get Pi(c2) = (c2- f32)(c2 + a 2)c2, which has 
8 different solutions c, yielding 32 points (a, b, c) on F(0), but only for half of 
them will the sign of abc match the sign of P2(c2). Thus, we have 16 affine 
ramification points. The map is unramified at infinity. Indeed, in terms of a 
local parameter c; the 4 points at infinity of F{O) are given by 

fl a=- +O(c;), 
c; 

f2 
b =- + O(c;), c; 

1 
c= -, c; 

(8.88) 

where f~ = f~ = 1, yielding that dis given in terms of a local parameter by 

d y-Cl- C2- C3 ( 1 f1f2C4 O( 2)) =fa + c; + c; , 
c;2 C1 + C2 + C3 

(8.89) 

where f~ = 1, which shows that Fe has eight points at infinity and that the 
projection map Fe --+ F(0) is unramified at infinity. In conclusion, Fe is a 
double cover of an elliptic curve, which is ramified at 16 points, so Formula 
(5.10) implies that the genus of Fe is given by 

g(Fe) = 2g(Fo) - 1 + 16/2 = 9, 

as was asserted. D 
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The eight points in Fe \Fe will show up again later; we will denote them by 
oof 1 f 2 f 3 , where the latter corresponds by definition to the parameterizations, 
given in (8.88) and (8.89). 

We now look for (homogeneous) polynomials which have a simple pole 
in t when the principal balance is substituted in them. In the notation of 
Paragraph 7.7.1 this means that we wish to construct a basis of Zp as a 
1£-module, where the pole vector p is chosen as p := (1). If we look for 
polynomials of weight 1 first then we find nothing but the (span of the) 
functions x1, ... , x6; we define zo := 1 and Zi :=Xi fori = 1, ... , 6. Clearly, 
the adjunction formula will not be satisfied if we only consider the functions 
zo, ... , Z6, because their residues are independent of d. Therefore we look for 
quadratic functions and we find by simple inspection that 

Z7 := az2Z5 - f:Jz1z4, 

Z~ := (:3Z3Z6 - 'YZ2Z5, 

z¥ := 'YZ1Z4- QZgZ6, 

are three functions that have the required property. Notice that z~ and z¥ 

can be expressed in terms of Z7 by 

so that, as far as the embedding is concerned, we may restrict ourselves to z7 • 

It is clear that, for generic c, the map 

!{Je: Fe ~ P 7 

(x1, ... ,x6) 1-t (1: z1: .. ·: z7) 

is an isomorphic embedding of the smooth surface Fe into P 7 • Since the 
residue of the Laurent series of Z7 is given by -yd, we now consider the following 
map: 

"'' . Te' 

(a, b, c, d) 1-t (0: -be: -ca: -ab: aa: f3b: -yc: -yd) 
(8.90) 

It is obviously an embedding of the non-singular abstract Painleve divisor Fe 
into P 7 ; to see what happens at the eight points oof1 f 2 f 3 , substitute (8.88) 
and (8.89) into (8.90), for small ~ to find that a small neighborhood of the 
point oof1 f 2 f 3 is mapped to 

(0: f2: fl: flf2: 0: 0: 0: --yfgV-Cl- C2- Cg(1 + ~) E P 7, 

where*= f1f2c4/(c1 + c2 + cg) "I 0. 
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p+++ p-++ 

p+-+ p--+ 

Fig. 8.1. The abstract Painleve divisor Fe embeds in P 7 and the closure of its 
image is a smooth curve 'De of genus 9, which is a double cover of the elliptic curve 
F(0) that appears as the indiciallocus of the vector field V1. The points of tangency 
of vl are the eight points P'1 ' 2 ' 3 at infinity. 

It follows that the images of the points ooflf2 f 3 are all different, and that 
they are non-singular points of the curve Ve := cp~(re) in P7 . We will denote 
these points by Pf1 f 2 f 3 • It follows that the non-singular curve 'De has genus 9, 
just like Fe; since 9 = 7 +2 the adjunction formula (7.50) is satisfied. See Fig
ure 8.1. This suggests that this is a good place to stop, and indeed we will see 
later that the functions zo, ... , Z7 lead to an embedding of the compactified 
generic fiber Fe, which will turn out to be an Abelian surface. But in the next 
step, when we try to write down the quadratic differential equations we get 
stuck: already Z7 cannot be written as a quadratic polynomial in z0 , ••• , z7 , 

with coefficients in 1£, as is easily checked. The reason is that the Painleve 
divisor Ve is very ample but is not normally generated (i.e., its line bundle 
[Ve] is not normally generated). Therefore we look at a basis (over 'H.) for the 
space of polynomials which have a double pole at most when the principal 
balance is substituted in them. These are all obtained by considering the 36 
products Zij := ZiZj, where 0 ~ i ~ j ~ 7 and the following two natural 
Wronskians 

zs := W(z1,z4) = Z1Z4- Z1Z4 = ax4xsx6 + f3x1x2x6- 'YX1xaxs, 
Z9 := W(z2, zs) = Z2Zs- Z2Zs = f3x4XsX6 + 'YX2X3X4- ax1x2x6. 

Their Laurent series have the following leading terms: 

(8.91) 
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Notice that the similar Wronskian W(z3, z6) leads to nothing new because 
aW(zl, z4) + ,BW(z2, z5) + 1W(z3, Z6) = 0. Also, only 30 of the products Zij 
are independent over 1£, giving a total of 32 independent functions, but for 
the quadratic differential equations it is irrelevant which of the products are 
dependent on the other ones. Notice that if dim L(Ve) = 8 then dim L(Ve) = 
4dimL(Ve) = 32, by (5.38), so this is the logical place to stop. For generic c 
we will denote the embedding Fe --+ P 31 by '1/Je. It is checked as above that 
'1/Je leads to an embedding 'lj;~ of Fe, and that the closure of 'lj;~(Fe) is smooth. 
Since this closure is isomorphic to 'De we will use the same notation for it, 
'De := '1/J~(Fe). Also, the points at infinity of 'De, which are the images of the 
points oofl'2 ' 3 will be denoted, as before, by P'1 ' 2 ' 3 • 

According to Lemma 7.58 it suffices now to verify that the following Wron
skians are quadratic elements of 'H.[zoo, Zol, ... , Z77, zs, zg]: 

where 0 ~ i ~ j ~ 7 and k = 0, 1. But notice that for the Wronskians 
in the first line this is obvious, because besides the Wronskian W(z0, z77) 
they are all of degree 4 at most in x1, ... , x6 , hence they are all quadratic in 
zoo, ... , z77; also W(zo, Z77) = -2z7Z7 and Z7 is cubic in x1, ... , x6, so that 
the latter Wronskian is also quadratic in zoo, ... , Z77. By the same argument 
the simplest ones of the W ( z1, Zij) are of degree at most 4 in x1, ... , X6, hence 
they are quadratic in z00 , ... , Z77, and we only have to verify 

where i = 1, ... , 7. After some work these Wronskians can be written in the 
following form, as is easily verified, 

W(z1,z1z7) = z~(azg- ,Bzs), 
W(z1,z2z7) = z1z2(az9- ,Bzs) +z6z?, 
W(z1,z3z7) = Z1Z3(az9- ,Bzs)- Z5Z7Z~, 

W(z1, Z4Z7) = z1z4(az9- ,Bzs) + Z7Zs, 
W(z1, Z5Z7) = z1z5(azg- ,Bzs) + z7(ac2z6 + Z3z~), 
W(z1, Z6Z7) = z1z6(azg- ,Bzs) + Z7(ac3z5 + Z2Z7 ), 

W(z1, z?) = 2z1z1(az9- ,Bzs) + az5z6z?, 
W(zl,zs) = az5z6zs + z1((a2c2- ,82cl)z1z4 + a1(cl + c2 + c3)Z3Z5 

+ac4(z~ - z~) - ,Bz7(z~ - z~) + /Z~z~), 
W(z1, Zg) = zs(,Bz5z6 + 1z2z3) + z1(a2(c1 + c2)Z2Z5- a(z~ + z~)z7). 

The above Wronskians are written in such a way that it is clear that each 
of them is a quadratic polynomial in zoo, ... ' Z77, zs, Zg. This shows that vl 
extends to a holomorphic vector field V1 on P 31 . Since V2 is obtained from 
vl by using the involution p, the same is true for v2' and hence any linear 
combination of vl and v2 extends to a holomorphic vector field on P31 . 
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Let us now check that the flow of vl' starting from the eight points pelE2 E3 ' 

goes immediately into the affine. Recall from Paragraph 7.7.3 that in order 
to check this we must check for each of these points that the Taylor series 
1/zi(t) is non-zero at this point, where i is chosen as follows. First, the pole 
order of Zi along Vc should be maximal among the pole orders, along Vc, of 
all functions Zi, so that i ::fi 0, ... , 7 (this pole order is then 2). Second, the 
leading coefficient zJ0>, which is a rational function on Vc, should have a pole 
order at PE1 E2 E3 , which is maximal among all the pole orders of the leading 
coefficients z)0>, with j ::fi 0, ... , 7. It follows from (8.88) that the residue of 
Zi has for i = 1, 2, 3, 7 a double pole at the points PE1 f 2 E3 , and has a simple 
pole at these points for i = 4, 5, 6; also the pole order of the leading terms 
of z8 and z9 at these points is 4, as is read off from (8.91). Therefore, the 
function 1/ z~ satisfies the above conditions, and it suffices to check that the 
Taylor series 1/z~(t) has a non-zero limit at the points PE1 E2 E3 • In fact, it 
suffices to show that the Taylor series 1/z1(t) has a non-zero limit at these 
points: indeed, the latter is holomorphic in a neighborhood of these points 
since 1/z1(t) = z1 (t)fz~(t), which allows us to compute the limiting series of 
1/z1 (t); then the limiting series of 1/zHt) is just its square. It follows from 
(8.86) that 

1 t ( ad (a2Jl f g) 2) 4 
z1(t) =-be 1 - bet+ b2e2 + b(3 + C"f t +O(t ). 

Using (8.88) and (8.89) to express each coefficient in terms of the local pa
rameter '> and letting '> -+ 0 we find 

lim b1 = lim f2'>2 = 0, 
~-+0 e ~-+0 

I. ad _ 1. f1fay,---e-1 ---e-2---e-a'>4 _ 0 
liD--- liD -' 
~-+o b2e2 ~-+o '>a 

!~ ( ~:~ + b~(3 + b;7 ) = -E2(el + e2 + ea) ::fi 0. 

It follows that the series of 1/ z1 has a non-zero limit at the points PEH2 E3 • 

Moreover, inverting the series we find that the series for x1 = z1 that starts 
at these points is given by 

xi(t; pEIE2Es) = .!_ ( 1 + O(t)) . 
t3 t:2(e1 + e2 + ea) 

Computing in a similar way the limits of Xi(t)/xl (t) one finds the lower 
balances. Notice that these are not weight homogeneous. 

In order to complete the proof of the algebraic complete integrability of 
the Manakov metrics on so( 4) we need to show that Vc is the only divisor in 
t/Jc(F c)\ tPc(F c)· 
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As we explained in Paragraph 7.7.3 we do this in general by a degree 
count. In this case there is a simpler way, namely we can use the involution 
"'' which interchanges the two vector fields vl and v2, up to a factor (see 
(8.79) for the definition of TJ). To do this, we first extend the involution 'fJ 

to the free parameters that appear in the principal balance. Notice that this 
does not lead to an involution on 1/Jc(F c) \ 1/Jc(F c), because 'fJ itself did not 
preserve the constants of motion, hence does not preserve the fibers of the 
momentum map (see (8.80)). Instead, it will lead to a map from Vc to V11(c)· 

In order to find this map, compare the embedding of Fc in P 7 , given by the 
residues of the functions Zo = 1, Zt, ... , Z7 with the embedding of T11(c), given 
by the residues of the functions TJ(zo) = 1, TJ(zl), ... , TJ(Z7 ). We get, consistent 
with the definition of the action of 'fJ on the Zi, 

A TJ(a) = --, 
a a 

TJ(b) = H'Yc, 
a 

j3b 
TJ(c) = --, 

a 
TJ(d) =_Ad_ 

aa2 

The main thing to be observed from these formulas is that all points that are 
at infinity on Vc are mapped to points that are in the finite part of V11(c), 

i.e., to points which are reached by the principal balance to V1. But we know 
that such points always satisfy the multiplicity condition (7.7.3), hence no 
other components of 1/Jc (F c) \ 1/Jc (F c) pass through these points. 

This leads to the following theorem, that states the algebraic complete 
integrability of the Manakov metric on so(4). We also give a first description 
of the tori T~ that complete the generic fibers F c of its momentum map. 

Theorem 8.14. For any fixed (a, /3, 'Y) E C 3 satisfying af3'Y = 1 as well 
as a 2 + /32 + 1'2 = 0, consider the integrable system ( C6 , { • , ·} , F), which 
provides a normal form for the Manakov geodesic flow on so(4), where F = 
(Ft, F2, F3, F4) is given by {8. 74) and the matrix of { ·, ·} is given by {8. 77); 
a basis of its integrable vector fields is given by {8. 76). 

( 1) ( C 6 , { • , ·} , F) is a weight homogeneous a. c. i. system; 
{2) For generic c the fiber F c of its momentum map completes into an Abelian 

surface T~ by adding a smooth genus 9 curve Vc; 
{3) Vc is a ramified double cover of an elliptic curve T(O}, which is itself a 

fourfold unramified cover of£, the curve of rank three quadrics; 
(4) The line bundle [Vc] defines a polarization of type (2, 4) on T~ and leads 

to an embedding ofT~ in P 7 ; 

{5) The involutions a1 and a2 define on T~ two translations, over a half 
period, that leave Vc invariant. 

Proof. We have verified that the conditions of the Complex Liouville Theorem 
(Theorem 6.22) are satisfied. It follows that, for generic c the projective 
variety 

1/Jc(F c) = 1/Jc(F c) U Vc 

is an Abelian variety and that the restriction of the vector fields V1 and V2 
to these Abelian varieties is linear. 
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The smooth genus 9 curve 'De is isomorphic to Fe, which was shown in 
Lemma 8.13 to be a double ramified cover of r<0>. The latter is, according to 
Lemma 8.12 an unramified fourfold cover of the curve of rank three quadrics. 
Since 'De has genus 9 we have in view of (5.25) that the elementary divisors 
Ot, 02 of the polarization that 'De induces on T~ satisfy Ot 02 = 8. In view of 
Ramanan's Theorem (Theorem 5.18), 'De is very ample; notice however that, 
as we have seen, ['De] is not normally generated. The embedding that we 
have constructed is precisely the Kodaire map, associated to 'De. Indeed, the 
functions zo, ... , Z7 provide independent sections of ['De] and they form a basis 
of L('De) because dimL('De) = 8, again by (5.25). Among these 8 functions, 
6 are odd with respect to the time involution T (namely z1, •.• , Z6) and 2 are 
even (z0 and z7 ), so that (o1 ,o2) = (1,8) is impossible, by Proposition 5.20. 
It follows that (o1 ,o2) = (2,4). Finally, since crt and cr2 leave the vector fields 
invariant, their restriction to the tori T~ are translations; being involutions 
they are translations over half periods. Since they leave the affine part Fe of 
T~ invariant they leave also its complement 'De invariant. D 

A different description of the Abelian surfaces T~ will be given in the next 
paragraph. 

For future use, we compute the holomorphic differentials on 'De that come 
from the natural differentials dtt and dt2 on T~ and we show that the points 
PE1E2 E8 are precisely the points on 'De where the vector field (cpe)• Vt is tangent 
to 'De. See Paragraph 7.6.7 for an explanation4 and for an algorithm that 
allows us to compute this restriction. In the notations of Paragraph 7.6.7, 
Example 7.54, we choose y0 := Zt andy:= z2, so that 

y~o) =-be, 
y(o) = -ae, 

y~1 ) =-ad, 

y(l} = -bd. 

Also, (see (8.76)), 

V2[1/yo] = -zUz~ = -ax2x3jx~, 
V2[Y/Yo] = (z~zt- z2zD/z~ = ('YXtX4X6 + axg(x~- x~))fx~, 

so that V2[1/yo]11>., = -aa2 /(be) and V2[Y/Yo] 11>., = df(ab2e). It follows that 

1 -be -aa2 /(be) 
0 = b2e2 (b2 - a2)ed df(ab2e) 

-yd 
=- (3b3. 

4 The vector fields {tpc).Vl and (cpc)•V2 do not extend to all of P 7 , but to a 
neighborhood of a generic point, which suffices for computing the holomorphic 
differentials. 
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Substituting this in {7.48) and using ada= bdb, a consequence of a2-b2 = 
"(2 , we find 

WI= {Jb3 d (~) = -~ 
"(bed b abed' 

(8.92) 

__ afla2b2 (~) _ a2da 
W2 - "fed d b - bed • {8.93) 

It follows then, by a direct substitution of {8.88) and (8.89) in {8.92) that 
WI has a double zero at the eight points PE1 E2 E3 • So the vector field 1:\ is 
doubly tangent to Vc at these points and is nowhere else tangent to Vc since 
2(g(Vc) - 1) = 16. Similarly, W2 is non-zero at these points, so that v2 is 
transversal to Vc at these points, as follows also from the independence of 
these vector fields. 

8.2.5 The Invariant Manifolds as Prym Varieties 

The purpose of this paragraph is to show that, for generic c, the tori T~ which 
compactify the smooth fibers F c of the momentum map F of the Manakov 
geodesic flow are Prym varieties and to relate them to the Abelian surfaces, 
themselves also Prym varieties, on which the Lax equation (8.63) linearizes. 
The main results that are presented here are due to Luc Haine [74]. See 
also [26]. 

We first introduce the notation that we will use; most of it has already 
been introduced earlier. We fix a generic c = (ci, ... ,c4) and we denote by 
F c the fiber of the momentum map F = (FI, ... ,, F4) : C 6 ~ C4, where 
H, ... , F4 are given by (8. 7 4). We have seen that F c compactifies into an 
Abelian surface T~ by adding a smooth irreducible curve Vc of genus 9. This 
curve appeared in Paragraph 8.2.4 as a ramified double cover of the elliptic 
curve F(0), where the latter is itself a fourfold unramified cover of£, the curve 
of rank three quadrics (see Lemma 8.12). The restriction of O'I and 0'2 to F c 

extends to two translations on T~ over a half period; we will denote these two 
translations by the same letters O'I and 0'2. Since these translations leave F c 

invariant they leave also Vc invariant and we may consider Cc := Vc/ (ui, u2). 
The group of translations generated by O'I and 0'2 has order 4 and has no 
fixed points, hence the cover Vc ~ Cc is unramified_and the genus of Cc is 
{9-1)/4+ 1 = 3, by Riemann-Hurwitz. If we define T~ := T~/ (ui,u2) then 
we get the following commutative diagram. 
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Since Cc is a smooth curve of genus 3 it induces in view of (5.25) on the 
Abelian surface T~ a polarization of type (1, 2). Moreover, in view of Ex
ample 5.32, T~ is isomorphic to the Prym variety Prym(Cc/fc), where 'fc is 
an elliptic curve, being a quotient of Cc by a double cover Cc --+ 'fc which is 
ramified in 4 points. We will see later that 'fc is isomorphic to£, the curve 
ofrank three quadrics (which is independent of c). We first show that Cc is 
indeed a cover of£, making the following diagram commutative. 

v 2:.!... r(o) c ram 

•+••m 4•1]~ (8.94) 

Cc 2:1 7! 
ram c. 

We do this by writing down explicit equations for the maps. Namely, 

Vc ~ F(o) ~ £ 
(a,b,c,d) t-+ (a,b,c) t-+ (c2 ,abc) 

where we recall that affine equations of Vc, F(0) and£ are given by (8.87), 
(8.83) and (8.85). The action of 0'1 and 0'2 on Vc is given by 

u1 (a, b, c, d) = (a, -b, -c, d), 

0'2 (a, b, c, d) = (-a, b, -c, d), 

as follows from (8.78) and (8.90) (the action on a, b, c was already determined 
in (8.84)). It follows that 0'1 and 0'2 leave the fibers of Vc --+ £ invariant, so 
that there is an induced morphism Cc = Vcf (u1,u2} --+ £. Explicitly, an 
affine equation for Cc is given by 

w2 = v(v- {32)(v +a?), 

~ + c1(v + a?)v + c2(v- /32)v + c3(v + a?)(v- /32) + 2wc4 = 0, 

where the second equation exhibits Cc as a double cover of£ (which is given 
by the first equation), namely the maps are given as follows. 

4:1 2:1 7! 
Vc~ Cc ~c. 

(a, b, c, d) t-+ (v, w, d) = (c2, abc, d) t-+ (v, w) = (c2 , abc) 
(8.95) 

We will also need the spectral curve lAb+ X- ~ld4l = 0 (see (8.64)), which 
we rewrite, using (v, u) := (1/b.~/b) as 

4 

Kc : IJ (Ai - u) + (c1 u2 + c2u + c3)v2 + ~v4 = 0, (8.96) 
i=1 
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where (eo, ... , c3 ) are the values of the constants of motion (8.69); they de
pend on the constants c = ( c1 , ... , C4) only, hence the notation Ke rather 
than Kc. for the curve. Ke admits the involution defined by z(u, v) := (u, -v), 
leading to the quotient curve 

4 

K~o) : IJ (Ai - u) + (c1 u2 + c2u + c3)t + c~t2 = o. (8.97) 
i=l 

which is an elliptic curve, since it is a double cover of P 1, ramified at the four 

points ( Ui, ti) on K~o) that correspond to the 4 zeros Ui of (c1 u2 + c2u + c3)2-

4c~ ll~=l (Ai- u). The double cover Ke -t K~o) has four ramification points, 
which are the points Pi := (Ai, 0). It is unramified at infinity: Ke has four 
points at infinity, which we will denote by q1,q2,q3 = z(q1) and q4 = z(q2). 
Taking a local parameter at these points one verifies that the divisor of zeros 
and poles of u and vis given by 

4 4 4 

(u) = 4 zeros - L% (v) = LPi- Lqi. 
i=l i=l i=l 

Summarizing, the covers that are related to the spectral curve Ke are given 
by 

V' 2:1 V"{O) 2:1 pl 
"-e ----t 1\-e ----t 

(u,v) ~ (u,v2) ~ u 

Observe that images of the branch points Pi of Ke -t K~o) in P 1 are precisely 
the branch points Ai of the cover & -t P 1 . 

We are now ready to give a precise description of the generic fibers Fe, the 
Abelian surfaces T~ into which they compactify, and of the Abelian surfaces 
on which the Lax equation (8.63) linearizes. 

Proposition 8.15 (Haine). Let c = ( c1, ... , c4) be generic and let Je : 
Fe -t Jac(Ke) be the linearizing map as defined in Section 6.4. 

{1) Je is onto Prym(Ke/K~0)) \Be, where Be is {a translate of) the theta 

divisor of Prym(Ke/K~0)); 
{2) Je extends to an isogeny Je : T~ -t Prym(Ke/K~0)) of degree 4, which 

induces an isomorphism T~ -t Prym(Ke/K~0)); 
{3) T~ is isomorphic to the Prym surface Prym(Cc/£); 

(4) T~ ~ Prym(Ce/£) and T~ ~ Prym(Kc/K~0)) are dual Abelian surfaces. 

Proof. (1) Let c be generic, but fixed and let X E Fe be any element. We 
consider the divisor map, as in Section 6.4. Namely, as the Lax equation 
(8.63) defines an isospectral flow we consider, as in Section 6.4 the eigenvector 
~ = ( 6, ... , ~4) T, normalized at 6 = 1, to the spectral problem 
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(Ab + x)e = se, 
which, under the above change of variables (v, u) := (1/b, S/b) on the spectral 
curve is equivalent to 

(A+ Xv)e = ue. 

In terms of the cofactors Llij of the matrix A+ Xv, the components of 
e = e(u,v) are given by ek = Lllk/Llu. Taking a local parameter at the 
points Pi and at the points qi we find that Lllk has the following divisor of 
zeros and poles, 

4 4 

Lllk = 2 L:>i- 3 L qi- Pl- Pk + Ek, 
i=l i=l 

where Ek is a positive divisor of degree 6. Thus, 

(8.98) 

We define, as in Section 6.45 c/Jc(X) to be the minimal positive divisor such 
that (ek) + c/Jc(X) ~ 0. Notice that, in view of (8.98), c/Jc(X) E Div6 (Kc) is 
forced to contain the points P2, P3 and p4, that do not move with X (when 
X moves according to (8.63)). Notice also that c/Jc(X) does not contain the 
point p1 , since Llu does not vanish at Pl· By the antisymmetry of X, the 
zeros of the principal minors of X come in pairs, in particular E 1 = c/Jc(X) + 
~(c/Jc(X))- 2(P2 + P3 + P4) and 

This shows that c/Jc(X)- q1 -q2- I:t=l Pi is an odd divisor, so that its equiv
alence class belongs to Prym(Kc/K~0)). Explicitly, if we let w := (q,x1,x2)T 
be a basis of holomorphic differentials on Kc with ~·11 = 17 and ~·xi = -xi, 
fori = 1, 2 (see Paragraph 5.2.4) then the linearizing map, with base divisor 
0 = q1 + q2 + 2:::=1 Pi is given by 

(8.99) 

5 In that section we denoted this divisor by Vx, omitting the reference to c. 
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We now show that the image of 4Jc consists precisely of the set of divisors 
of degree 6, containing 1J2, P3 and p4, but not containing Pl· The image of Jc 
is then precisely those points of Prym(ICc/IC~0)) that do not lie on (a certain 
translate of) the theta divisor of Jac(/Cc), in view of Riemann's Theorem 
{Theorem 5.24). 

Let D - Q1 - Q2 - I:~=1 Pi be an odd divisor of degree 0, where D is 
effective {of degree 6), and contains P2,Pa and p4, but not p1. It is assumed 
that D' := D - P2 - P3 - P4 is a general divisor on ICc, so that D' is not 
linearly equivalent to a divisor of this type, but containing also p1• Then it 
follows that 

1 ~ dimL(D'- P1 + Pk) ~ L(D'- pi)+ 1 = 1, 

where the first inequality is a consequence of the Riemann-Roch Theorem, 
the second one a consequence of the fact that adding a pole increases the 
dimension at most by one and the final equality follows because D' is a general 
divisor that does not contain P1· Setting e1 := 1 we can now reconstruct the 
functions ei by demanding that ei be the unique function, up to a constant, 
in L(D' - P1 + Pk)· Comparing the pole orders of the functions ei at the 
points Pi it follows that there exist Xij, such that 

iek = Akbek + L xkiei, 
i# 

where the freedom of picking the constants in the ei (for i = 2, 3, 4} allows us 
to pick them such that Xli + Xil = 0 for i = 2, 3, 4. Moreover, since D- q1 -

q2 - 2:~=1 Pi is odd, the matrix X must be skew-symmetric. Notice that the 
above equation does not determine X completely since we can still multiply 
the each ei (except for e1 = 1) by ±1. However, among the 8 remaining 
possibilities, only 4 of them are compatible with Q0 = Co· Notice that these 
four possibilities correspond exactly under the group of translations generated 
by a 1 and a2 , as expected. This shows that, away from the {above translate 
of the) theta divisor, 4Jc is surjective, as was to be shown. 

(2) We know that both T~ and Prym(ICc/ICi0>) are Abelian surfaces and, 
from the preceding paragraph, that on the affine part F c the morphism Jc 
corresponds to taking the quotient with respect to the group of translations, 
generated by 0"1 and a2. Thus, Jc extends to 

Jc : T~ ~ Prym(ICc/ICi0>), 

which is the isogeny of degree 4, that corresponds to taking the quotient of 
T~ with respect to the group of translations, generated by a1 and a2 • The 
conclusion follows, as T~ is the precisely the quotient of T~ by this group of 
translations. 
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(3) We now consider the holomorphic differentials on the curves 'De, Ce 
and £ and on the Abelian surfaces that contain these curves. Clearly, a basis 
for the holomorphic differentials on T~ is given by dt11 2 and dt21 2 • Since 

Tc Tc 

T~ is obtained from T~ by dividing by two translations (over half periods) 
these differentials descend to a basis for the holomorphic differentials on T~, 
that we denote by dh h and dt2 h . 

Tc Tc 

We have already computed the restrictions w2 and w 1 of the former to 
'De: recall from (8.92) that 

Pushing these differentials down to Ce we find two independent holomorphic 
differentials onCe, to wit 

vdv 
¢2 := wd' 

In fact, if we denote the covering map 'De -t Ce by 11' then 

* 2ede 2da 
11' '1/Jl = abed= bed = - 2awl, 

*·'· _ 2e2 da _ 2(a2 + (32 )da _ 2 _ 2 (32 
11' o/2 - bed - bed - W2 a Wl· 

(8.100) 

These differentials 'l/J1 and 'l/J2 are odd with respect to the involution on Ce, 
defined by z: (v, w, d) t-t (v, w, -d). If we add the pull-back() of a holomor
phic differential on £, then ( 'l/J1, 'l/J2, 8) will be a basis for the holomorphic 
differentials onCe, with() even. We will use these differentials to compute the 
period matrix ofT~ and ofT~. The computation is based on the following 
three ideas: 

1. As we have seen when discussing the Albanese variety (see Paragraph 
5.2.3), we can compute the period matrix of a complex torus by integrat
ing a basis of the holomorphic differentials on it over a basis for the first 
homology of the torus. In the present case this will lead to a lattice in 
C2' spanned by 4 vector 

2. By the Lefschetz hyperplane section theorem (see (69, pp. 156-159]) the 
first homology group of an algebraic variety is generated by the first 
homology of any ample divisor on it. In the present case this means that 
H1(T~,Z) is generated by 4 elements of H1(Ve,Z) and that H1(T~,Z) 
is generated by 4 elements of H1 ( Ce, Z); 

3. Integrating these differentials over cycles on these loops amounts to in
tegrating the restrictions of these differentials to the embedded curves, 
over these same loops. This is obvious, but it is crucial, since it replaces 
integration over loops in the Abelian variety to integration over loops on 
a Riemann surface. 
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Let us first do this forT~. We integrate the basis dt11- 2 and dt21- 2 over a set of 
Tc Tc 

generators for H1 (Cc, Z). As we just pointed out this amounts to integrating 
1/J1 and 1/J2 over these generators. Now H1 (Cc, Z) is generated by two even 
generators A+ and B+ that come from generators A and B on the elliptic 
curve £ and four generators A-, c-, B-, v- that are odd with respect to t 
(see Paragraph 5.2.4, in particular Figure 5.1). Since the differentials 1/;1 and 
1/J2 are odd their integrals over the even generators A+ and B+ vanish and 
hence the period matrix of T~ is given by 

(8.101) 

Let us compute now the period matrix for T~. To do this we need to 
relate carefully the homology of Vc C T~ and of Cc C T~. The commutative 
diagram (8.94) induces the following commutative diagram in homology: 

H1('Dc,Z) ~ H1 (r<0>,z) 

j l 
surj 

H1 (Cc, Z) H1 (£, Z) 

(8.102) 

In this diagram each of the horizontal arrows is induced by a ramified double 
covering map. It is an elementary fact from topology that such a homomor
phism is surjective, which means that every loop is homologous to a loop 
that can be lifted; we simply say that the loop can be lifted. The vertical 
arrows are induced by unramified covering maps of degree 4, corresponding 
to two involutions, hence both homomorphisms will have a cokernel that is 
isomorphic to Z/2Z EEl Z/2Z. The cycles A and B that generate H1 (£, Z) are 
generators for the cokernel of H1 (r<o), Z) -+ H1 (£, Z), hence they cannot be 
lifted to r<0>, but 2A and 2B can. By commutativity of (8.102) the liftings 
A and B of A and B to Cc cannot be lifted to Vc, being generators of the 
cokernel of H1(Vc,Z)-+ H1(Cc,Z), but 2A and 2B and any other generator 
of Hl(Cc,Z) can. Thus, we can lift 2A-, c-, 2B- and v- to cycles on 'De, 
which gives, by integration of w1 and w2 the following matrix of periods, 

£_ 1/.Jl 2 £_ 1/.Jl 
(8.103) 

£_ 1/J2 2 £_ 1/;2 
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We show that this is the period matrix ofT~. Notice first that this matrix 
is indeed the matrix of periods of an Abelian surface, as it is the period 
matrix of the Prym surface Prym(Cc/£) (see (5.24)). This does not prove 
yet that it is the period matrix ofT~, as the chosen cycles may not generate 
H1 (T~, Z). However, we know that the degree of the isogeny T~ -+ T~ is four, 
as we devided by a group of four translations to obtain T~ from T~. This 
corresponds precisely to the index of the period lattice defined by (8.103) as 
a subgroup of the the one defined by (8.101). Thus, the chosen loops generate 
H 1 (T~, Z) and (8.103) is the period matrix ofT~. 

(4) Let us write the period matrix (8.101) ofT~ as ( E P) and the period 

matrix (8.103) ofT~ as (E F). Denoting .:1 := ( ~ ~) we have on the one 

hand that 
and F = FLl, 

and on the other hand that, upon normalizing 'l/;1 and 'l/;2, an alternative 
period matrix for T~ is obtained, namely ( .:1 Z), where Z is given by Z = 
LlE- 1 F. According to (5.16), the matrix for the dual ofT~ is given by 

which amounts to ( E F) , as was to be shown. D 

8.2.6 A.c.i. Diagonal Metrics on .50(4) 

In this paragraph we show that the only diagonal metrics on so(4) that 
define an a.c.i. system correspond either to metric I (roughly speaking the 
Manakov metric, see Paragraph 8.2.1) or to a product of Euler tops. This 
result was first proven by Adler and van Moerbeke (see [9]) by using the 
Kowalevski-Painleve Criterion; their proof is (essentially) contained in the 
proof of Theorem 8.3. The proof that we give here is based on a alternative 
proof, due to Luc Haine (see [75]), which uses the fact that all solutions to 
each of the variational equations of an a.c.i. system must be single-valued 
(Theorem 6.18). This proof has the advantage of admitting a generalization 
to so(n) and of not assuming 

(1) any non-degeneracy of the metric; 
(2) irreducibility of the a.c.i. system; 
(3) weight homogeneity of the principal balances. 

In the proof that we give here the crucial step in the argument is clarified by 
the use of the Kowalevski matrix. 
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Theorem 8.16. Let H be a quadratic form on so(4) which defines a diagonal 
metric on so(4), 

1 "' 2 H = '2 L..J Ai;Xw 
l~i<j~4 

If XH is one of the integrable vector fields of an a.c.i. system then the con
stants Ai; satisfy K(A) = 0 (K(A) was defined in {8.60}), or 

A12 - Aa4 = A2a - A14 = A1a - A24 = 0. 

Proof. The Hamiltonian vector field XH is given by 

X= [X,A·X], 

(8.104) 

where A is the symmetric matrix with entries Ai; and A·X denotes, as before, 
the Kronecker product of A and X, i.e., (A· X)ii = Ai;Xij· The indiciallocus 
I is given by the X<0> E so(4) for which 

x<o> + [x<o>, A· x<0>]. 

Let us assume that 

A1 := (A42 - A2a)(A2a - Aa4)(Aa4 - A42) f:. 0. 

Then I contains the 4 points X<0> for which 

xi~> = xi~> = xi~> = o, 
(X~~>) 2 = A;k- Aik 

' 3 . A1 ' 
X (O)X(O)X(O) _ -A-1 

2a a4 42- l' 

(8.105) 

where (i, j, k) is any cyclic permutation of (2, 3, 4). For any of these points 

x<0> the Kowalevski matrix is given by ,qx<0>) = ( ~1 ~2 ) , where 

( 
1 X2a(A1a - A2a) X24(A14 - A24)) 

/C1 = X2a(A2a - A12) 1 Xa4(A14 - Aa4) 

X24(A24 - A12) Xa4(Aa4 - A1a) 1 

and 

( 
1 Xa4(A24- Aa4) X24(A24- Aa4)) 

/C2 = Xa4(Aa4- A2a) 1 X2a(Aa4- A2a) . 

X24(A2a- A24) X2a(A2a- A24) 1 

It follows that the characteristic polynomial of ,qx<0>) is given by 

x(,qx<o>), JJ) = (JJ- 2)a(JJ + 1)(JJ2 - JJ- K(A)A11 ). 
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Proposition 7.32 implies that, if XH defines an a.c.i. system, then all roots 
of this polynomial are integers. Thus, 

A1 = 0 or 3r1 E Z such that K(A) = r1(r1 - 1)A1. 

By performing all possible cyclic permutations of (1, 2, 3, 4) in the definition 
(8.105) of A1, yielding6 A2 = ( -1)(A1s- A34)(As4- A4I)(A41- A13), and so 
on, we find that if XH defines an a.c.i. system, then for any i E {1, ... ,4}, 

Ai = 0 or 3ri E Z such that K(A) = ri(Ti - 1)Ai. (8.106) 

Similarly we consider the 4 points in I for which 

xi~>= xj~>, 

(x(o)) 2 _ Alk- Aki + Ai;- A;1 
1i - Ao ' (8.107) 

x<o> x<o> x<o> - A-l 12 13 14 - 0 , 

where ( i, j, k) is any cyclic permutation of (2, 3, 4) and where 

Ao := (A2s + A14- A1s- A24)(A1s + A24- A12- As4)(A12 + As4- A2s- A14). 

The characteristic polynomial of the Kowalevski matrix that corresponds to 
these points is given by 

x(,qx<0>),J.t) = (J.t- 2)2 (J.t -1)(J.t + 1)(J.t2 - 2J.t- 4K(A)A01). (8.108) 

It follows that 

Ao = 0 or 3ro E Z such that 4K(A) = ro(ro - 2)Ao. (8.109) 

The theorem follows by cleverly combining (8.106) and (8.109). Namely, 
assume first that Ao, A1, ... , A4 are all different from zero. Then either 
K(A) = 0, as was to be shown, or we can solve each Ai in terms of K(A) by 
using (8.106) and (8.109); substituted in the identity 

4 

2K(A) + LAi = 0 
i=O 

this yields 
4 4 1 

2+ + E =o. 
ro(ro - 2) i=l ri(ri- 1) 

(8.110) 

Since all Ti are integers all terms in this sum are strictly positive, except 
when r0 = 1; for future use, notice that this also implies that all ri(ri - 1) 
are equal to 2. 

6 Since K(A) t-+ -K(A) when doing such a permutation we add a minus sign in 
the definition of A2, hence also in the definition of A4. 



318 8 Integrable Geodesic Flow on S0(4) 

Now ro = 1 implies that 4K(A) = -A0 , so that {8.108) has 1 as a triple 
root. After a simple conjugation the Kowalevski matrix of case {8.107) takes 

the block form K(X<0l) = ( ~1 ~:),for some matrices K0 , K1 and K2 • The 

matrix K0 has 1 as a triple eigenvalue and is given by 

where X~~), X~~) and X~~) are non-zero, being given by (8.107). Proposi
tion 7.32 implies that this matrix must be diagonalizable, i.e., that it is the 
identity matrix, which is so if and only if 

which is precisely {8.104). For the case in which one of several of the Ai are 
zero one uses the equation Ai = 0, rather than the equation that expresses 
K(A) in terms of Ai. If K(A) '=fi 0 then we will still have (8.110), but with one 
or several of the terms containing the ri missing. But such an equation does 
not admit any integer solutions. Therefore we conclude that, in this case, 
K(A) = 0. D 

8.2.7 From the Manakov Flow to the Clebsch Flow 

In this paragraph we show how the Clebsch Hamiltonian can be obtained from 
the Manakov Hamiltonian by taking a proper limit. The Clebsch Hamiltonian 
(see [47]) is given {on C6, with coordinates h, ... ,l3,pl, ... ,P3) by 

H := ~ (~ttl~+ K2l~ + it3l~ +AlP~ + A2P~ + A3P~) ' {8.111) 

where the constants 1t1, ... , A3 satisfy 

(8.112) 

It is one of the known integrable cases of geodesic flow on the Lie algebra 
e(3) = so(3) x R 3 (see Paragraph 8.1.1). The Lie-Poisson structure on e(3) 
is completely specified by the following brackets, 

(8.113) 

where fijk is an skew-symmetric tensor, with ft23 = 1. 
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Therefore, the geodesic flow that corresponds to a given quadratic form 
n on e(3) = so(3) x C 3 ~ C6 is given by 

. an an 
l = p A ap -l A lif' 

. an 
p=pAm, 

where, p = (PI,P2,P3)T and l = (l1,l2,ls)T. Also, A denotes the cross prod

uct on R 3 and 8H = ( 8H 8H 8H) T and similarly for 8H. The physical 
8p 8p1 ' 8p2 ' 8ps ' 8l 

importance of these equations stems from the fact that they describe the 
motion of a solid in a perfect fluid (see [104, pp. 117-124]). It was found by 
Clebsch that K, defined by 

K := c(l~ + l~ + l~) +KIP~+ K2P~ + KsP~ 

where 
·- 11:1(11:2- 11:3) _ 11:2(11:3- KI) _ Ks(Kl- 11:2) 

c.- - - ' 
A2 - As As - AI AI - A2 

is an extra constant of motion, making the Clebsch Hamiltonian integrable; 
this is easily verified by direct computation, in particular it is easily verified 
that (8.112) implies that the three given formulas for c are equivalent. 

In order to connect geodesic flow on so(4) with geodesic flow on e(3) 
we contract the Lie-Poisson structure of so(4) to the Lie-Poisson structure 
of e(3). We do this as follows. For fixed non-zero f, define the following linear 
change of variables: 

(8.114) 

where (i,j,k) denotes any cyclic permutation of {1,2,3). In terms of these 
new variables, the Poisson matrix (8.6) takes the following form. 

0 ls -h 0 P3 -P2 
-ls 0 h -P3 0 P1 

1 l2 -ll 0 P2 -pl 0 
{8.115) -

2 0 Ps -P2 0 t:2ls -t:2l2 

-P3 0 Pl -t:2l3 0 t:2ll 

P2 -pl 0 t:2l2 -t:2h 0 

where we have ordered the coordinates as follows: l1, ... , ls,Pl, ... ,P3. If we 
let f -+ 0 then the resulting Poisson structure still makes sense, and it is 
precisely (i.e., up to a factor 2) the Lie-Poisson structure of e(3), as given 
by (8.113). It follows easily from {8.113) or from (8.115) that a basis for the 
Casimirs of e{3) is given by p~ + ~ + p~ and P1h + P2l2 + Psls. 
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In fact, these Casimirs can be obtained from the Casimirs Qo and Q1 of 
so(4) (see (8.7)) as follows. Let Q& denote Qo, expressed in the coordinates 
l1, ... ,P3 by using {8.114), and define Q1 similarly. Then 

Qo = !(ltP1 + l2P2 + lsP3), 
E: 

Q• _ 12 12 12 1 (p2 2 2) 
1-1+2+s+2 1+P2+Ps, 

E: 

and we see that «=:Q8 and «::2Q1 admit a limit as «:: ~ 0. These limits are 
precisely the two Casimirs that were given above. 

Let us apply the same procedure to the Manakov Hamiltonian 

H = ! "" Bi - B; XJ.. 
2 L., A·-A· 3 
1~i<j~4 ' 3 

The parameters that appear in this Hamiltonian are written as follows in 
terms of E: in order to get the desired limit: 

Ai = 1 + «::2ai, Bi = bi, A4 = B4 = 0. 

We substitute this in H, which we write in terms of the coordinates lt, ... , P3 
by using {8.114), and we denote the result by H•. Then lim•-+0 «::2 H• exists 
and is given by 

I. 2n• 1 ( b2 - bs z2 bs - b1 z2 b1 - b2 z2 b 2 b ...2 b 2) 1m E: = -2 1 + 2 + s + 1P1 + 2P2 + sPs 
•-+O a2 - as as - a1 a1 - a2 

Obviously, this quadratic form is of the form (8.111), and it is easy to see 
that the coefficients satisfy {8.112). In fact, for generic values of 11:1, ... , As 
the Clebsch Hamiltonian (8.111) is obtained in this way. 

The similar limits of the constants of motion R1, ... , ~ of the Manakov 
flow, given in {8.73), give the following constants of motion of the Clebsch 
flow. 

Notice that Clebsch's constant of motion K can be written in terms of the 
polynomials Ri as 

K = ~~:1R1 + ~~:2R2 + ~~:sRs. 
Another integrable flow on e{3) will be given in Paragraph 8.3.4. 
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8.3 Geodesic Flow on 80(4) for Metric II and 
Hyperelliptic Jacobians 

8.3.1 A Normal Form for Metric II 

In this section we look at case (2} of Theorem 8.3 and we show that it leads 
to a single integrable system on C6 (i.e., without parameters). Let us recall 
that in this case the Hamiltonian is given by 

1 6 3 

H = 2 L >.ix~ + L J.t;x;xi+3, 
1 j=l 

it is non-degenerate in the sense that 

where >.ii := Ai - >.;, and the parameters satisfy the following algebraic 
relations 

{8.116) 

with the following sign specification 

EE 
/Jt/J2/J3 = F 3 (>.12 - A4s)(>.23 - >.sa)(>.3t - >.a4), 

where E := At2A23A31 and E := A4s>.sa>.a4 and F := >.4a>.32 - >.as>.t3· 
Roughly speaking, the Ai may be fixed arbitrarily, and then there are four 
possibilities for (JJt, JJ2, /J3). In a first step, we consider the linear change of 
variables 

where 

Yi = ei(eiXi + ei+3Xi+a), 

Yi+s = ei+3(ei+3Xi + eiXi+a), 

(e~, e~, e~) = (>.t2A4a, >.23As4, A3tAas), 

(e~, e~, e~) = (>.4s>.ts, >.sa>.21, >.a4>.32), 

and with the following sign specification 

A4a>.23 - >.sa>.t3 
et e4 = /Jl A23 - >.sa 

>.s4 >.31 - >.a4 >.21 
e2es = JJ2 , , 

1\31 - 1\64 

>.as >.12 - >.4s >.32 
e3e6 = /Js >.12 - A4s 

{8.117) 

(8.118) 

(8.119) 
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Indeed, it follows by direct computation from (8.116) that (8.118) and (8.119) 
are consistent, leaving three signs unspecified, but the choice of these signs is 
irrelevant for the change of variables (8.117). Note that e~ -e~+3 = F i= 0, for 
i = 1, 2, 3 and that n;=1 e~ = n;=1 er+3 = EE i= 0, so that the coordinate 
transformation is invertible. Consider now the four (linearly independent) 
quadratic polynomials 

P1 := .\12Y§ - .\31 yg, 
P2 := A23Y~ - .\12Y~, 

P3 := A31Y~- .\23Yi, 

P4 := (Yl - Y4) 2 + (Y2 - Ys)2 + (y3 - Y6)2 · 

(8.120) 

A direct computation shows that each of them is a constant of motion of 
the vector field XH, which in the Xi coordinates is given by (8.13). In fact, 
the span of these quadrics contains the two quadrics I:;=1 x; and I:~=l x;+3, 
the Hamiltonian H and an extra, independent, Hamiltonian, thereby proving 
that we have a Liouville integrable system. The parameters in P1 , ... , P3 are 
easily scaled away by taking 

-1 />:;; 
Z3 = /3 y ~y3, 

f -l [>:;; 
Z6 = 6 y >:;; Y6, 

where the fi are arbitrary constants, satisfying 

! 2 - /,2 
1 - 6' ! 2- !2 3- 5• (8.121) 

and where the signs of the square roots are irrelevant, but with the under
standing that !di+3ZiZi+3 = YiYi+3 (the latter fact does not play a role for 
scaling away the parameters in P1 , ... , P3 , but it will be relevant when we 
deal with P4). Now plug these into P4 + 11:1P1 + ~~:2P2 + 11:3?3, where the ll:i are 
chosen such that the resulting quadratic polynomial contains (among others) 
the following three terms: a1z~, a2z~ and a3z§, namely 

akAjk + n Aik 
1\:i = J2 ' k Aii Aki 

(8.122) 

where i = (1, 2, 3) and (i, j, k) is any cyclic permutation of (1, 2, 3). Then the 
full polynomial is given by 

a1zr - (a2 + fi)z~ - 2ftf4ZlZ4 
+ a2z~ - (a3 + /f)z~ - 2fdsz2Z5 
+ a3z~ - (a1 + /l)z~ - 2fa/6Z3Z6· 
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We see by using (8.121) that this polynomial is of the form a1 (zt - Z4)2 + 
a2(z2 - zs)2 + as(zs - za)2 if and only if a1, a2, as satisfy 

a~ = (at + a2)(as + a1), 

a~ = (a2 +as)( at + a2), 

a~ = (as+ a1)(a2 +as). 

Each of these three equations can be written as ; 1 + a12 + ;8 = 0, so that its 
general solution, with a1a2as :f. 0, is given by a1 = - a~~!s, with a2 and as 
arbitrary, but such that a2as :f. 0 and a2 +as :f. 0. By choosing K-2, K.s and 
K.1 as given by (8.122) we can respectively choose a1,a2 and as as we wish. 
Taking a2 = a3 = -2 we get a1 = 1, and the constants fi can be chosen as 

It = h = 14 = Ia = 1, Is= Is= -2. 

The fourth invariant takes then the simple form (z1 - z4)2 - 2(z2 - z5)2 -
2(z3 - z6 ) 2 , independently of the parameters of the metric! Summarizing, 
after a linear change of variables 7 four independent quadratic invariants of 
the geodesic flow are given by 

F1 := x~- x~, 

F2 := x~- x~, 

Fa:= x~- x~, 

F4 := (x1 - x4)2 - 2(x2 - xs)2 - 2(xs - xa)2. 

(8.123) 

As in the case of the Manakov metric the span F" := r::=l K.iFi of the four 
quadrics F1 , ••• , F4 contains a curve of rank three quadrics. The matrix of 
F~e in the coordinates Xt, ••• , xa is given by 

K.4 + K.2 0 0 -K.4 0 0 

0 K.s - 2K.4 0 0 2K.4 0 

0 0 K.t - 2K.4 0 0 2K.4 

-K.4 0 0 K.4 - K.s 0 0 

0 2K.4 0 0 -2K.4- K.t 0 

0 0 2K.4 0 0 -2K.4- K.2 

It is clear that this matrix decomposes into three blocks, and by using el
ementary row and column matrices one sees easily that the determinant of 
this matrix is given by 

7 We do a final relabeling z; --+ x;, because our favorite phase variables are 
called x;. 
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The rank of F,.. is smaller than 6 on the union of three quadratic surfaces 
C1 U Cz U C3. Eliminating K4 from their equations we find that they all pass 
through the rational curve C, given by 

(K1 : ... : K4) = (2uv(u- v): u(u2 - v2): v(u2 - v2): uv(u + v)), (8.124) 

where (u : v) E P 1 is arbitrary. For such an (u : v) the quadric F ,.., with "' 
defined by (8.124) can be written as 

F,.. = (u + v)(ux1 - vx4) 2 - v((u + v)xz- 2ux5)2 - u(2vx3- (u + v)x6) 2 , 

showing that each point K on the rational curve C leads to a quadric F,.. of 
rank three, and thus, F1, Fz and F3 correspond to the distinguished points 
on C where the rank drops to 2. 

We now come to the commuting vector fields. One of them can be com
puted from the original Hamiltonian, by going through the above linear 
changes of variables, which is a rather tedious procedure and it yields only 
one of the vector fields. However, we know that both vector fields must be 
quadratic (and homogeneous), since the above invariants are quadratic and 
since the Poisson structure is linear (in the original variables, hence in the 
new variables). Notice moreover that it follows from F'! = 0 (where the dot 
refers to any vector field on C6 for which F1, ... , F4 are constant of motion) 
that X5 must be divisible by X3 and that X3 must be divisible by x5; moreover, 
the remaining factor must be the same. The same reasoning applies to F2 and 
to F3 . This leads to a simple formula for the vector space of all quadratic 
vector fields on C 6 for which H, ... , F3 are constants of motion; expressing 
that F 4 is also a constant of motion leads, by elementary linear algebra, to 
the two-dimensional space, spanned by the following two vector fields. 

±1 = 2x5xe, 

xz = 2x3x4, 

X3 = X5(Xl + X4), 

X4 = 2xzx3, 

X5 = X3(Xl + X4), 

X6 = 2X!X5, 

X~ = XzXe, 

x~ = x4(2x3 - xe), 

X~ = X4X5, 

x~ = xz(2x3 - x6), 

X~= X3X4, 

X~= X!Xz. 

(8.125) 

We denote these two vector fields, in that order, by V1 and Vz. As we pointed 
out in Paragraph 8.1.2, V1 and V2 are independent on the generic fiber of the 
momentum map. 

The Poisson structure can be found by going through the above linear 
changes of coordinates, but it is much simpler to look for all possible linear 
Poisson structures on C6 with respect to which V1 and Vz are Hamiltonian. 
The advantage of this procedure is that, as it turns out, we find many such 
Poisson structures, which are all compatible, yielding a multi-Hamiltonian 
structure for this system. 
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Consider, for (a,/3,'Y) E C 3 , the matrix 

0 ax a -f3xs 0 -(3x3 - 2-yxa (3(x2 - 2xs) 

-axa 0 2rX4 a(xa- 2x3) 0 -OXl- (3X4 

f3xs -2/X4 0 -axs - 21x2 --y(x1 + X4) 0 

0 a(2x3 - xa) axs + 2-yx2 0 OX3 -(3X2 

(3X3 + 2rX6 0 /(Xl + X4) -OX3 0 2-yxl 

(3(2xs - X2) OXl + (3X4 0 (3x2 -2-yx1 0 
(8.126) 

For any (a, /3, 'Y) E C3 it is the Poisson matrix of a Poisson structure 
Po:f3"f on C6 • If (a, /3, 'Y) -:J. (0, 0, 0) then Po:f3"f generates the Hamiltonian 
vector fields V1 and V2 as described in Table 8.1; generators for the algebra 
of Casimirs of these structures Po:f3"f also follow from the table. 

Table 8.1. The tri-Hamiltonian structure of the integrable system that corresponds 
to geodesic flow on SO( 4) for metric II. 

H F2 F3 F4 

Hoo 0 0 2V2 2(Vl- 2V2) 

Po10 0 2(Vl - V2) 0 2(Vl - 2V2) 

Pool 2Vl 0 0 4(Vl - 2V2) 

We will refer to the integrable system (C6 , {-, ·} o:f3"f, F), where F := 
(F1,F2,F3,F4), as the integrable system that corresponds to geodesic flow 
on 80(4) for metric II. 

8.3.2 Algebraic Complete Integrability 

Let us first point out a few features of this integrable system. The group of 
involutions on C 6 ' generated by 

0'1 (Xl, · · ·, X6) = (xl, -X2, -X3, X4, -X5, -X6), 
0'2(x1, · .. ,x6) = (-x1,x2, -X3, -X4,X5, -X6), 

(8.127) 

leaves the vector fields V1 and V2 invariant, as well as all fibers F c of the 
momentum map. We also consider the involution r on C6 , which is defined 
by 

(8.128) 
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It has the property of reversing the sign of both vector fields, still leaving 
all fibers F c of the momentum map invariant. Of course, the composition of 
r with any of u1 or u2 (or both) has the same properties. Another type of 
involution is given by 

It does not leave the generic fiber F c of the momentum map invariant, because 
it acts on the constants of motion in the following way: 

It leaves only the vector field V1 invariant, because 

Let us now look for the weight homogeneous Laurent solutions of the vector 
field V1. Since the weights of all variables are equal to 1, the indicial equation 
is given by 

0 = x~o) + 2x~0) x~o), 
0 = x~o) + 2x~0) x~o), 
0 = x~o) + x~o) (x~o) + x~0>), 
0 = x~o) + 2x~0) x~o), 
0 = x~o) + x~o) ( xio) + x~o))' 
0 = x~o) + 2xl0) x~o). 

It follows that the indiciallocus is given by four lines (rational curves) IE1 E2 , 

where t~ = t~ = 1, which are given in parametric form by 

(xl0), ..• , x~0)) = ((a- 1)~:2, at1, 101; 2 , -at2, ~, (1 - a)t1 t2) , 

where a E C is the parameter. If we denote the Kowalevski matrix that 
corresponds to the point with parameter a on the line IE1 E2 by KE 1 E2 (a), then 
we have that 

1 0 0 0 2(1- a)t1t2 €1 

0 1 -2a~:2 €1€2 0 0 

KE1E2(a) = ~€1 0 1 ~€1 -€2 0 

0 €1€2 2at1 1 0 0 
1 2€1€2 0 -€2 ~€1€2 1 0 

€1 0 0 0 2(a- 1)~:2 1 
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Its characteristic polynomial is given by 

independently of €1, €2 and a. 
We now establish the existence of principal balances. Indeed, as in the 

case of the Manakov metric, we need to show that these balances do exist. 
Since JC<, <2 (a) has 5 non-negative integer eigenvalues, the largest of which is 
equal to 2, it suffices to compute the first three terms of the series and to 
verify that it depends indeed on 5 free parameters, to know that they are 
the first terms of a principal balance. It is easily checked that the following 
Laurent polynomials 

x1(t) = (a - 1)€ 2 (1- bt + (b2 - d- e)t2 + O(t3)), 
t 

x2(t) = Et1 (a- abt +((a- 1)(ae- c- ab2) + a2d)e + O(t3)), 

x3(t) = E~~2 (1 + bt- ((a- 1)e +ad- c- ab2)t2 + O(t3 )), 

X4 (t) = E: (-a+ abt + ct2 + O(t3 )) , (8.129) 

X5(t) = ~~ (1 + bt + dt2 + O(t3 ))' 

x6(t) = (a- !)€ 1 €2 ( -1 + bt- et2 + O(t3 )), 

which depend on the 5 free parameters a, ... , e, satisfy the differential equa
tions which describe vl' up to higher order terms, hence lead to four principal 
balances (indexed by (ti,€2)), where €~ = €~ = 1; when we need to be more 
precise about the balance we will write it as x( t; I<I <2 ). The next terms are 
uniquely (linearly) determined by the given ones, so they can easily be com
puted, when needed (in essentially all computations that follow the above 
terms suffice). Notice that the Painleve building consists in this case of 4 
Painleve walls, each of which isomorphic to C 5 . 

We now look for independent homogeneous polynomials which have a 
simple pole at most when any of the principal balances is substituted in them. 
In the notation of Paragraph 7.7.1, we look for a basis of Zp as an 1i-module, 
where the pole vector pis chosen asp= (1, 1, 1, 1). The result is summarized 
in Table 8.2, which suggests that a basis of this space of polynomials is given 
by the last column in the table. These polynomials are defined by Zi := Xi, 

fori = 1, ... , 6 and fori = 7, ... , 15 they are given, together with their polar 
part as follows. 

tzb 
z7 = X5(2x3- X6)- X2X3 "" -t-' 

2Elb(a- 1) 
Zg = X! (2x3 - X6) - X4X6 "" t ' 
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Table 8.2. The polynomials of degree at most 4 which have a simple pole at most 
when any of the principal balances is substituted in them. In order to verify that 
dim z: = 30, as is asserted in the last line, one extra term in {8.129} needs to be 
computed. 

k dim:Fk dim1lk dimz; # dep 

0 1 1 1 

1 6 0 6 

2 21 4 9 

3 56 0 28 

4 126 10 30 

2~:1~:2ab 
Zg = X4(2x5- X2)- X1X2 "'- t ' 

2 2 4b(1- a) 
z10 = (2xs - x2) - x6 "' t , 

0 

0 

4 

24 

30 

(k indep. functions 

1 zo = 1 

6 Zl, ... , Z6 

5 Z7, •.. ,zu 

4 Z12, ... , Z15 

0 -

2 2 4ab 
zu = (2x3 - x6) - x2 "' -t-, (8.130) 

(a- 1)(a(b2 -d-e)+ c) 
Z12 = X1X2X3 - X4X5X6 "' t ' 

€1 (1 - a)(ae +c) 
Z13 = X2X3X6 - X1X4X5 "' t ' 

~:1~:2(a -l)(a2 (b2 - d-e)+ a(c- d)- c) 
Z14 = X2X5X6 - X1X3X4 "' t ' 

~:2 (a- 1)((1- a)(a(b2 - d-e)+ c)+ a(d- e)) 
Z15 = X1X2X5 - X3X4X6 "' t ' 

The action of the involutions a1 and a2 on these functions is given by 

0"1 (z7, ... , Z15) = (z7, -zs,, -Zg, ZlQ, Zu, Z12, -z13, -Z14, Z15), 

a2(Z7, ... , Z15) = ( -z7, Zs,, -Zg, Z10, Zu, Z12, Z13, -Z14, -Zls), 
(8.131) 

as follows from (8.127). For generic c = (c1, ... , c4) we consider the following 
map, 

<pc : Fe -t p7 

(xl, ... , X6) t-t (1 : Z1 : .. · : Z15), 

which is an isomorphic embedding of F c into projective space. We use it to 
compute an equation for each of the irreducible components of the abstract 
Painleve divisor, which is done by substituting (8.129) in the equations F1 = 
c1, ... ,F4 = c4, where the Fi are the constants of motion, defined in (8.123) 
and ( c1, ... , c4) E C4 is generic. 
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The first three equations yield 

a(b2 - d-e)+ c + e- d = 2c1, 

2(a- 1)2(b2 - d- 2e) = c2, 

-2a(a2(b2 -d-e)+ a(c + e- b2) - 2c) =ca. 

These equations are linear in the parameters c, d and e, and we can solve 
linearly for these in terms of the values of the constants of motion, giving 

ab2 a(a+1) a a+3 
c = -3 + 3 c1 + 12(a- 1) c2 + 12a ca, 

b2 2(a- 2) c2 ca 
d=3+ 3 c1 +6(a-1)+6a' 

b2 a- 2 a+ 2 ca 
e = 3- -3-c1 - 12(a -1)2c2 - 12a· 

This is not surprising: they appear at step 2 and we already pointed out 
that we have three quadratic constants of motion, which are independent 
when evaluated at an arbitrary point of the indiciallocus; Proposition 7.34 
therefore guarantees that we can express these three parameters linearly in 
terms of the constants of motion. The fourth equation then reduces, for any 
( c1 , •.. , c4 ) E C4 , to the following equation of an affine curve in C2 , 

(8.132) 

which is a hyperelliptic curve of genus 2. Notice that the curve is independent 
of (t:1 , t:2); therefore we simply denote it by Fe. In order to compactify Fe, 
for generic c, into a compact Riemann surface, denoted Fe, we need to add 
three points to it, corresponding to a = 0, a = 1 and a = oo; we denote 
these points of Fe by 0, 1 and oo. Notice that each of these three points is a 
Weierstrass point of Fe. A local parameter «; at each of these point is given 
as follows: 

b = yiC3 ( 1 2c1 + c2 - 2c3 - C4 2 O( 3 )) 
2 + 2 «;+'' «; ca 

1 : a= 1 +,2, b=: (1 _2cl-2c~c:ca+c4c;2 +0(«;3 )), 

00 : a = ,-2, b = FC1 (1 _ 2c1 + 2c2 - 2c3 - c4 , 2 + 0(«;3)). 
«; 8c1 

(8.133) 
For fixed generic c the series Zi ( t; I'1 ' 2 ) restrict to series that we denote by 
zi(t; F2'2 ). The residues of these series lead, for fixed t:1 = ±1 and t:2 = ±1, 
to a map, which we will denote by cp~1 ' 2 ; the projective closure of the image 
of this map will be denoted by V~1 ' 2 , where we write v-;- for V~·- 1 and so 
on. 
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This gives us four divisors on cpc(F c), and verifying the adjunction formula 
(7.50) means that we must check that the curve, formed by these divisors, 
is a (singular) curve of genus 15 + 2 = 17. A direct substitution of these 
parameterizations8 in the residues, yields, up to terms of order c:;2, and up to 
a rescaling of c:;, the following: 

0: (0: · · · : 0: c:;: -2€1€2c:;: 0: 4E2c:;: 0: 1 : -€1 : -€1f2 : €2), 

1: (0: · · ·: 0: €2c:;: 0: -2€1E2c:;: 0: 4c:;: 1: €1 : E1f2: E2), (8.134) 

It follows that these three points are mapped to the following four points 
in p15: 

p+- := (0 : ... : 0 : 1 : 1 : 1 : 1), 

p-+ := (0: ... : 0: 1: -1: 1: -1), 

p-- := (0: ... : 0: 1: -1: -1: 1), 
(8.135) 

p++ := (0: ... : 0: 1: 1: -1: -1). 

Notice that these points are independent of the constants of motion c. The 
involutions o-1 and o-2 permute the points P'1 ' 2 and the divisors 'D~1 '2 in the 
following way, as follows from (8.131). 

p++ <71 v++ ~v-+ -p-+ c c 

.,I !., .,] ]., 
p+- ~p-- v+-

c -- v--
0"1 c 

The precise correspondence between the points 0, 1 and oo on Fe and the 
four points P'1 ' 2 under the different embed dings is given in Table 8.3. 

Looking at the terms in c:; in (8.134) we see that all tangents at the in
tersection points are different, so that the Painleve divisor has four ordinary 
triple points, the points Pf1 ' 2 , and has no other singularities. Thus, we find 
the intersection pattern, given in Figure 8.2. Since the Euler characteristic of 
an ordinary triple point is 3 and since the genus of each of the four curves 
equals 2, Proposition 5.42 gives g = 2 x 4 + 1 - 4 + 12 = 17, as required by 
the adjunction formula. 

Since the adjunction formula is satisfied when considering the functions 
z0 , ... , z15 we now verify that ( cpc)* V1 extends to a holomorphic vector field 
·1::\ in P 15 . It is easy to very that the functions Zi themselves satisfy the 
following quadratic equations. 

8 The given terms are sufficient to do the computation. 
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Table 8.3. By the four embeddings cp~1 "2 of Fe into P 15 the three points at infinity 
of re are mapped to four different points, making each of the image points an 
intersection point of three copies of Fe. Our labeling of these points P"1 " 2 and 
these image curves 'D~1 "2 := cp~1 "2 (Fe) is such that 'D~1 "2 does not contain P'1 ' 2 , 

but contains all other triple points of 'De. See also Figure 8.2. 

v++ e v;- v;+ v+-e 

0 p-- p++ p+- p-+ 

1 p+- p-+ p-- p++ 

00 p-+ p+- p++ p--

v+-c 

Fig. 8.2. The Painleve divisor 'De consists of four genus two curves 'D~1 "2 that 
intersect in four points, each of which is an ordinary triple point of 'De, the three 
branches coming from three different curves. The divisor contains all 16 half periods 
of Jac(Fe): four of them are the singular points p•t•2 , while each curve contains 
three other half periods, that are its other Weierstrass points. It follows from Propo
sition 5.42 that Ya('De) = 17. 

i1 = 2zsz6, 
Z2 = 2Z3Z4, 

i3 = z5(z1 + Z4), 

i4 = 2Z2Z3, 

is = z3(z1 + z4), 

i 6 = 2z1z5, 

i1 = Z5Z9 + z3zs, 

i 8 = 2z6z7, 

ig = 2Z2Z7, 

ilO = 4Z1Z7, 

zu = 4Z4Z7, 

i12 = (z1 + z4)Z15 + 2c1z1z4, 

i13 = (z1 + z4)z14 + 2c1Z4Z5, 

i14 = (z1 + z4)z13 - 2c1z1z2, 

i1s = (z1 + z4)Z12 - 2c1z2z6, 
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This establishes the fact that (cpc). V1 extends to a quadratic vector field in 
the chart Zo -:/:- 0 in P 15 . In order to show that (cpc). V1 also extends to a 
quadratic vector field in the chart zl -:/:- 0 in P 15 we define Yi := zi/ Zl' for 
i = 0, ... , 15. In terms of the Yi it is easy to verify the following equations. 

iJo = -2Y5Y6, 
iJ1 = o, 
Y2 = -2Y14Yo, 

Y3 = Yo(c2Y5 - Y13) - Y6Y7, 
Y4 = 2YoY12, 

iJs = Y7(2ys - Y2) - Y3Y10 - YoY14 + C2YoYa, 
Y6 = 2C2YOY5, 

iJ1 = 2c2(2y~ - y~) - 2YsY13 - 2c1 - (1 + Y4)Y15 
+(2cl - 2c2 + 2ca + c4)Y3Y6, 

iJs = -2Y6Y12, 
iJg = 2Y12(2y5 - Y2), 

iJw = 8c2Y3Y5 - 4Y12 + 2(2cl - 3c2 + c3 + c4)Y5Y6, 
iJn = -4Y4Y12 - 8y5y14 - 2(2cl + c2 - 3c3 - c4)YsY6, 
iJ12 = (2c2- 6c1- 2c3- c4)YoY15- Y9Y13 + (4cl + CJ)YaYs 

-2Y7Y12- 2c1Y6Ys- 2c1(2c1 + c2- c4)Yo + 6c1c2YoY4, 

Y13 = c2(YoY14 + CaYoY3 + Y2Y1) - YsY15, 

Y14 = ~C2Ys(Yu - (2cl + c2 - 3ca - c4)Yo) - YsY12, 

Y15 = -YsY13 - C2Y3Y9· 

In view of Lemma 7.58 this proves that (cpc). V1 extends to a holomorphic 
vector field vl on P 15 . 

Remark 8.17. Though the 16 functions z0 , .•• , z15 are simple, being very sym
metric, it is sometimes more convenient to consider the subspace of their span, 
which consists of the functions which do not have a pole when one of the 
principal balances is substituted in them. The idea is that, if this integrable 
system is indeed an a.c.i. system (as we will see) then the embedding which 
is given by the above 16 functions with a simple pole along the 4 Painleve 
divisors, can be replaced by the lower-dimensional embedding which is given 
by a basis for the functions with a simple pole along 3 of the Painleve divi
sors. Indeed, according to Lefschetz's Theorem, the third power of any ample 
line bundel on an Abelian variety is always very ample (see Theorem 5.17). 
One such a basis is easily read off from (8.129) and (8.130), by looking for 9 
independent polynomials that have no residue for €1 = -€2 = 1. 
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One possible basis is given by the following. 

z~ = 1, 

Z~ = Z2 - Z4 = X2 - X4, 

Z~ = Z3 + Z5 = X3 + X5, 

Z~ = Z1 + Z6 = X1 + X6, 

Z~ = Zl + Z2 + 2z3 = X1 + X2 + 2X3, 
z~ = 2zs + z10 = (2x5- x2)2 - 2x6(XI + x4) + 4xlx3- x~, 
z~ = 2z9- zn = -(2x3- X5)2 - 2x2(x1 + x4) + 4x4X5 + x~, 
z~ = 2z7 - zs + Z9 

= X1X6- (2X3 + X2)X1- (2X5- X4)X6 + (2x3 + X4)(2x5- X2), 

Z~ = Z12 + Z13 + Z14 + Z15 = (x2 - X4)(x3 + X5)(x1 + X6)• 

It can be verified as above that, for generic constant of the motion, the 
residues of these functions map the three curves onto three curves in P8 , 

which all meet in an ordinary triple point and which pairwise intersect in 
another point, which is an ordinary double point (the picture is Figure 8.2 
with the divisor vt- removed). Since each double point has Euler charac
teristic 2, while the triple point has Euler characteristic 3, Proposition 5.42 
gives g = 3 x 2 + 1 - 3 + 3 + 3 = 10, which is again in agreement with the 
adjunction formula. It can be verified that in these variables the equations of 
V1 are also quadratic, but they are more complicated (and less symmetric) 
than the above ones for the functions Zi, which explains why we have given 
preference to prove algebraic integrability by using the larger set of variables. 

We now check, following Paragraph 7.7.3, that we flow into the affine im
mediately when starting from any point in <,Oc(Fc) \ <,Oc(Fc)· Notice that the 
four embeddings <p~1 E2 map the point 0 E Fe to the four points PE1 E2 • There
fore, we first check that, in a neighborhood of 0, the series 1/z15 (t;FiH2 ) 

admits, for generic c, a non-zero limit as c; ~ 0, where the parameterization 
of a neighborhood of 0 is given by (8.133); the choice of z15 is based on the 
fact that z15 -::/= 0 defines a chart in a neighborhood of 0, as can be read off 
from (8.135). For this, a few more terms in the principal balance need to be 
computed (one needs the terms up to t5). The result is that 

lim _!_(t; F2E2) = E2Cl t5 + O(t6), 
{-+0 Z15 3 

and so the series is not identically zero and we go into the affine immediately, 
when starting from any of the points PE1 E2 • 

Finally we need to check that there are no other divisors in <,Oc(Fc) \ 
<,Oc (F c). By substituting (8.133), we have that 

_!_(t; F2E2 ) =- 2€ 2 (2c;- yC3t)c;t + ... ' 
Z15 C3 

where the dots stand for terms of total degree at least 4 inc; and t. 
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It follows that the multiplicity of 1/ z15 at each of the points P'1 ' 2 equals 
three, which coincides with the sum of the order of zero of 1/ z15 on each of 
the three intersecting branches, giving 1 + 1 + 1 = 3. Notice that the flow is 
transversal at any P'1 ' 2 to one of the divisors, so the function 1/z15 (t,s) is 
expanded in holomorphic coordinates and hence its multiplicity is meaningful. 
Thus, we have verified the conditions of the Complex Liouville Theorem 
(Theorem 6.22) and we may conclude that IPc (F c) is an Abelian surface, for 
generic c, and that the vector fields 1~\ and v2 restrict to linear vector fields 
on these tori. Our conclusions are summarized in the following theorem. 

Theorem 8.18. Let (C6 , {-,·},F) be the integrable system which provides 
a normal form for the geodesic flow on so(4) with respect to metric II, where 
F = (F1, F2, F3, F4) is given by {8.123} and { · , ·} is any of the Poisson 
structures {8.126}, with multi-Hamiltonian vector fields (8.125). 

{1} (C6 , {-,·},F) is a weight homogeneous a.c.i. system; 
{2) For generic c the fiber F c of its momentum map completes into a Jacobi 

surface Jac(Fc) by adding a singular divisor Vc; 
{3} Vc consists of 4 copies of the genus two curve Fe that intersect according 

to the pattern, indicated in Figure 8.2; 
(4) The line bundle [Vc] defines a polarization of type ( 4, 4) on T~ and leads 

to an embedding of Jac(Fc) in P 15 ; 

{5} The involutions a 1 and a2 define on Jac(Fc) two translations, over a half 
period, that permute the components of Vc. 

The fact that the Abelian surface tpc(F c) is a Jacobi surface follows simply 
from the fact that this surface contains a smooth genus two curve, hence it is 
its Jacobian. Notice also that the divisor 'De contains all sixteen fixed points 
of the time-involution on Jac(Fc) that is induced by T (see (8.128)), and that 
these points are precisely the 16 Weierstrass points of the four curves that 
make up Vc. Indeed, T induces on the parameters (a, b) that appear in the 
principal balances the action (a, b) f-t (a, -b), as is read off from (8.129), 
which amounts to the hyperelliptic involution on each of the curves. 

8.3.3 A Lax Equation for Metric II 

In this section we give a Lax equation for the metric II. To do this, we first 
construct, following (38], an explicit map from the generic fiber F c of the 
momentum map to the Jacobian of the Riemann surface Fe. 

Let c be generic, such that the affine curve Fe, given by (8.132) is a 
non-singular curve of genus 2; in particular we assume that c1 c2c3 =f 0. We 
consider the functions which have at worst a double pole along one of the 
components of the divisor Vc on Jac(Fc), and no other poles; say that the 
component that we pick is v;;+. These functions are obtained by construct
ing those polynomials on C6 which have at worst a double pole in t when 
x(t; rJ,-1 ) is substituted into them, and no poles when the other principal 
balances are substituted. 
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From (8.129) we easily find the following basis, 

Oo := 1, 

61 := (x2 + x4)(xa + xs), 

62 := (xa + xs)(xl + X6), 
Oa := (x1 + X5)(x2 + X4), 

(8.136) 

where we think of these polynomials as being restricted to F c· Consider now 
the Kodaira map, corresponding to these functions, 

- -+ 3 '-Pc : Jac(rc) \ Vc --+ P 
P = (x1, ... , X6) 1-t (Oo(P) : 61 (P) : 02(P) : Oa(P)). 

Since the functions Oi correspond to the sections of [2V;+], which defines 
twice the principal polarization on Jac(rc), the map '-Pc maps the surface 
Jac(rc) to its Kummer surface, which is a singular quartic in P 3 (see Para
graph 5.2.3). An equation for this quartic surface can be computed by elim
inating the variables x1, ... ,x6 from the equations (8.123) and (8.136). For 
doing this it is useful to first rewrite these equations using the six coordinates 
x2 ± X4, xa ± xs and x1 ± xs: solving the equations (8.136) and the first three 
equations in (8.123) for these variables and substituting these values in the 
remaining equation, the equation for the Kummer surface of Jac(rc) can be 
written in the form 

(8.137) 

where 

fa= 2(01c2 + 02ca)c1 + (61 + 02)(01c2- 02ca- 20162) + 20102(2c1- c4), 

/4 = (01c2 - 02ca + 20162)2. 

Looking at the leading term in (8.137) (see [169, Section V.4]) a system of 
linearizing variables eel' 6) is given by the equations 

(8.138) 

The fact that this provides linearizing variables is checked in the present case 
as follows. First make use of (8.136), to rewrite the equations (8.138) as 

(xa + xs)(x2 + x4) = -2c1e16, 

(xa + xs)(xl + xs) = 2c1(e1 -1)(6 -1). 
(8.139) 

Since c is generic the variables e1 and e2 are both different from 1 and from 0; 
in fact, the two left hand sides of (8.139) are different from zero if c1c2c3 =I 0, 
as follows from (8.123). Therefore, we can divide in the computations that 
follow by ei and by ei- 1, when necessary. 
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Differentiating the equations (8.139) with respect to the vector field V1 

given by (8.125), we find that 

1 . 1 . 
~l ~1 + ~2 6 = X1 + X4 + 2x3, 

(~1- 1)- 1 ~1 + (6- 1)- 1 ~2 = x1 + X4 + 2xs. 
(8.140) 

Then we can solve the first three equations of (8.123), together with (8.139) 
and the difference of the two equations in (8.140) for x1 , ... , x6 , using the 
above suggested change of coordinates. Substituting these values in the sec
ond equation of (8.140) we find that 

6 6 1 4 c2 c3 ( . )2 ( . )2 
6 ( 6 - 1) 6 ( 6 - 1) - 6 - 6 [ ( 6 - 1) ( 6 - 1) 6 ~J . - --- c1+ +-

(8.141) 
Notice that this equation is linear in ~r and ~~. Finally we substitute the 
above solved values for x1 , ... ,x6 in the fourth equation of (8.123) to find 
another equation in ~1 and ~2 which, together with (8.141) leads to 

i = 1,2, 

where 

Notice that the affine curve y 2 = f(x) is the affine curve Fe, with the Weier
strass points, lying over x = 0 and x = 1 added (see (8.132)). It follows that, 
in terms of the coordinates 6, 6 given by (8.138), the differential equations 
(8.125) lead to 

(8.142) 

This means that when we view P1 + P2 := ( 6, ,fl7IJ) + ( 6, ..j'J(G)) 
as a divisor on the hyperelliptic curve y2 = f(x), then the Vrfiow of its 
linear equivalence class is linear on the Jacobian of this curve, as (8.142) is 
equivalent to 

:, (~!.>) = (~)' 
with w = (w1,w2)T = ( ~' ~)T, a basis for the holomorphic differ

y/(x) y f(x) 

entials on Fe. According to Mumford's description of hyperelliptic Jacobians 
(see (133, Section 3.1]), if r is a hyperelliptic curve of genus two then r can 
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be embedded in its Jacobian in such a way that Jac(F) \ r is isomorphic to 
the space of pairs of polynomials (u(b), v(b)) such that u(b) is monic of degree 
two, v(b) is of degree less than two and j(b) - v2 (b) is divisible by u(b). Let 
us describe the map from F c into Jac(Fc) in terms of these polynomials. We 
define the polynomial u(b) by demanding that its roots are el and 6, i.e., 
from {8.140) and {8.123) conclude 

u{b) = b2 + ( X1 + X2 + X4 + X6 _ 1) b _ X2 + X4 • 

2{x3 - x5) 2{xs - x5) 

The polynomial v(b) is defined as the derivative of u{b) in the direction 
of V1 and can be most easily described by the following formulas, gotten 
from {8.140): 

v(O) = u{O){x1 + X4 + 2x3), v{1) = u{1){xl + X4 + 2x5). 
v(b) = (v{1)- v{O))b + v(O). 

It is easy to check that f(b) - v2 {b) is divisible by u{b) so that the above 
formulas indeed define a point of Jac{Fc) \ v;+. This leads to a Lax equation 
X (b) = [X (b), Y {b)] for the metric II by taking 

X(b) = ( v(b) u(b) ) , 
w(b) -v(b) Y(b)= ' ( 0 1) 

W3b + W2 - U1 W3 0 

where w{b) is the cubic polynomial {!{b) - v2 {b))fu(b), and where we have 
written u(b) = b2 +u1b+uo and v(b) = v1b+vo and w(b) = w3b3 +· ··+wo. 
The verification is done by direct substitution; notice that the characteristic 
polynomial of X(b) is precisely the polynomial which defines the curve Fe. 
For more information on this Lax equation and its relation to the Mumford 
system, see [169, Chapter VIII]. 

8.3.4 From Metric II to the Lyapunov-Steklov Flow 

In Paragraph 8.2. 7 we have shown that the limit of the Manakov Hamiltonian 
yields the Clebsch Hamiltonian, which yields one of the integrable cases of 
geodesic flow on e{3). We will now show that metric II leads to another 
integrable case, which is known as the Lyapunov-Steklov case. 

Recall that in the case of metric II, the Hamiltonian is given by 

1 6 2 3 

H = 2 LAiXi + LJ.tjXjXj+3• 
1 j=1 

where the coefficients satisfy the following relations (Aij := Ai- Aj)· 

- ( 2 2 2) ( 2 2 2) _ EE (.X23 - A55) (.X31 - A64) (.X12 - A45) 
1-'1 • 1-'2' 1-'3 - F2 , , • , , ' , , -"23-"56 "31 -"64 -"12-"45 

{8.143) 
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EE 
I-Lli-L21-l3 = F 3 (A12- A4s)(Azg- As5)(A31- A64), 

where E := A12A23A31 and E := A4sAs6A64 and F := A45A32 - A55A13 . For 
i = 1, ... ,3, define 

A ai a1a2a3 A ai a1a2a3 
i = -4 2 + -2--' i+3 = -4 2 - -2--' 

E Eai E Eai 

1-li = 4:i2 II J1 - 4E2a~ (8.144) 
#i 

ai ai 2 2 2 2 2 
= 4€ 2 - 2 ( a1 + a2 + a3 - ai ) + 0( E ) . 

Then it is easy to verify that these values for Ai and 1-li satisfy (8.143) (for the 
precise definition of the 1-li in (8.144), choose the sign of the square roots for 
I-Ll and 1-L2 arbitrary and choose the sign of the square root for I-L3 such that the 
third equation in (8.143) is satisfied). As in the Clebsch case, we substitute 
the values (8.144) in H, besides substituting Xii = lk and Xi4 = pi/E, where 
(i, j, k) is any cyclic permutation of (1, 2, 3) and where the coordinates Xi are 
expressed in terms of the coordinates Xii by (8.8). Denoting the result by 
H< it is easy to see that E2 H< has a non-zero limit as E ~ 0, namely 

3 

lim E2 H< = -2
1 """ai(li - (a1 + az + ag - ai)Pi)2 + C, 

f-+0 L.J 
i=l 

where C is the following Casimir of e(3), 

C := (a1a2 + azag + agai)(hPl + l2P2 + l3p3)- a1a2a3(p~ + P~ + p~). 
The constants of motion of the Lyapunov-Steklov Hamiltonian are most easily 
found by taking the limit of the constants of motion (8.120). If we compute Yi 
in the same way as we computed H< above, where the Yi are defined in terms 
of the Xi in ( 8.117), then we find that E4Yi has, for i = 1, ... , 6 a non-zero 
limit as E ~ 0, namely fori= 1, ... , 3 we find that 

lim E4Yi = -8
1 (a1 - a2)(a2- ag)(ag- a1) ( li +Pi) , 

<-+0 ai- ak 

lim E4Yi+3 = -8
1 (a1 - a2)(a2 - ag)(ag - a1) ( li -Pi) . 

<-+0 ai- ak 

It follows that the three first constants of motion in (8.120) get transformed 
(up to a constant) into 

( lk ) 2 
( l· ) 2 

(ai- ai) --- + Pk + (ai- ak) 1 +Pi , 
ai- ai ai- ak 

where (i, j, k) is any cyclic permutation of (1, 2, 3). Similarly, the last constant 
of motion in (8.120) gets transformed into the Casimir p~ + p~ + p~. 
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8.4 Geodesic Flow on 80(4) for Metric III and Abelian 
Surfaces of Type (1, 6) 

8.4.1 A Normal Form for Metric III 

We now turn to case (3) in Theorem 8.3. By a trivial rescaling of the coordi
nates, so as to get rid of the square roots «:1 and «:2 of 1, and by a transposition 
of the coordinates 

Y2 t-t Ys, 

we may assume that in this case the Hamiltonian H is of the form 

where the constants Ai and J.l.i can be expressed in terms of constants p, q 
with p E C* and q E C \ {0, ±1, ±1/3} 

A12 = p(q- 1)3 (3q + 1), 

A23 = 16pq3 , 

A31 = p(1 - 3q)(q + 1)3 , 

A4s = p(q- 1)(3q + 1)3 , 

Asa = 16pq, 

Aa4 = p(1- 3q)3 (q + 1), 

J.l.l = p(1- q2)(1- 9q2), 

J.l.2 = 4pq(1- q)(3q + 1), 

J.l.3 = 4pq(q + 1)(1- 3q). 

The constant pis a common factor, which can be given any non-zero value; 
we take 

1 
p := (q- 1)(3q + 1)3 • 

In order to simplify the formulas that follow, we define 

q-1 
0: := 3q + 1' so that 

o:+1 
q=1-3o:' 

and notice that o: E C \ {0, ±1, ±1/3}, just like q. If we remove from H a 
multiple of the Casimirs y~ + y~ + y~ and y~ + yg + y~, so as to kill the 
coefficients of y~ and yg then H takes, with the above choices of p and o: the 
following form. 

H - 2 2 2 (1 + o:)3 (3o:- 1) 2 (1 + o:)(3o: -1)3 2 
- 0: Y1 + Y4 + 16o: Y3 + 160: Ya 

(a:- 1)(3o: + 1) (a:+ 1)(3o:- 1) (9o:2 - 1)(o:2 - 1) 
- 2 Y1Y4 + 2 Y2Ys - So: Y3Y6· 
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Finally, we do one more (linear) change of variables, namely let x1 , ... , x6 be 
new coordinates9 on C 6 , which are defined by 

( Yl)-V-1(3a+1 1)( (a-1)xt ) 
y4 - - a- 1 -1 (3a- 1)(a + 1)x4 ' 

( Y2)-V-1(3a-1 1)( (a+1)x2 ) 
Ys - - a+ 1 -1 (3a + 1)(a- 1)xs ' 

( Y3 ) = _ ( 3a + 1 3a - 1 ) ( (a - 1 )x3 ) . 
Y6 a- 1 a+ 1 (a+ 1)x6 

Notice that each of these matrices is invertible, since a E C \ {0, ±1, ±1/3}. 
In terms of the coordinates Xi the Hamiltonian vector field XH is (up to the 
constant factor (9a2 - 1)(a2 - 1)) given by 

. 2axsx6 +(a- 1)x2x3 
x4 = 3a -1 
. 2aX3X4 +(a+ 1)XtX6 
xs = 3a + 1 
. 1+a 1-a 
X6 = - 2-x4X5 + X2X4 + - 2-XtX2 

X2 = X4X6 
. 1-a 1+a 

X3 = - 2-X4X5 + XtXS + - 2-XtX2 

This (homogeneous) vector field will in the sequel be denoted by Vt. Four 
independent constants of motion of Vt are given by 

1-a 
F1 := aG2 + 1 + 3a G1, 

1+a 
F2 := -aG1 + 1 _ 3a Gs, 

p 3 := 206 - ~- _0_, (8.145) 
9a2 - 1 1 + 3a 1 - 3a 
a-1 2 2 a+1 2 2 a2-1 2 

F4 := 3a + 1 (G1 + G4) + 3a _ 1 (G2 + G5)- 3 9a 2 _ 1 (2GtG2- G3) 

4 
+ 9a2 _ 1 [(a+ 1)G2(G5 + Gs)- (a- 1)Gt(G6 + G7 )], 

where 

G1 := x~- x2xs, 

G2 :=X~- XtX4, 

G3 := x1x2- X4Xs, 
2 

G4 := - 1 _ 3a (x2x3 - xsx6), 

2 
Gs := - 1 + 3a (xtX6- x3x4), 

G6 := XtX4 + X2X5 - X3X6, 

G7 :=X~- X~+ XtX4, 

Gs := x~- x~ + x2xs. 

9 These new coordinates are motivated by the equations of a curve of rank three 
quartics, as explained in (12, Chapter 8). 
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The fact that F1, ... , F3 are constants of motion of V1 is checked at once. In 
order to check this for F4 it is useful to first point out that the derivatives 
of the quadratic polynomials G1 , ... , G5 , in the direction of V1 , are linear 
functions of G1, ... , G5, with linear coefficients in the Xi, namely 

. 1+o: 
G1 = - 2-(x2G5- x4G4), 

. 1-o: 
G2 = - 2-(x1G4- x5G5), 

G3 = o:(x5G4 - x4G5), (8.146) 
. 1 + 0: 

G4 = - 1 _ 3o: (x6G5 + (x2 + x5)G3), 

. 1-0: 
G5 = - 1 + 3o: (x3G4 + (x1 + x4)G3). 

The derivatives of G6, ... , Gs are expressed in terms of G1 and G2 by using 
F1 = F2 = F3 = 0. From these formulas for the Gi one concludes easily 
that F4 = 0, while the quadratic Hamiltonian H is easily written as a linear 
combination of F1, F2 and F3. In terms of these three constants of motion, 
two generators for the algebra of Casimirs are given by 

F{ := F1(1- o:)(1 + 3o:)3 + F2(1 + o:)(1- 3o:)3 - F3(1- o:2)(1- 9o:2)2, 
F~ := F1(1- o:)3(1 + 3o:) + F2(1 + o:)3(1- 3o:)- F3(1- o:2)2(1- 9o:2). 

(8.147) 

Since the functions Ft, ... , F4 are clearly independent, this shows that the 
geodesic flow on so(4) given by metric III is Liouville integrable. In the sequel 
F := (Ft,F2,F3,F4) denotes its momentum map. The vector field Xp4 that 
commutes with vl would be a natural choice for v2, but we will prefer to use 
V2 := Xp~, where F~ is defined by 

(8.148) 

V2 is a weight homogeneous vector field of weight 3; we will give an expression 
of it later, when we need it. As we pointed out in Paragraph 8.1.2 the two 
commuting vector fields vl and v2 are independent on the generic fiber of 
the momentum map. 

We finish this paragraph by listing a few involutions that are relevant for 
this integrable system. The group of involutions on C6 , generated by 

0'1 (x1, ... , X6) = (x1, -x2, -x3, x4, -x5, -x6), 

0'2(X1 1 ••• 1 X6) = ( -Xl, X2 1 -X3 1 -X4 1 X5 1 -X6) 1 

(8.149) 

leaves the vector fields V1 and V2 invariant, as well as all fibers F c ( c E C4 ) 

of the momentum map. 
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This is easily seen by using the fact that the action on the functions Gi 
is as follows, 

ut(Gt, ... ,Gs) = (G1,G2, -Gs,G4, -Gs,G6,G7,Gs), 
u2(G1, ... ,Gs) = (G1,G2, -Gs, -G4,Gs,G6,G7,Gs), 

The involution T on C6 , which is defined by 

{8.150) 

has the property of reversing the sign of both vector fields, still leaving all 
fibers F c of the momentum map invariant. Of course, the composition of r 
with any of 0'1 or u2 (or both) has the same properties. An involution on the 
whole family of integrable systems is defined by 

(8.151) 

It leaves the two vector fields invariant, but it permutes the fibers of the 
momentum map, since 

as follows from 

7r(Gt, ... ,Gs) = (G2,Gt,Gs,Gs,G4,G6,Gs,G7)· 

In order to compactify the notation, we will often replace 1r by an overline 
bar. In this notation, a = -a and (Jt = G2 and so on. 

8.4.2 A Lax Equation for Metric III 

In this paragraph we give a Lax equation for metric III, which was discovered 
by Reiman anq Semenov-Tian-Shanskii (see [148]). Consider the following 
quadratic form on so(4), 

3 

H := L ( { ~ + di)x~ + (3ci + di)x~+3 + 2(di - Ci)XiXi+S) 
i=l 

(8.152) 

with 
bi d· ·- bj- b~c 

ci := -, and , .- , 
ai a3 -a~c 

where (i, j, k) is any cyclic permutation of (1, 2, 3), and where the parameters 
ai and bi satisfy 

and 

but are otherwise arbitrary. It is easy to see that each of the non-degenerate 
metrics that is defined by H is, for any value of the parameters, a special 
case of metric III. 
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To see this, it suffices to make in (3) of Theorem 8.3 the following choices 
for q, p, fi and €2: 

and 

and fi := -€2 := -1. For example 

CI - C2 S 
- 3- + di - d2 = AI2 = p(q- 1) (3q + 1), 

and so on. Consider the following parameterization of the (15-dimensional) 
Lie algebra 92 

M(u,v,a,y,z) := 

0 
u3 +vs u2 +v2 VI- UI 

2 2 2 
-y2 Ys a I 

us +vs 
0 

UI +VI V2- U2 

2 2 2 YI a2 zs 

u2 +v2 UI +VI 
0 

Vs- us 
2 2 2 

as ZI -z2 

UI- VI us- vs U2-V2 0 
2 2 2 

Ys - zs Y2 - z2 YI - ZI 

-y2 YI as Ys- zs 0 VI -v2 

Ys a2 ZI Y2- Z2 -vi 0 vs 

a I zs -z2 YI- ZI V2 -vs 0 

where u = (ui,u2,u3) and so on. Define, in terms of this parameterization, 

X:= M((x4, x5, x6), (xi/3, x2f3, xs/3), 0, 0, 0), 
Y := M((y4,y5,Y6),(yif3,y2/3,ys/3),0,0,0), 
A:= M(O, 0, (ai, a2, as), 0, 0), 

B := M(O,O,(bi,b2,bs),O,O), 

where the Yi are linear combinations of the Xi, which are defined by: 

Yi + Yi+S = di(Xi + Xi+s), 

Yi- 3Yi+s = Ci(Xi- 3xi+s), 

where i = 1, ... , 3. Then it is easy to check, using (8.10) that the Hamiltonian 
vector field {·, H}, with H defined in (8.152), is given, up to a constant, by 
the following Lax equation with parameter, 

(X +Ab)' =(X +Ab,Y +Bb]. 
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Note that, using [A, Y] = [B, X], we see as before (in (8.66)) that 

Bb + y = [ b/ ( Ab; X)]+ , 
where f(x) = x(e1x2 + e2x4 + e3x6) is such that f(ai) = bi for 1 ~ i ~ 
3 and from that and on analysis of the spectral curve C : det(X + Ab -
Od7) = 0, (~/b is finite at infinity) we see that the Linearization Criterion 
(Corollary 6.43) is satisfied and so the Lax equation induces linear flow on 
Jac(C). 

8.4.3 Algebraic Complete Integrability 

We now study the geometry of the integrable systems which is defined by 
metric III and we establish its algebraic complete integrability. The latter 
is done, as in the case of metrics I and II, by going through the algorithm, 
given in Section 7.7. In the case of metric III some of the formulas get really 
huge, for example the formulas for the quadratic vector fields (which, for that 
reason, we will only give in one of the charts). However, the geometry is in 
this case even richer than in the previous cases. For these two reasons we will 
rather concentrate on the geometry, and we will not always give display all 
the terms of the series that were used in the computations. 

We first compute the indicia! locus of V1, which is the algebraic subset I 
of C6 , defined by the following equations. 

x~o) + x~o) x~o) = 0, 

x~o) + x~o) x~o) = 0, 

(o) + 1 - a (o) (o) + (o) (o) + 1 + a (o) (o) _ 0 x3 -2-x4 x5 x1 x5 -2-x1 x2 - , 

(0 2ax(o) x(o) + (a - 1)x(o) x(o) 
X)+ 5 6 2 3 =0 

4 3a -1 ' 

(o 2ax(o) x(o) + (a + 1)x(o) x(o) 
X)+ 3 4 1 6 =0 

5 3a+1 ' 
(o) + 1 + a (o) (o) + (o) (o) + 1 - a (o) (o) 0 x6 -2-x4 x5 x2 x4 -2-x1 x2 = . 

Solving the first two equations, 

x(o) - -x(o) x(o) 
1 - 3 5 , and X (O) _ -X(O)X(O) 

2 - 4 6 , 

and substituting the result in the remaining equations, we get four linear 

homogeneous equations in (x~o), x~o), x~o) x~o), 1) with coefficients in x~o) and 

x~o), which we call a and b respectively. 
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They can be written as 

2ab (1- a)a (3a- 1)a x~o) _ 0 (

2(1-0 b2
) 0 (1 + a)ab (1- a)ab] ( x~o) l 

2aa 0 -(1+a)b (1+3a)b x~0>x~o) - · 
(8.153) 

0 2(1 - a2 ) (1 - a)ab (1 + a)ab 1 

The determinant of this matrix must vanish, because otherwise (8.153) would 
have no solution. Thus 

8aab(1- a2 - b2 ) {(a2 + 2a- 1)a2 + (a2 - 2a- 1)b2 + 2} = 0. (8.154) 

If a = 0 or b = 0 then xC0) = 0, hence this does not lead to a balance. 
Suppose now that a2 + b2 = 1. Then the unique solution to (8.153) is given 
by x~O) = -bfa = 1/x~O), leading to the following rational curve reo) in C 6, 

x(o) = - - -- a b --( b2 a2 b a) 
a' b' a' ' ' b ' 

(8.155) 

From (8.154), there is one other alternative, namely (a2 + 2a -l)a2 + (a2 -

2a- 1)b2 + 2 = 0, but it is easy to see that this does not lead to a curve in 
the indicial locus, but to a finite number of points. As we have seen in the 
proof of Proposition 8.4, in the case of geodesic flow on so(4) (with respect 
to a non-degenerate half-diagonal metric) the principal balances start out 
from !-dimensional irreducible components of the indicial locus. Therefore, 
we have only one weight homogeneous principal balance, and its leading term 
x(o) is given by (8.155). The Kowalevski matrix, evaluated at xC0), reads 

1 0 b 0 _! 0 a 

0 1 0 _,!! 0 a b 
2-a2 (1-ar) (l+ar)b2 1 (1-ar)b 2-a2 (l+ar) 0 

K:(x(o)) = 2b 2a 2 2a 

** (ar-l)a2 2ara 2arb 0 (3ar-l)b 1 {l-3ar)b 3ar-1 a 
_ (l+ar)a 0 2ara 2arb 1 (l+ar)b2 

(3ar+l)b 3ar+l - (3ar+l)a (3ar+l)a 

(1-ar)a2 l±a2 -arb2 0 l±a2 ±arb2 (l+ar)a 1 2b 2a 2b 2 

and its characteristic polynomial is given by 

jkld6 -K:(xC0>)1 = (k + l)k(k -l)(k- 2)3 • 

Thus, we are expected to find, besides the free parameter that enters in the 
indiciallocus, a free parameter, c, at step 1 and 3 free parameters d, e and 
/,at step 2. 
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As we have seen in Paragraph 8.1.3, the three parameters that enter at 
step 2 are trivial parameters; since there is no linear constant of motion, the 
parameters that enter at levels 0 and 1 are effective parameters. We now 
give the first three terms of the principal balance. The subsequent terms (one 

more term is needed for some of the computations that we will do) follow 
uniquely from the given ones, since the largest eigenvalue of K(x(0)) is 2. 

x1 (t) = :: ( 1- ~ ( 4o:2a2 + (1 -a?) t + ((1 + o:)e + f)t2 + O(t3 )) , 

x2(t) = ~: ( 1 + ~ ( 4o:2b2 + (1 + o:)2) t + x~2)t2 + O(t3)) , 

X3(t) = - :t ( 1 + ~ (4o:2a2 - (1- o:)2) t- 2eo:t2 + O(t3)), 

x4(t) = -~ ( 1 + ~ {4o:2b2 - (1 + o:)2) t + x~4)t2 + O(t3)) , 

x5(t) = -~ ( 1- ~ {4o:2a2 - (1- o:) 2 ) t + +x~5)t2 + O(t3)), 

X6(t) = -- : ( 1- ~ (4o:2b2 - (1 + o:)2) t- 2do:t2 + O(t3))' 

(8.156) 

where 

x~2) = 4a4c2o:4 + c2(o:- 1)2((3o: + 1)2 - 8(2o: + 1)o:a2)/4 + d(a- 1)- /, 

x~2 ) = 2a2c2o:(l - o:)(l + o:) 2 + d(o: + 1) + J, 

x~2 ) = c2 (4a2o:2 - (a- 1)2)2 /4 + e(o:- 1)- f. 

Since the free parameters d, e, f are trivial parameters they can be expressed 
linearly in terms of the values c1, c2, c3 of the constants of motion in a such 
a way that Fi(x(t)) = Ci for i = 1, 2, 3. Notice that when the above series 
are substituted in the functions G1, ... , Gs then the resulting series have a 
simple pole. In fact, the leading term of these is given as follows. 

2 2 2 
(G1, ... ,Gs)(t) = -t(a c(o: + 1),b c(o: -1), -2aabc,ac(1 + o:), 

be( a- 1), c((3o:2 - 1)(a2 - b2) + 2o:)/2, (8.157) 

o:b2c(3o: + 1), o:(1- 3o:)a2c) + 0(1). 

Since F4 is a quadratic function in G 1 , •.. , G8 , we only need the terms up 

to order t in the latter to compute the constant term in F4 , which has the 

useful consequence that it suffices to compute the terms up to order t 2 in 
x1 (t), ... , x6 (t) (since F4 is of the fourth degree, one needs a priori the terms 
up to order t 3 to do this). 
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For generic10 c = ( C!' ... 'C4) the abstract Painleve divisor Fe' as com
puted from F4 (x(t)) = c4, is given by the following curve in C3 : 

where 

Pe(A,B, C) 

with 

= (ABC) 2(a1A + a2)2 - 2ABC ((a1A + a2)Pe-(A,B) + 2ABc~) 
-AB ((a3A + a4)c4 + 4clc2- a4a4cD + (P,;(A, B))2, 

P!(A,B) := c1A + c2B ± (c3(3a2 + 1)- c1- c2)AB, 

and where the ai are given by 

a 1 := 16a3 , a2 :=(a -1)3(3a + 1), a3 := 4a, a4 :=(a -1)(3a + 1), 

and where ai is obtained from ai by changing the sign in a, for example 
a2 = (a+ 1 )3 (3a- 1). In order to compute the genus of the abstract Painleve 
divisor Fe we use a few related curves, that are obtained by considering the 
quotient of Fe by certain symmetries. In fact, changing the sign of any of the 
parameters a, b or c leads to an involution on Fe, and hence to a quotient 
curve. 

Table 8.4. The abstract Painleve divisor Fe admits three obvious involutions. We 
denote them by a1, a2 and r because they correspond to the involutions that were 
defined in (8.149) and (8.150), as follows by comparing the residues of the functions 
x;(t) and Gj(t) (see (8.156) and (8.157)). 

0"1 0"2 r 

a a -a a 

b -b b b 

c c c -c 

Proposition 8.19. For generic c the abstract Pain/eve divisor Fe is non
singular and its smooth compactijication Fe has genus 17. The quotient of Fe 
by the group generated by a 1 and a2 is a smooth curve L1e of genus 5 and 
the quotient map Fe -+ L1e is an unramified 4 : 1 map. The quotient of L1e 
by T is a hyperelliptic curve He of genus 2 and the quotient map L1e -+ He 
is ramified at 4 points. 

1° Fixing the values c; of the constants of motion F; also fixes the values of the 
constants of motion Ff (see (8.147) and (8.148)); the value of Ff is denoted 
by c:. 
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Proof. It is easy to give explicit equations for the two quotient curves Llc and 
1lc, and to describe the two quotient maps. The result is summarized in the 
following diagram. 

Tc : Pc(a2 , b2 , c2) = 0, a2 + b2 = 1 (a, b, c) g=17 

.j_ .j_ 

Llc: Pc(A, 1- A,c2) = 0 (A,c)=(a2 ,c) g=5 

.j_ .j_ 

1lc : Pc(A, 1- A, Wf(A(1- A))) = 0 (A, W) =(A, c2 A(1- A)) g=2 

.j_ .j_ 

c: pl A g=O 

The genera of these curves were computed as follows. Let p3 and p4 be the 
polynomials, defined by 

Pc(A, 1- A, C) = (A(1- A)C)2(a:1A + a:2)2 - 2A(1- A)Cp3(A) + p4(A), 
(8.158) 

so that Llc can be written as 

(8.159) 

and 1lc as 
W2(a:1A + a:2)2 - 2Wp3(A) + P4(A) = 0. (8.160) 

Solving (8.160) for W we find 

W _ P3(A) ± VP~(A)- P4(A)(a:IA + a:2)2 
- (a:1A + a:2)2 ' 

(8.161) 

where it is important to notice that the discriminantpHA)-p4(A)(a:1A+a:2)2 

is of degree 5 only (the leading term cancels out), which implies that the 
cover 1lc -t P 1 is ramified at infinity. In fact, writing A in terms of a local 
parameter~ as A= 1/~2 we find from (8.161) that 

where 0(~) is a holomorphic series in~' without constant term, so that the 
cover is indeed ramified at infinity. Thus, the double cover 1lc -t P 1 which 
is defined by (A, W) f--7 A has six ramification points, so that the genus of 
1lc is 2, by Riemann-Hurwitz. 

The ramification points of the double cover Llc -t 1lc are found by taking 
c = 0, which yields the zeros of p4(A), i.e., 4 points. This cover is unramified 
at infinity. 
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To show this, solve W = c2 A(1 -A) for c, which gives, in view of (8.161), 

Pa(A) ± JpHA)- p4(A)(a1A + a:2)2 

A(1- A) 

Thus, writing A= 1/~2 we find that c =±eo~+ 0(~2 ), where eo is a non-zero 
constant, so we find two points and the map is unramified at these points. 
Similarly, it is checked by writing A= -a:2/a:1 +~that the map is unramified 
over the points for which A = -a:2/a:1. We conclude by Riemann-Hurwitz 
that the genus of L1c is 5. 

Finally, the genus of Fe is 17 because the 4 : 1 cover Fe -t L1c is unrami
fied. In fact, the only affine points where ramification can occur are those for 
which a = 0 or b = 0. But a = 0 implies b2 = 1, while 

which is different from zero because c is generic, leading to no ramification 
points on Fe. Similarly b = 0 leads to no points. Thus, there are no affine 
ramification points. Now we saw earlier in this proof that, near infinity, A= 
1/~2 , in terms of a local parameter~. It follows that a= ±1/~. leading to 
two points, and similarly for b. Thus, the 4 : 1 cover Fe -t L1c is unramified, 
as asserted. Once we know that F c is an affine part of an Abelian surface 
the fact that this cover is unramified becomes geometrically clear: since the 
two involutions a1 and a2 preserve the two vector fields they are translations 
(over half periods), so they cannot have fixed points. D 

The curves that appear in Proposition 8.19 are also naturally related to 
a certain curve of rank four quartics, as we explain now. Picking generic 
values of c = (c1,c2,ca,c4) we define Pi:= Fi- Cixfi, where i = 1, ... ,3 
and P4 := F4 - c4x~. Here, xo is a new variable that we use to make the 
polynomials Fi - Ci homogeneous. We will say that a quartic polynomial in 
the variables x0 , x1 , ... , x6 has rank four if it has, possibly after a linear 
change of variables in x1 , •.. , x6 , the form (up to a constant factor) 

3 

L x~Qi(x) + x~, 
i=l 

where each of the Qi(x) is a quadratic polynomial in x0 , ... , xa. In the propo
sition that follows we will consider the projective surface Ic C C6 which is 
defined by 

4 

Ic = n {X= (xo: Xl : ..• : xa) I Fi(x) = o}, 
i=l 

which is the dumb (singular) compactification of the level set Fe of the mo
mentum map. For a proof of this proposition we refer to [12, Chapter 8]. 
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Proposition 8.20. The rational curve C of Proposition 8.19 can be realized 
in the linear space of quartics 

as a curve of rank four quartics 

3 

L(Jti(A)xi + /ti+3(A)xi+3) 2Gi(x)- ~t(A)xt, 
i=l 

where each Gi(x) is a quadratic polynomial, and where A is the parameter 
on the curve; precisely this expression is obtained by substituting Fi for ci in 
p4(A) (see (8.160}). Conversely, there is a 4: 1 map from this curve of rank 
four quadrics to one of the componentsC' ofthe locus11 In(x0 = 0), given by 
(8.155), along which the surface I C P6 has a four-fold normal crossing with 
a number of pinch points. Blowing up I along C' turns C' into the curve Fe. 

We proceed to construct an embedding of the manifolds F c in projective 
space. To do this we look for the polynomials which have a simple pole at 
most when the principal balance is substituted in them. The result is given 
in Table 8.5; it suggests that the 24 found functions provide a basis for Zp 

(here, p = (1)). The 24 functions Zi that appear in the table are defined as 

Table 8.5. The polynomials of degree at most 5 which have a simple pole at most 
when the principal balance is substituted in them. 

k dim:Fk dimtlk dimz; # dep (k indep. functions 

0 1 1 1 0 1 zo = 1 

1 6 0 6 0 6 Zl, .•. , Z6 

2 21 3 8 3 5 Z7, ... , Zn 

3 56 0 26 18 8 Z12, · · ·, Z19 

4 126 7 26 22 4 Z20, ... , Z23 

5 252 0 66 66 0 -

follows. For i = 1, ... , 6 we take Zi := Xi. Then come the functions Gi; we 
have seen that the G1 (t), ... , Gs(t) have a simple pole; since the functions 
G6 , ••• ,G8 depend over 1l on the other ones, as is clear from (8.145), we 
define zi+6 := Gi, fori = 1, ... , 5. 

11 This locus can also be described as the projectivization of Fe, where c = 
(0, 0, 0, 0}. 
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The cubic polynomials that appear in the table are defined by 

Z12 := 2o:x2G2- (1- a)x4G3, 

Z13 := -2o:x1G1- (1 + o:)x5G3, 

Z14 := (1- o:)x5G4 + (1 + o:)x4G5, 

Z15 := (1 + o:)x5G5 + (1- o:)x1G4, 

Z16 := (1 - a)x4G4 + (1 + o:)x2G5, 

Z17 :=(a:- 1)x3G1- (1 + a)x6G2, 

z1s := 2o:x5G2- (1- o:)x1G3, 

Z19 := -2o:x4G1 - (1 + a)x2G3. 

They are permuted by the involution 1T in the following way, 

1T(Z12, · · ·, Z19) = (z13, Z12, Z14, Z16, Z15, Z17, Z19, Z1s). (8.162) 

Finally, the four polynomials of degree 4 are defined in terms of the polyno
mials Gi, to wit, 

z2o := 4o:2G1 G2 + (1 - o:2 )G~ 

Z21 := 2o:G1G5- (1- o:)G3G4, 

Z22 := -2o:G2G4 - (1 + o:)G3G5, 

Z23 := 2o:G4G5 + G3((1 + o:)G2- (1- o:)Gl). 

They are also permuted by 1T, namely 

1T(Z2o, ... ,Z23) = (z2o,Z22,Z21,-Z23). (8.163) 

It is clear that these functions provide an isomorphic embedding of Fe 
into P 23 , because the functions z1, ... , z6 are precisely the original phase 
variables. Similarly, we see from (8.156) and from (8.157) that the parameters 
a, band c appear separately in the residues of the functions z1 (t), ... , z11 (t), 
so that the map <p~ : Fe -+ P 23 , defined by the residues of the series Zi(t) 
provides an embedding of the Painleve divisor Fe. Let us denote the closure 
of <p~(Fe) by 'De. We use a local parameter around the points at infinity of 
Fe to determine the singularities of 'De and to determine its genus. We first 
start with the eight points 0' 1 ' 2 ' 3 for which a = 0, where €~ = €~ = €~ = 1. 
The point 0'1 ' 2 ' 3 is given, in terms of a local parameter<;, by 

a=<;, ( <;2 4 ) €1 {§i 2 b=€3 1-2+0(<;), c=-z-yD;"(l+*€2<;+0(<;)), 

(8.164) 
where it is important that * is non-zero and independent of the €i, but its 
precise value will be irrelevant. If we substitute these local parameterizations 
in the map <p~ : Fe -+ P 23 , defined by the residues of the series zi(t) then we 
find, after letting <; -+ 0, the following 8 points in P 23 , 

( 0: 1: 0: -€3: 0: 0: 0: 0: 2~:1(0: -1){¥;: 0: 0: 2f1f3(o:- 1){¥;: 

0 . 8c2o . 4•ac2(o+1) . _ 4•2c2* . O . 2•ac2(3o2+1) 
· (1-o)(3o+l) · (1-o)(3o+l) · 3o+1 · · (o-1)(3o+l) 

_2f2f3C2(3o-1) , 0 , -32C2ft02 lli. -16~ lli, 
3o+1 · · 3o+1 V 02 · 3o+1 V 02 · 

4~:1~:2(1- o:)c2{¥;*: -4E1~"2~"3(1- o:)c2{¥; *). 
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It is clear that this leads to 8 different points in P 2a, as f1, f2 and fa take, 
independently, the values ±1. For the 8 points at infinity that correspond to 
b = 0, which we denote by 1 •H2•8 , we arrive at the same conclusion by using 
the involution 1r (see {8.151)): they map to 8 distinct points in P 2a. They 
are moreover distinct from the image points of the points o•H2 • 8 because 1r 

permutes X1 and x2. 

We now investigate the points where a (and hence b) has a pole, to wit 
the points oo•1 • 2 • 8 that are given in terms of a local parameter~ by 

{8.165) 

where the la.St equality is a definition {of {30 ), and where, as before, the 
precise value of *• which is independent of the ei and different from zero, is 
irrelevant. If we substitute these local parameterizations as before in the map 
<p~ : Fe --+ P 2a, and we let ~ --+ 0 then we find the following 8 distinct points 
in p2a, 

( 0: 1: faA: 0: -1: -faA: 0: /3of1 1ja : /3of1 1-;a : -/3of1faa: 

0 : 0 : -0:23 ,81 : b : -2f2faA * aa !33 : 2f2 * aa !33 : -2f2 * aa !33 : 
0: •a'ffJ/32 : -~ : -f1/3o/3a : -2v'=If1fa/33a : 2f1/33a : •I•sfi.Bo /34 ) , 

where 

B, = aa2 +1c + <1-a)(aatl)c + {3a2(3a -1)- (a+ 1))ca 
~ 1-a 1 1ta 2 • 

~2 a2 (aat1)t5a-1 {1 ) { 2 {3 + 1) 1) (a 1)(aa 1) = (1-a)(aa-1) C1 + -a C2 + a a +a- C3, 

atl = ~~~c1 + !:;~c2 + {3a2 - 1)c3, 

J! .. 1 = - 1i-:.3;c1- 11-;_a;c2 + {9a2 + 1)c3. 

It is clear that this leads to 8 different points in P 23 , which are different from 
the 16 points at infinity that we have found so far. 

Next, we move to the points at infinity satisfying a1a2 + a2 = 0. A local 
parameterization of a neighborhood of these points is given by 

a=ao+~. b = bo + 0(~). 
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where 

accounting for eight points on Fe, that we denote by St1 t 2 t 3 , where (t:1, t:2, t:3) 
satisfies t:i = t:~ = t:~ = 1 and refers to the signs of a0 , bo and co. Again, 
the given terms will suffice to do the computation. We substitute these local 
parameterizations as before in the map cp~ : Fe --+ P 23 , and we let <; --+ 0. 
This leads to the following points in P 23 . 

( O ..... 0 . 1 . _ a1aobo . _ 8o:2ao . _ 8o:2b0 . _ 8o:2b0 . 
. . . . 0:4 ( o:2 - 1) . 0:4 ( 0: - 1) . 0:4 ( 0: + 1) . 0:4 ( 0: + 1) . 

8o:2ao n4 a1aobo 16o:2boco 2eo 
o:4(o:- 1) :-o:4 : a4(o:2 - 1) : o:4a4(o: + 1) : o:4(o: + 1) : 

(8.166) 

2boeo eo ) 
n4(o: + 1)ao :- 2(o: + 1)o:ao . 

It is easy to see that this leads again to eight distinct points, that are different 
from the 24 points that we have obtained so far. 

Finally, we move to the points satisfying o:3a2 + 0:4 = 0. A local parame
terization of a neighborhood of these points is given by 

(8.167) 

where 

2 (o:- 1)(3o: + 1) 0:4 
al =- = --, 

4o: 0:3 
b2 - (o: + 1)(3o:- 1) - Q4 
1 - 4o: - 0:3' 

and c5 is as before, accouting for an another set of eight points t€ 1 { 2 { 3 on Fe. 
Once more the given terms will suffice to do the computation. We substitute 
these local parameterizations in the map cp~ : Fe --+ P 23 , and we let <; --+ 0. 
This leads to the following points in P 23 . 

( O: ... : 0 : 1 : _ o:3a1b1 : o:3a1 : o:3b1 : _ o:~b1 : _ o:3a1 : 
0:4 0:4 0:4 0:4 0:4 

a4 o:3a1b1 2o:3b1Co 2eo 2o:3a1b1Co o:3a1eo ) 
-0:4 : ~ :- 0:40:4 : 0:4(0: + 1) : 0:40:4(1- o:) : 0:4(1- o:2) . 
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Fig. 8.3. The image 'De := cp~(re) of the abstract Painleve divisor of metric III is a 
curve of genus 25 with 8 ordinary double points (nodes) and no other singularities. 
The vector field Vt is tangent to one of the branches of each of the 8 nodes of 
'De (these nodes are the images of the points s.1 • 2 • 3 , which are also the images 
of the points t.1 • 2 • 3 ) and at 24 of the smooth points of 'De (the image points of 
the points o•1 • 2 • 3 , 1"1 • 2 ' 3 and oo•1 • 2 • 3 ). We mark a typical representative of these 
points simply by s;, 0;, 1; and oo;. 

These points coincide with the eight points (8.166). To see this, use the 
following sign conventions: 

2o:ao = (1- o:)a1, 2o:bo = -(1 + o:)b1. 

Summarizing, we have shown that Ve is singular, having eight double 
points; they come from 8 points on Fe for which a2 = -o:2/o:1, which get 
identified in pairs, by c,o~, with 8 points on Fe for which a2 = -0:4/o:a. Com
puting an extra term in the series it follows easily that these points are 
actually ordinary double points, i.e., the two branches of Ve meet transver
sally at these points, as depicted in Figure (8.3). Since the genus of Fe is 17, 
and since the Euler characteristic of an ordinary double point is 1, we find 
that the genus of 'De is 17 + 8 = 25, in particular the embedding that we 
constructed satisfies the adjunction formula (7.50). 

We now exhibit the quadratic differential equations for V1 in the chart 
Zo f= 0. For the chart Z1 f= 0, the algorithm that we gave in Paragraph 
7.6.6 also yields that vl is given by quadratic equations, but the formulas get 
rather long, so they will not be given here. Since the original equations for 
V1 are quadratic, i1, ... , i6 is given by quadratic equations. For the functions 
z7 = G1 , •.. , z11 = G5 this follows from (8.146), which asserts thatCh is, for 
i = 1, ... , 5 linear in x1 ... , x6 on the one hand, and linear in G1, ... , Gs on 
the other hand. 
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Since the involution 1r preserves the vector field V1, it is, in view of (8.I62) 
sufficient to give the formulas for the following 5 functions, to show that 
z12, ... , Z19 also satisfy quadratic differential equations. 

a 2 -I 
Z12 = -2-(Z7ZU- Z9Z10)- Z4Z17, 

Z14 = zsz16 +(I- a 2)csz9- (I+ a)z10zu, 

i1s = L +_ ai ((I- a)(z~ + z~)- 2c1z1- 2az~d +(I- a 2)cs(zlz4- z~) 
+(I + a)Z7Z8 + Z3Z14, 

i11 = ~ ((I + a)2 zsz9 + (I - a 2)z10zu + (I - a)2 Z7Z9) - Z1Z12 - z2z1s, 

3a2 +I 
Z19 = 2 zszu - Z1Zl1· 

Finally, for the remaining functions z20, ... , Z23 we need to do, in view of 
(8.I63), only the following three functions. 

i2o = I 2a (2azsz16 - 2z10z1s + (a - I )z9z14) , 
+a 

. I- a (a- I)(9a2 - 4a- I) 
z21 = 9a 2 -I (4ac1Z6Z10- (I- a)zsz22) + 4(3a -I) z1szu 

+~(a2 - I){3a + I)cs(z7zs + z2zs) + ~(I+ a)(3a- I)z15Zu 

(a- I){3a- I) 
-(a- I)c2z1z9 + 2(3a +I) ((a+ I)(3a- I)csz9 - z2s) z1 

3a2 +I a 2 
- 2(3a +I) Z4Z23- 3a +I ((a+ I)z14 + 2{a- I) c3z3) z10 

(1 + a)(3a- 1) 
- 3a +I c1(zsz7 + z2zs), 

i2s = 2(3ai- I) ((3a + I){a- I)z9z1s + 8ac1z2z10- (3a2 + I)zsz22) 

+ 2(3a\ I) {(3a -I)(a + I)z9Z16- 8ac2z1zu- (3a2 + I)z4z21 ) 

I+a I-a 
- - 2-(z10z12 + 4acsz4zu) + - 2-(zuzls- 4acszsz10)· 

Let us check that the flow that starts from the points cp~(0f1E2 f3 ) goes into 
the affine immediately. Since z1 defines a chart around any of these points it 
suffices to show that I/ z1 (t, ~) has a non-zero limit when~ -t 0. Substituting 
{8.I64) in the first terms of the series for z1 we find that for~ small 
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so that 
. 1 fl 2~2 2 3 hm -(t, <;) = -2 (1- a) -t + O(t ), 
~-tO Zl a2 

which shows that the flow that starts from the points rp~{OE 1 E2 Es) goes in
deed into the affine immediately. Since the involution 1r permutes the points 
rp~{QE1f2Es) and rp~(1E 1 E2 E3 ) this property follows also for the latter points. 
The function z1 also defines a chart around the points ooElf2 E3 and we find 
by substituting {8.165) in the first terms of the series for z1 that 

(for the definition of /30 , see (8.165)) so that 

showing that the flow that starts from the points rp~{oof 1 E2 E3 ) goes into the 
affine immediately. For the remaining eight points, which are the double 
points on 'De that were obtained from the points sE1 f 2E3 , let us merely12 

check that the degree of 'De at these special points, which is two, agrees with 
the degree of 'Pe(Fe) \ 'Pe(Fe)· Since Z12 defines a chart at these points it 
suffices to substitute (8.167) in the series for 1/zi2, which yields, 

showing that the degree is indeed two. Notice that this confirms also our ear
lier claim that the double points are ordinary double points of 'De. Note that 
the degree calculation is meaningful, as the vector field V1 is only tangent 
to one of the branches of 'De which cross at these points and we have taken 
the development along the non-tangent branch. Similarly, the other special 
points that come from the points 0£1 £2 £ 3 , 1 ft£2 £3 and oo£1 £2 £3 are simple (i.e., 
smooth points) of 'Pe (Fe) \ 'Pe (Fe). This leads to the following theorem, stat
ing the algebraic complete integrability of metric III, and describing some of 
its algebraic geometric features. 

Theorem 8.21. For any fixed a E C \ {0, ±1, ±1/3} consider the integrable 
system ( C6 , { • , ·} , F), which provides a normal form for the geodesic flow on 
.so(4) with respect to metric III, where F = (F1,F2,F3,F4) is given by {8.145) 
and the matrix of{·,·} is given by {8.9}. 

12 To check that the flow of V1 , starting from these points, goes into the affine 
immediately, two more terms in the series (8.156) need to be computed. 
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( 1) ( C6 , { • , ·} , F) is a weight homogeneous a. c. i. system; 
(2) For generic c the fiber Fe of its momentum map completes into an Abelian 

surface T~ by adding a curve Ve of genus 25 that has 8 nodes and is 
smooth elsewhere; 

(3) The line bundle [Ve] defines a polarization of type (2, 12) on T~ and it 
leads of an embedding of the latter in P 23 ; 

(4) The involutions crt and cr2 define on T~ two translations, over a half 
period, that leave 'De invariant; 

(5) The quotient curve Ve := Ve/ (crt, cr2) is of genus 7 and has two nodes. It 
defines on the quotient Abelian surface T~ := T~/ (crt, cr2) a polarization 
of type (1, 6), leading to an embedding ofT~ into P 5 . 

Proof. We have verified all the conditions that appear in Theorem 6.22, so 
that we can conclude that, for generic c, the fiber Fe of the momentum map 
completes into an Abelian surface T~ by adjoining the singular irrecucible 
divisor Ve to it; also, the latter theorem implies that the commuting vector 
fields Vt and V2 are linear vector fields on these tori. This proves that we 
have indeed an a.c.i. system. 

Since the involutions crt and cr2 preserve these vector fields we can now 
identify their restriction to these tori as translations over half periods. Sim
ilarly, we can now identify the restriction of T to T~ as the ( -1 )-involution 
on T~. As we have embedded the tori T~ in P 23 the polarization type that 
is induced by Ve on T~ must be (1, 24) or (2, 12). Since T changes the sign 
of all the phase variables Zt, •.. , z6 , which have degree (weight) one, the em
bedding variables of even weight are fixed for T, while the ones of odd weight 
change signs when acted upon by r. It follows from Table 8.5 that there are 
10 of the Zi that are even forT and 14 that are odd forT. 

In view of Proposition 5.20 the number of even/odd sections of Ve must 
be 12 + t: when the polarization type is (1, 24), where t: E {0, -1, 1}, which 
does not agree with our count. However, the same proposition predicts that 
the number of even/ odd sections of 'De must be 12 + 2t: when the polarization 
type is (2, 12), where t: E {0, -1, 1}, which is precisely what we found (with 
f = ±1). 

Finally, the quotient of T~ by the translations crt and cr2 yields a new 
Abelian surface T~. Since Fe is invariant for these involutions the same is 
true for the divisor at infinity Ve. Thus, T~ contains the curve 'De/ (crt,cr2), 
which has two nodes, as the eight nodes form two orbits under the group 
generated by the two translations. The Kodaira map that corresponds to 
this quotient curve is found by selecting in t.pe those elements that are crt and 
cr2-invariant, since the action of each of these translations is diagonal in the 
basis zo, ... , Z23· We find the following functions: zo, Z7, zs, Zts, Zt6 and Z2o· 
Consider now the smooth curve Llc, that appeared as an unramified quotient 
of the abstract Painleve divisor Fe. 
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In view of Table 8.4 we have a commutative diagram 

birat 
Vc- 8nodes 

·+~ ·+··~ ·+·-
Llc ---+- Vc - 2 nodes 

birat 

As we know that Llc has genus 5 we may conclude that Vc has genus 7, 
since it has two nodes and no other singularities. Thus, Vc induces on T~ a 
polarization of type (1, 6) and we conclude from Ramanan's Theorem (The
orem 5.18) that Vc is very ample, and hence that the above Kodaira map of 
T~ into P 5 is an embedding, as expected. D 

We can now use the methods that are explained in Paragraph 7.6.7 to 
compute the holomorphic differentials w1 and w2 on Vc that come from the 
differentials dt1 and dt2 on T~. In the notation of that paragraph we choose 
y0 := Xt and y := x2. We need to compute explicitly V2[x1] and V2[x2]; 
notice that these can be expressed as quadratic polynomials in terms of the 
embedding variables Xi because, restricted to these tori, x1 and x2 have a 
simple pole along Vc and because [Vc] is normally generated. For x1 the 
result is (up to a constant) as follows. 

x~ = 2(a:- 1)ztzts - 3(a:2 - 1)z3(Z12 + Zts) - 2(a: + 1)zszt4 + 8a:z10F1 + 
(a:+ 1)(3a:- 1) {2(3a:2 - 3a:- 2)zsZto +(a:+ 1)(3a:- 1)zgzn) /2-

2z3Z5 ((a: -1)(3a: + 1)Ft +(a:+ 1){3a: -1)F2- (a:2 -1)(9a:2 + 1)F3). 

For x2 the result is found immediately from it by using the involution 1r 

(which conserves both vector fields). By substituting the principal balances 
(8.156) in Vt[1/xt) = -x3xs/x~, in Vt[x2/x1] = (x1X4Xa- X2X3Xs)/x~, in 
V2[1/x1] = -xUx~ and in V2[x2/xt) = (x2xt- x!x2)/x~, where xi is given 
above, one finds 
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where we recall that c~ is the value of the constant of motion F~. In the 
notation of Paragraph 7.6.7 this means that, up to multiplicative constants, 

a 2c 
8 = fT ( (o:1a2 + o:2)2a2b2c2 - (o:1a2 + o:2)Pc- (a2 , b2 ) - 2a2 b2 c~) 

a2c 
= fT ((o:1a2 + o:2)2a2b2c2 - P3(a2)), 

upon using the definition (8.158) of P3· Noticing that the latter expression 
between bracket is the square root of the discriminant of Pc(a2 , b2 , c2), as a 
polynomial in a2b2c2 (with coefficients in C[a, b]), we get 

a2c. I 
8 = VV p~(a2)- P4(a2)(o:1a2 + o:2)2. 

We compute now w1 and w2 from (7.48) using d(a/b) = da/b3, as follows 

from a2 + b2 = 1, and the residues y(o) = a2 /band ya0 ) = b2 fa. We get 

b5 d(a3 /b3 ) 

w1 = a-c-.,j1p=::~o=7( a=::2;::=) =_=P=47( a::;:2:;=) (f=o:=1 a=::2:=+=o:=:2 )=:<=2 

3ada 

- c..jp~(a2)- p4(a2)(o:1a2 + 0:2)2 ' 

W2 = --1-V2 [_!_] W1 
Yao) Yo 

3a(o:3a2 + 0:4) ((o:1a2 + o:2)a2b2c2 - pc-(a2 , b2)) da 

b6c..jp~(a2)- P4(a2)(o:1a2 + o:2)2 

Notice that these differentials descend to the curve Llc, namely w1 descends 
to the differential form 'lPl, given by 

¢ 1 = 3dA 
c..jp~(A)- p4(A)(a1A + o:2)2 

3dA 

and similarly for w2. Notice that 'l/J1 and 'l/J2 do not descend to He, in fact 
both of them are odd with respect to the covering involution on Llc, which 
is given by (A, c) ~ (A, -c). 

It is now easy to verify the earlier announced tangency locus of the vector 
field v1 along Vc. Since this locus is given by the zeros of W1 it is already clear 
that the only possible candidates are the points at infinity, i.e., the images of 
the points Q< 1 <2 <3 , J<1< 2 <3 and oof1<2 <3 as well as the nodes on V~1 < 2 < 3 • 
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This is done by using the parameterizations around these points, given 
above. For example, for the points oof1 E2 E3 the parameterization is given by 
(8.165); we have that p~(A) - p4(A)(a1A + a 2) 2 "' A5 = a10 since, as we 
noticed before, the degree of ~(A) - p4 (A)(a1A + a 2) 2 is 5, so that, around 

c 1d(c1) 
Wt "' + · • · "' ~d~ + · · · , 

~RO 
showing that at the 8 points on Vc that correspond to the points oof1 E2 E3 

the vector field V1 is tangent to 'De and that this tangency is simple. For 
the other points at infinity one arrives at precisely the same conclusion (for 
the nodes the tangency is, of course, only along one of the branches). See 
Figure 8.3. 



9 Periodic Toda Lattices Associated to Cartan 
Matrices 

9.1 Different Forms of the Periodic Toda Lattice 

In its original form, the n-particle periodic Toda lattice is given by the Hamil
tonian on R 2n 

1 n n 

H = 2 LP~ + L eq;-q;+t, 

i=1 i=l 
where Qn+l = q1 ; the symplectic structure is the canonical one, { Qi, q;} = 
{Pi 1 P;} = 0 and {%P;} = 8ii• where 1 ~ i,j ~ n. For a mechanical in
terpretation, consider n unit mass particles on a circle that are connected 
by exponential springs. In [33], Bogoyavlensky proposed a Lie algebraic gen
eralization, where the original Toda lattice corresponds to the root system 
an-1 • Denoting by l the rank of the root system, the general form of the 
Hamiltonian is 

1 n 
H= 2LP~+V., 

i=1 
where n = l + 1 for the root systems a,, ea, e7, g2 and n = l for the other root 
systems. Denoting 

lc 
V~c := L eq;-q;+l 

i=1 
the potential v. is given for the root systems that correspond to the classical 
Lie algebras by the following expressions: 

Va1 =Vi+ exp(ql+l - q1), l ~ 2, 
vb, = Vi-1 + exp(q,) + exp( -q1 - Q2), l ~ 2, 

Vc, = Vi-1 + exp(2q,) + exp(-2q,), l ~ 3, 

vll, = Vi-1 + exp(qz-1 + qz) + exp( -q1 - q2). n ~ 4. 

For the exceptional Lie algebras they are given by 

Ve 6 = Vs + exp(( -q1 - q2 - qa + q4 + qs + qa)/2 + q7 j../2) + exp( -../2q7,) 

Ve7 = Vs + exp((q2 + · · · + q7- qs- ql)/2) + exp( -q1 - q2) + exp(qs- q7 ), 

Ve8 = Va + exp(( -q1 + q2 + · · · + q7- qs)/2) + exp( -ql - q2) 

+ exp(q7 + qs), 

M. Adler et al., Algebraic Integrability, Painlevé Geometry and Lie Algebras
© Springer-Verlag Berlin Heidelberg 2004
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Vj4 = V2 + exp(qs) + exp((q4 - Ql - Q2- Qs)/2) + exp( -q1 - q4), 
Vg2 = exp(q1 - Q2) + exp( -2ql + Q2 + Qs) + exp(q1 + Q2 - 2qs). 

We will investigate the algebraic integrability of a class of polynomial Hamil
tonians, that generalize these systems, up to a change of variables. In order to 
describe these systems we first generalize the above Hamiltonians, considering 
on R 21 Hamiltonians of the form 

1
1 1 

(' ) H = 2 ttp~ + ~exp ~NiiQi , 

where N is a matrix of size ( l + 1, l). The coordinates Qi, Pi are assumed to be 
canonical coordinates, as above, and we denote the standard inner product 
on R 1 (or Rl+1) by (·I·). For now our only assumption on the matrix N is 

that NT has a unique normalized null vector e = (eo.6, ... ,e,)T = (!)· 
Notice that this condition implies that the lower l x l block of N, which we 
will denote by N, is invertible. Thus, N = (Niih~i.i~l and the first line of 
N is given by -[I" N. We also define the symmetric l x l matrix R := N FfT. 
Consider the linear change of variables 

ii = Nq, 

and notice that in terms of the new variables ij and p the Poisson structure 
is still the canonical one, {iii, iii} = {Pi, Pi} = 0 and {iii, Pi} = Oii, where 
1 ~ i,j ~ n. In these new coordinates the Hamiltonian H = H(ij,p) is given 
by 

l 

H = ~ (Rp Iii)+ L exp(iii) + exp(- ((Iii)). 
i=l 

We make everything polynomial by putting 

ao = exp(- ((Iii)), 

where i = 1 ... , l. Then the Hamiltonian H = H(a, b) is given by 

1 l 

H = 2 (Rblb) + Lai 
i=O 

(9.1) 

while the Poisson structure has become a linear Poisson structure, to wit 

{ai,ak} = 0, 

{bi,bi}=O, 

where i,j = 1, ... ,land k = 0, ... ,l. 

{ai,bi} = aioii• 

{ao,bi} = -eiao, 
(9.2) 
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Notice that the definition of the ai implies that n~=O a~; = 1, but the 
above Hamiltonian H and the Poisson structure { · , ·} make perfectly sense on 
all of R 21+1 , with il!=o a~; being a Casimir. In the sequel it will be irrelevant 
if we fix this Casimir to the value 1 or if we work on the bigger affine space, 
which is simpler, hence we will work on the latter. From (9.1) and (9.2) one 
easily computes the following equations for the vector field XH: 

. "' - b ai = ai L....j=l Ri; ;, 
ao = -ao 2:!,;=1 eJ'li;b;, 

(9.3) 

where 1 ~ i,j ~ l. 
We wish to write these equations in a simpler form. To this, consider the 

symmetric matrix R := N NT which is of rank l since e is a null vector of R 
and since 

R can be diagonalized by an orthogonal matrix so we may factorize R as 
R = EET, where E is a square matrix of size l + 1 and of rank l. The 
l + 1 columns of E are dependent of rank l, hence e is (up to a multiple) 
the unique null vector of ET. Let a denote a non-zero null vector of E. We 

define another set of coordinates by letting u := ET ( ~) and v := -a, where 

b := (b1 , ... ,bz)T and a:= (a0 , ... ,az)T. Notice that the u coordinates are 
dependent since aT u = 0. The Hamiltonian takes the simple form 

1 l 
H =- (ulu}- L:vi, 

2 i=O 

while the vector field XH takes the symmetric form 

l 

Vi= Vi L ei;u;, 
j=O 

l 

Ui = L e;iv;. 
j=O 

(9.4) 

This can be shown directly from (9.3), by performing the change of variables, 
or by computing XH from (9.4), by first checking that the Poisson structure is 
given, on the hyperplane aT u = 0, by {ui,u;} = {vi,v;} = 0 and {vi,u;} = 
eijVi, where 0 ~ i, j ~ l. For the last change of variables, let 

l 

Yi := L ei;u;, 
j=O 

for i = 0, ... , l, where ei is the i-th row of E. Notice that, again, the y
coordinates are dependent, as E does not have maximal rank. 
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Precisely, since~ generates the null space of E, we have that L:~=O ~iYi = 
0. If we denote for x, y E R 1+1 by x · y the vector in Rl+1 , defined by 
(x · y)i := XiYi, where i = 0, ... , l, then in terms of the variables Xi, Yi the 
vector field XH takes on the hyperplane L:~=O ~iYi = 0 its simplest form 

:i; = x·y, iJ =Ax, (9.5) 

where A is the square matrix A = ( aij )o~i,j~l, whose entries are computed 
from the rows of the matrix E by 

0 ~ i,j ~ l. 

The Poisson bracket is, on this hyperplane, given by {xi,Xj} = {Yi,Yi} = 0 
and 

1 
{xi,Yj} = (ei I ej) Xi= 2 (ej I ej) aijXi. (9.6) 

It has the following Casimir, 

l 

C ·- rrx~i 1 .- i . (9.7) 
i=O 

Indeed {yi, CI} = cl ( ei I L:~=O ~jej) = 0 and obviously {xi, CI} = 0, for 
any i E {0, ... , l}, showing that C1 is a Casimir. Notice that the Poisson 
structure is indeed well-defined on the hyperplane L:~=o ~iYi = 0, since for 

i E {0, ... , l} we have that {xi, Co}= Xi ( ei I L:~=o ~iei) = 0, while {Yi, Co} 
is obviously zero. 

Equation (9.5) is the form of the generalized Toda lattice with which we 
shall work. As before we will consider these equations on a complex, rather 
than a real space, namely we consider them on the complex hyperplane M 
of C 2(!+1), defined by 

M := {(x,y) E C20Hl I t~iYi = o}. 
J=O 

(9.8) 

The matrices E and A, however, will always be taken real. 
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9.2 The Kowalevski-Painleve Criterion 

In this section we select from the Hamiltonian vector fields (9.5) those that 
satisfy the Kowalevski-Painleve Criterion. Recall from Section 6.2.1 that this 
criterion gives necessary conditions for algebraic complete integrability (with 
the generic fiber of the moment map not containing an elliptic curve). The 
proof of this fact was first1 given in [10]; the proof that we give here follows 
the notations and setup of [15]. 

Motivated by the previous section we consider a generic system of linearly 
dependent vectors in a real Euclidean space (R1+1, (·I· } ) , defined as follows. 

Definition 9.1. For l ~ 1, let eo, ... , ez be vectors in R 1+1. Suppose that 

1. The l + 1 vectors eo, ... , ez are linearly dependent; 
2. Any l of the vectors e0 , ••• , ez are linearly independent; 
3. The real numbers ~o, ~1, ... , ~~ E R \ {0} which satisfy E!=o ~iei = 0 have 

a non-zero sum, i.e., E~=O ~i '# 0. 

Then we call (eo, ... , ez) a generic (l + 1)-tuple of rank l in Rl+1 . 

Given vectors e0 , •.. , ez in Rl+1 , let E denote the matrix whose i-th row 
consists of the coordinates of ei with respect to some fixed orthonormal ba
sis B. Then the above three conditions for the rows of E to be a generic 
(l + 1)-tuple of rank l in Rl+1 are expressed in terms of E as follows. 

1. det(E) = 0; 
2. ET has a unique null vector of the form~ = (1, ~1 , ... , ~z) T; all entries ~i 

of ~ are different from zero; 
3. E!=o ~i 'I 0. 

Suppose now that E satisfies those conditions. Since each of the vectors ei is 
different from 0, we may define a (l + 1, l + 1) matrix A by 

(O~i,j~l). 

We will call this matrix the Cartan matrix of E. Since B is an orthonormal 
basis, the relation between A and E is given by 

A =EETD, D diagonal, invertible. 

We list a few useful consequences for A. Since every row of E is a linear 
combination of the other rows of E, which are independent, every principal 
minor of A is different from zero. In particular, A has rank l and the null 
space of AT is spanned by~. where~ is the above null vector of ET. Also, 
the null space of A is spanned by v-1 ~. 

1 A similar result was proven independently by Yoshida [175], but under stronger 
hypothesis. 
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Notice that all entries of v- 1 ~ are different from zero, because all entries 
of~ are different from zero; we normalize v- 1~ so as to obtain that its first 
element is 1 and we call the resulting vector e = (1,t1, ... ,el)T. The fact 
that ~T E = 0 also implies that ~T u = 0, for any u in the image of A; in 
particular, condition 3 above implies that 6 := (1, ... , 1) T does not belong to 
the image of A. Finally, all diagonal entries of A are equal to 2 and aii = 0 
if and only if aii = 0, for 0 ~ i,j ~ l. 

Example 9.2. Suppose that g is a simple Lie algebra of rank l and that v is 
an outer automorphism of g. The l + 1 simple roots 

of the twisted affine Lie algebra L(g, v) define a generic system of dependent 
vectors in ~R. x R, as follows easily from the properties stated in Section 2.4. 
The Cartan matrix of the matrix E formed by these roots is, of course, the 
Cartan matrix of L(g, v) with respect to fi, as defined in Section 2.4. See 
Tables 2.4 and 2.5 for the list of all Cartan matrices that correspond to a 
twisted affine Lie algebra. 

Theorem 9.3. For l > 1, let the (l + 1) x (l + 1) matrix E define a generic 
system of dependent vectors in R 1+1 and let A be its Cartan matrix. Consider 
the vector field V on M C C 2(l+l) which is given by 

x = x·y, 

iJ =Ax, 
(9.9) 

where x, y E C 1+1 and where X· y is a shorthand for the element of C1+1 for 
which (x · y)i = XiYi, i = 0, ... , l. If the vector field V is one of the integrable 
vector fields of an irreducible a.c.i. system then A is the Cartan matrix of a 
twisted affine Lie algebra. 

We first prove two lemmas that will be used in the proof of the theorem. The 
first one describes the leading behavior of all possible Laurent solutions to 
(9.9), while the second one gives a more detailed description of the first few 
terms of the principal balances. 

Lemma 9.4. Let A be the Cartan matrix of an (l + 1) x (l + 1) matrix E, 
which defines a generic system of dependent vectors in R1+1, where l > 1. All 
formal Laurent solutions to {9. 9) are weight homogeneous, where all variables 
Xi have weight 2 and all variables Yi have weight 1: these Laurent solutions 
have at most a double pole for all variables Xi and at most a simple pole 
for all variables Yi. Each of these formal Laurent solutions is convergent (for 
small values of iti). 
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Proof. The equations (9.9) for the vector field V imply that if one of the Xi 

variables has a pole then also one of the y variables and vice-versa. Thus, we 
look for Laurent solutions to (9.9) of the form 

x(t) = t~ ( x(m) + O(t)) , 

y(t) = t~ (y(k) + O(t)) , 

with m, k > 0 and x(m) :j:. 0 and y(k) =/: 0. 
By a direct substitution of (9.10) and (9.10) in (9.9) we find 

(9.10) 

x(m) x(m) . y(k) 
-m tm+l + ... = tm+k + ... ' (9.11) 

y(k) Ax(m) 
-k- + ... = -- +... (9.12) 

tk+l tm 

We show that m = 2 and k = 1. To do this, assume first that m > k + 1. 
Then (9.12) implies that x(m) is a non-zero multiple of~, so that all entries 
of x(m) are different from zero. Since y(k) =/: 0 this implies that k = 1 and 
that y(k) = -mJ. But (9.12) says that y(k) must be in the image of A, 

which is impossible since we have seen that J is not in the image of A. Thus, 
m > k + 1 is impossible. But m < k + 1 is also impossible, as follows from 
(9.12). Therefore, we conclude that m = k + 1. 

We proceed to show that k = 1, so that m = 2. To do this, assume that 
k > 1 and let m = k + 1. Then (9.11) and (9.12) imply that 

x(k+l) . y(k) = 0, 

-ky(k) = Ax(k+l). 

(9.13) 

(9.14) 

Let us denote, just for the sake of the present computation, the complex 
conjugate of a vector v E C1+1 by v. The matrices A, E and Dare real but the 
vectors x(k+l) and y(k) need not be real. However, notice that x(k+l) ·y(k) = 0 
implies that for any i = 0, ... , l one has x~k+l) = 0 or y~k) = 0. Therefore, 
using (9.14), we have that 

(Dx(k+l)) T Ax(k+l) = -k(Dx(k+l)) T y(k) = 0. 

Since A= EET D this implies that 

0 = (Dx(k+l)) TEET Dx(k+l) = (ET Dx(k+l)) T ET Dx(k+l). 

Thus, ET Dx(k+l) = 0 and, by (9.14) we conclude that 

y(k) = _!Ax(k+l) = _!EET Dx(k+l) = 0, 
k k 

a contradiction. This shows that k > 1 is impossible, so that k = 1 and 
m=2. 
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Since the vector field (9.9) is weight homogeneous, with weight 2 for all 
x; and weight 1 for all Yi, this means that all Laurent solutions to (9.9) 
are weight homogeneous. By Theorem 7.25 all formal solutions to (9.9) are 
convergent (for small values of jtl). 0 

Lemma 9.5. Under the hypothesis of Theorem 9.3, suppose that 

x(t) = t~ L x(k)tk, 
k<::O 

(9.15) 

is a balance for (9.9}. Let S C {0, 1, ... , l} denote the set of indices i for 
which x~o) f. 0 and denotes:= #S. Then 0 < s ~ l and y~o) = -2 whenever 
i E S. Moreover, if (9.15} is a principal balance then s = 1 and x(l) = 0. 

Proof. By direct substitution of (9.15) in (9.9) one finds that the indicia! 
equation yields 

-2x(O) = X(O) . y(O)' 

-y(o) = Ax(o). 
(9.16) 

Notice that if all x~o) are different from zero then y(O) = -26, which is 
impossible since, as we have seen, 6 is not in the image of A. So at least one 
of the x~o) is equal to zero, s ~ l. Also, x(o) = 0 leads to y(o) = 0, which does 
not correspond to a balance, so that s > 0. 

Let us denote by S the subset of {0, 1, ... , l} that contains those i for 
which x~o) f. 0. This set S will be supposed fixed throughout the proof and 
we denote s := #S. Notice that the first equation in (9.16) implies that 
y}0) = -2 if i E S. 

For a vector v = ( vo, v1, ... , vl) T E C1+1, let us denote2 by v (resp. by 1:) 
the vector of cs (resp. of C1+1-s) whose components are the components Vi 

of v for which i E S (resp. i ¢ S). Also, A denotes the s x s matrix that 
contains the entries a;j with i, j E S. 

With these notations the (partially solved) indicia! equation can be rewrit
ten in the following (redundant) form. 

x(o) = 0 
-' 
y(o) = - Ax(o)' 

y(O) = -2J", 
(9.17) 

A x(0) = 26. 

2 After permuting the variables x; (and they; at the same time) one may assume 
that x~o), ... , x~~\ are all different from zero while x~o) = · · · = xf0l = 0, but 
we will not do this, because that is not what one wants to do in practice when 
computing all balances. 
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We see from these equations that the solutions to the indicial equation do 
not contain any free parameters: since any principal minor of A is different 
from zero, A is invertible and x<0> is determined from these equations, hence 
they have a unique solution for x<0>. Then y<0> follows from y<0> = - Ax<0>. 
We now move to the equations that come after the indicial equation. First, 
using (9.17), the equations at step 1 are given by 

Ax<1> = 0, 

x{1). (y<o) + Q.) = 0, 

x{O) . y{1) = x{l). 

For k ~ 2 we find the following equations. 

(k _ 2)x{k) = x(k) . y(o) + x<o> . y(k) + R{k-1) 

(k- 1)y(k) = Ax(k), 

(9.18) 

where R{k- 1) involves only the variables x~') and y~l) with l < k. Splitting 
these vector equations up in the S part and the remaining part, using (9.17) 
and substituting the second into the first we can rewrite these equations as 
follows. 

(k - 2)x{k) + x(k) · Ax<0> = R{k-1), 

k(k- 1)x{k) - x<0> · Ax(k) = (k- 1)R{k-1), 

(k- 1)y(k) = Ax(k). 

(9.19) 

We show that if the Laurent solution (9.15) contains 2l = dim M - 1 free 
parameters then x<1> = 0. Indeed, if x<1> :f:. 0 then (9.18) implies that x<1> = 
cq, where cis possibly a free parameter and q spans the null space of A, as 
before. In addition, (9.18) does not impose any constraints on y(1), leading to 
l- s free parameters, since E~=O ejYj = 0 (see (9.8)). In total we have, after 

the first step, at most l + 1-s free parameters. Since all x~1 ) are different from 
zero, (9.18) implies that Ax<0> = -y<0> = Q.. Using this, the first equation in 
(9.19) becomes -

(k- 1)x{k) = R(k-1), 

which can be solved uniquely for x{k), since k ~ 2. The resulting value of x(k) 
depends on the values of x<l) and y{l) with 0 ~ l < k only. Since for k ~ 2, 
y(k) follows uniquely from x<k), the only free parameters that can appear 
after the first step must come from the equations that determine x(k). But 
since x(k) depends on the values of x<l) and y{l) with 0 ~ l < k only, we can 
rewrite the second equation in (9.19) as 

k(k- 1)x{k) - x<0> · (A x(k)) = Jl{k-1) (9.20) 

where Jl{k-1) depends on the values of x<l) and y{l) with 0 ~ l < k only. 
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Since the spectrum of the s x s matrix, whose (i,j)-th entry (with 0 ~ 
i, j < s) is given by x~o) aij, has at most s elements, in particular at most s 
elements of the form k(k- 1), the values of all x~ with k ~ 2 are uniquely 
determined, except for at most s of them, which yield free parameters for 
k ~ 2. Combined with the 1 + 1- s parameters that we found (at most) for 
k < 2 we get at most 1 + 1 free parameters, which is smaller that 21 since 
1 > 1. Our claim, that if the Laurent solution contains 21 free parameters 
then x(l) = 0, follows. 

By a similar counting argument we find that if the Laurent solution con
tains 21 free parameters then s = 1. Indeed, we find as before no free param
eters in the indicial equation, 1 - s free parameters in the first step and at 
most 1- s in the determination of x(k) in the following steps; but the deter
mination of x(k) in the steps that follow the first step yields also at most s 

free parameters. In total we get at most 21 + 1 - s free parameters, which is 
less that 21 unless s = 1. 0 

We are now ready to prove Theorem 9.3. 

Proof. (of Theorem 9.3) We apply the Kowalevski-Painleve Criterion (see 
Theorem 6.13) to the weight homogeneous vector field V. According to that 
criterion there must exist for 0 ~ i ~ 1 a principal balance for which Xi(t) 
has a pole. According t<? Lemma 9.5 xi(t) must then have a double pole, zero 
residue, and all other Xj(t) (with j "I- i) have no pole. We will show that this 
implies that aii is a non-positive integer for all j "I- i (recall that aii = 2). 
Repeating the argument for every 0 ~ i ~ 1 yields that 

2 (ei I ej) 
aij = ( I ) E z_ = {0, -1, -2, ... } for 0 ~ i < j ~ 1. 

ei ei 

In view of Proposition 2.19 A is the Cartan matrix of a twisted affine Lie 
algebra. 

By relabeling, it suffices to show the above implication for i = 0. Let 

be a principal balance for (9.9), with x(l) = 0 and x<0 ) = x~o) (1, 0, ... , 0) T. 

Then y(o) = -Ax(o) = x~o) ( -aoo, ... , -aw) T, which implies that x~o) = 1, 
since y~o) = -2 = -a00 . The equations (9.18) which correspond to step 1 
simply yield that y~1 ) = 0 and that all other yp) are free parameters, 1 - 1 
in total (since I:~=O ~iYi = 0). 
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For the other steps (k ~ 2) we investigate (9.19). The last equation says 
that all y(k) are determined by the x<k), hence all free parameters must come 
from the x(k). Since a00 = 2 Equation (9.20) implies 

k(k- 1)x~k) - 2x~k) = (k- 1).R(k-l) 

which yields that x~2) is a free parameter (it is easy to check that _R{l) = 0). 
The first equation in (9.19) leads to l equations 

which provides l free parameters (which is precisely the number of free pa
rameters needed to arrive at the right number 2l) only if for any i = 1, ... , l 
the equation k - 2 + aiO = 0 admits an integral solution for k with k ~ 2. In 
other words, all entries aio with 1 ~ i ~ l must be non-positive and integral. 
0 

Remark 9.6. The positive (but singular) symmetric matrix EET will have 
the same property as A that all its off-diagonal entries are negative. According 
to the Frobenius-Perron Theorem (see [40, p. 162]) all entries of the null 
vector e = (1,el •... ,e,)T of AT are positive. For each of the twisted affine 
Lie algebras the corresponding normalized vector e is given in Tables 2.4 
and 2.5. 

9.3 A Lax Equation for the Periodic Toda Lattice 

We will now give a Lax equation for the Toda lattice associated to any of the 
twisted affine Lie algebras L(g, v). Recall from Section 2.4 that L(g, v) admits 
a system of simple roots fi = {a0 = {a0 , 1), a 1 = {a1 , 0), ... , a,= (a,, 0)}, 
where { a 1 , ... , a1} is a system of simple roots for g0 (the subalgebra of g that 
is fixed under v), and where a 0 is, in the untwisted case, minus the highest 
long root of g = g0 , while ao is given by {2.32) in the twisted case. Starting 
from root vectors and coroots of go we can choose root vectors Eli E L(g, v) 
and coroots H o: in ~0 = ~ n g0 such that 

[H, Eli] = (a, H) Eli, 

[Eli, E-li] = Ho:. 

HE ~o, 

We also introduce, for i = 1, ... , l the coweights A1 , ... , X, E ~0 by 

( Clj, xi) = 6ij, 1~i,j~l. 

(9.21) 

(9.22) 
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Consider now the elements of L(g, v), defined by 

I l I 

X := L Yi).i - L XiEa; + LE-a;, 
i=l i=O i=O 

I 

Y :=- LXjEa;, 
j=O 

(9.23) 

where Y is naturally interpreted as the projection of X on the subspace 
generated by the positive root vectors. We claim that the equation 

X=[X,Y] 

is a Lax equation (with parameter, because of E±ao) for the Toda vector field 

x = x·y, 

iJ =Ax, 
(9.24) 

on the hyperplane M of C 2(l+l), defined by (9.8). To show this, we compute 
the three contributions to [X, Y], and we compare them to 

I I 

X = L Yi).i - L XiEa, 
i=l i=O 

I l I 

= LLaijXjAi- LXiYiEa;· 
i=l j=O i=O 

The first term in [X, Y] is given by 

l I l l 

- LLXiYi [>.i,Ea;] =- LLXiYi(aj,>.i)Ea;, 
i=l j=O i=l j=O 

where we used (9.21) for >.i E ~O· Now 

if j i= 0; 

if j = 0, 

where the last equality is obtained from ao =- l:~=l ~iai. Summing up and 

using l:~=O ~iYi = 0 we conclude that the first term in [X, Y] matches exactly 
the second term in X. The second term in [X, Y] is given by 

I 

- L XiXj [Ea.,Ea;] = 0, 
i,j=O 

by skew-symmetry. 
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For the last term in [X, Y] we find 
l l 

- L Xj [E-a.,Eo:;] = L:xiHa1 , 

i,j=O i=O 

but (9.22) and (2.23) yield 

l 

Ha1 = L aii).i, 
i=l 

(9.25) 

and so if we substitute this into the previous formula then we find precisely 
the first term in X. This show that X = [X, Y] is a Lax equation for the 
Toda vector field (9.24). 

In an arbitrary faithful representation p of g into g[(N) we get, in view 
of the AKS Theorem, commuting Hamiltonians, given by the coefficients of 
the equation 

i,j 

where the dependence of p(L) on b, polynomial in band b-1 comes from the 
root vectors Ea0 and E-o:o. Setting Xo = 0 the polynomials HiO are invariant 
under the coadjoint action of g0 • By Chevalley's Theorem they are extensions 
of the Weyl polynomials of g0 , in particular they are independent, yielding l 
independent polynomials in involution on M, in addition to the Casimir C1 . 

Thus, the Toda lattice associated to any of the affine Lie algebras is Liouville 
integrable. 

In the examples that follow, we give the explicit Hamiltonians for the 
periodic Toda lattices that involve precisely three (connected) particles. 
There are precisely six cases of them, going with the extended root systems 
(l{l) c{l) g(l) a(2) ()(2) and ,(3) We give in each case the Cartan matrix A 

2 ' 2 ' 2 ' 4 ' 3 v4 · ' 
the Casimir C0 = I;~=O {iYi that defines the subspace, Co = 0, the Casimir 
C1 = IJ;=O xf', the energy H1 and the extra constant of motion H2. 
Example 9. 7. For the classical periodic 3-body Toda lattice the Cartan ma
trix is given by 

A= (~1 ~1 =~) . 
-1 -1 2 

The Casimir and commuting Hamiltonians are given by 

Co = Yo + Y1 + Y2 = 0, 

C1 = XoX1X2, 

H1 = (Yo - YI)2 + (Yl - Y2) 2 + (Y2 - Yo)2 - 18(xo + X1 + X2), 

H2 =IT (Yi- Yi)- 9(xo(YI- Y2) + X1 (Y2- Yo)+ x2(Yo- YI)). 
i<j 
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Example 9.8. For the c~1 ) Toda lattice the Cartan matrix is given by 

A= ( ~1 ~: ~1} 
The Casimir and commuting Hamiltonians are given by 

Co = Yo + 2yl + Y2 = 0, 

C1 = XoX~X2, 
H1 = y~ - 4xo + y~ - 4x2 - 8x1, 

H2 = (y~- 4xo)(y~- 4x2)- Bxl(YoY2- 2xl)· 

Example 9.9. For the third and last untwisted case, the g~1 ) Toda lattice, the 
Cartan matrix is given by 

A= ( ~ ~ =~). 
-1 -3 2 

Denoting </>i := yl- 4xi, the Casimir and commuting Hamiltonians are in 
this case given by 

Co = Yo + 3yl + 2y2 = 0, 
C1 = XoX~X~, 
H1 = y~- 4xo + 3(y~- 4xl)- 4x2, 

H2 = 27(</>o- ¢>1)2</>1 + l6x2[l8xoy1(Y2 + 2yo) + 3x2(Y2 + 2yo)2 -

l08x1(xo + x1) + 6x1(Y2 + 2yo)(4y2 + 5yo) + 2yl(Y2- Yo)(Y2 + 2yo)2]. 

Example 9.10. There are two twisted cases that go with an involution (auto
morphism of order two). The first one is the ai2> Toda lattice, whose Cartan 
matrix is given by 

The Casimir and commuting Hamiltonians are explicitly given by 

Co = Yo + 2yl + 2y2 = 0, 

cl = xox~x~, 
H1 = y~- 4xo + 4(y~- 4x2)- 8x1, 

H2 = (y~- 4xo)(y~- 4x2)- 4xl (YoY2- x1 - 4x2)· 
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Example 9.11. The second one is the D~2) Toda lattice, whose Cartan matrix 
is given by 

A~ c2 ~: ~2) 
The Casimir and commuting Hamiltonians are explicitly given by 

Co = Yo + Y1 + Yz = 0, 

C1 = XoXIXz, 

H1 = Y5 - 4xo + y~ - 4xz - 2xl, 

Hz= (Y5- 4xo)(y~- 4xz)- xi(2YoYz- 4xo- x1- 4xz). 

Example 9.12. There is one twisted case that goes with an automorphism of 
order three. It is the Di3) Toda lattice, whose Cartan matrix is given by 

For this final case the Casimir and commuting Hamiltonians take the follow
ing form. 

Co = Yo + 2yl + Yz = 0, 

C1 = XoX~Xz, 
2 1 2 H1 =Yo- 4xo + 3(y2 - 4xz)- 4xl, 

H2 = ((yo(Yl + Y2)- xt)yl + X2Yo) 2 - 4xi((yo(YI + Yz)- x1)2 - xz(Y5- xi)) 

-4xo ( (xz - xo)2 + 3xl (xo +xi)+ Sx1x2 - '1/J/2) , 

where 

'1/J = xo(2y5- By~)+ 2xl(12y~ + 21YIY2 +lOy~) 
-4xz(Y5- 2y~)- YI(YI + Yz)(3y5- 7y~). 

Remark 9.13. Taking x 0 = 0 and computing Yo from C0 = 0 yields a non
periodic Toda lattice. The equations of motion can be written down directly 
by taking the Cartan matrix A of a (semi-)simple Lie algebra, giving 

± = x·y, iJ =Ax. 

We will need the commuting Hamiltonians in the case of two particles. They 
are easily found from the periodic 3-particle Toda lattice, and are given in 
Table 9.1. 
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Table 9.1. For each of the four non-periodic 2-particle Toda lattices we display the 
commuting Hamiltonians. They are obtained, up to a constant, from the periodic 3-
particle Toda lattice (see Examples 9.7- 9.12) by setting xo = 0 and by substituting 
yo from Co= yo+ etYt + e2Y2 = 0. 

Non-periodic commuting Hamiltonians 

at ffi at Ht = y! + y~- 4(x,. + xp) 
0 0 

H2 = y!- 4x,. Q /3 

a2 Ht = Y! + YaY/3 + y~- 3(x,. + xp) 
<:r-0 

H2 = (2y,. + yp)(yp- y,.)(y,. + 2yp) + 9x,.(y,. + 2yp)- 9xp(y,. + yp) Q /3 

C2 Ht = (y,. + 2yp)2 + y,. - 4x,. - Bxp 

o=::>o H2 = (y!- 4x,.)(y,. + 2yp)2 + Bxp(y,.(y,. + 2yp) + 2xp) Q /3 

92 Ht = (2y,. + 3yp)2 + 3y~- 4(x,. + 3xp) 

~ H2 = [((y,. + 2yp)(y,. + yp) + xp)yp + x,.(y,. + 2yp)]2 

-4xp[(y,. + 2yp)(y,. + yp) + xp]2 + 4x,.xp[(y,. + 2yp)2 - xp] 

9.4 Algebraic Integrability of the a~1 ) Toda Lattice 

We will now show that the usual periodic 3-body Toda lattice is a.c.i. We 
will do this by using the methods of Chapter 7. For an alternative proof, 
see [169, Ch. VII.7). 

The equations of motion are given by 

x =x·y, 
iJ =Ax, 

(9.26) 

where x = (xo, x1, x2) T and y = (yo, Yl, Y2) T, with Yo + Yl + Y2 = 0. The 
Cartan matrix A is in this case given by 

( 
2-1 -1) 

A= -1 2-1 , 

-1-1 2 

and ~ = ( 1, 1, 1) T is the normalized null vector of AT. In order to simplify 
the formulas and computations that follow we perform a linear change of 
coordinates on yo, ... , y2, namely we define 

Y1- Y2 
xa : = .::...._-::-"-

3 
Y2 -yo 

X~:= 3 ' 
Yo -yl xs := 3 . (9.27) 
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Then the vector field (9.26) and a vector field that commutes with it are 
given by 

xo = xo(x5- x4), 

±1 = x1 (x3 - x5), 

X2 = X2(X4- X3), 

X3 = Xl- X2, 

X4 = x2- xo, 

:i:5 = xo- x1, 

xh = xox3(x4- x5) + xo(x2 - xl), 

X~ = X1X4(X5 - X3) + X1 (xo - X2), 

X~= X2X5(X3- X4) + X2(X1- Xo), 

X~ = X2X5- X1X4, 

X~ = XQX3- X2X5, 

X~ = X1X4- XQX3. 

(9.28) 

We will denote these vector fields by V1 and V2 respectively. Notice that 
(9.27) implies that X3 + X4 + X5 = 0, while the vector fields (9.28) make 
perfect sense (and commute) on the whole of C6 . We will therefore drop in 
the sequel the condition that X3 + X4 + X5 = 0; this is even very natural from 
the Hamiltonian point of view, as the linear function X3 + X4 + X5 is a Casimir 
for a natural Lie-Poisson structure on C6 with respect to which both V1 and 
V2 are Hamiltonian. Namely, consider the Poisson structure { · , ·} on C6 , 

defined by the skew-symmetric matrix 

( 0 -X) 
XT 0 ' 

and consider the following integrals of the vector fields vl and v2: 
F1 := xox1x2, 

F2 := X3 + X4 + X5' 

1 2 2 2 
F3 := 2(x3 + x4 + x 5)- xo- x1 - x2, (9.29) 

F4 := X3X4X5 + XoX3 + x1x4 + x2x5. 

Then it is easy to check that F1 and F2 are Casimirs of { ·, · }, and that 
Xp,+ 2 = Vi for i = 1, 2. Denoting F := (F1, ... , F4) we have that F is 
involutive and independent, hence ( C6 , { · , ·} , F) is Liouville integrable. The 
rank of { · , ·} is 4 at all points of C6 , except at the three four-planes x0 = 
x1 = 0 and x 1 = x2 = 0 and x2 = xo = 0. Since F 1 is constant on these 
four-planes, Proposition 7.56 implies that the commuting vector fields V1 and 
V2 are independent on the generic fiber F c of the momentum map. 

We assign the weight 2 to xo, x1 and x2 and the weight 1 to X3, X4 and xs. 
Then V1 is a weight homogeneous vector field (of weight 1), while V2 is weight 
homogeneous of weight 2. Also, {-, ·} has weight 1 and the weights of the 
constants of motion Fi are given by 
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For future use, we also introduce the order three automorphism of C 6 , which 
is given by 

7r(Xo, ... ,Xs) := (Xt,X2,XO,X4,X5,X3)· 

1r is Poisson automorphism which preserves the functions Fi, hence it also 
preserves the vector fields Vt and V2 • 

We now turn to the principal balances of V1. The indicia! locus I is the 
subset of C6 ' given by 

0 = xb0) {2 + x~o) - xi0>), 

0 = x~o) (2 + x~o) - x~0>), 

0 = x~o) (2 + xi0> - x~0>), 
0 = x~o) + x~o) - x~o), 

0 = xio) + x~o) - xbo)' 

0 = X~O} + XbO} - X~O}. 

It consists of six points, two of which are given by 

( (0} (0})- { {1,0,0,0,1,-1), 
Xo ' ... ,xs -

{2, 2, 0, -2, 2, 0), 

and four other points, obtained by applying 1r and 1r2 to these points. For 
the point Wo := {1, 0, 0, 0, 1, -1) the Kowalevski matrix is given by 

0 0 0 0-11 

0 3 00 00 

K{wo) = 0 0 30 00 

0 1 -11 00 

-1 0 10 10 

1 -1 00 01 

Its characteristic polynomial is given by 

l~tide -K(wo)l = (JL + 1){JL- 2){JL- 1)2{JL- 3)2, 

so it has 5 non-negative integer eigenvalues, as required for a principal bal
ance. The fact that 1, 2 and 3 are roots of the characteristic polynomial fol
lows from Theorem 7.30, namely the differentials dFl(wo), ... ,dF4(wo) are 
given by 

dF1(wo) := 0, 

dF2(wo) := dxa + dx4 + dxs, 

dFa(wo) := -dxo- dx1 - dx2 + dx4- dxs, 

dF4(wo) := dx1- dx2, 

yielding a non-zero d1-£(k) for k = 1, 2 and 3. 
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Also, the fact that -1 is a root follows from Proposition 7.11 and, obvi
ously, the sum of all roots is 9 = Trace(K(wo)). In view of Proposition 7.34 
we will get a trivial parameter entering at levels 1, 2 and 3, if wo leads indeed 
to a principal balance. 

For the point w0 := (2, 2, 0, -2, 2, 0) the Kowalevski matrix is given by 

0 0 0 0-2 2 

0 0 02 0-2 

K(wb) = 0 0 60 

0 1 -11 

-1 0 1 0 

1 -1 00 

and the differentials dHi(w0) take the form 

dF1(wb) := 4dx2, 

dF2(wb) := dx3 + dx4 + dx5, 

0 0 

0 0 

1 0 

0 1 

dF3(wb) := -dxo- dx1 - dx2- 2dx3 + 2dx4, 
dF4(wb) := 2(-dxo +dx1 +dx3 +dx4- 2dx5), 

so that 1, 2, 3 and 6 are eigenvalues of K(w0), besides -1 (Proposition 7.11). 
Since the sum of all eigenvalues of K(w0) is 9 it follows that 

I Id6 -K(wb)l = (1-l + 2)(1-l + 1)(1-l- 1)(1-l- 2)(1-l- 3)(1-l- 6), 

so this matrix has only 4 non-negative integer eigenvalues, and w0 cannot 
lead to a principal balance. We show that wo leads indeed to a principal 
balance by exhibiting the first terms (the five free parameters, going with 
steps 1, 1, 2, 3, 3 respectively, are denoted by a, ... , e, all subsequent terms 
are uniquely determined by the given ones). 

1 
xo(t; wo) = t2 (1 + ct2 + dt3 + O(t4)) , 

x1 (t; wo) = -(5d + 2e)t + O(t2), 

xz(t; wo) = (d + 2e)t + O(t2), 

x3(t; wo) =a- (3d+ 2e)t2 + O(t3), (9.30) 
1 

X4(t; wo) = - + b- ct + et2 + O(t3), 
t 

1 
x5(t; wo) = -t + b + ct +(3d+ e)t2 + O(t3). 

Letting w1 := rr(wo) = (0,0,1,1,-1,0) and w2 := rr(wi) = (0,1,0,-1,0,1) 
the principal balances x(t; wi) and x(t; w2) are obtained from the above for
mulas for x(t; wo) by applying the automorphism rr. 
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As we pointed out, we can pick a trivial parameter at positions 1, 2 and 
3: in order to have that Fi(x(t;wo)) = Ci fori= 2,3,4 the parameters a, c 
and e should be chosen as follows: 

An equation for one of the irreducible components rJO) of the abstract 
Painleve divisor is then given by F1 (x(t; wo)) = c1 , which yields an alge
braic relation between b and d, namely 

The affine curve rJ0> is, for generic c1 , ••. , c4 , a smooth hyperelliptic curve of 
genus 2. Upon computing the abstract Painleve divisors rJ1> and rJ2> which 
correspond to the other principal balances x(t; wl) and x(t; w2) we arrive 
at the same equation since 1r preserves the constants of motion; when it is 
irrelevant which one of the isomorphic rJi) we are talking about the curve 
will just be denoted by Fe. In order to complete the non-singular curve Fe 
into a compact Riemann surface we need to adjoin two points oo+ and oo-, 
which are given in terms of a local parameter ~ by 

b = ~-1' d = ± : 3 ( 1- c2~ + ~ (3c~ - 2c3h2 + 0(~3 )) • (9.32) 

We now look for polynomials P(x) which have the property that each of the 
series P(x(t; Wj)) has at most a simple pole, where j = 0, 1, 2. The fact that 
Fe has genus 2 suggests that the invariant manifolds F c are Jacobians of 
genus 2 curves, and these can be embedded in P 8 by using the sections of the 
third power of the line bundle that corresponds to the theta divisor (which 
is isomorphic to the Riemann surfaces that underlies the Jacobian). Indeed, 
if we denote by 8 the theta divisor of a Jacobi surface, then by {5.25), 

dim£{38) = (38). (38) = 98 . 8 = 9dim£(8) = 9(g(8) -1) = 9, 
2 2 

and probably 
v<o> + v<1> + v<2> "'38 c c c ' 

with rJi> <-t V~i). This suggests that there should only be 9 independent 
polynomials with the above property, and that they should suffice for proving 
algebraic integrability (recall that the third power of any ample line bundle 
on an Abelian variety is very ample and normally generated). 
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Table 9.2. A list of 9 independent polynomials which have a simple pole in t at 
worst, when any of the 3 principal balances x(t; Wj) is substituted in them. For 
each of these polynomials z; we give its weight and the residues of z; ( x( t; Wj)) for 
j = 0, ... ,2. 

Zi w(z;) Rest z;(x(t; wo)) Rest z;(x(t; w!)) Rest z;(x(t; w2)) 

zo := 1 0 0 0 0 
Zl := X3 1 0 1 -1 
Z2 := X5 1 -1 0 1 

Z3 := Xo + X4X5 2 0 -a a 
Z4 := Xl + X3X5 2 -a a 0 

Z5 := X1X4 - X5Z3 3 b2 +3c a2 -2ab 
Z6 := XQXl 4 -5d- 2e 0 d+2e 
Z7 := X1X2 4 0 d+2e -5d- 2e 
Zs := XQX2 4 d+2e -5d- 2e 0 

We give a list of 9 such functions in Table 9.2, together with the leading 
behavior when any of the principal balances x(t; Wj) is substituted in them. 
These functions define a map CfJc : F c --+ P 8 which is, for generic c, an 
embedding. We consider the three maps cp<,/> : Fe --+ P 8 , given by the residues 
ReStZi(x(t;wj)), wherej = 0, ... ,2. Explicitly, cp~O) is for (b,d) E rc given 
by 

cp~0) ( b, d) = (0 : 0 : -1 : 0 : -a : b2 + 3c : -5d - 2e : 0 : d + 2e), (9.33) 

where the values of a, c and e in terms of band dare given by (9.31). Similarly 
the other two maps <p~1 ) and cp~2) are written down from Table 9.2. We see at 
once that each of them yields an isomorphic embedding of the curve, and that 
all image curves are disjoint. In order to compute the image of the compact 
Riemann surface rc that corresponds to rc, write (9.33) and the other two 
embeddings in terms of a local parameter <; around each of the two points 
oo+ et oo- in Fe \Fe, by using (9.32) and let <; --+ 0. This results in the 
following three image points 

pO := (0 : 0: 0: 0 : 0: 0: 0 : 1 : 0), 

P 1 := (0 : 0: 0 : 0 : 0 : 0: 1 : 0: 0), 

P 2 := (0: 0: 0 : 0: 0 : 0: 0: 0: 1), 

namely the precise correspondence is given as follows: 

<p~o)(oo+) = <p~l)(oo;) = p2, 

<p~l)(oo+) = <p~2)(oo;) = po, 
cp~2)(oo+) = <p~o)(oo;) =pl. 

This means that each pair of image curves has an intersection point; it is 
clear that the three intersection points Po, P1 and P3 are all different. 
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Notice that these points are independent of c and that they are cyclically 
permuted by the automorphism 1r. With some more effort one finds, up to 
order 2, the following description of the embedded curves along this tangency 
point: 

tp~0)(oo+) "'(0: 0: 0: 0: 2~2 : 2~(2- C2~): 0: 0: *), 

tp~1 ) ( oo+) "' (0 : 0 : 0 : 2~2 : -2~2 : 2~(2 - 2c2~) : 0 : * : 0), 

tp~2>(oo+)"' (0: 0: 0: -2~2 : 0: 2~(2- c2~): *: 0: 0), 

tp~O) ( 00-) "' (0 : 0 : 0 : 0 : 2~2 : 2~(2- C2~) : -*: 0 : 0), 

tp~1)(oo-)"' (0: 0: 0: 2~2 : -2~2 : 2~(2- 2c2~): 0:0: -*), 

tp~2)(oo-)"' (0: 0: 0: -2~2 : 0: 2~(2- c2~): 0: -*: 0), 

where*= -8 + 8c2~ + ~2 (2c3 - 3c~). It follows that the curves are tangent 
at their common points, and that the tangency is simple. The configuration 
made up by the three image curves is represented in Figure 9.1. With this 

Fig. 9.1. For generic c the Toda divisor Vc consists of 3 isomorphic non-singular 
hyperelliptic curves of genus 2. These curves are translates of each other by one 
third of a period. They intersect pairwise in a single point, which is a point of 
simple tangency (tacnode); moreover, the tangency locus of the vector field vl, 
constructed below, to Vc, consists of the three tacnodes of Vc. 

information it is easy to verify the adjunction formula: each of the three 
singular points is a tacnode, hence has Euler characteristic 2, so that the 
arithmetic genus of the image, as computed from Proposition (5.42), is 3 x 
2 + 1-3 + 3 x 2 = 10. Since the embedding space is P8 the adjunction formula 
(7.50) is satisfied. 
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We now give the quadratic differential equations in two charts Zo # 0 and 
Z1 # 0. In order to simplify the formulas we will put c2 = 0, where we recall 
that c2 is the value of one of the Casimirs, and that it is equal to zero in the 
original Toda lattice (see the beginning of this section). In the chart Zo -:f 0 
we just use the Zi as coordinates. It is easily checked that V1 can be written 
in this chart the following form. 

i1 = Z3 + 2z4- z1(z1 + 2z2) + c3, 

i2 = Z3 - Z4 + z2(2z1 + z2), 

i3 = -z3(z1 + 2z2) - 2z5 + c4, 

i4 = Z1Z3 + z2(z3 + Z4 + c3), 

i6 = z6(2zl + z2), 

i7 = -z7(z1 + 2z2), 

is = -zs(zl - z2). 

For the second chart, zl # 0, define Yi := Zi/ Zl· Then the quadratic differ
ential equations take the following form. 

where 

Yo = 2y2 + 1- Yo(2y4 + Y3 + c3yo), 

iJ1 = o, 
Y2 = Y2 (y3 + Y4) + YoY5 + Y4 + C4Y5, 

Y3 = Yo(Ys - Y6) - Y5 - C4YoY2, 

Y4 = Yo(Y6 + 2y7)- Y2Y5 + c3(y~ + YoY4) + C4Yo(Y2 + 1), 

Y5 = Ys(Y2 - 1)- Y6(Y2 + 2)- c3y3- c4(y~ + Yo(Y4 + 2y3)- 1), 

Y6 = Y3Y6 + Y4Y8 + *, 
Y7 = -y7(Y3 + 2y4 + c3yo), 

ils = Y6(Y3 + Y4) - Y3Ys + c3yo(2y6- Ys)- *, 

* := Y3Y7 + Y~ + c3(Y3Y4- Y2Y5)- c4(Y2Y4- Y3)- C3C4YoY2- dY5· 

This shows that ( IPc) * (V1) extends to a holomorphic vector field V 1 on P 8 . 

We now show that the integral curves ofV1 that start at the three singular 
points go into the affine immediately. In view of the automorphism 1r it suffices 
to do this for one of these points. We do this for P 2 = limP-too+ cp~o) (P). 

Among the residues of the Laurent series z0 (t; d 0l), ... , z8 (t; F~0)) the one 

which has the highest pole at this point is the residue of z8 (t; F~0)) (see 
Table 9.2). We need to show that (see (7.54)) 

lim 1 -:f 0, 
P-too+ zs(t; d 0)) 

which is computed by writing the series zs(t; d 0)) in terms of a local param
eter~ around oo+ by using (9.32), and letting~-+ 0. 
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To do this, we need the four leading terms of zs: 

d+2e 
zs(t; wo) = -t- + (b- a)(d + 2e) +((a- b)2 + c)(d + 2e)t 

1 
+ 6(d + 2e)((b- a)3 + 3c(b- a)+ 12d + 6e)t2 + O(t3). 

The first few terms of the inverse of this series are given by 

1 t b- a 2 1 (a- b)2 - c 3 ----..,.- = -- - --t + - t 
zs(t;wo) d+2e d+2e 2 d+2e 

1 (b- a)3 + 3c(a- b)+ 12d + 6e 4 O( 5) 
- 6 d+ 2e t + t · 

It suffices now to compute to substitute (9.31) and (9.32) in each of these 
terms: letting ~ -t 0 one easily finds 

. 1 1 4 5 
hm -( -) = -4t + O(t ) # 0, 
~-tO Zs t; ~ 

which shOWS that the integral curves of V1 that start at cp~O) ( oo+) go into 
the affine immediately. Notice that the fact that the leading term 4/t4 of 
z8 = x0 x 2 is in agreement with the fact that there is a lower balance for 
which xo(t) = 2/t2 + o(t-l) and X2(t) = 2ft2 + O(r1 ). 

The last thing that we need to check is that there are no other divisors 
in cpc(Fc) \ ct'c(Fc) that pass through the three singular points. Again it is 
sufficient to do this for one of the three points; we do it for the same point as 

above. Since the vector field vl is tangent to both cp~0>(rJ0>) and cp~1>(rJ1>) 
at this point, we need to consider the vector field V2. We show that (cpc)* V2 
exists and extends to a holomorphic vector field on P 8 . This is done by 
exhibiting the quadratic differential equations in two of the charts. Below we 
just give them for the chart Z0 # 0; as before we put c2 = 0 in order to 
simplify the formulas (the prime denotes the time derivative with respect to 
V2; the corresponding time variable will be denoted by t2). 

Z~ = Z1Z4- Z2(Z3 + C3), 

Z~ = -(zl + Z2)Z4- Z1Z3, 
Z~ = Zs - Z6 - Z1Z5 - C4Z2, 

Z~ = zs(zl + Z2) + Za- Z7- C3Z2(z1 + Z2)- C4Z1, 

z~ = z2(za- zs) + z1(z7- zs)- C3Z1Z3 + c4(z~ + Z1Z2 + zi), 
z~ = za(z3 - z4), 
Z~ = Z7(Z3 + 2Z4 + C3), 

z~ = -zs(2z3 + Z4 + c3). 
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The reader is welcomed to compute the vector field in the chart Z1 f. 0 
as an exercice, which amounts to computing the coefficients a{~ in 

8 

W(zi,z1) = z~z1- ZiZ~ = L a{~zjZk, 0 ~ i ~ 8. 
j,k=O 

We need to compute the first few terms of the Taylor series of 1/ z8 ( t2; rJ0l), 
and express the free parameters in terms of a local parameter ~ in a neighbor
hood of oo+. The resulting series in t 2 and in~ should start at degree 2, by 
(7.57) since we have found two divisors that pass through limP-too+ <p~o) (P), 
on which 1/ za has a simple zero. As explained in Paragraph 7.6.2 we compute 
these first few terms as follows: 

1 1 ( 1 ) I ( 1 ) N t2 

(o) = -(t) I + za(t) '·=ot2 + za(t) '·=o 2
2 + · · · Zs(t2j rc ) Za t=O 

where z8 (t) := z8 (t; rJ0l). The first term yields no contribution. For the 
second term we have that 

x2- xo + (x3- x5)x4 

XoX2 

and we find by substituting the Laurent series x(t; rJ0l) that in a neighbor
hood of oo+, 

( 1 )' 2 
Za (t; rJ0)\=0 = - ~ + 0(~3), 

which yields only terms of order 3 and higher in ~, t2 • The next term however 
yields a term of order 2 since 

It follows that there are indeed no other divisors in <pc(F c) \ <pc(F c) than 
the three divisors that we have found. In conclusion, we have shown that 
the a~1 ) Toda lattice is a.c.i. Since the torus that compactifies the generic F c 

contains a non-singular curve of genus 2 it is equal to the Jacobian of this 
curve; moreover, F c is an affine part of this Jacobian, obtained by removing 
three copies of this curve that are translates of each other by a third of a 
period. 



386 9 Periodic Toda Lattices Associated to Cartan Matrices 

9.5 The Geometry of the Periodic Toda Lattices 

In the previous section we have shown that the t41) Toda lattice is an irre
ducible a.c.i. system, and we could have similarly shown this for the other 
surface cases (l = 2). We will derive in the present section a complete de
scription of the geometry of any periodic Toda lattice, assuming that is an 
irreducible a.c.i. system. This is a reasonable assumption, since it was shown 
in [8] that the a?>, bf1>, c}1>, ~?) Toda lattices all satisfy the Linearization 
Criterion (Theorem 6.41). Moreover, a proof of the algebraic integrability of 
ana?> Toda lattices was given in (165]. The point being that, while it is never 
trivial to show that a system is a.c.i., for higher dimensional integrable sys
tems it is a natural starting point from which to derive the specific algebraic 
geometry of the system. 

9.5.1 Notation 

We first introduce the Lie algebra notation that will be used throughout this 
section; see Section 2.4 for some background on the concepts that will be 
used. We consider the integrable vector field V on C21+2 , given by 

x =x·y, iJ =Ax, 

where A is the Cartan matrix of a twisted affine Lie algebra L{g, v), 
and x,y E C'+1, x = (xo,xl,····xt)T, y = (yo,YI.····Yt) and x · y = 
(xoyo, x1y1, ... , XtYt) T. The integer lis the rank of the simple Lie algebra g0 , 

which is the fixed point set of the automorphism v; recall that v may have 
order 1, 2 or 3 (see Tables 2.3, 2.4 and 2.5). We choose a Cartan subalgebra 
~of g and we define ~0 :=go n ~. which is a Cartan subalgebra of go. From 
a chosen basis ( a1, ... , at) of simple roots for go (with respect to ~o) we 
construct a basis of simple roots3 II= (ao, a1, ... , at) for L(g, v). We recall 
that 

{ 
- (highest long root of g) (v = Id) 

ao = -2 {highest short root of bt) (case a~~)) 
- {highest short root of go) (otherwise) 

We will often deal with subsets II' C II. Such a subset, always assumed 
non-empty, corresponds to a semi-simple Lie algebra, which we denote by g'. 
Since II' determines in a canonical way a Dynkin subdiagram of the Dynkin 
diagram of L(g, v) we often refer to II' as being a Dynkin subdiagram of II; 
notice that such subdiagrams are not necessarily connected, in fact they are 
connected precisely when g' is simple (rather than just semi-simple). 

3 In the notation of Section 2.4, II= (oo, <h, ... , 01); for readability of the formu
las we will, in this section, omit the bars, as it will not lead to any ambiguity. 
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The boundary oil' of II' is defined by 

oil' := {,8 E II\ II' I 3a E II' such that aDI/3 =f. 0}' 

and the exterior as 
II" := II\ (II' U oil'), 

yielding a partition of II as II = II' U oil' U II". In the Dynkin diagram each 
element of oil' is connected to at least one element of II', but there is no 
edge between elements of II' and elements of II". Notice that oil" ~oil'. 

The set of positive roots of g' is denoted by ~P+, and the corresponding 
dual Weyl element (see (2.26)) is denoted by h', with dual Weyl integers n~, 

h' = L H01 = L n~Hi. (9.34) 
DIE~+ Dli Ell' 

We will often deal with subsets II' C II that have l or 2 elements. 

(1) Subsets II' c II which are obtained by removing one root are often 
denoted by JI(Dt) when II' = II \ {a} and we often abbreviate JI(a;) 

to JI(i), where i = 0, ... , l. The Weyl group of these root systems is 
denoted by W', resp. W(a) and W(i). The same applies to the Cartan 
matrix A, where A(i) means that the i-th row and column4 of A have 
been removed; for example A(o) is the Cartan matrix of go. 

(2) Subsets II' C II that consist of precisely two elements, II' = {a, ,8} . The 
corresponding Weyl group is denoted by W(a/3) and the corresponding 
Cartan matrix by A ( Ol/3). 

Notice that, when l = 2 and II = {a, ,8, ')' }, then these notations are such 
that W(a/3) = Wb) and A(a/3) = A('Y). 

Also, we will sometimes be tempted to view the indices i that appear in 
xi and Yi as coming from the roots ai E II, so that we will sometimes write 
x 01 and Ya for a E II, meaning Xi and Yi when a= ai. These notations are 
not just of a practical nature, in fact they highlight the Lie algebraic nature 
of the different entities that constitute the periodic Toda lattices. 

For the Lie algebra g0 , with Cartan subalgebra 1)0 , the following notation 
will also be used. Recall that for any root a the corresponding coroot H 01 is 
defined by 

ha 
Ha = 2 (ha I ha). 

where (a,-) = (ha I·) as elements of 1)0 and where (·I·) denotes the Killing 
form of g0 ; as before, we write Hi for H 01 ,. The coefficients of the highest 
long root of go, with respect to JI(O), will be denoted by TJ1, •. . , TJt· 

4 Recall that the labeling of the entries of the Cartan matrix A start at 0. 
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Therefore, by definition, 

I 

(highest long root of go) = L 1Jiai. 
i=l 

(9.35) 

The fundamental weights Ai (belonging to ~0 ) and coweights >.i (belonging 
to ~o) of go are defined by the dual statements (aii = (ai,Hj}) 

1 ~ i,j ~ l. 

We have, according to (2.23), that 

( a1, ... , a,) T = A (o) (A1 , ... , A,) T, (9.36) 

and also the dual statement (see (9.25)) 

~ ~ (0) 
(H1, ... , H1) =(AI, ... , Ai)A . 

Associated to the Cartan matrix A there are a few vectors of integers 
(generally speaking) that will show up several times. The normalized null 
vector of AT is denoted by e = (eo = 1, 6, ... , e1) T while the normalized null 
vector of A is denoted by~= (~o = 1,~1, ... ,~,)T. Then we have the dual 
relations 

and 
i=O i=O 

If we denote the (i, j)-th cofactor of A by Llij then 

and 

independently of j, and det A< i) = Llu. It follows that 

~ Llii Lloi det A< i) 

eiei = Lloi Lloo = det A(O)' 
(9.37) 

for i = 0, ... , l. A final set of integers is obtained from A as follows. Since 
A(0) is an invertible matrix, with entries in Z, there exists a matrix R, with 
entries in Z, such that RA(o) = diag(pl, ... ,p,), where each Pi is a positive 
integer; we will assume that R has been chosen such that each of the positive 
integers Pi is as small as possible. Notice that, multiplying (9.36) by R, this 
amounts to saying that R is chosen such that each Pi is the smallest value 
for which PiAi belongs to the root lattice of go, where Ai denotes the i-th 
fundamental weight of So· We also put Po:= 1. 

For any of the vectors e, f, n,1J and p it will sometimes be convenient to 
label their components by elements of II, writing e.g. ea for ei when a= ai. 
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9.5.2 The Balances of the Periodic Toda Lattice 

We will first discuss the balances (principal and lower) of the periodic Toda 
lattice, associated to a twisted affine Lie algebra L{g, v). We will do this by 
refining the proof of Lemma 9.5, the extra information that we have now 
being the fact that the matrix A, that determines the Toda vector field, is 
the Cartan matrix of a twisted affine Lie algebra. Part of our final conclusion 
will depend on our fundamental assumption that the periodic Toda lattice 
under consideration leads to an a.c.i. system. 

Let us recall that we have seen that the Toda vector field 

x=x·y, iJ =Ax, x,y E C1+1 {9.38) 

is a weight homogeneous vector field on M C C 2(1+1), where M is the hyper
plane that is defined by {9.8), where the weights are given by ro(xi) = 2 and 
ro(yi) = 1 for i = 0, ... , l, and that all the balances of the vector field are 
weight homogeneous, i.e., they are of the form 

x(t) = t~ L x(k)tk, y(t) = ~ LY(k)tk, 
k~O k~O 

with x(o) ¥= 0 and y(o) ¥= 0. We fix a subset S C {0, 1, ... , l}, with 8 := #S 
satisfying 1 ~ 8 ~ l and we denote, as in the proof of Lemma 9.5, by v 
{resp. by 11.) the vector of cs {resp. of C 1+1- 8 ) whose components are the 
components Vi of v for which i E S {resp. i ~ S). As we have seen in the 
proof of the latter lemma, there is a unique solution ( x(0), y(0)) to the indicia! 
equation {9.16), satisfying x(o) = 0 and x~o) ¥= 0 for all i E S. Namely, we 
have that y(O) = - Ax(o) while such an x(o) is entirely determined by x(0) = 0 
and A x(0) = 28, where A is the non-singular (8 x 8)-matrix that contains the 
entries aij with i,j E S. Recall also that fori E S we have that y;o> = -2. 
Using the fact that A is the Cartan matrix of a twisted affine Lie algebra 
we can explicitly solve A x(O) = 28 for x(o). To do this, let ll' consist of the 
simple roots O:i for which i E S; using the conventions of Paragraph 9.5.1 the 
corresponding Lie algebra is denoted by g', the dual Weyl element by h', with 
dual Weyl integers n~. For i E S, let x~o) := n~. Then A x(o) = 28 follows 
from the definition {2.22) of the Cartan integers, the definition {9.34) of the 
Weyl element and (2.29): for any i E S, 

L ai3nj = L (o:i, Hj) nj = (o:i, h') = 2. 
jES jES 

The explicit value for y~o), with i ~ S, can then be written as follows 

y;o> := - L ai3nj = - L (o:,, H3) nj = - (o:,, h'). 
jES jES 

Let us denote by K(x(o), y(0)) the Kowalevski matrix that corresponds to 
(x(O), y(O)). 
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It follows easily from the definition (7.10) of the Kowalevski matrix, ap
plied to the vector field (9.38), that K(x(o), y(0)) is given by the (2l + 2) x 
(2l + 2) matrix 

2 + y~O) 0 (0) 
Xo 0 

0 2 + y~O) 0 (0) 
K(x(o), y(o)) = xl 

1 0 

A 

0 1 

We claim that 1 is an eigenvalue of multiplicity l + 1-8 of K(x(0), y(0)), when 
(x(o), y(0)) is the above solution to the indicial equation. To see this, write 

and notice that the diagonal matrix C has rank 8, since x~o) =f. 0 B i E S. 

We may conclude that K(x(o), y(0 )) - Id2t+2 has rank l + 1 + 8 if it has no 
null vector of the form (v, w) T, with v =f. 0. In fact, if (v, w) T is such a null 
vector then v is a non-trivial null vector of A, hence v = ~, up to a non-zero 
constant. But then yj0 ) = -1 for any i ¢ S since all {i =f. 0. But this is absurd 

since, if i ¢ S, then yj0 ) = -LieS aiin} ?:: 0 since aii ?:: 0 when i ¢ S and 
j E S, and all nj are positive integers. It follows that 1 is an eigenvalue of 

multiplicity l + 1-8 of K(x(O), y(0)); taking into account that L~=O ejYj = 0, 
at most l - 8 free parameters enter at step 1. For future reference, note also 
that y~l) = 0 for all i E S and xP) = 0 for i = 0, 1, ... , l, while the free 
parameters come from the yy), with i ¢ S. 

In order to analyze what happens at step k ?:: 2 we determine the rank of 
k Id21+2 -K(x(o), y(0)) for k ?:: 2. After a number of row and column trans
formations we can rewrite this matrix in the block form 

( 
-~ld, (2 - k) !d1: 1_, +y(0) x:) ~ l 

A *1 ( 1 - k) Ids 0 

*2 *3 0 (1 - k) Idt+l-s 

where the *'s are blocks, taken from A, whose precise value is irrelevant, 
and the matrices such as x(0) are the above defined vectors, but written as 
diagonal matrices. 
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As a consequence, k ~ 2 will be a Kowalevski exponent in the following 
two cases: (1) when k = 2 + y~o) for some i tJ. S or (2) when k is a zero of 

1 -~ds x(O} I = det(k(k - 1) Id - N' A) 
A (1 - k) Ids s ' 

where we have denoted N' := xC0), the diagonal matrix that contains the 
integers n~ with i E S. For case (1), since y~o) is a non-negative integer 
whenever i tj. S, as we remarked above, we have l+ 1-s Kowalevski exponents, 
given by 

{ 2 + y~o) I i tj. S} = {2- (ai, h') I i tJ. S}. 

For (2), recall from Proposition 2.16 that 

Spec(N'A) = {m~ (m~ + 1), ... , m~(m~ + 1)}, 

where m~, ... , m~ are the exponents of g'. It follows that the integers m~ + 1 
are roots of det(k(k- 1) Ids -N'A); but notice that when k is a root of the 
latter, then also 1- k. This leads to the following complete description of the 
spectrum of the Kowalevski matrix K(xC0), yC0)). 

Proposition 9.14. The indicial locus I of the Toda vector field {9.38} is 
parametrized by the subsets ll' c n' where 0 < 8 = #ll' ~ l; for such a 
set ll' there is a unique (xC0), yC0)) E I such that x~o) f 0 ++ ai E ll'. Let 
m~, . .. , m~ denote the exponents, h' the dual Weyl element and n~, ... , n~ 
the dual Weyl integers of the semi-simple Lie algebra g' with simple roots ll'. 
Then 

Spec(K(x(o) ,yC0))) = { -m~, ... , -m~, 1, ... , 1,1 + m~, ... , 1 + m~} 
U {2- (ai, h') I i tJ. S}, 

where the eigenvalue 1 has multiplicity l + 1 - s. In particular, if ll = {a} 
then 

Spec(K(x(o) ,yC0))) = {-1, 1, 1, ... , 1,2} U {2- a,a 11' fa}. 

This leads to the first few terms of all the balances to the Toda lattice. 

Lemma 9.15. Under the a.c.i. assumption, for any ll' such that 0 f ll' C 
n the first few terms of the corresponding balance are given by 

I 

Xi(t; ll') = ;; (1 + O(t2 )) for ai Ell', 

Xi(t; ll') = M-(a;,h') (1 +Cit+ O(t2 )) for ai tj. ll', 

Yi(t; ll') = -~(1 + O(t2)) for ai Ell', (9.39) 
t 

Yi(t; ll') = ~(- (ai, h') +cit+ O(t2 )) for ai tj. ll', 
t 

where the bi and Ci are free parameters, with l:a,l,i!JI' ~iCi = 0. 
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In particular, taking II' = { O:i} the corresponding principal balance takes 
the following form, 

Xi(t; O:i) = t~ (1 + bit2 + O(t3)), 

Xj(t; o:i) = t~~. (1 +cit+ O(t2)) for j =I' i, 
2 

Yi(t; o:i) = -t(1- bit2 + O(t2 )), 

Yj(t; ai) = -at + Cj + O(t) for j =I' i, 

with Lj#i ejCj = 0. 

(9.40) 

Proof. We first show that every balance is necessarily of the above form (9.39). 
In fact, we have already obtained complete information about the first two 
terms of all balances (steps 0 and 1), so it suffices to prove that the series for 
Xi(t; II'), with ai ¢ II' is the one that is given above. To do this, consider 
for O:i ¢ II' the differential equation Xi = XiYi for Xi, given Yi as above, and 
substitute in it 

Xi(t; II') = t~ ( x~k)tk + x~k+l)tk+1 + O(tk+2 )) 

1 
Yi(t; II') = t(- (o:i, h') +Cit+ O(t2)), 

where k is chosen such that x(k) =I' 0. We get 

tk-3 ( (k- 2)x~k) + (k- 1)x~k+l)t + O(t2 )) = 

tk-3 ( x~k) + x~k+l)t + O(t2 )) (- (o:i, h') +cit+ O(t2)), 

from which k = 2 - (ai, h') and x~k+l) = x~k) Ci· This yield the proposed 
first few terms for Xi(t;II'), with ai ¢II'. Specializing {9.39) to II'= {ai} 
we get (9.40), except that we still have prove that x~2) (or y!2)) is a free 
parameter (which we called bi)· To do this, first notice that Xk = XkYk only 
involves x~2) and/or y~2) when k = i, in which case we simply get y~2) = 2x~2), 
as the equation at step 2. Next, notice that since iJ = Ax is linear in x and 
y together, and since y starts with a pole of order 1, the resulting equations 
at step 2 are simply given by y~2) = L ajkX~2). This equation involves x~2) 
and/or y~2) only when j = i, since aji =I' 0 for j =I' i implies that x~2) = 0, 
as follows from the second line in (9.40). For the same reason, the equation 
y~2) = L aikxi2 ) reduces to the equation y!2) = 2x~2) that we have before. 
Thus, x~2) is a free parameter and y!2) = 2x~2), as we needed to prove. 
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From the above analysis we find that the balance (x(t; II'), y(t; II')) de
pends on 2l + 1- #II' free parameters at most, with Xi(t; II') having a pole 
precisely for those i for which ai E II'. It follows that we can only get a 
principal balance when #II' = 1. Using the algebraic integrability assump
tion the Kowalevski-Painleve Criterion implies that for each i E {0, 1, ... , l} 
we must have a principal balance (x(t; II'), y(t; II')) with the property that 
Xi ( t; II') has a pole. This means for any a E II the series ( x( t; a), y( t; a)) is 
a principal balance. Notice that Xj(t; ai) has a pole when j = i, it has a zero 
when aii < 0 (aj and ai are joined in the Dynkin diagram) and it is finite, 
non-zero otherwise. 

For generic c E Cl+1 let T~ denote the Abelian variety that compactifies 
the generic level manifold F c of the momentum map and let Vc denote the 
analytic hypersurface (divisor) ofT~ that was added to do the compactifica
tion. Since every principal balances corresponds to precisely one irreducible 
component of Vc it is natural to label the irreducible component of Vc that 
corresponds to {a} c II by V~"); again, we usually write V~i) for V~"•l. 
Thus, 

l 

Vc = z::v~i) = L v~a). 
i=O aEII 

Also, for generic c E Cl+1 the restriction of the series x(t; a) and y(t; a) 
to T~ is denoted by x(t; V~")) and y(t; V~")) (or x(t; V~i)) and y(t; V~i)) 
when a= ai)· It follows from Proposition 6.14 that, as a meromorphic func
tion on T~, Xi has a double pole along v~i)' and it has no other poles. For 

{ai,ai} c II, with i =f j, it follows that ;, = 0 on V~i) n V~i), and also 

that ..!.. = 0 on V(i) n V(j). Since two divisors in T 1 such as V(i) and V(j) 
Xj C C C' C C ' 

always intersect (in a subvariety of codimension 2) there must however be 
balances, depending on 2l- 1 free parameters for which both Xi and Xj, si
multaneously have a pole. Since for no one of the principal balances, Xi and 
xi have simultaneously a pole there is precisely one candidate, namely the 
balance (x(t; { ai, ai} ), y(t; { ai, ai})) is the unique balance which depends 
on at most 2l free parameters and which is such that 1/ Xi ( t; { ai, ai}) and 

1/xi(t; { ai, ai}) both vanish along V~i) n v~i). We conclude that the series 
(x(t;{ai,aj}),y(t;{ai,aj})) depends indeed on 2l-1 free parameters, i.e., 
every Kowalevski exponent (including multiplicities) leads to a free param
eter. By repeating the same argument for larger subsets II' of II it follows 
that for any subset II' c II, with II' =f 0 and II' =f II there is a unique 
balance to (9.38) which depends on 2l + 1- #II' free parameters and whose 
first terms are given by (9.39). D 
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In particular we have shown the following theorem about the balances of 
the Toda lattice. 

Theorem 9.16. Consider the Toda lattice, associated to the affine Lie al
gebra L(g, v). Assuming it is a.c.i., there is a one-to-one correspondence be
tween proper, non-empty subdiagrams II' of the Dynkin diagram II of L(g, v) 
and balances of the Toda vector field 

x=x·y, iJ =Ax, (x, y) E M C C 2{l+l), 

where A is the Cartan matrix of L(g, v), corresponding to the simple roots 
a 0 , ••• , a1 of L(g, v). The balance that corresponds to II' has the form {9.39}, 
where h' denotes the Weyl element of II' and then~ are the corresponding 
Weyl integers, and it depends on 21 + 1-#II' free parameters. In particular, 
there is a natural one-to-one correspondence between the l + 1 irreducible 
components of the Painleve divisor Vc and the dots in the Dynkin diagram 
of L(g, v). 

For future reference we rewrite the balances (9.39) in a slightly different form, 
where we use root labels { ao, ... , at} as indices, instead of using the integers 
{0, ... ,l} (see Paragraph 9.5.1). As before, II' denotes any non-empty proper 
subset of II. 

n' 
Xa(t;II') = t~(1 +0(t2 )) for a E II', 

Xa(t; II') = bat-(a,h'} (1 +Cat+ O(t2 )) for a ¢ II', 
2 

Ya(t;II') = -t(1 +0(t2 )) for a E II', 

1 
Ya(t; II') = t(- (a, h'} +Cat+ O(t2)) for a¢ II'. 

(9.41) 

The variables ba and Ca are free parameters and h' is the dual Weyl element, 
corresponding to II', with dual Weyl integers n~ (a E II'). 

9.5.3 Equivalence of Painleve Divisors 

In the previous paragraph we have seen that for generic c the Painleve divi
sor Vc of the a.c.i. Toda lattice, associated to the affine Lie algebra L(g, v), 
consists of l + 1 irreducible components v~o)' ... 'v~l)' which are in a natural 
one-to-one correspondence with the dots in the Dynkin diagram of L(g, v). 
We show in the following theorem that these irreducible components are, up 
to a rational multiple, linearly equivalent. It follows that they define, up to 
a multiple, the same polarization on T~. We fix a generic c E Cl+1 and we 
denote, fori E {0, 1, ... , l} by (xi) the divisor of zeros and poles of Xi, viewed 
as a meromorphic function on T~. 
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Theorem 9.17. Under the a. c. i. assumption the divisor of zeros and poles 
of the meromorphic functions xo, ... , x1, restricted toT~, is given by 

(xo) 
(xi) 

=-A 

leading to the following linear equivalence 

(9.42) 

(9.43) 

where we recall from Paragraph 9.5.1 that Pi is the smallest positive integer 
such that PiAi belongs to the root lattice of go and that Ai E (~o)* is the i-th 
fundamental weight of go. 

Proof For generic c, each of the polynomials xo, ... , x1, restricted to F c, 

is everywhere different from zero since Il~=o xf' is a Casimir (see (9.7)), 
where all ~i are positive integers. Thus, all zeros and poles of these functions 
can be read off from the principal balances to the Toda vector field, using 
Proposition 6.14. From (9.39) we get that if 0 ~ i =f. j ~ l then Xi has a 
double pole along v~i) and has, for j =f. i, along v~j) a zero of order 

where we have used that h' = ho:i if II'= {aj}· Formula (9.42) follows. 
The fact that A has corank 1 and that all principal minors have max

imal rank suggests that one may express each of the divisors V~i) as a 
multiple of one of them, say of V~o). We do this by using the integer ma
trix R, introduced in Paragraph 9.5.1, with entries rij, 1 ~ i,j ~ l. We let 
r := diag(1,pl, ... ,pt), where RA(o) = diag(p1, ... ,pt)· Since the divisor of 
zeros and poles of any meromorphic function is linearly equivalent to zero, 
(xi) "' 0, we deduce from (9.42) that 

0 

so that 

0 

where k =f. 0 is such that ako =f. 0. There is precisely one such akin {1, ... , l}, 

except for ai1), a case that we exclude at first. 
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If we multiply the latter equation on the left by R, the i-th line gives a 
linear equivalence formula for each of the V~i) in terms of V~O), to wit 

It follows that 

0 

0 

0 

"'A 

P.v(i} "' -r·kakov(o) 
' c ' c . 

=Ar-t 

v~o> 

V (t) 
Pt c 

"'-Ar-t 

v~o> 

rlkakoV~o) 

(9.44) 

Since V~o)(i:1~~)ective divisor on T~ the latter linear equivalence implies 

that r-1 . is a (normalized) null-vector of A, hence equals{. We 

rzkako 
conclude that 

1 1 

rlkako 
=re= 

Pdt 

rzkako Pztz 

which, substituted in (9.44), leads at once to (9.43). The argument works for 
a}t) with Tikako replaced by Tikako + rik'ak'O· D 

It follows that we can express the intersection of any of the divisors V~i) in 
terms of the self-intersection of one of them, say of V~o). By the general theory 
of Abelian varieties the arithmetic genus of any one of them, say 9a(V~0>), 
and the dimension of L(V~0)) can be expressed as the intersection of any l of 
the l + 1 irreducible components of 'De. This is the content of the following 
proposition. 

Proposition 9.18. Under the a.c.i. assumption, 

k k 
v(s1) . v(s2) ... v(•,> = IIi (v(o>) 

C C C ~Si C ' (9.45) 
i=l 

where { St, ... , sk} C {0, 1, ... , l} is arbitrary. 
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As a consequence, 

g (v<o>) - l + 1 = {i A v<o> ... VW .. · v(l) 
a c l' nl. c. c c c ' 

' J=O '>3 

(9.46) 

where i E {0, 1, ... , l} is arbitmry. The latter formula yields the dimension 
of L(V~0>), in view of 

I 

dimL(V~0)) = IJ c5i = 9a('D~0)) -l + 1, (9.47) 
i=l 

where ( c51, ... , cS1) is the type of the polarization that V~o) induces on T~. More 
genemlly, for any non-negative integers ( ro, r1, ... , rz), 

ga (t.riV~i)) -l + 1 =dim£ (t.riV~i)) 

= (t ri{i) 1 
dim L(V~0)) 

t=O 

= (t.•i;)' (u. (vi"l) -I +1). 

Proof. Since the homology class of the intersection of divisors depends on the 
linear equivalence class of the divisors only, (9.43) implies that 

(Ilk p ) v<sl) ... v<s•) - p v<sl) . p v<s2) ... p v<s•) 
s; c c - Bl c B2 c Bk c 

i=l 
- A (0) A (0) A (0) 
-Ps1es1Vc ·Ps2es2Vc '"Pa.ea.Vc 

k k 

=liPs; IJ {a; (v~o))k' 
i=l i=l 

which yields (9.45). Applied to l arbitrary components of 'De we get (9.46) 
and (9.47) in view of the general formula (5.25), valid for (eventually singular) 
divisors on an irreducible Abelian variety. Let p := il~=O Pi, where we recall 
that p0 = 1, and use (9.43) to compute 
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~ (t.r,e,)' dimL(Vl'>J 

~ (t, .. e.)' (g.cvl'>J -I+ 1) 

as was to be shown. 0 

The above proposition specializes to the following formula that relates the 
arithmetic genus of v~a) to the one of v~o): 

(9.48) 

9.5.4 Behavior of the Principal Balances Near the Lower Ones 

In this paragraph we wish to point out in terms of the root system (Dynkin 
diagram) of L(g, v) how the principal balances (depending on 2l free param
eters) degenerate into lower balances depending on 2l - 1 free parameters. 
This will imply a few geometric facts on the intersection of the divisors and 
their position with respect to the Toda vector field, that we will explore in 
the subsequent paragraphs. 

We fix two simple roots a =I f3 in II and we consider the lower balance 
that corresponds to {a, [3}. Specializing (9.41) we can write it as 

I 

Xa(t;{a,f3}) = :~(1+0(t2 )), 
nl 

x,a(t; {a,/3}) = t: (1 + O(t2)), 

x"f(t;{a,/3}) = ,bi , (1+c~t+O(t2 )) for1~ {a,/3}, 
ta.,ana a.,fJn{J • 

2 
Ya(t;{a,/3}) = -t(1+0(t)), 

2 
Y,a(t;{a,/3}) = -t(1+0(t)), 

I+ I a"f0 n0 a"f,an,a 1 
y"f(t;{a,/3}) =- t +c"f+O(t), for1~ {a,f3}. 



9.5 The Geometry of the Periodic Toda Lattices 399 

We also consider the principal balance that goes with a, see (9.40), 

1 2 3 Xa(t; a) = t 2 (1 +bat + O(t )), 

b 
x1 (t;a) = - 1-(1 + c1 t + O(t2 )) for r E II\ {a}, ta-,a 

2 
Ya(t; a) = -t(l- bat2 + O(t2)), 

y1 (t; a)=- a;a + c, + O(t) for r E II\ {a}. 

We will distinguish six5 cases, according to the values of aa/3 and af3ai said 
differently, according to the relative position of a and (3 in the Dynkin di
agram of L(g, v). We display in the six tables that follow for each of these 
cases how the series x(t; {a, (3} ), y(t; {a, (3}) can be obtained from the series 
x(t; a), y(t; a): for each of the series Xi(t; a), or for their inverses, as given 
in (9.49), one substitutes for the parameters the values given in the tables 
and one lets <; ~ 0 (for the justification, see below). This leads to the series 
xi(t;{a,f3}), as given in (9.49). The fact that the series Yi(t;a) tend to the 
series Yi(t; {a, (3}) then follows from it, since Xi = XiYi, fori = 0, ... , l. 

Table 9.3. Case aaf3 = 0. 

' b-y C-y 

r=a O(,o) 

"f=fJ ,-2/4 + 0(,-1) ,-1 

a{3-y < 0 O(,) O(C1) 

a{3-y = 0, 'Y =F a b' 
"Y 

I 
C-y 

We give the proof in the first case, which correspond to Table 9.3. Here, a 
and (3 are two roots that are orthogonal, aa/3 = 0, which means that they are 
not connected to each other in the Dynkin diagram of L(g, v). For simplicity, 
let us assume that, in the Dynkin diagram, (3 has precisely two neighbors, 
which we denote by (3' and (3", and that ~/3' = ~/3 = ~/3" ; these assumptions 
actually represent the typical case. Since aa/3 = 0, (9.49) specializes to 

1 2 3 
Xa(t; a) = t2 (1 +bat + O(t )), 

x13(t; a) = b13(1 + c13t + O(t2)), 
b 

X-y(t; a)= - 1-(1 + c,t + O(t2)) for r E II\ {a}' ta-,a 

5 There is a seventh case, namely when aa{3 = a{3a = -2, but then the root system 

is nP), which has rank 1, so there are no balances corresponding to {a, fJ}. 
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Table 9.4. Case aa/3 = Uf3 0 = -1. 

'Y b-y C-y 

'"'f=a c 2 /9 + oc~- 1 ) 

'"'f=f3 -s~-3 /27 + oc~- 2 ) ~-1 

Ua-y < 0, 'Y -:/= (3 0(~) oc~- 1 ) 

a/3-y < 0, 7 i= a 0(~2) 0(C1) 

U0 -y = Uf3-y = 0 bl 
'Y 

I 
C-y 

Table 9.5. Case aa/3 = -2 and a13a = -1. 

'Y b-y C-y 

'"'f=a ~-2 /3 + oc~-1) 
'"'f=f3 -512~- 3 + oc~- 2 ) ~-1 

a13-y < 0, 7 -:/= a 0(~3) -~-1 + oc~o) 
a13-y = 0 bl 

'Y 
I 

C-y 

'"'f=a 0(~0 ) 

'"'f=f3 oc~- 1 ) ~ 

a13-y < 0, 7 i= a 0(~) 0(~) 

U(3-y = 0 bl 
'Y 

I 
C-y 

Table 9.6. Case aa/3 = -1 and a130 = -2. 

'Y b-y C-y 

'"'f=a ~-2 /12 + oc~-1) 
'"'f=f3 ~-4/4 + oc~-3) ~-1 

Ua-y < 0, 'Y -:/= (3 0(~2) -~-1 + 0(~0) 
aa-y =0 bl 

'Y 
cl 

'Y 

so that 

__!_(t; a) = t2 - bat4 + O(t5 )), 
X a 

1 (t; a) = ± ~t(l- Cf3tf2 + O(t2 )). 
-jXaXf3 y bf3 

Similarly, the principal balance that goes with (3 is given by 
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Table 9.7. Case aap = -3 and apa = -1. 

'Y b-y C-y 

"'f=a. ~-2 + 0(~-1) 

"'f=f3 (8 ± 16/v'3)~-a + 0(~- 2 ) ~-1 

'Y ~ {a., (3} 0(~9) 3 -1 - ~ 

Table 9.8. Case aap = -1 and apa = -3. 

'Y b-y 

"'f=a. ~-2 /9 + 0(~-1) 

"'f=f3 s~-s /27 + o(~- 4 ) 

'Y ~ {a., (3} 0(~10) 

"'f=a. 0(~0) 

"'f=f3 0(~-1) 

'Y ~ {a.,(3} 0(~2) 

Xa(t; {3) = ba(1 +Cat+ O(t2)), 

x13(t; {3) = t~ (1 + b/3t2 + O(t3)), 

C-y 

~-1 

2 -1 - ~ 

~ 

-2~ 

xoy(t; a) = boy (1 + C-yt + O(t2)) for 'Y E II\ {a}, 
ta'Y"' 

..!._(t; a) = _1 (1- Cat+ +0(t2)), 
Xa ba 

· 1 (t; a) = ± 1-t(1- Cat/2 + O(t2)) • 
..jXaXfj y b[j 

For the lower balance that goes with II' = {a, [3} (9.49) gives 

Xa(t; {a, {3}) = t~ (1 + b~t2 + O(t3)), 

1 
x/3(t; {a, [3}) = t2 (1 + b~t2 + O(t3 )), 

b~ I 2 xoy(t; {a, {3}) = +a (1 + c'Yt + O(t )) for 'Y ~ {a, {3},. 
tBoya 'Yfl 

In a neighborhood of v~a) n v~)' the functions x;l, 1/ ..jXaXfj and Xoy ('Y"' 
a, {3) are finite since they are finite in the affine, and since no other V~'Y) 
contains a component of the intersection V~a) n V~) (Paragraph 9.5.2). 
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Therefore, by Hartog's Theorem, they are holomorphic about V~a) n V~), 
and so, the functions x;;1 , 1/ .Jxax/3 and x-y, evaluated along the integral 
curves that start at points of v~a) n v~) are bona fide limits of the series 
x;; 1 (t; a), 1/ y'xax/3(t; a) and x-y(t; a). This leads at once to the term by term 
estimates for the local behavior of the free parameters 

ba-+ b~ 

1/ ..jfJ; -t 0 Cf3j ..jfJ; -t -2 

b-y -+ 0 b-ye-y -+ b~ "( E {,8', ,8"} 
(9.49) 

b-y -+ b~ c-y -+ c~ 'Y ¢ {a, ,8, ,8', ,8"} ; 

setting c13 = 1/c;, we get the two first and fourth lines of Table 9.3. Using 
the Casimir cl = rr~=O x!i and our assumption that '/3' = e/3 = '/3" one 
concludes 

b13b/3'b/3" = O(c;0 ). 

Since b13 = 1/(4c;2 ) + O(C1 ) it follows that b/3'b/3" = O(c;2 ) and from the 
third line of (9.49) conclude 

(9.50) 

Substituting the series (9.49) and the estimates above (lines 1, 2 and 4 of 
Table 9.3) into the Hamiltonian ~ (X I X} = ~ Trace X 2 , where X is given by 
(9.23), yields 

which together with (9.50) yields, upon rescaling variables, the relations 

Thus, from the third line of (9.49) deduce 

and the third line of Table 9.3, completing the proof of the first case. The 
other cases are similar, but one uses other functions, for example for the case 
that corresponds to Table 9.4 one uses 1/(xax/3) and 1/(x!x/3)· 
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9.5.5 Tangency of the Toda Flows to the Painleve Divisors 

In this paragraph we analyze the tangency of the Toda flow along the Painleve 
divisors. As we will show, the tangency locus of the Toda vector field to the 
Painleve divisor V~"'l is contained in the lower-dimenionalloci V~"'l n v!fl, 
where (3 is a simple root that is not orthogonal to a, i.e., a root that is con
nected to a in the Dynkin diagram of L(g, v), and the degree of tangency of 
XH to V~"') along V~"') nv!fl is expressible in terms of the Cartan integer aafJ, 

as indicated in Table 9.9. 
Let us first show how the order of tangency of a linear vector field on an 

Abelian variety to a divisor can be described analytically. 

Lemma 9.19. Let V be an analytic hypersurface on an Abelian variety T1, 

let m E V and choose a local defining function f for V at m. Also, let 
a 1 ah, ... , a 1 atz be the t commuting vector fields, corresponding to a system 
of linear coordinates (t1, ... , tz) on T 1. The order of tangency to V of a1ati 
at m is the order of vanishing of <Pij at m, where j is arbitrary and 

af 1ati ar 1ati 
<Pij := af 1atj I'D= ar1atj I'D 

(9.51) 

Proof. Introduce, as in (7.45), the holomorphic differentials on V, 

wi := dh 1\ ... 1\ J4 1\ ... 1\ dtzlv· (9.52) 

Since dfi'D = 0 we have that 2::~= 1 Y;dtj1'D = 0, which implies that 

aj aj 
- Wi =±- Wj, 
atj 1'D ati 1'D 

so that </Jij = wifwj. As we already pointed out, the points of tangency of 
a;ati are the zeros of wi, with multiplicity, hence also of any <Pij, as the 
generic point of tangency of a;ati is not a point of tangency of a;atj. 0 

In order to compute the tangency we first show that the Toda Hamiltoni
ans can be localized in terms of molecules that have to do with simple roots. 
See Paragraph 9.5.1 for the notation a II' and II", for a given II' C II. Also, 
the Toda system that is associated with II' ~ II will be referred to as Xn'; 
if II' f. II then Xn' is a non-periodic Toda lattice, see Remark 9.13. 

We fix II' C II and we denote a basis of generators of the (polynomial) 
invariants of the Toda system, associated to II', by I'. Similarly for the 
exterior II", where the basis will be denoted by I". Also, we denote by I 5 

the #(aii') - 1 dimensional vector space, defined by 

I0 := { L VaYcr such that V(J E Ll' U Ll" : (3 l. L Vaa}. 
crEII crEII 

(9.53) 
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Proposition 9.20. With these notations, 

{1} All polynomial invariants of the Toda system, associated to II, are of the 
form 

P(I',I",IIi)+ 2: XaG 01 (x,y), 
aE8ll' 

where P and G 01 are polynomials in their arguments; 

(9.54) 

{2} Under the a.c.i. assumption, the polynomials I', I" and IIi, restricted 
to T~, are holomorphic in a neighborhood of the divisors 'D~01), if a E 
II' U II". In particular, they are holomorphic in a neighborhood of the 
. t t' n D(a) zn ersec zon aEII'UII" c . 

Proof. For any II' C II the subspace of M, defined by 

M' := U {(x,y) EM I X 01 = 0}, 
aE8ll' 

is preserved by the flow of the Toda system X rr, in view of the equations X01 = 
x01 y01 , for a E II'. Moreover, since II' and II" are two totally unconnected 
Dynkin subdiagrams of II the restriction of Xrr to M' yields the Toda systems 
Xrr' and Xrr" on the one hand, and the following linear differential equation 
for the y01 , with a E 8II', 

Ya = I: aaf3Xf3· 
{3Ell'Ull" 

(9.55) 

It follows that the invariants of the Toda system Xrr, restricted to M', are 
generated by those of Xrr', Xrr" and the invariants of the linear system. 

In order to compute the invariant of the latter, let us first look for linear 
invariants LaEII v01 y01 • Such a function will be an invariant for (9.55) if and 
only if 

for arbitrary Xf3, with {3 E II'UII". This means that the invariants of (9.55) of 
the form LaEII V01Y01 are precisely the elements of IIi (see (9.53). Since (9.55) 
is a vector field on a #(8II') - 1 dimensional space (recall that Co = 0), 
the linear invariants that we have found generate all polynomial invariants 
of (9.55). This shows that every invariant of Xrr, restricted toM', must be 
a polynomial of I', I" and IIi. The same is true for the unrestricted Toda 
system Xrr, up to terms of the form x01 G01 , with a E 8II'. This shows (1). 

Under the a.c.i. assumption, the pole order of a meromorphic function f 
on T~ along the divisor 'D~01 ) is given by the pole order of the series f(t; 'D~01)) 
(Proposition 6.14). Recall that this series is obtained by substituting the prin
cipal balance x(t; 'D~01)), y(t; 'D~01)) in f (which in our case is a polynomial). 
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Since x13(t; D~a)) or y13(t; D~a)) can only have a pole when a and /3 are joined 
by edge in the Dynkin diagram of II (see Theorem 9.16), each element of I', 
which clearly involves only the Xf3 and Y/3 with /3 E I', will be holomorphic 
along D~a), with a E II". To show that each element of I' is holomorphic 
along D~a), with a E II' one use the Laurent solutions. By symmetry, the 
elements of I" do not have a pole along the divisors D~a), with a E II' U II". 

We now turn to the linear invariants, i.e., the elements of I 0 . Since for any 
a, /3 E II one has that Ya(t; D~)) = -aa{3/t+O(t0 ) we find for ~o: Vo:Ya E I 0 , 

i.e., with the Vo: satisfying ~aEJI Vaaa/3 = 0 for all /3 E II' U II", we find that 

a Eli a Eli 

for all /3 E II' U II". Summarizing, the functions in I', I" and I 6 do not have 
a pole along any of the divisors D~), with /3 E II' U II". This means that 
they are holomorphic in a neighborhood of these divisors and, a fortiori, in a 
neighborhood of the intersection of these divisors. D 

Theorem 9.21. The Toda vector field 

:i; = x·y, iJ =Ax, 

on the hyperplane ~ ~iYi = 0 is transversal or tangent to the Painleve divisors 
D~o:) and D~) along the generic points of D~o:) n D~), as dictated by the 
Dynkin subdiagram of II, spanned by a and /3, and this in a way, indicated 
in Table 9. 9. 

Proof. We apply Lemma 9.19 to the divisor D~a), with local defining function 
x;; 112 . We assume that the first two linear coordinates h and t2 correspond to 
the Hamiltonians H1 and H2, where H2 is the weight homogeneous invariant 
of weight m2 + 1. According to the lemma the order of tangency of 8/ 8t1 to 
D~a) at misgiven by the order of vanishing at m of the function <jJ12 , defined 
by 

(9.56) 

where (·I·) denotes the standard inner product on C1 and V'yH2 = ~· 
Also, 8xa/8t2 was computed using the Poisson brackets (9.6), so that f-Lo: is 
explicitly given by 

(9.57) 

The computation of this vanishing may be done by using the principal bal
ances that go with the divisor D~a) (Proposition 6.14). 
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Table 9.9. The Toda vector field on T~ is tangent to the irreducible comfto
nents V~"> of the Painleve divisor 'De, along some of the subvarieties V~") U v!>, 
as given in the present table. The precise degree of tangency depends on the Cartan 
integers a,.p; in two of the cases the divisor has two branches and we give the order 
of tangency along each of the branches. 

a,.p ap,. Dynkin v~"> v~> 

0 0 0 0 transversal transversal 0< {3 

-1 -1 o--o simply tangent simply tangent 0< {3 

-2 -1 ~ 
doubly tangent 

doubly tangent 0< {3 + transversal 

-3 -1 ~ fourfold tangent 
fourfold tangent 

+ transversal 

Since Ya(t; Via)) = -2ft+ O(t0 ) this means that for a generic mE via) 

We use now Proposition 9.20, with II' = {a:, .8}, i.e., we write H2 as 

H2 = P(I',I",I6) + L x-yG-y(x,y). 
-rE8Il' 

By direct substitution in (9.58) we get 

¢1l (m) = -~Rest ( L =~ (t; via)) (~toe I \7 ylj(t; viae)))+ 

L X-y (~toe I \7 yG-y(t; via)))) ' 
-yE8Il' 

up to two terms, which we show to vanish. For the first one, notice that since 
the elements of ! 6 are linear in y, the vector \7 yij is constant, for any Ij 
in I 6 • Since, according to Proposition 9.20 P (and hence also 8Pf8I6 ) is a 
polynomial in I', I" and I 6 , the latter being holomorphic at via), 

"" 8P . (a) ( 6) L...J a I~ (t, Vc ) Ita I \7 yij 
3 

is also holomorphic, hence has zero residue. 
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For the second one one proceeds in the same way, using that 

1 81" 
(J.Lo: IV' yl"} = L 2ao:.a (e.a I e.a} 8 = 0, 

.BEll" Y.B 

as ao:.B = 0 for all f3 E II" (recall that a E II'). 
The upshot is that we only need to estimate the two terms in ¢1} ( m). 

We will do that for each of them separately. We choose a system of local 
parameters c; = ('>1' ... ''>1-1) for v~o:) in a neighborhood of m. 

We first prove the following estimate. 

Rest ( L x-y (J.Lo: IV' yG-y(t; v~o:>) )) = O(c;-0 ) near m. 
-yE8ll' 

(9.59) 

Since H2 has weight m2 + 1, all elements of the vector V' yG-r have weight 
m2 - 2, where the weighted degree m2 + 1 of H2 is three or four for the 
classical Lie algebras, while it is five for ea, six for e7, f4, g2 and eight for e8, 
as is read off at once from Table 2.2. By weight homogeneity, 

(J.Lo: IV' yG-y(t; v~o:))) = t2-m2 (Ro + R1 (b, c)+ R2(b, c)t2 + .. ·), 

with Ri(b, c) homogeneous of weigth i. Observe for 'Y E 8II' 

X-y(t; v~o:)) = b-yt + O{t2), or X-y(t; v~o:)) = b-yO(t). {9.60) 

In the first three cases of Table 9.9 we have that b-y ~ O{c;-0 ) and that m 2 E 
{2, 3}, so that 

I I ( (o:))) O(c;O) X-y\J.Lo: V'yG-y t;Vc ~ -t-, 

accounting for the classical Lie algebras. In the fourth case, b-y ~ O(c;2 ); if 
m2 = 5, so that 2 - m2 = -3 then we have 

Rest X-y (J.Lo: IV' yG-y{t; v~o:))) = b-yR1 (b, c), when X-y = b-yt(1 + e-yt + .. ·) 
= b-yR2(b, c), when X-y = b-y{1 + c-yt + · · ·). 

According to Tables 9.7 and 9.8 we always have that 

b-y~ O{c;-2 ) and Ri(b,c) ~ O(c;-i) 

which implies that 

Rest X-y (J.Lo: IV' yG-y{t; v~o:))) ~ O(c;-0). 

Since we have supposed that m2 = 5 this covers the Lie algebras g~1 ) and 
()i3> only, but similar arguments hold for the remaining cases. This yields the 
first estimate {9.59). 
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For the second estimate we will use the following terminology. In Tables 
9.5 and 9.8 we had two possibilities for obtaining lower balances from the 
principal balances; in both cases the second possibility requires a separate 
argument, and yields in fact a different order of vanishing. We will refer in 
the rest of the proof to these two cases as the alternative case, referring to the 
other cases in Tables 9.3 till 9.8 as the normal case. Using this terminology, 
the estimate that we will derive near m E V~oc) n V~) is the following: 

Rest 2::~=1 gr; (t; v~oc)) (11-oc IV' yij (t; v~oc))) 

in the normal case 
(9.61) 

in the alternative case 

Since II' = {a, ,8}, the sum in the expression above ranges over the two 
invariants If and I~, listed in Table 9.1; they are extensions of the Weyl 
invariants going with II' and have weigthed degrees mi and m~. More
over, by (2) in Proposition 9.20, for any element I of I', I" and I 0 , the 

limit limp-+P<J I(t; V~a)) is finite (Po E V~oc) n V~)) and so is this limit for 
I= 8P/8II; we will call the latter limit ci(Po)· In both the normal and the 
alternative case one checks that c2(Po) ::j:. 0, as 8Pf8If is either constant or 
a linear function of the y~s; moreover, by adding a power of H1 to H2 (H2 is 
not canonical) we can always assume that c1 (Po) ::j:. 0. Thus we have: 

2 

Rest I:~~ (t; v~oc)) (11-oc IV' yij(t; v~a))) 
j=l J 

_ 1 ~ 8P . (oc) "' 8Ij . (oc) - 2 Rest~{)['. (t, Vc ) ~ af3a (eoc I ea) 0 (t, Vc ) 
j=l J "(=a,{3 Y"' 

1 2 (~ ~ ) "' 2 (eoc I eoc) L Ci(Po) ReSt 2{/-(t; v~oc)) + af3ayf-(t; v~l) 
~1 ~ ~ 

"' ~ (eoc I ea) ( c1 (Po)Rm~ - 1 (b, c)+ c2(Po)Rm~- 1 (b, c)) , 

where R(m~ - 1) and R(m~- 1 ) are weigth homogeneous polynomials in b and 
in c, of weight mi - 1 and m~ - 1. Of course, mi = 1 in all cases and 
m~ - 1 = 0, 1, 2 or 4 according to whether a and ,8 are linked in their 
Dynkin subdiagram by 0, 1, 2 or 3 edges (in that order). It follows that at 
worst 

R(m~ - 1) (b, c) = R(O) = constant ::j:. 0 

and, near Po, 

in the normal case 

in the alternative case. 
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In order to show that equality actually holds one uses the explicit invariant 
I~ = H2 from Table 9.1, which yields the result upon using that the parame
ters b~2 ) and c~1 ) blow up (inc;) according to their weights, while the other b~2 ) 
and c~l) blow up less forcefully than their weights. This leads to the second 
estimate. 

To conclude, the second estimate determines the leading behaviour (inc;) 
of ¢121 , which blows up as .,-m;-1 near 'D~a) n 'D~), in the normal case. This 
means that ¢12 behaves like .,-m;-1 near 'D~a) n'D~) in the normal case, while 
it does not vanish at all in the alternative case. This yield Table 9.9. D 

9.5.6 Intersection Multiplicity of Two Painleve Divisors 

We have seen that the tangency locus of the Toda vector field XH to the 
Painleve divisors is contained in the intersection with the neighboring divi
sors, as dictated by the Dynkin diagram of L(g, v); moreover, the order of 
tangency is encoded in the Cartan integers (see Table 9.9). This suggests that 
the intersection multiplicity of two (or many, see Paragraph 9.5.8) is also de
termined by the Dynkin diagram. We will now show that this is indeed the 
case. 

Theorem 9.22. Under the a.c.i. assumption, the following formula for the 
intersection multiplicity of two irreducible components of the Painleve divisors 
holds: if a, (3 E II, with a f (3 then 

mult('D(a) · D(/3)) = #W(af3) 
c c det A(af3)' (9.62) 

where W(af3) and A(af3) denote the Weyl group and the Cartan matrix, associ
ated with the roots {a, .8}. In particular, the above multiplicity is independent 
of the irreducible component of D~a) n vPl. 
Table 9.10 contains the three numbers that appear in this equation, besides 
some other related information. The proof of Theorem 9.22 consists in com
puting for all possible values of aaf3 local equations for the two divisors D~a) 
and vPl, in the neighborhood of their intersection, which amounts to es
tablishing Table 9.10. We will give the proof in the two cases aaf3 = 0 and 
aaf3 = af3a = -1 only. 

We first consider the case aaf3 = 0 (see Table 9.3), i.e., A(af3) = (~ ~). 
It follows from (9.41) that, for generic c, the function '¢af3 := (xaXf3)- 112 

vanishes simply along 'D~a) and 'D~f3), it is finite and non-zero in the affine, 
since C1 = TI~=o xT' is a Casimir. Therefore in a neighborhood Uaf3 in T~ of 
the (l- 2)-dimensional variety 'D~a) n 'D~) the function '¢af3 is holomorphic 
and vanishes along 'D~a) U 'D~) only, i.e., '¢af3(t;a) is a Taylor series in t, 
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Table 9.10. The intersection multiplicity for the case of two divisors. The table 
is organized according to the number of edges between the two roots a and fJ in 
the Dynkin diagram. For the corresponding Lie algebra we give its Cartan matrix 
A (afJ) with its determinant and the order of its Weyl group w<afJ), as read off 
from Table 2.1. From the local equations of V~a) and 1J~fJ), as computed in the 
text, we make a picture of the singularity at their intersection and we compute the 
intersection multiplicity, which clearly matches (9.62). 

Dynkin 0 0 o---<> =><> ~ a {3 a {3 a {3 

Lie algebra a1 EB a1 a2 b2 g2 

A (afJ) (:~) (' -1) (' -2) (' -1) 
-1 2 -1 2 -3 2 

det A(afJ) 4 3 2 1 

#W(afJ) 4 3! 8 12 

v~a) y=O y = x2 x(y- x3 ) = 0 (y- ax5 )(y- bx5 ) = 0 

v~fJ) x=O y = ax2 y = ax3 x(y- cx5 ) = 0 

y=z3 
y=±z5 

, v!,P/ , v<J'll v<f3) y=z2 if! \ I 

-}~;,-
c \ I 

v \ I 

Singularity 
' ; 

/// ' ' 
'D~a) ' ' v!fl \ 

uia) 

Multiplicity 1 2 4 12 

with holomorphic coefficients in the free parameters(~, b-y, c-y) of the principal 
balance going with V(a); their behavior can be deduced from Table 9.3. Upon 
confining this principal balance to a fixed generic torus T~, some of the 
(b-y, c-y) account for the values of the constants of motion and others are 

running parameters describing V~a). Since by Table 9.9 the Toda flow is in 
this case transversal to v~a) (and to v~{3)) near v~a) n v~l' the divisors 

V~a) and V~f3) c T~ may behave near V~a) n V~{3) in many different ways, 

i.e., several sheets of v~a) and v~) may meet at the intersection v~a) nv~)' 
and they may or may not be tangent to one another. Now using the estimates 
in Table 9.3 compute 

'I/Ja{3(t; V~a)) = b~ 112t(l- C(3t/2 + · · ·) 

= 2~t + t2 + t02(t, ~) 

= (2~ + t)t . unit near v~a) n v~f3)' 
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where 02 (t,~) stands for a holomorphic series, quadratic or more in t and~' 
whose coefficients depend on the (b .. n ey). Since near V~a) n v!f> we have 

'I/Ja{3(t; v~a)) = 0 precisely on v~a) u v!f>' exactly one sheet of v~a) must 

cross one sheet ofv!f> transversally at v~a) nv!f>' leading to the singularity 
picture advertised in the second column of Table 9.10. 

We now consider the case aaf3 = af3a = -1, i.e., A(af3) = ( ~1 -;1) , 

corresponding to the third column in Table 9.10. The proof proceeds along 
similar lines as the previous case, choosing now 'I/Ja{3 := (xaxf3)-1 • Using the 
estimates in Table 9.4, compute 

near V~a) nv~>. In this case a new complication arises: by Table 9.9 the Toda 
vector field XH is now simply tangent to both V~a) and v!f> C T~; thus, all 

sheets of v~a) (say ma) and of v~f3) (say m{3) must be simply tangent to the 

u-axis (direction of XH ); hence v~a) and v!f> are at least simply tangent to 

each other at V~a). Let v be a transversal direction to u, making the uv-plane 
into a transversal slice of v~a) and v!f> near v~a) n v!f>; let w account for 
the (b"Y,ey) axes (see Figure 9.2). 

v 
v = a2u2 + · · · 

v = a1u2 + · · · 

v = b1u2 + · · · 

v = ~u2 + ··· 

Fig. 9.2. Here we have depicted two sheets (locally) of "Da. and two sheets of "D13, 
simply tangent along the UV-plane. The U-axis is in the direction of the vector 
field vl. 
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Since the function tPa/3 vanishes precisely on D~a) u D~13l the Weierstrass 
Preparation Theorem (Theorem 5. 7) implies 

m,. mfl 

tPa/3 = 11 ( v - aiu2 ) 11 { v - aju2 ) • unit 
i=l j=l 

The Toda flow moves an arbitrary point (uo, v0 ) on D~a) (assume it is situated 
on the branch vo = a1 u5 + · · ·) to { u, v) = ( ao + t, a1 u5 + · · ·). Therefore tPa/3 
evaluated along a trajectory near that branch takes on the form 

tPaf3(t; D~a)) 

= (t(t + 2uo) + 03{t,uo)) x 

!! (t(t + 2uo) + ( 1- ::) u~ + 03{t, uo)) x 

}1 (t(t + 2uo) + (1- :; ) % + Os(t,uo)) x unit 

( 2 IT ( 1- ::) j1 (1- :~) u~ma+2mfi-lt + ... + t2m,.+2mfi) X 

•=2 J=l J 

unit x Weierstrass polynomial in t and u0 • {9.64) 

Comparing the two expressions {9.63) and (9.64) one finds m 01 + m13 = 2 
and thus, m 01 = m13 = 1, since m ~ 1 and n ~ 1; one also finds that the 
coefficient of u~m+2n-lt in {9.64) does not vanish, and that u0 = c;. It implies 

moreover that the D~a) and D~) sheets are simply tangent to each other near 
D~a) n D~l. 

In the last two cases one instead takes tPaf3(t) = x~3/2x~2 , x~3 x~5 re
spectively, using Table 9.9. 

9.5. 7 Toda Lattices Leading to Abelian Surfaces 

Under the a.c.i. assumption, there are six cases of periodic Toda lattices that 
lead to Abelian surfaces. In this paragraph we use the results of the previous 
paragraphs to fully describe the geometry of these Abelian surfaces. As in 
these cases the Abelian varieties T~ are of dimension l = 2 they correspond 
to the twisted affine Lie algebras L(g, v) for which the rank of go is two. 
From Tables {2.4) and {2.5) we read off that L{g, v) must correspond to one 

of the following root systems: a~1 ), c~1 ), g~1 ), a~2), D~2) and D~3). Notice also 
that since the divisor De always has l + 1 irreducible components, De will in 
this case always have three components, which are (possibly singular) curves. 
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In this paragraph we will compute the number of intersection points of 
any of these curves, their genus, the polarization type they induce on the 
tori and the dimension of their linear systems. We first specialize Proposition 
9.18 and Theorem 9.22 to the case of l = 2. 

Theorem 9.23. Under the a.c.i. assumption, in the case of surfaces {l = 2}, 

v<o) · v<o) v<a> · v< 13> g (V(a)) - 1 
ga(V~o)) - 1 = c 2 c = c2tae/3c = a t~ ' (9.65) 

where a =I f3 are any two of the three simple roots of II. Also, every inter
section point of V~a) and v~> has multiplicity 

(a) (/3) - #W{a/3} 
mult(Vc . Vc ) - det A(a/3} ' (9.66) 

where W(a/3} and A(a/3} denote the Weyl group and the Cartan matrix of the 
semi-simple Lie algebra generated by the simple roots a and f3. 

We derive from this Theorem some useful formulas for the three curves that 
constitute the Painleve divisor. 

Proposition 9.24. Under the a.c.i. assumption, the number of distinct in
tersection points of v~a) and v~/3} is given, in the case of surfaces {l = 2}, 
by 

(9.67) 

and 
v<a>. v<!3> - _!_ #W(ata2) 

c c -f-rdetA(ata2)' (9.68) 

where {a,/3,')'} =II= {ao,a1,a2}, the vector~ (resp. eJ is the normalizecf> 
null vector of AT (resp. of A) and fJ is defined by {9.95}. As a consequence 

where 0 ~ i,j ~ 2, and 

(9.69) 

(9.70) 

where ( &1, &2) denotes the type of the polarization that V~o) induces on T~. 

6 €o = 1 =eo. 
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Table 9.11. The Painleve divisors in the case of Toda lattices leading to Abelian 
surfaces. Besides the integers {; and Tfi we give in each case the genera of the 
irreducible components of the Painleve divisor and the intersection numbers of 
each pair of components. 

Lie algebra ll~l) c(l) 
2 g~l) ai2) ()(2) 

3 Di3l 

({1,€2) (1, 1) (1, 1) (1, 2) (1, ~) (2,1) (2,3) 

(Tfl, "12) (1,1) (2,1) (3,2) (1, 2) (1, 2) (3,2) 

(151,02) (1,1) (1, 2) (1, 3) (2,2) (1,1) (1,1) 

II2 o---o 0:=}0 0 0 0:=}0 0:=}0 0:=}0 
cro cr1 ao cr1 O!O 0!1 cro 0!1 0!1 O!O O!O 0!1 

Ilo o---o 0:=}0 ~ 0:=}0 0:=}0 ~ cr1 a2 0!2 C>1 0!2 0!1 C>1 ()(2 0!1 C>2 0!2 0!1 

Ill o---o 0 0 o---o 0 0 0 0 0 0 
cro a2 O!O 0!2 ao a2 ao cr2 O!O 0!2 O!O 0!2 

9a('D~0)) 2 3 4 5 2 2 

9a('D~1 )) 2 3 4 5 5 5 

9a('D~2)) 2 3 13 2 2 10 

v~oJ. v~lJ 2 4 6 8 4 4 

v~ll. v~2J 2 4 12 4 4 12 

v~o). v~2J 2 4 12 4 2 6 

v~oJ n v~ll 1 1 6 2 1 2 

V~1 l n V~2l 1 1 1 1 1 1 

v~o) n 1J~2) 1 4 6 4 2 6 

Proof. Since all intersection points of V~"') and V~) have the same multi
plicity, Theorem 9.23 implies that 

V (a) v<13l 2 d t A(a/3) 
#(V(a) n v<13l) = c . c = ~ ~ (v<o>) e . 

c c mult(V~"') · v~>) "' 13 c #W(a/3) 

It follows that 

#(V~a) nv~13)) 1 detA(a/3) #W("'1"'2) #W(a1a2) 

#(V~t) n V~2)) = {"~ detA(a1a2) #W{a/3) = ~"~ #W(al3) , 

where we have used (9.37) in the last step. Thus, in order to show (9.67) 

it suffices to show that V~a) and V~) intersect in one point. This is done 
by investigating the lower balance that goes with { o:1, o:2}. As follows from 

Proposition 9.14 this balance will have free parameters at steps 1, 1+m1, 1+ 

m2 and 2- (o:o, h') = 2(~o + 6 + 6), where m1 and m2 are the exponents 

of go. 
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Table 9.12. The zoo: curves completing the Toda invariant surfaces into Abelian 
surfaces. Both genera (g) of these curves D; := vii) are given: for singular curves 
the integer appearing after the comma corresponds to the genus of the smooth 
version. We also give the vectors e and t, the linear equivalence relation between 
the curves, and the polarization type~= (~1,~2). The singularities are those of 
Table 9.10. 

, 
I \ 

I I 
I g=2 l 
I I 
\ ,' 
', ,; .... __ , 

(1) 
a2 

{=(1,1,1) 

{=(1,1,1) 

31J(O) ~31J(1) 

31J(O) ~31J(2) 

8=(1,1) 

(1) 
'2 

{=(1,2,1) 

{=(1,1,1) 

21J(1) ~21J(O) 

1J(2) ~1J(O) 

8=(1,2) 

g&1) 

e=(1,3,2) 

e=(1,1,2) 

1J(l) ~1J(O) 

1J(2) ~21J(O) 

8=(1,3) 

(2) 
a4 

{=(1,2,2) 

{=(1,1,1/2) 

1J(1) ~1J(O) 

21J(2) ~1J(O) 

0=(2,2) 

b~2) 

{=(1,1,1) 

e=(1,2,1) 

1J(1) ~21J(O) 

21J(2) ~21J(O) 

0=(1,1) 

b~3) 

e=(1,2,1) 

e=<1,2,3) 

1J(1) ~21J(O) 

1J(2) ~31J(O) 

0=(1,1) 



416 9 Periodic Toda Lattices Associated to Cartan Matrices 

Now 1 and 2{eo + e1 + e2) are the weighted degrees of the Casimirs Co 
and C1 (see (9.7)) and the commuting Hamiltonians, which are extensions of 
the Weyl polynomials of go, have weighted degrees 1 + m1 and 1 + m2. As 
we know that this balance corresponds to points, the fact that the degrees 
match the Kowalevski exponents implies, in view of Remark 7.35 that all 
four parameters are trivial parameters and that the balance corresponds to 
precisely one point. This yields {9.67). Multiplying {9.67) with {9.66) we get 

( ) (!3) #W(o.1o.2) 1 #W(o.1o.2) v o. . v - e - _..:..;._--:--...,.. 
c c - "Y detA(o.f3} - {"Y detA(aH~<2)' 

where we used again {9.37), yielding (9.68). In view of (9.48) it suffices to 
show {9.69) for i = 0 in order to have it for all i. To do this, take a = 1 and 
(3 = 2 in {9.68), so that e"Y = io = 1 and substitute it in {9.65) to find 

V(1} V(2} 1 #W(ala2) '1'1 '1'1 

(v(o)) 1- c . c - •t1•t2 

9a c - - 2ia{{3 - 2{1{2 detA(alo.2} = {1€2' 

where we have used {2.24) in the last step. This shows (9.69) for i = 0. 
Formula {9.70) then follows from it by using {9.45). D 

The information that we have obtained leads to the following Theorem. 

Theorem 9.25. Under the a.c.i. assumption, the level manifolds of the Toda 
lattices that correspond to the twisted affine Lie algebras L(g, v) with root 
systems t41>, c~1 ), g~1 ), a~2), ~~2) and il~3) compactify into Abelian surfaces by 
adjoining a divisor which has precisely three irreducible components. These 
components, which are (often singular) curves, are depicted in Table 9.12, 
where we also give their genera (arithmetic and geometric) and the type of the 
polarization that is induced on T~ by V~o). These curves intersect according 
to the four patterns listed in Table 9.10. 

9.5.8 Intersection Multiplicity of Many Painleve Divisors 

In order to describe the geometry of the higher dimensional (l > 2) periodic 
Toda lattices we need the generalization of Theorem 9.22 to more than two 
divisors (l, in fact). Based on the formula for two divisors and some specific 
results for more divisors we conjecture the following. 

Conjecture 9.26. Let 0 =f. II' C II be arbitrary. Along any component of 
no. Eli' V~a) the following formula for the intersection multiplicity holds: 

#W' mult(V(al) · v<a2) · · ·V(a,) a· E II')=-- (9.71) 
c c c ' ' det A' ' 

where W' and A' denote the Weyl group and the Cartan matrix, associated 
with the roots II' C II. 
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Assuming the conjecture we can prove the analog of Proposition 9.24. 

Proposition 9.27. Consider the Toda lattice, associated to L(g, v), which 
we assume to be a.c.i. and for whose Painleve divisors Conjecture 9.26 is 
assumed to hold. For any i E {0, ... , l} the number of distinct intersection 
points of all divisors D~j), except D~i), is given by 

(n (j)) - . #W(o) 
# #iDe -{,#W(i)' (9.72) 

where wUl is the Weyl group of the root system II\ { O:j}, for j E {0, ... , l}. 
The arithmetic genus of D~o) is given by 

-(0) (1) (i) (I) 
(0) _ 1 ( (O))I _De ·'De ···'De ···'De 

ga(Ve ) - l + 1 - -11 De - ' ' 
· 11 n#i {j 

(9.73) 

where the global intersection number is given by 

- 1 #W(o) ll I 
V (o). v(lJ ... v(iJ ... v(IJ =- =.....:.IT . 

e e e e ' d A(O) ' "13' 
{i et {i J=l 

(9.74) 

As a consequence, the arithmetic genus of V~i), fori E {0, ... , l}, is given by 

(9.75) 

The divisor D~o) defines a principal polarization on the generic torus T~ when 
v is different from the identity, while it defines a polarization of type7 

(9.76) 

otherwise. In particular all a?), ~fl and e?) also lead to a principal polar
ization. 

Proof. Formula (9.73) is an immediate consequence of Proposition 9.18. By 
the same proposition we have as in the proof of Proposition 9.24 that 

7 In the case of f~1 ) there is another candidate which we cannot rule out, namely 
(81, ... , 84) = (1, 1, 1, 4), instead of (1, 1, 2, 2). 
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and (9.72) follows by showing, as in the proof of Proposition 9.24, that the l 
divisors vi1>, ... , vil) meet in a single point, using Remark 7.35. Using (9.71) 
and (9. 72) we find that 

vco> . vCl) ... ifi> ... v(l) = c. wco> 
c c . c c "''detA(i)' 

so that, in view of (9.37) and (2.24), 

(o) (1) W (l) 1 wCo) l! II' 
Vc ·Vc ... vc ... vc = f.detA(O) =f. 1Ji, 

... ... i=l 

which proves (9.74). The formula (9.75) for 9a(Vii)) follows from it, upon 
using (5.25) and (9.43). In order compute the polarization type of the tori 
T~ we use (9. 75) and the general formula (5.25) for Abelian varieties, which 
gives, for vio)' two different expressions for 

I I 

9a(Vi0>) -l + 1 =II ~i =II 8i. 
i=l ~i i=l 

(9.77) 

We distinguish three cases. (1) If v has order two or three, but the root 
system of L(g, v) is not c4~) then 1Ji = {i, for all i, and thus, (9.77) im
plies that TI~=l 8i = 1, which means that 81 = · · · = 8, = 1, i.e., T~ is 
principally polarized. (2) in the case of c4~) we use vi'> instead of vi0> 
to find that TI~=l 8i = 1, leading to principally polarized tori T~ as well. 
(3) Suppose now that v is the identity, so that 1J = ~· If A is symmetric 
then { = {, so that 81 = · · · = 81 = 1, which yields a principal polariza
tion for ap>, ilp> and e~ 1 ). In the case of g~1 ) we have already seen that 

(81,82) = (1,3). For ti1> we have~= (1,2,3,4,2)T and { = (1,2,3,2,1)T 
which leaves (81, ... , 84) = (1, 1, 2, 2) and (81, ... , 84) = (1, 1, 1, 4) as the only 
possibilities. For b~l) we get e = (1, 1, 2, ... '2) T and € = (1, 1, 2, ... '2, 1) T' so 

that (81' ... '8,) = (1, ... ' 1, 2). Finally, for c~l) we get e = (1, 2, 2, ... '2, 1) T 
and { = (1, 1, ... , 1) T, leaving several possibilities, but it is shown in [15,, 4] 

that (81 , ... , 81) = (1, ... , 1, 2, ... , 2). Thus, except maybe in the case of ti1> 

we have that (9.76) holds. D 

Conjecture 9.28. The following identity holds, as an identity in integral ho
mology 

where 



10 Integrable Spinning Tops 

10.1 Spinning Tops 

10.1.1 Equations of Motion and Poisson Structure 

A spinning top is by definition a rigid body with a fixed point that rotates 
in a constant gravitational field. The equations of motion of a spinning top 
derive from the rotational version of Newton's law, which states that 

torque = instantaneous change in angular momentum. 

We will derive these equations in two different -but equivalent - forms; 
the equivalence will be based on the dictionary between R 3 (viewed as column 
vectors) and so(3) (the Lie algebraofskew-symmetric 3x3 matrices). Namely, 
a vector space isomorphism between R 3 and so(3) is obtained by 

¢: 

(10.1) 

Since ¢(x)y = x x y we have that ¢ is naturally described, in terms of the 
standard basis ( e1, e2, e3) of R 3, by 

where 1 :::; i, j, k :::; 3, and where Eijk is the skew-symmetric tensor for which 
€ 123 = 1. Using ¢ the standard operations on vectors in R 3 are related to 
some standard operations on skew-symmetric 3 x 3 matrices, as given in 
Table 10.1. 

We will derive the equations of motion that describe the spinning top in 
terms of an orthogonal coordinate system that is attached to the top, and 
whose origin coincides with the fixed point. The coordinates of any point of 
space, of any point of the top, or of any physical quantity, with respect to this 
coordinate system will be denoted by a lower case letter when it is represented 
by a vector, and as the corresponding upper case letter when it is represented 

M. Adler et al., Algebraic Integrability, Painlevé Geometry and Lie Algebras
© Springer-Verlag Berlin Heidelberg 2004
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Table 10.1. The properties of the basic correspondence¢ between R 3 and .so(3), 
as defined in (10.1). For x E R 3 we denote its image ¢(x) by X, and similarly 
y := ¢(y). 

Ra .so(3) 

standard inner product (xI y) -t Trace(XY) 

vector product xxy [X,Y] 

vector product xxy ¢(Xy) 

action by R E 80(3) Rx RXRT 

by an element of .so(3), using the above isomorphism¢. We also consider an 
absolute orthogonal coordinate system, whose origin is again the fixed point 
of the top, but which is inertial in the sense that Newton's laws hold in them 
in their usual form (think of this coordinate system as being attached to 
the earth). The coordinates of the physical quantities with respect to this 
coordinate system will again be denoted by upper- and lowercase letters, 
according to whether we represent them by elements of .so(3) or by vectors 
in R 3 , but, in addition, these letters will be underlined. Table 10.2 gives a 
list of all quantities that will be used to derive the equations of motion of 
the spinning top. As the top spins, most of these coordinates vary, but some 
may be time-independent, such as the center of mass in body coordinates. 

Table 10.2. The notation that we use to represent the different quantities that 
are associated with a spinning top. The first two columns are the coordinates with 
respect to an absolute (inertial) coordinate system, with the fixed point as its 
origin; the last two columns are the coordinates with respect to a moving coordinate 
system, attached to the top, also with the fixed point as its origin. 

vector abs. matrix abs. vector mov. matrix mov. 

body point ~(t) Q.(t) q Q 

center of mass m(t) M(t) m M 

gravitational field '1 E. l(t) r(t) 

angular velocity Ill.( t) fl(t) w(t) fl(t) 

angular momentum G(t) A(t) a(t) A(t) 



10.1 Spinning Tops 421 

We denote by R(t) the element of 80(3) that relates the moving frame 
to the fixed frame, so that 

q_(t) = R(t)q, 

and similarly for the other quantities, represented in vector form. It follows 
from Table 10.1 that if these quantities are represented in matrix form then 
they are related by conjugation, e.g., 

Q(t) = R(t)QR(t)T. 

Thus, we know explicitly how to go from any column of Table 10.2 to any 
other column of that table. 

The physical quantities angular velocity and angular momentum may also 
require some explanation. The linear velocity q of any point of a body that 
is rotating can be written as q = ~ x q, where ~ = ~(t) is a vector in the 
direction of the axis of rotation, and is -called the angular velocity. Defining 
R(t) as above we have that 

~=~X q_ = ilq_ = ilRq, 

which yields, compared to~= Rq (which follows from q_(t) = R(t)q), that 

n(t) = R(t)R(t) T. (10.2) 

The angular momentum a derives from n via the inertia matrix I of the body 
with respect to the fixed point: in body coordinates we have that a = Iw. 
The inertia matrix I is the symmetric 3 x 3 matrix, defined by 

Iii := ~ody XiXjdJ.L, 

where J.L: R 3 -t R is the mass distribution or mass density. Notice that, with 
this definition, the formula a = I w for the angular momentum is the obvious 
generalization of the corresponding formula for the angular momentum of a 
point mass, with respect to a given point. 

We are now ready to derive the equations of motion of a spinning top. 
Let us first express in vector notation that the gravitational field is constant, 
j = 0. Since 1. = R(t)'y(t) we have by using (10.2) and by Table 10.1, 

..y = -RT flRT 1 = -RT n1 = RT ('J. x ~) = RT 1 x RT ~ ="' x w. 

The corresponding equation, in matrix form, follows immediately from it by 
using Table 10.1. Still, we cannot resist to give a direct matrix computation, 
because in this form it is clearer why it leads to a Lax equation. In this case 
we consider the derivative of F(t) = R(t)T E.R(t), and we use now that E. is 
constant to find 

t = flTE.R+RTrf:l = -RTnrR+RTrnR = rn- nr = [r,n]. 
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There is a second set of equations, that comes from the rotational version 
of Newton's law. For computing the torque which is exerted on the body 
by gravity one may think of all mass as being concentrated in its center of 
gravity, so that the torque is given by 1 x m, and Newton's equation becomes 

:rxm=g, or [F,MJ =.A. (10.3) 

Thus, in vector form, we have that 

(Ra)" = R"/ x Rm = R('Y x m), 

so that 

a= 'Y X m- RT Ra = 'Y X m- RT nRa = 'Y X m- na = 'Y X m +a X w. 

In matrix form we have that 

so that 

.A= RT[r,M]R-RTnRA+ARTnR 
= [F,M]- nA+An 
= [F, M] + [A, n]. 

Summarizing, when a top spins in a constant gravitational field, the angular 
velocity and the gravitational field, as seen by the top, satisfy the following 
system of coupled equations, 

t = [r,n], 
.A = [r, M] + [A, n]. (10.4) 

In these equations, M is a given constant matrix, and the matrices n and 
A are related via the inertia matrix I, as we make more precise now. As 
we said a = I w and I is symmetric. Therefore, we can choose the body 
coordinates such that I is a diagonal matrix, I= diag(I1,h,I3), where the 
diagonal entries Ii are called the principal moments of inertia. Assuming that 
the body is not planar, det I I 0, we introduce Ai := Ii-l, for i = 1, 2, 3. It 
follows that if we write a= (a1,a2,a3)T then 

and 
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If we denote, in addition, m = ( m1, m2, m3) T and "( = ("11, "(2, "(3) T then 
the equations (10.4) are easily written out as 

'h = A3a3"(2 - A2a2"(3, 

1'2 = A1a1"(3- A3a3"(1, 

"y3 = A2a2'Y1- A1a1"(2, 

il1 = mn2- ffi2"(3 + (A3- A2)a2a3, 

il2 = m1 'Y3 - mn1 + (AI - A3)a3a1, 

a3 = mn1- m1'Y2 + (A2- A1)a1a2. 

(10.5) 

This vector field on R 6 is Hamiltonian with respect to the linear Poisson 
structure { · , ·}, whose Poisson matrix with respect to 'Yl, ... , "(3, a1, ... , a3 
(in that order) is given by 

0 0 0 0 -"(3 'Y2 

0 0 0 'Y3 0 -"(1 

0 0 0 -"(2 'Yl 0 
(10.6) 

0 -"(3 'Y2 0 -a3 a2 

'Y3 0 -"(1 a3 0 -a1 

-"(2 'Yl 0 -a2 a1 0 

One easily recognizes it as the Lie-Poisson structure on e(3) (see (8.113)). 
The Hamiltonian is precisely the energy of the top, 

1 2 2 2 
H = 2(A1a1 + A2a2 + A3a3) + mn1 + m2'Y2 + m3'Y3· 

Two physically obvious constants of motion are the length of the gravity vec
tor and the component of the angular momentum in the direction of gravity. 
They turn out to be Casimirs for the above Poisson structure, namely the 
functions 

K1 := 'Yf + 'Y~ + "f~, 
K2 := a1 "(1 + a2'Y2 + a3"(3, (10.7) 

generate the algebra of Casimirs of { · , ·}. Since the rank of { · , ·} is 4 we 
need another, independent, constant of motion in order for the vector field 
to be integrable. Such an extra constant of motion will only exist when the 
moments of inertia of the top and its center of gravity bear very special 
relationships, as we will see. For future use, notice that the rank of the matrix 
(10.6) is 4 precisely when one of "(1, "(2 or "(3 is different from zero. It follows 
that the locus where the rank of { · , ·} is smaller than 4 is the three-plane 
'Yl = 'Y2 = "(3 = 0. Since the Casimir K1 is constant on this three-plane, 
Proposition 7.56 implies that the commuting vector fields of any integrable 
system on this Poisson manifold are independent on the generic fiber of the 
momentum map of this integrable system. 
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Remark 1 0.1. We have obtained the equations of motion as a polynomial 
vector field on R 6 , which is Hamiltonian with respect to a linear Poisson 
structure on R 6 • In the sequel we will consider its complexification, and we 
will still refer to it as describing a spinning top. 

Remark 10.2. The equations (10.4) do not fully describe the motion of the 
top. In order to give a full description one must supplement the equations 
with the linear equation (10.2), which can also be written as R = Rn. Then, 
one first solves (10.4), yielding A(t), hence also n(t) and one next solves the 
non-autonomous linear equation R = R{}. This is similar to what we said in 
Paragraph 8.1. 

10.1.2 A.c.i. Tops 

Three are three known integrable cases of (10.5), namely 

(1) m1 = m2 = ms = 0 (Euler-Poinsot top); 
(2) m1 = m2 = 0 and It = I2 (Lagrange top); 
(3) m2 = ms = 0 and I1 = I2 = 2Is (Kowalevski top). 

Let us first show that the three above cases are the only ones that may lead to 
a weight homogeneous, irreducible a.c.i. system; they will then be studied in 
detail in the sections that follow. Since (10.5) becomes weight homogeneous 
when the variables are given the following weights : w('Yi) = 2w(ai) = 2, 
where i = 1, 2, 3, one has that the indiciallocus I of (10.5)is explicitly given 
by 

0 = 2'Y~o) + Asa~o) 'Y~o) - A2a~0) 'Y~o), 

0 = 2'Y~o) + ).,1 a~o) 'Y~o) - Asa~o) 'Yio)' 

0 = 2'Y~o) + A2a~0)'Yio)- A1a~0)'Y~o), 

0 = a~o) + ms'Y~o) - m2'Y~o) + (As - A2)a~0) a~o), 

0 = a~o) + m1 'Y~o) - ms'Yio) + ()..1 - As)a~o) a~o), 

0 = a~o) + m2'Yio) - m1 'Y~o) + ()..2 - At)a~o) a~o). 

(10.8) 

We first show, using Proposition 7.32, that if all the moments of inertia are 
different then this can only be the vector field of an a.c.i. system if m1 = 
m2 = m3 = 0, which corresponds to the Euler top. Indeed, let us assume that 
I 1 < I2 < Is, so that A1 > A2 > A3 and consider any of the four non-zero 
solutions to (10.8) for which 'Yio) = 'Y~o) = 'Y~o) = 0, namely 

( (0))2 - 1 
ai - ()..k- Ai)(Ai- Aj)' 

(10.9) 

where (i,j,k) is any cyclic permutation of (1,2,3) and with the following 
compatibility condition 
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{0) {0) {0) - 1 
a1 a2 as - (A1 - A2)(A2 - As)(As - Al). (10.10) 

Notice that since A1 > A2 > As we have that a~o) and a~o) are purely imag
inary, while a~o) is real. The Kowalevski matrix at such a solution is given 
by 

2 A (o) sa3 -A2a~o) 0 0 0 
A (o) - sa3 2 A (o) 1a1 0 0 0 

A2a~0) A (o) 2 0 0 0 
IC= 

- 1a1 

0 ms -m2 1 (As - A2)a~0) (As - A2)a~0) 
-ms 0 m1 (A1 - As)a~o) 1 (A1 - As)a~o) 

ffi2 -m1 0 (A2 - A1)a~0) (A2 - Al)a~o) 1 

Using (10.9) and (10.10) we find by direct computation that its characteristic 
polynomial is given by 

Proposition 7.32 implies that the eigenspace of JC that corresponds to the 
eigenvalue 2 is three-dimensional, which means that all 4 x 4 minors of 
2 Id6 -/C are zero. Computing the determinant of the 4 x 4 matrix, which 
is obtained by removing the last two columns, as well as the first and last 
rows from the matrix 2 Id6 -/C, we find that 

0 = m1 + m2(A3- Al)a~o) + ms(A1 - A2)a~0). 

Since a~o) is real, while a~o) is purely imaginary we must have that 

m2 = 0, and 0 = m1 + ms(Al- A2)a~0). 

In particular we have that m1 = 0 if and only if ms = 0. If m1 = m2 = ms = 0 
then we are in the case of the Euler top. Suppose therefore that m2 = 0, but 
that m1 and m3 are both different from zero (still assuming that all moments 
of inertia are different). Then we can consider the following solution to the 
indicia! equation (10.8): 

(0) ( -2v'-1 ) (0) 1 ( r-:; ) a = 0, , , 0 , 'Y = , ( r-:; ) -2v -1, 0, 2 . 
"2 "2 ms- v -lm1 

The characteristic polynomial of the corresponding Kowalevski matrix is 
given by 

(JJ. + 1)(J1.- 2)(JJ.- 3)(JJ.- 4)(JJ.(Jl.- 1)- 2K), 

where 



426 10 Integrable Spinning Tops 

Since all roots of the characteristic polynomial must be integer, - 2K, 
which is the product of two of the roots, must be an integer. But K cannot 
be real since mim3 :f. 0. It follows that when all moments of inertia are 
different then, under the a.c.i. assumption, we must be in the case of the 
Euler top. 

We next consider the case in which at least two of the moments of inertia 
are equal. When all three are equal then we may choose the axes that are 
attached to the body such that mi = m2 = 0, leading to a special case of the 
Lagrange top. Therefore we will actually assume that precisely two of them 
are equal, say h = l2 ¥:- Ia, so that AI = A2 ¥:- A3. Then we may assume, in 
addition, that m2 = 0 by a simple rotation of the body axes, perpendicular 
to the axis that corresponds to A3. Following Kowalevski's idea we only look 
for weight homogeneous principal balances to (10.5), for AI = A2 :f. A3 and 
m2 = 0, and we investigate the indiciallocus I, as given by (10.8), with the 
latter relations between the parameters that define the top. We have that 

a~O) ')'~0) + a~O) ')'~0) + a~O) ')'~0) = O, 

AI(a~o)'Y~o) + a~o)'Y~o)) + A3a~o)'Y~o) = 0 

where the first equation follows from the fact that ai 'YI + a2')'2 + an3 is a 
constant of motion (in fact a Casimir), while the second equation follows 
from taking a simple linear combination of the first three equations in (10.8), 
using AI = A2 (multiply, for i = 1, 2, 3, the i-th equation by Aia~o) and add 
up the resulting equations). Since At :f. A3 it follows that a~o) 'Y~o) = 0. We 
apply now the Kowalevski-Painleve Criterion (Theorem 6.13): if (10.5) is one 
of the vector fields of an irreducible weight homogeneous a.c.i. system then 
either a3 is a constant of motion or there must exist a Laurent solution for 
which a~o) :f. 0. In the first case the last equation in (10.5) leads to mi = 0, 
yielding the Lagrange top. We pursue the second case, in which there must 
exist such a solution with 'Y~o) = 0. The indicia! equation takes then the 
following simple form. 

0 = 2-yio) + A3a~o) 'Y~o)' 

0 = 2-y~o) - A3a~o) 'Y~o)' 
O _ a(O),)O) _ a{O)"'{O) 

- 2 11 1 12 ' 

0 = a~o) + mn~o) + (A3 - At)a~o) a~o), 

0 = a~O)- mniO) +(AI- A3)a~0)a~O)' 
0 - a(o) - m "'(o) 

- 3 1 12 . 

(10.11) 

We find from the last equation that a~o) = m1 'Y~o), in particular m1 ¥:- 0 and 
'Y~o) :f. 0, and then from the second equation that 'Yio) = 2/(A3mt). Substi
tuting this in the first equation in (10.11) we find 'Y~o) = ±2H/(A3mt), 
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while the third equation yields a~o) = ±Aa~o). Then the fourth and fifth 
equation in (10.11) both reduce to 

(10.12) 

Now there are two possibilities. Either 2A1 - A3 = 0 so that m3 = 0. Then 
a~o) is free and we find that 

( (o) (o)) _ ( 1 A r-:~ A) 
'Y ,a - A1m1 ,± A1m1 ,O,a,±v-1a,±T ' 

where a is the free parameter. This is Kowalevski's case: the moments of 
inertia satisfy 11 = 12 = 21s and the center of mass belongs to the equatorial 
plane (corresponding to the moments It and 12 ) through the fixed point. This 
case will be studied in more detail in the next section. Let us investigate now 
the other possibility, i.e., 2A1 -As "=f. 0. Then we may solve (10.12) for a~o), 
leading to the following two solutions to the indicial equation 

( ) _ (-2- ±2A 0 2Ams 2ms ±2A) 
'Y, a - ' ' '=F ' ' . Asm1 Asm1 (2A1 - As)m1 (2A1 - As)m1 As 

(10.13) 
Consider now the Kowalevski matrix of (10.5), which is for A2 = A1 and 
m2 = 0 explicitly given by 

2 A (o) sas A (o) - 1a2 0 A (o) 
- 1'Ys As'Y~o) 

(0) 
-As as 2 A (o) 

1a1 A1 'Y~O) 0 -As'Y~o) 
A (o) 1a2 

A (o) - 1a1 2 A (o) - 1'Y2 A (o) 
1 'Y1 0 

0 ms 0 1 (A3 - Al)a~o) (A3 - Al)a~o) 

-ms 0 m1 ( (0) A1- As)as 1 (0) (A1- As)a1 

0 -m1 0 0 0 1 
(10.14) 

Substituting (10.13) in it it has the following characteristic polynomial, 

(p. + 1)(p.- 2)(p.- 3)(p.- 4) (1-'2 - p.- 2 (A1 - As~:A1 -As)) . (10.15) 

Since we want that the latter solution of the indicial equation leads to a 
principal balance we must have that the two roots of the quadratic polynomial 
in (10.15) are non-negative integers. But the form of the polynomial shows 
that their sum must be 1, leaving 0 and 1 as the only possibility. However, 
A1 "=f. As and 2A1 "=f. As, so 0 is certainly not a root (hence neither is 1). 
Therefore, this solution to the indicial equation cannot lead to a principal 
balance. 
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10.2 The Euler-Poinsot and Lagrange Tops 

The Euler-Poinsot and Lagrange tops are relatively simple in the sense that 
they do not linearize on Abelian surfaces, but on elliptic curves. However this 
does not make these integrable tops entirely trivial, as we will see. 

10.2.1 The Euler-Poinsot Top 

When m1 = m2 = m3 = 0 the corresponding top is called an Euler
Poinsot top. Then the last three equations in (10.5) reduce to the Euler 
equations (6.7), which we studied in Example 6.4. Physically this case means 
that the center of mass coincides with the fixed point, which is equivalent 
to the absence of gravity. Once the Euler equations have been integrated (in 
terms of elliptic functions) the remaining three equations in (10.5) are linear 
(time-dependent) equations in the remaining variables 'Yi· Thus we will con
centrate here on the Euler equations on C 3 , which take, with Xi := ai and 
Aij := )..i - Aj the simple form 

X! = A32X2X3' 

X2 = A!3X3Xl' 

X3 = A21X1X2, 

which has the constants of motion 

1 2 2 2 
K = 2(xl + x2 + x3), 

1 ( 2 2 2) H = 2 AlXl + A2X2 + A3X3 ' 

(10.16) 

which define the momentum map F = (K, H) of the Euler top. The generic 
fiber F c of the momentum map, with c = (cl> c2), is the affine curve £c C C 3, 
defined by 

1 2 2 2) cl = 2(xl + x2 + x3 ' 

1 ( 2 2 2) 
C2 = 2 AlXl + A2X2 + A3X3 • 

Ec is an elliptic curve, as it is a double cover of the conic 

Cc : A12X~ - A23X~ = 2(c2 - >.2cl), 

with four ramification points, namely the following points on Cc, 

where ft = f~ = 1. 

(10.17) 
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The Euler equations define a (weight) homogeneous vector field (all vari
ables have weight 1). Let us show that all its balances (x1 (t), x2 (t), x3 (t)) are 
weight homogeneous. We denote the pole order of Xi(t) by ni, fori= 1,2,3, 
and notice that if one of the Xi ( t) has a pole then all series ( x1 ( t), x2 ( t), x3 ( t)) 
have a pole. Therefore, these pole orders are positive, ni ~ 0, and they satisfy, 
in view of (10.16), 

n1 + 1 = n2 + ns, 
n2 + 1 = ns + n1, 
ns + 1 = n1 + n2, 

with n1 = n2 = ns = 1 as the unique solution. This shows that all balances 
(x1(t),x2(t),xs(t)) are weight homogeneous. The indicia! equation, which is 
a special case of (10.8), is given by 

0 = x~o) + As2x~0) x~o), 

0 = x~o) + A1sx~0) x~o), 
0 - x(o) + ' x(o) x(o) - 3 A21 1 2 ' 

(10.18) 

and it has four non-zero solutions, to wit, ( x~0>f =X;/ Aij\ where (i,j, k) 
is any cyclic permutation of (1, 2, 3) and with the following compatibility 
condition 

(0) (0) (0) - 1 
xl x2 Xs - ' ' ' A12A23A31 

For any of these four solutions the Kowalevski matrix takes the form 

with characteristic polynomial (at these points) 

This was to be expected: weight homogeneity accounts for the eigenvalue -1 
(see Proposition 7.11), while the two invariants have as differentials, evaluated 
at these points, 

dK(x(o)) = x~0>dx1 + x~0>dx2 + x~0>dxs, 
dH(x(o)) = A1X~0>dx1 + A2x~0)dx2 + Asx~0)dxs, 

which are obviously independent (since the Ai are all different), which ac
counts for the double eigenvalue 2 (Theorem 7.30). 
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It is then clear that at step 1 one finds the zero solution, x<1) = (0, 0, 0) 
and the equations at step 2 are given by the linear equations 

One easily finds the following two independent solutions, 

( (2) (2) (2)) { (1, 0, A21X~0)), X X X -
1 ' 2 ' 3 - (0 1 \ (0)) , ,A21Xl , 

so that the first few terms of the four balances are given by 

(0) 

x1 (t) = x~ +at+ O(t2), 

(0) 

X2(t) = X~ + bt + O(t2), 

(0) 

x3(t) = ~ + A21(x~0)a + xi0)b)t + O(t2). 
t 

The free parameters a and b are trivial parameters, as follows again from 
Theorem 7.30: substituting the above first terms in K = c1 and H = c2 

yields 

which is easily solved for a and b. We claim that the embedding of &c in P 3 , 

defined by cpc : (x1, X2, X3) t-t (1 : x1 : x2 : x3) is the Kodaira map, associated 
to the points (divisor) in &c \ &c, where &c is the smooth completion of &c. 
To show this, we first observe that the 4 points of the indiciallocus (10.18) 
all belong to the following intersection of quadrics in P 2 : 

o = (xio)f + (x~O)r + (x~O)r, 

0 = A1 ( xio)) 2 + A2 ( x~o)) 2 + A3 ( x~o)) 2 
. 

This can be shown by direct computation, or by expressing that the Laurent 
series K(x(t)) and of H(x(t)), which of course must be constant, have no pole 
of order 2. Since two conics in P 2 intersect in four distinct points at most 
the four points that come from the indicia! locus account for all intersection 
points. 
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The above Laurent solution of (10.16) yields the following local parametri
zation of these points: 

which shows that these points are actually smooth points in the simplistic 
compactification of Ec in ps, which is the closure of IPc(Ec). Our map IPc is 
the Kodaira map that goes with the divisor that consists of the four points 
at infinity, since on the one hand the embedding functions have only a sim
ple pole at these points and no other poles, and since on the other hand 
dim£(4 points) = 4 (see (5.25) or Theorem (5.8)), so we have a full basis of 
these functions. 

Let us also write down the quadratic differential equations for the Euler 
top. We will do this in the chart Z1 ::fi 0, as it is trivial in the chart Zo ::fi 0. 
We need to compute the Wronskians W(x2, xl) and W(xs, xl). We have for 
example that 

W(x2, x1) = A13X~Xs + A2sx~xs 
= (A1x~ + A2x~ + Asxn xs -As (x~ + x~ + x~) xs 
= 2(c2 - Ascl)xs, 

and similarly W(xs,xl) = 2(A2cl- c2)x2. It follows that if we define Yi := 
Xi/ X1 then, in the chart Z1 'f; 0 the quadratic differential equations are given 
explicitly by 

iJo = A2sY2Ys, 
iJ1 = o, 
iJ2 = 2(c2 - AscdYIYs, 

iJs = 2(A2Ct - c2)YtY2· 

To finish the example of the Euler top we discuss its Lax equation (with 
spectral parameter), which is obtained by viewing the motion of the Euler top 
as a geodesic flow on 80(3) for the Manakov metric (see Paragraph 8.2.1). 
Namely, for fixed distinct parameters A1, A2 and As defining the Euler top, 
as before, we let 

and 

we define Aii := -Ak, where {i,j,k} = {1,2,3}; these Aii are viewed as the 
entries of a symmetric matrix A (with, say, zeros on the diagonal). Let 
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Then it is easily verified that the Euler equations are equivalent to the 
Lax equation (with spectral parameter b) 

(Ab +X)'= [Ab + X,Bb+ A· X] 

= [ Ab +X, (t ( Ab; X) b) J , 
where f ( z) = A1 A2 A3 ln z. The spectral curve I~ Id3 - Ab - X I = 0 is easily 
computed to be given explicitly by 

3 

£~ :II(~- Aib) + 2(cl~- c2b) = 0. 
i=l 

We claim that £~ and Ec are isomorphic elliptic curves (precisely, their smooth 
compactifications are isomorphic). In order to do this we first rewrite £~ in 
the form 

3 

2v2(cl u- c2) +II (u- Ai) = 0, (10.19) 
i=l 

where we have defined (u,v) := (~lb, 1lb). Formula (10.19) exhibits£~ as a 
double cover of P 1, ramified at the points u = A1, A2, A3 and u = c2 I c1, in 
particular£~ is an elliptic curve, just like Ec. In order to show that both curves 
are isomorphic it suffices to show that the cross-ratio of their ramification 
points are the same. The cross-ratio of the latter ramification points is easily 
computed to be given by 

A1 - A3 . A2 - A3 
(AI,A2,Aa,c21cl) =A I . I 1 - c2 c1 A2 - c2 c1 

A13 C1A2- C2 
- A23 Cl Al - C2 . 

We need to compare this to the cross-ratio of the points p++, p+-, p-+, 
and p--, which lie on the conic A12x~- A23x~ = 2(c2- A2c1). Therefore we 
need to parametrize the conic, which is done by using the slope of the lines 
that pass through a fixed point of the conic. Thus we let 

2c3A32 
X1 =- , 

Aa2<> + A12C1 

with 
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This yields the following parameters for the ramification points PE1 E2 of 
Cc (see (10.17)): 

It is now easily computed that 

++ -+ -- +- - ~(P++) - ~(P--) . ~(P-+) - ~(p--) 
(P ,P ,P ,P )-~(P++)-~(P+-)'~(P-+)-~(P+-) 

A13 C1A2 - C2 

= A23 Cl Al - C2 . 

This shows that the cross-ratios agree, and hence that the elliptic curves are 
isomorphic. Notice that the pencil fi- AK of rank four quadrics, where 

2K := X~ +X~ +X~ - 2c1X~, 
2fl := AlX~ + A2X~ + A3X~ - 2c2x~, 

contains four quadrics of rank three, namely when A= Al, A2, A3 or c2/c1 . 

These points are precisely the ramification points of the elliptic curve £~, a 
property reminiscent of what we have seen in each of the integrable geodesic 
flows on S0(4) (Chapter 8). The Lax equation is easily seen to satisfy the 
Linearization Criterion of Corollary 6.43, as only the pole condition needs to 
be checked. 

10.2.2 The Lagrange Top 

We now turn to the Lagrange top, which is characterized by h = !2 (two 
moments of inertia with respect to the fixed point are equal) and m1 = 
m2 = 0 (the center of gravity lies on the axis, passing through the fixed 
point, and corresponding to the equal moments of inertia, the symmetry 
axis). The symmetry axis explains the occurrence of the extra integral a3 

(the component of the moment of angular momentum in the direction of the 
symmetry axis). Indeed, the Hamiltonian group action corresponding to the 
8 1 action, simultaneous by an angle 0 in the ( a1, a2) and -y1 , -y2 planes has co
momentum map a3 . Thus, by Noether's Theorem, since the Hamiltonian H of 
V1 is invariant under the above rotation when A1 = A2 and m1 = m2 = 0, the 
co-momentum a3 provides a constant of motion and hence the corresponding 
Hamiltonian vector field V2 := Xa8 commutes with V1. One also speaks of 
the symmetric top. 1 

1 This is the type of top most of us used to play with. 
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By rescaling the variables we may assume that 11 = 1, so that ..\1 = ..\2 = 
1. Substituting this and m1 = m2 = 0 in (10.5), yields to following vector 
field V1, displayed with the commuting vector field V2 := Xa3 • 

'h = Aaaa'Y2 - a2-y3, 

i'2 = a1 'Ya - aa'Y1, 

i'3 = a2'Y1 - A3an2, 

al = ffl3'Y2 + (..\3- 1)a2a3, 

a2 = -mnl - (..\3 - 1)ala3, 

a3 = o, 

'Yf = 'Y2, 

'Y~ = --yl, 

'Y~ = 0, 

a~= a2, 

a~= -a1, 

a3 = 0. 

(10.20) 

In these coordinates, the momentum map of the Lagrange top is F .
(Flo F2, F3, F4), where the constants of motion Fi are given by 

F1 = 'Yr + 'Y~ + -y~, 
F2 = 'Y1a1 + 'Y2a2 + -y3a3, 

1 ( 2 2 2) F3 = 2 a1 + a2 + A3a3 + m3-y3, 

F4 = a3, 

F4 being a Hamiltonian for V2 (see (10.6)). Clearly the complexified rotation 
group C* acts on C6 , leaving the level manifolds F c of the momentum map 
invariant; V2 is the fundamental vector field that corresponds to this action. 
This fact is classically used to reduce the Lagrange top to a system with one 
degree of freedom, which is then integrated in terms of elliptic functions. 

We will give here a Lax equation for the Lagrange top and discuss its 
algebraic integrability. Since in the case of the Lagrange top [M, {}-A] = 0, 
as we have taken ..\1 = 1(= ..\2), the equations (10.4) are equivalent to the 
Lax equation 

(10.21) 

This means that, explicitly, the Lax operator is given in this case by the 
following skew-symmetric matrix, 

-m3b2 - a3b - 'Y3 

0 

a1b+'Y1 

whose spectral curve, corresponding to the values of the constants of motion 
c = (c1, ... , c4), is given by 
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which consists of a line and an elliptic curve £c, whose points at infinity 
will be denoted by oo+ and oo-. Thus, for generic c the spectral curve Cc is 
singular and reducible, and we cannot use the Linearization Criterion directly 
to show that the Lagrange top linearizes on the elliptic curves £c. An elegant 
solution to this problem was proposed in [63], who notice that under the Lie 
algebra isomorphism of so(3) and s1(2), given by 

( ~ ~z ~x) 
-y X 0 

1 ( t:X t:z+ly) 
..,j2 fZ - ly -t:X ' 

h11" t:=exp-4-, 

the above Lax operator X(b) becomes a Lax operator X(b) for which the 
spectral curve is £c, in particular it is reducible and the Linearization Crite
rion applies to it. Moreover, using the Lax equation they show the following 
theorem. 

Theorem 10.3. The Lagmnge top is a genemlized a.c.i. system: the generic 
fiber F c of its momentum map is isomorphic to an affine part of the gen
emlized Jacobian Jac(Cc; oo±) and the flow of the vector fields V1 and V2 is 
linear on it. 

The genemlized Jacobian Jac(£c; oo±) is the non-compact Abelian group, 
which is defined as 

Jac(£c; oo±) := Div0 (£c)/ ....... , 

where ....... is defined, for divisors V and V' of degree zero on £c, by V ....... V' if 
and only if there exists a meromorphic function f on £c, such that 

(f)= V- V', and 

It is an extension of the usual Jacobian Jac(£c) of £c, namely there is an 
exact sequence 

For more information of generalized Jacobians, and further generalizations, 
see [155]. 
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10.3 The Kowalevski Top 

As we have said in the previous section the Kowalevski top is a spinning top 
whose principal moments of inertia (11 , 12, 13 ) (with regard to the fixed point) 
satisfy the relation 11 = 12 = 21a and whose center of mass belongs to the 
equatorial plane (corresponding to the moments h and 12 ) through the fixed 
point. By properly picking the axes of inertia in the equatorial plane and by 
rescaling, we can achieve m = (2, 0, 0) and A = (1, 1, 2). Then the equations 
of motion (10.5) take the following simple form. 

"h = 2aa'i'2 - a2-ya, 

1'2 =ana- 2aa')'1, 

"Ya = a2'i'1- a1-y2, 

a1 = a2aa, 

a2 = 2-ya - a1aa, 

aa = -2')'2· 

10.3.1 Liouville Integrability and Lax Equation 

(10.23) 

In the above form (10.23) the Kowalevski top has the following independent 
constants of motion. 

where 

2 2 
a1 a2 2 

Q1 := 2+2+a3 +2-y1, 

Q2 := a1'i'1 + a2'i'2 + aa')'a, 

Qa := 1'? +-y~ +-y:, 
Q4 := K+K-, 

(10.24) 

(10.25) 

Q2 is the angular momentum in the direction of gravity, Q3 is the length of 
the gravity vector, and Q1 is the energy. The extra constant of motion Q4 

was found by Kowalevski. 
As we pointed out in the previous section the vector field (10.23) is Hamil

tonian with respect to the linear Poisson structure{-,·}, whose Poisson ma
trix with respect to ')'1, ... ,-ya,a1, ... ,aa (in that order) is given by (10.6), 
the Hamiltonian being given by Q1, while Q2 and Q3 are two independent 
Casimirs; another Hamiltonian vector field, that commutes with (10.23) is 
given by { · , Q 4}. The fact that Qa is a Casimir justifies that we can fix its 
value to 1; for the computations that we will do there is no advantage of 
fixing the value of Qa, hence we will not do this. With this convention, the 
Kowalevski top becomes a Liouville integrable system on ( C6 , {- , ·}), with 
momentum map (Q1,Q2,Qa,Q4), and where the Qi are defined in (10.24). 
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Different Lax equations (with spectral parameter) were proposed for the 
Kowalevski top. We will give here the most natural one, which is due to 
Reiman and Semenov-Tian-Shanskii, see (149] and (32]; for the other ones, 
see (13] and (76]. Let 

( 

0 v'=I"Y2 - "Y1 A~2-al b -"'(3 l 
"Y1 + H"Y2 0 "Y3 al+pa2b 

X (b) := -a1-2Aa2 r. _""3 r. 11 r.2 
IJ , -a31J "Y1+v-1"Y2-IJ 

""3 a1-A2-1a2r. 111 r.2 r. , IJ -"'(1 + v -~"Y2 + IJ a3•J 

and 

Note that if one thinks of b as a formal, but purely imaginary parameter, and 
the variables ai, "Yi as being real then X(b) is a skew-hermitian matrix. 

It is easily checked by direct computation that (10.23) can be written as 
X(b) = H[X(b), Y(b)]. For an explanation of how this Lax equation was 
obtained, and for generalizations, see [32]. 

We investigate the geometry of the spectral curve det(~Id4 -X(b)) = 0, 
that corresponds to the Lax operator X(b) (see Figure 10.1 for an overview of 
the relations between the maps, the curves and the special points on them). 
Explicitly, this curve is given by 

Cc : ~4 + ~2 (b4 - b2 c1 + 2c3) + b4 C4 + b2 (c~ - c1c3) + c~ = 0, (10.26) 

where the values of the constants of motion Qi have been denoted by c = 
(c1 , •.. , c4); in what follows these values will always be assumed generic. Then 
Cc is smooth and is a double cover of the curve C~, given by 

C~: z2 = ((b2 - C1)2 + 4(c3- C4)) b2 - 4c~, 

where the double cover that links the two curves is explicitly given by 

'1/J': Cc ~ C~ 

(~,b) t-t (z,b) = (b- 1 (~2 +b4 -c1b2 +2c3),b). 
(10.27) 

It is clear that c~ is a hyperelliptic curve; the projection map 7r1 : c~ ~ c that 
is defined by 1r1 ( z, b) = b realizes C~ as a double cover of C that is ramified 
at six points, hence C~ compactifies into a hyperelliptic Riemann surface C~ 
of genus two. The cover '1/J' has 4 branch points: they are the points (z, b) on 
c~ for which~= 0, i.e., 
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Squaring this equation and using the equation of C~ yields that the b 
coordinates of these points must be roots to the quartic polynomial 

leading to 4 points p~ ... , P4 on C~, which are the branch points of 1{;'; the 
corresponding ramification points on Cc are denoted by Pt, ... , Pt. When 1{;' 
is extended to a double cover 1{;' : Cc --t C~ there will be no new branch points: 
the points 00~ and 00~ in c~ \ c~ are given in terms of a local parameter <; by 

which, substituted in 

S = V ~ ( zb - b 4 + c1 b2 - 2c3) 

yields S = ±J-c; 4 (1 + O(c;-2)) = ±J=Tc;-2 (1 + O(c;-2)) for one sign of z 
and S = ±J-c4 + O(c;-2 ) = ±..j=C4(1 + O(c;-2)) for the other sign. It follows 
that over both points the cover 1{;' is unramified, leading to 4 points oor and 
oo~ on Cc. We conclude that 1{;' : Cc --t C~ is a double cover of a genus 2 
Riemann surface, branched over 4 points, so that the genus of Cc is 5, by 
Riemann-Hurwitz. 

The curve C~ is also a double cover of the elliptic curve 

where the covering map is given by 

x': C~ --t &c 
(z,b) ~ (v,u) = (zb,b2). 

(10.28) 

This cover is unramified, but its extension to a cover x' : C~ --t lc must 
be ramified at two points, according to Riemann-Hurwitz. This can also be 
seen directly from the fact that C~ and &c both have two points at infinity. 
Notice that the points p~ are identified in pairs by x', say x' (PU = x' (p~) 
and x'(p~) = x'(p4); we will denote these two image points, in that order by 
p1 and P2, while we also denote x'(ooD = OOi, fori= 1, 2. 

The resulting 4 : 1 cover Cc --t &c also factorizes over another curve, 
namely consider the curve C~, defined by 

C~: ~ +S2 (u2 - UC1 + 2c3) + u2c4 + u(~- c1c3) + ~ = 0, 

which is obtained by putting u = b2 in the equation for Cc. 



oo' 1 

7r1 2:1 

ram qf 

x' 2:1 

r~; 
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1/J 4:1 

P2 

P1 

7r 2:1 
ram qi,O 

~·~·~·~·~·- pl 00 Ql Q2 Q3 0 

.P" 2:1 

p~ 

oo" 2 

p~l 

Fig. 10.1. The spectral curve, associated with the above Lax equation for the 
Kowalevski top, and some of its quotients. The points at infinity are identified in 
pairs by '1/J' and '1/J", but they are ramification points for x' and x". The points 
labeled p; are identified in pairs by x' and '1/J", but they are ramification points for 
'1/J' and x". Also, x maps the six branch points of 1r' to three of the branch points 
of 7i' (0 is the other branch point of W). 
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Then we have a double cover 1/J" : Cc ~ C~, given by 

1/J" : Cc ~ C~ 

(S,b) ~---+ (S,u) = (S,b2) 
(10.29) 

and a double cover 

x": c~ ~ &c 
(S, u) ~---+ (v, u) = (2S2 + u2 - c1 u + 2cs, u). 

(10.30) 

It follows easily from the above that Pt and P2 are the only branch points 
of x": the map 

x' 0 1/J' = x" o 1/J" : Cc ~ &c 

has only the points Pl and P2 as branch points, with corresponding ramifica
tion points Pt, ... , Pt, but these points are identified in pairs by 1/J". Notice 
that this also implies that 1/J" is unramified. Similarly, one sees using the 
above local description of the points oor that these four points are identified 
in pairs by 1/J" : Cc ~ C:J, implying on the one hand that the genus of C:J is 3 
and on the other hand that x" admits also the points oo1 and oo2 as branch 
points. Finally, notice that if we view £c as a double cover of P 1 by the map 
1r: (v,u) ~---+ u then x' induces the 2: 1 cover x: P 1 ~ P 1 that maps bE C 
to u = b2 • Of course, X is ramified at 0 and at oo (only). 

Let us now verify the Linearization Criterion for the above Lax operator. 
We will do this by checking the conditions in Corollary 6.43. First notice that 

X(b) . C 
Y(b) = --b- + d1ag( -as, as, 0, 0) + b' 

where C is independent of b, so that Y(b) satisfies (6.54), with l]i = 1. Thus, 
it suffices to show that ~/b has no pole at the points oo[ and oo~, where we 
recall that~= (1, 6, 6, ~4) T is the normalized null-vector of Sld4 -X(b), for 
(S, b) belonging to the spectral curve Cc. In terms of the cofactors Aij of the 
matrix Sld4 -X(b) the components ~i are explicitly given by ~i = Ali/A11 , 

for i = 2, 3, 4. Also, substituting b = 1/c.; in the equation (10.26) of Cc and 
solving for S we find 

giving as local parameterization 

1 
b= -, 

c.; 

for two of the points and 

(10.32) 



1 b = -, 

" 
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A ( 1 2 1 2 4 6)) ~ = ±T 1- 2c1'> - 8(c1 + 4c4- 8c3 )<;; + 0(<;; , 

(10.33) 
for the other two points. If we substitute (10.32) in ei = Au/A11 then we 
find 

where ct is the value of the factor K+ of the Kowalevski integral (see (10.25)). 
When substituting (10.33) in ei then we find very similar results, namely 

so that the vector e, and hence also e/b is finite at the four points 00~ and 
ooi'. This completes the check of the Linearization Criterion and we may 
conclude that the Kowalevski vector field linearizes on the Jacobians of the 
spectral curves Cc. 

As suggested by Kowalevski's last invariant Q4, it is more convenient to 
consider the new variables 

X4 = :1- (a1 + Aa2) 2 - (·n + H/'2), x1 = ~(a1 + Aa2), 

x2 = ~(a1- v'-fa2), xs = t (a1- v'-fa2) 2 - (/'1- H/'2), (10.34) 

X3 = a3, X6 = /'3· 

In these new coordinates the constants of motion (10.24) take the following 
form. 

F1 = (x1 + x2)2 + x~ - X4 - xs, 

F2 = x1x2(x1 + x2)- X4X2- xsx1 + X3X5, 

F3 = (x~ - X4)(x~ - Xs) +X~, 

F4 = X4X5. 

(10.35) 

In the sequel we will take the corresponding map F := (F1, F2, F3, F4) as the 
momentum map of the Kowalevski top. 
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The Poisson structure is (up to a constant factor v'-1) given by the 
following matrix, 

0 -X3/2 X! 0 X6- X2X3 (x~- x4)/2 

X3j2 0 -X2 X1X3- X6 0 (xs- x~)/2 
-Xl X2 0 -x~- X4 X~+ X5 0 

0 X6- X1X3 x~ +x4 0 2* X!(X~- X4) 

X2X3- X6 0 -x~- xs -2* 0 x2(xs- x~) 

(x4 - xD/2 (x~ - xs)/2 0 xt(x4 - xD x2(x~ - xs) 0 
(10.36) 

where*= (x1 + x2 )x6 - x1x2x3. With respect to this Poisson structure the 
vector field V1 := { · , FI} and the commuting vector field V2 := - {- , F4} 
take the following form. 

X2 = X6- X2X3, 

X3 = X~ - X~ + X4 - X5, 

X~ = X4(X2X3 - X6), 

X~ = Xs(X6 - X1X3), 

X~ = X~X5- X~X4, 

xs = -2x3xs, 

X~ = -2X4(X6(Xl + X2)- X1X2X3), 

X~ = 2xs(xe(Xl + X2)- X1X2X3), 

X6 = X1(x~- Xs)- X2(X~- X4), X~ = X1X5(X~- X4)- X2X4(X~- Xs). 
(10.37) 

Observe that the vector field V1 is weight homogeneous when we assign the 
following weights to the variables: 

Then the invariants have the following weights: 

On C 6 there are two natural involutions u and T which preserve the constants 
of motion, hence leave the fibers of the momentum map invariant. They are 
given by 

0': (x1, X2, X3, X4, Xs, X6) I-+ (x2, X1, -X3, Xs, X4, -X6), 

T: (xl,X2,X3,X4,X5,X6) 1-+ (X!,X2,-X3,X4,X5,-X6)· 
(10.38) 

Since (]' is a Poisson morphism it preserves the vector fields vl and v2 j T is 
however an anti-Poisson map, so it reverses V1 as well as V2, 
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10.3.2 Algebraic Complete Integrability 

We look for weight homogeneous Laurent solutions to v1. Since tv(Xi+3) = 
2w(xi) = 2 fori= 1, ... , 3, the indicia! equation is given by 

0 - x(o) + x(O) x(o) - x(o) 
- 1 1 3 6 , 

0 = x~o) + x~o) - x~o) x~o), 

0 _ x(o) + (x(o))2 _ (x(o))2 + x(o) _ x(o) 
-3 2 1 4 5' 

0 = x~o) (1 + x~0)), 
0 = x~o) (1 - x~0)), 

0 = 2x~o) + x~o) ( (x~o))2 - x~o)) - x~o) ( (x~o))2 - x~o)) . 

These equations are easily solved, yielding the following (non-zero) solutions. 

{ 
(0, a, 1, 0, 1 + a2, 0), 

{0) {0) {0) (0) (0) {0) - 2 
(x1 ,x2 ,x3 ,x4 ,x5 ,x6 ) - (a,0,-1,1+a ,0,0), 

:r=v'-1(1, -1, 0, 0, 0, 1), 

(10.39) 

where a is a free parameter. Thus, the indiciallocus I consists of two disjoint 
curves I' and I", besides two points that do not belong to any of these curves. 
The involution u induces an involution on I which permutes the two points 
and the two curves; it will also be denoted by u. The Kowalevski matrix at 
an arbitrary x(o) E I is given by 

1 + x~o) 0 {0) 
x1 0 0 -1 

0 1- x(o) (0) 0 0 1 3 -x2 

K (x(o)) = 
2 {0) 2 (0) 1 1 -1 0 - x1 x2 

0 0 2 {0) 2(1 + x~0)) 0 0 x4 

0 0 2 (0) - x5 0 2(1- x~0)) 0 

* -u(*) 0 (0) 
x2 

(0) 
-x1 2 

where*= x~o) (x~o) -2x~0))-x~0). If we substitute each of the solutions (10.39) 
in the characteristic polynomialiJ.Lld6 -K(x(0))1 then we find (in that order) 

{ 
(J.L + 1)J.L(J.L- 1)(J.L- 2)(J.L- 3)(j.t- 4), 

IJ.Lld6 -K(x(o))l = (J.L + 1)J.L(J.L- 1)(J.L- 2)(J.L- 3)(J.L- 4), 

(J.L + 1)2(J.L- 2)2(J.L- 3)(J.L- 4), 

so that the last one certainly does not lead to a principal balance. 
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Note that Propositions 7.11 and Theorem 7.30 a priori tell us that -1, 2, 3 
and 4 must be in the spectrum, and in the first two cases also 0. Since V1 

is divergence free, Proposition 7.12 implies that TraceK(x(0)) = 9, which in 

the first two cases determines completely the spectrum of K(x(0)), but not 
quite in the third case. 

In order to show that the two curves I 1 and I 11 in the indicial locus lead 

to principal balances, which we will denote by x(t;I1 ) and x(t;I11 ), we need 
to exhibit the first five terms (coming from steps 0- 4) of them, with the free 
parameters that appear. Since zt and I 11 correspond under the involution a, 

so that x(t; I 11 ) is obtained from x(t; I 1) by applying a, it suffices to exhibit 
the first five terms of x( t; I 1). We actually only give the first four terms, 

except for x4(t) where we give the first five (sic!) terms: the fifth term of the 
other xi(t) is uniquely specified, given the fifth term of x4(t). 

t2 
x1 (t) = b- tab2 + 4 z\b) + O(t3 ), 

a 2 ta 2 2 2 
x2 ( t) = t + b( a + 1) + "6 ( 4a b + 4b - c1) 

t2 
+ 12 (a2(4a2b3 + 8b3 - 2c1b- c2)- Z 1(b)) + O(t3), 

( 1 t((2 2 ) t2a(3 (3 
X3 t) = t-ab- 3 a + 4)b - c1 + 4 4b + c2 ) + 0 t ), 

x4(t) = t2(Z(b)- a2b4) + O(t3 ), (10.40) 

( ) ( 2 1) ( 1 2ab 7a2b2 + 4b2 - c1 
X5 t = a + t2 + -t- + 3 

+ t: (12(a2 + 1)b3 - 4clb- c2) + O(t2)), 

b 2 t ( 2 3 3 2) XB(t) = t-ab + 6 4a b - 2b - c1b + 3c2) + O(t , 

where Z(b) := -b4 + clb2 - 2c2b + C3, and Z 1(b) is its derivative. We have 
already replaced the three trivial parameters by the values of the first three 

constants of motion: we have that Fi(x(t)) = Ci fori = 1, ... , 3. An equation 

for the abstract Painleve divisor r~, where c = (cl, ... 'C4) is then found by 
substituting x(t; I 1 ) in the equation X4X5 = c4. This yields the affine curve 

r~ in C 2 , defined by 

(10.41) 

The same equation is found for the abstract Painleve divisor F~1 • 

In the sequel we will often have no reason to distinguish the two isomor

phic curves r~ and F~1 ; in this case we will write simply Fe for either of these 

curves. 
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The curve rc is a double ramified cover of the elliptic curve Cc in C 2 , 

defined by 
Cc: c4u2 - u(c1v2 - 2c2v + cs) + v4 = 0, 

the covering map being given by 

(u, v) = '1/J(a, b)= (1/(a2 + 1), b). 

Rewriting the equation of Tc as 

(10.42) 

we see that the map has 4 ramification points, which are the 4 points (0, bi), 
where bi is any root of c4 - Z(b). When '1/J is extended to a covering map 
tij : rc ~ Cc between the smooth compactifications of rc and of Cc the map 
has no other ramification points, so that the genus of rc is 3, by Riemann
Hurwitz. In order to check that the tij is unramified at infinity, use the data 
given in Table 10.3: the six points in the table are obviously identified in pairs 
by tij. 

Table 10.3. The six points OOq and 00•2•3 (where f~ = f~ = f~ = 1) in rc \ rc in 
terms of a local parameter~- The value of o is one fixed square root of c~- 4c4 • 

point a b 

oo.l fl~ (1- ~~+0(~2)) ~ 

00•2•3 f2v'=I (1 + <s5_;-c! ~2 + C2 5-;rl ~3 + 0(~4)) ~-1 

We now look for weight homogeneous polynomials which have a simple 
pole in t at most, when any of the two principal balances is substituted in it. In 
the notation of Paragraph 7.7.1 this means that we wish to construct a basis 
of Zp as a 1£-module, where the pole vector p is chosen as p := {1, 1). The 
results, displayed in Table 10.4, suggest that no more independent functions 
will be found beyond weight 4. 

Let us verify the adjunction formula, to give more support to this 
belief. To do this we need the residue terms of the Laurent solutions 
zo(t; r~) •... 'Z7(t; r~). They are given in Table 10.5. 

We investigate the map <p~ : r~ ~ P 7 , which is given by these residues. 
It follows from Table 10.5 that <p~ is given by 

<p~(a, b) = (0: 0: a: 1: b: ab: (1 + a2 )b2 : 2a2b3 - Z'(b)/2), {10.43) 

where we recall that Z'(b) = -4b3 + 2c1b - 2c2 • This map is clearly an 
embedding of the affine curve r~. 
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Table 10.4. The polynomials of weight at most 5 which have a simple pole at most 
when any of the principal balances is substituted in them. In order to verify that 
dim Z~ = 13, as is asserted in the last line, one extra term in the principal balances 
needs to be computed. 

k dim:F" dim1£" dimz; # dep '" indep. functions 

0 1 1 1 0 1 zo = 1 

1 3 0 3 0 3 Zl := X1 1 ••• 1 Z3 := X3 

2 9 1 3 1 2 Z4 := X6 1 Z5 := X1X2 

3 19 1 5 4 1 Z6 := (Xl + X2)X6 - X1X2X3 

4 39 3 9 8 1 Z7 := X3X6 - X3X6 

5 69 1 13 13 0 -

Table 10.5. The residues of the functions Zi(t; r~) and Zi(t; r~') define two embed
dings ljO~ and ljO~ of the curves r~ = r~' into P 7 . 

zo Zl Z2 Z3 Z4 zs Z6 Z7 

ljO~ 0 0 a 1 b ab (1 + a 2 )b2 2a2b3 - Z'(b)/2 

ljO~ 0 a 0 -1 -b ab -(1 + a 2)b2 2a2b3 - Z'(b)/2 

In order to see that it extends to an embedding of r~, substitute the first 
and second line of Table 10.3 in (10.43) to find the following first two terms: 

Letting <; ~ 0 we find the following image points: 

We see at once that these six points are different, so that cp~ is injective, 
and since the linear terms in <; are non-vanishing we conclude that the image 
curve is non-singular and isomorphic to r~. 
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Applying the involution a, which acts, according to (10.38), on the Zi in the 
following way 

we find the image of these six points under the map <p~ : r~' -t P 7 ' which 
is given by the residues of the functions zo(t; r~'), ... 'Z7(t; r~). Namely, we 
find the following image points in P 7 : 

P:~ := lim <p~ (p) = (0 : 1 : 0: 0 : 0: 0 : -t:l v'C3: 0), 
p-+ooq 

Thus, we get 2 new points P::, while Q~2 <3 = Q'!_<2 ,-<a which leads to 4 

intersection points of v~ := <p~(rD and v~ := <p~(r~'). Comparing the term 
in~ of <p~(P), for P close to OOe2 e3 with the term in~ of <p~(P), for P close to 
oo_<2 ,-<a, we conclude that the two images curves intersect transversally in 
these four points, as indicated in Figure 10.2. Using the fact that the Euler 
characteristic of an ordinary double point is 1, we find by using Proposition 
5.42 that the genus of the image divisor is given by 2 x 3 + 1 - 2 + 4 x 1 = 9. 
Since 9 = 7 + 2 the adjunction formula is verified for <pc. 

V' c V" c 

Fig. 10.2. The Painleve divisor De of the Kowalevski top consists of two non
singular genus 3 curves D~ and D~ which intersect transversally in the 4 points 
P:2 , 3 . They correspond under an involution u which will be shown to be a trans
lation over a half period on the Abelian surface T~, obtained by adjoining De to 
the fiber Fe of the momentum map. There are 12 half periods on De, among which 
the 8 points Ri and R!;' where D~ and D~ are branched over the elliptic curve Ce 
and 4 other smooth points P:1 and P:~ of De. The latter 4 points are the (double) 
tangency points of the vector field vl. 
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We are now in a very similar situation as in the case of geodesic flow for 
metric II (see Paragraph 8.3.2). Namely we have an isomorphic embedding I.{Jc 

ofF c, satisfying the adjunction formula, and it will turn out later that these 
functions provide an embedding of the compactification of F c, which will 
turn out to be an Abelian surface of type (2, 4). But not all the Wronskians 
W(zi, Zj) can be written as a quadratic polynomial in zo, ... , z1, with coeffi
cients in 1£. The reason is again that the Painleve divisor is very ample but 
is not normally generated. The remedy is in this case slightly simpler than in 
the case of geodesic flow for metric II, because the divisor at infinity is now 
reducible, having two components, so instead of looking for a basis (over 1i) 
for the space of polynomials which have a double pole at most when any of 
the two principal balance is substituted in them, we look for a basis (over 1i) 
of the smaller space of polynomials which have a double pole at most when 
the principal balance x(t; r~) is substituted in it, but have a simple pole at 
most when the principal balance x(t; r~') is substituted in them. This means 
that we choose as pole vector p := (2, 1). Already the functions z0 , ••. , z7 

defined in Table 10.4 have this property; we find the following additional 
functions. 

zs = x~, 
Zg = X2X3, 

ZlQ = X2X6, 

Zu = X5 

Z12 = XtX5, 

Zt3 = xix5, 

Z14 = X~X5, 
Z15 = XtX~, 
Zt6 = X2Z6, 

We will denote the embedding ofF c into P 17 , given by these functions by '1/Jc. 
It leads to an embedding '1/J~ of the abstract Painleve divisor r~ into P 17 by 
taking the coefficients in t-2 of z0 (t; r~), ... , z17 (t; r~), to wit 

(a, b) t--t (0 : · · · : 0 : a2 : a : ab: 1 + a2 : (1 + a2 )b: (1 + a2 )b2 : 

(1 + a2 )b3 : a2b: a(1 + a2 )b2 : a(2a2b3 - Z'(b)/2)). (10.44) 

Similarly, we get an embedding '1/J~ of r~' into P 17 by taking the residues of 
Zo(t; F~'), ... , Z17(t; F~'), to wit 

(a, b) t--t (0: a: 0: -1: -b: ab: -(1 + a2)b2 : 2a2b3 - Z'(b)/2: 0: -b: -b2 

: 0: 0: 0: -a3 (a2b4 - Z(b)): ab2 : -(1 + a2 )b3 : b(2a2b3 - Z'(b)/2)). 

It is checked as before that the closure of each of these embeddings yields 
two non-singular curves, which we will denote again by V~ and V~. Again, 
they intersect transversally in 4 distinct points, namely in the points 



10.3 The Kowalevski Top 449 

This corresponds to the following points2 in projective space: 

1 ( . r-:tf3h - Cl . f"1 ) Q,2 , 3 := 0:···:0:1:0:0:0:f2v-1 2 :f2v-1:0:-fgb. 

{10.45) 
The other points are all distinct and are given3 by 

P:1 := lim 1/J~{p) = {0 : · · · : 0: 1 : 0: 0 : 1 : 0: 0 : 0: 0 : f1../C3: 0), 
p-too.l 

P:~ := lim '1/J~(p) = {0: 1:0:0:0:0: -fl../C3: 0: · · ·: 0: *: 0:0: 0), 
p-too.l 

We now show that (1/Jc)• V1 extends to a holomorphic vector field V1 on P 17 
by writing down quadratic differential equations for this vector field in the 
charts Zo :f. 0 and Z1 :f. 0. For the first chart, we have 

Z1 = ZtZa- Z4, Zg = (z1 + z2)(zs- zn) + za(2z4- Zg)- c2, 
Z2 = Z4 - Z2Za, zw = z~ - zszn - z2(c2 - 2zts + Z12), 
.is= z~ + 2(zs + zs- zn)- c1, .in = -2zszn, 
Z4 = ZsZ4 + 2(zts- Z12)- c2, Z12 = Z7- 2zsz12, 
.is = Z4(z1 - z2), Z13 = -2z4Z12, 
.is = z~ + z~- 2zts- cs + c4, Z14 = ZaZt4- 3Z4Zta, 
Z7 = 2zsZt2- (ctzl - c2)zn, its = (2zt - z2)zw- zazts, 
.is = 2(z2Z4- zszs), its = Z4Zs- c2(zs + zs) + zs(CtZ2- 2z12), 

Z17 = Z7(Z4- 2zg)- z2Z14 + z12z1s + c4(zs- zs). 

In the chart zl :f. 0 we define Yi := Zi/ Zl for i = 0, ... '17. Then the 
vector field (1/Jc)• V1 can be written as follows. 

ilo = YoY4 - Ys, 
i/1 = o, 
Y2 = YOY6- yg, 

ila = -2yn + YaY4 + 2ys(Y2 + 1)- CtYo, 

Y4 = Y~ - 2(YoYta - Yts) - c2yo, 

ils = Ys - Yw, 

ila = Y4Y6- 2Y14Yo + CtYs- c2(YoYs + 1), 

i11 = Yt4(1 + 4y2)- 2ctYoYta + (c2 + CaYo- C4Yo)Yn - c4(1- y~) + 2y4y7, 

ils = 3yoYta - Y4(Ys + 2ys), 

iJg = 2yts(1 + Y2) + YaYs- Ys(CtYo + 2yn), 

ilw = YsYts - yo(Yt4 + cs - C4)- Y2Yta - Y4(Yw - 2ys), 

iln = -2YaY12 - YoY7, 

Y12 = -2(Y4Yl2 + Y7 ), 

2 We use the same notation for these image point in P 17 as their images in P 7 , 

but this should not cause any confusion. 
3 The (complicated) value of* is irrelevant. 
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Y13 = -Y3Y14 - Y4Y13, 

Y14 = -2Y4Y14, 

i11s = 2(Y16 - Y4Yls), 

i/16 = Y~ + c1y~- 2Y2Y14- c2(Ys + Ys), 

Y11 = Y14Y5- 3y7(Y10- Y6)- c2(Ys(Ys- Yu + Ys- c1yo) + yg(yg- Y4) 

+yo(c2y2 + 2y13))- (c3- C4)Yu(Y2- 2)- c4(Y2Ys- 2y2ys + Ys). 

We now show that the flow of V1, starting from the 8 points P:1 , P:~ and 
Q~2 <3 goes immediately into the affine. For the four intersection points Q~2 < 3 
of V~ and V~ we read off from (10.44) and Table 10.3 that the leading 
coefficient of ZlQ ( t; rD has a pole for ' = 0 that is maximal among the 
leading coefficients of zs(t; r~), ... 'Z17(t; rD, and thus, ZlQ defines the chart 
about these points. With some effort, one computes that 

which shows that the flow ofV1, that starts from the points Q~2 <a' goes into 
the affine immediately. For the other four points one arrives at the same 
conclusion by checking that the following limits are different from zero. 

. 1 
hm ( F') P-too, 1 zs t; c 

1. 1 
liD 

P-too,1 Zl (t; T~') 

Finally, we need to check that 'f/!c(F c)\ 'f/!c(F c) contains no other irreducible 
components than V~ and V~. For the intersection points (10.45) we have in 
terms of a local parameter' in a neighborhood of OOe 2 ,e3 E r~ that 

1 r-:1 2 3 
( . F') = v -lt:2't + O(t ), 

Z10 t, c 

so that 'f/!c(Fc) \'¢(Fe) has degree three at each of their four image points. 
Since z10 has a double pole on V~ and a simple pole on V~ there are no other 
divisors passing through these points, i.e., condition (7.57) is fulfilled. At the 
points P:1 and P:~ one uses the vector field V2, since V1 is tangent to the 
divisor at those points, using the function Z7 to define the chart at the points 
P:1 E V~ and z1 for the points P:~ E V~. For a full proof one checks first 
that V2 also extends to a holomorphic vector field on P 17 which can be done, 
as above, by writing down explicitly the quadratic differential equations for 
this vector field (in two affine charts). This leads to the following theorem 
that states the algebraic complete integrability of the Kowalevski top, and 
describes some of its algebraic geometric features. 
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Theorem 10.4. Let ( C6 , { · , ·} , F) denote the integrable system that de
scribes the K owalevski top, where F and {- , ·} are given by ( 10.35) and 
(10.36}, with commuting vector fields (10.37}. The weights of the phase vari
ables are given by ro(x1, x2, X3, X4, xs, xa) = (1, 1, 1, 2, 2, 2). 

( 1) ( C6 , { · , . } , F) is a weight homogeneous a. c. i. system; 
(2) For generic c the fiber Fe of its momentum map completes into an Abelian 

surface T~ by adding a singular divisor De; 
(3) De consists of two irreducible components D~ and D~, which are both 

non-singular curves of genus three; 
(4) D~ and D~ are translates of each other over a half period in T~ and they 

intersect each other transversally in 4 points; 
(5) The line bundle [De] defines a polarization of type (2, 4) on T~ and leads 

to an embedding of T~ in P 7; it is not normally generated, but the line 
bundle [2D~ + D~] is; 

(6} T~ is dual to Prym(D~/Ce), where Ce is the elliptic curve, given by 
(10.42}. 

Proof. We have verified the conditions of the complex Liouville Theorem, 
which allows us to conclude that we have a weight homogeneous a.c.i. system, 
and that the tori T~ that compactify the generic fibers Fe are obtained by 
adding the images 

D' - tn' (T') C - TC C and D" = tn11 (T") 
C TC C ' 

for which we have already obtained the intersection pattern. Since each of 
these curves have genus 3 they induce on T~ a polarization of type (1, 2), 
and together they provide a very ample line bundle, as follows from Ra
manan's Theorem (Theorem 5.18). Also Example 5.32 implies that T~ is 
dual to Prym(D~/C~), where C~ will be shown later to be equal to Ce. We 
can identify a as a translation over a half period on T~, because it is an 
involution of T~ that leaves the vector fields V1 and V2 invariant. On the 
other hand, r yields the -1 involution on T~ because it is an involution that 
flips the sign of both vector fields. Since T acts on the embedding variables 
as follows, 

r(zo : · · · : Z7) = (zo : Z1 : Z2 : -z3 : -z4 : Z5 : -Za : -z7) 

it acts on the parameters that appear in the principal balances according to 

r(t,a,b) = (-t,-a,b), 

so that the half periods ofT~ that lie on De are given by the 12 points of 
De corresponding to a = 0 and a = oo; the former 8 points are the points on 
De where D~ and D~ are branched over Ee, the points (0, bi) where bi is any 
root of C4 - Z(b); the points corresponding to a= oo are the points P:1 and 
P::, where fi = 1. D 
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We now turn to the holomorphic differentials on the divisor 'De. In the no
tation of Paragraph 7.6.7 (see especially Example 7.54) we choose y0 := x3 

and y := x2 so that 

Y(O) - 1 
0 - ' 

y~I) = -ab, 
y(O) =a y(I) = b(a2 + 1) 

and, using (10.37) and (10.40) compute 

[ 1 ] 2 2 v2 - = -b (a + 1), 
Yo I'D' c 

It follows that 

1 -b2 (a2 + 1) 

b(2a2 + 1) -(1 + a2)(b3 + Z'(b)/2) 

= (a2 + 1) (2a2b3 - Z'(b)/2). 

The holomorphic differentials dti and dt2 , restricted to V~, are therefore given 
by 

da 
WI = (a2 + 1)(2a2b3 - Z'(b)/2)' 

b2da 

If we write WI in terms of a local parameter ~ on a neighborhood of the two 
points ooE1 by using Table 10.3 then we find 

which shows that WI has a double zero at the two half periods P:1 , so that VI 

is doubly tangent to V~ at these two points. Since the degree of the canonical 
bundle of a Riemann surface of genus 3 equals 2(3 -1) = 4 this accounts for 
all points of tangency of VI along the smooth curve V~. Using the involution 
(j' which preserves VI' it follows that VI is also doubly tangent to v~ at the 
points P:~. Finally, notice also that both WI and w2 are odd with respect to 
the involution r, as r(a, b) = (-a, b). Since V~fr = Cc this shows that T~ is 
dual to Prym(V~/Cc), as announced in the proof of Theorem 10.4. 
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10.4 The Goryachev-Chaplygin Top 

10.4.1 Liouville Integrability and Lax Equation 

In this paragraph we discuss another integrable top, that was first introduced 
by Goryachev in 1900 (see (66]) and that was first integrated by Chaplygin 
(see [41]). The physical characteristics of the top are that the principal mo
ments of inertia satisfy h = 12 = 414 and that the center of mass belongs 
to the equatorial plane (corresponding to the moments 11 and 12) through 
the fixed point. This top is special in (at least) two different ways. First, it is 
integrable on the Poisson submanifold K2 = 0 only; recall from (10.7) that 
K 2 is the component of the angular momentum in the direction of gravity. 
Second, it is not a.c.i., although it is closely related to an a.c.i. system; this 
will be explained in Paragraph 10.4.3. 

By a simple rescaling we may assume that (AI,A2,A3) = (1, 1,4) and that 
(m1,m2,m3) = (-4,0,0), so that the equations of motion (10.5) take the 
simple form 

'h = 4a3'Y2 - a2-y3, 

1'2 = a1 'Y3 - 4a3'Yl, 

1'3 = a2'Y1- a1'Y2, 

al = 3a2a3, 
a2 = -4'Y3 - 3a3al' 

a3 = 4'Y2· 

With these scalings the energy of the top is given by 

1 ( 2 2 2) H = 2 a1 + a2 + 4a3 - 4'Yl· 

(10.46) 

As we said we consider the Poisson subspace M of (R 6 , { · , ·}), defined by 

(10.47) 

which is smooth away from the origin ( { · , ·} still denotes the e(3)-Lie-Poisson 
structure, whose Poisson matrix is given by (10.6)). On M the algebra of 
Casimirs is generated by 

The extra invariant, which was found by Goryachev, is given by 

K3 := (a~ + a~)a3 + 4al 'Y3· 

Notice that it K3 is only in involution with H upon using K 2 = 0, since 
{K3,H} = 4a2 K 2 • The Casimir K1 and the integrals K3 and Hare inde
pendent on a dense open subset of M so that (M,{-,·},(K1,K3,H)) is a 
Liouville integrable system. 
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A natural Lax equation, with spectral parameter, for the Goryachev
Chaplygin top was obtained by Bobenko and Kuznetsov (see [31]). Their 
recipe, which still remains a mystery is this: remove from the Lax pair of the 
Kowalevski top the first row and first column and you get a Lax pair for the 
Goryachev-Chaplygin top, except let t --+ 2t and add Aa3 to the (1, 1) 
entry of the generator of the flow, which we call M(b) instead of HY(b). 
Precisely, by the above procedure we get 

( 
0 

L@ := -'Ya 
a1-paab 

and 

'Y3 
-aab 

--y1 + H'Y2 + b2 

The Lax equation L@ = [L@, M(b)]leads then to the following vector field 
(still using that K2 = 0), 

'h = 4aa'Y2 - a2-y3, 

i'2 = a1 'Ya - 4aa'Yl, 

i'a = a2'Y1 - a1 'Y2, 

al = 3a2aa, 
a2 = 4-ya - 3aaal' 

aa = -4'Y2· 

(10.48) 

which is easily seen to be equivalent to (10.46), upon rescaling the variables 
(multiply all variables, including time, by -1). The Linearization Criterion 
is verified in the same way as in the case of the Kowalevski top. Namely, the 
spectral curve is given by 

3 (r.4 C2 r.2 ) C3 r.3 Cc : P. + P. 1J - 21) + Ct + 41) = 0, 

where (c1,c2,c3) are the values of (Kt,H,Ka). We have that 

L@ . a 
M@ = -2H-b- +dtag(3Haa,O,O) + b' 

so that it suffices to verify that e/b has no pole at the three points at infinity 
of the spectral curve, where e = (1,6,ea)T is the normalized null-vector of 
Slda -L@, for (S, b) belonging to the spectral curve Cc, 

( -a1 + Aa2)b3 + ( Aa1 'Y2 - Aa2'Y1 + ana)b- 2-yap. 
6= ( 4 2 ) ' 2 p.2 + b - (a~ + 2-yt)b + 'Y~ + 'Y~ 

ea = ((a1- Aa2)aa- 2-ya)b2 + (a1- Aa2)!-'b + 2-ya('Yt- H-y2). 

2 (p.2 + b4 - (a~ + 2-yt)b2 + 'Y~ + 'Y~) 
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For the first two points at infinity we have that 

1 b = -, 
c; 

Direct substitution in 6 and 6 yields 

so that 6/b and 6/b are finite at these points. Similarly, the third point at 
infinity is given by 

1 b= -, 
c; 

which yields, by direct substitution in e2 and 6, 

so that 6/b and e3/b are also finite at this point. Therefore, we have checked 
the conditions in Corollary 6.43 and we may conclude that the Lax opera
tor L(b) satisfies the Linearization Criterion and hence that the Goryachev
Chaplygin vector field linearizes on the Jacobians of the spectral curves Cc. 
We will see in Paragraph 10.4.3 that, despite this fact, the Goryachev
Chaplygin top is not a.c.i. 

10.4.2 The Bechlivanidis-van Moerbeke System 

In this paragraph we consider an integrable system on C 7 which was con
structed by Bechlivanidis and van Moerbeke (see [30]) in order to under
stand the geometry of the Goryachev-Chaplygin top. We call this system 
the Bechlivanidis-van Moerbeke system. We consider on C7 , with coordinates 
x1 ... , X7 the Poisson structure defined by the following matrix, 

0 0 -16x5 0 -8 0 16x2 

0 0 0 0 0 0 4 

16x5 0 0 2x5 2x4 -4X2X5 4x2X4 

0 0 -2x5 0 -1 0 -2x2 (10.49) 

8 0 -2x4 1 0 -2x2 0 

0 0 4x2x5 0 2x2 0 ~4x~- x1 

-16x2 -4 -4x2X4 2x2 0 4x~ + x1 0 
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Also, consider the following 5 functions, 

Fi =Xi- 4x~- 8x4, 

F2 = XiX2 + 4xa, 

F3 = X3 + X~ - X~' 
F4 = X2X3 + X4X6 + X5X7, 

F5 = -XiX3- x~ + x~. 

(10.50) 

It is easy to see that Fi, F2 and F3 are Casimirs for this Poisson structure, 
which has rank 4 generically, and that F4 and F5 are in involution; they lead 
to the vector fields (up to a constant) 

Xi = -8x7, 

±2 = 4x5, 

X3 = 2(x4X7 + x5xa), 

X4 = -4X2X5 - X7, 

X5 = xa - 4x2X4, 

X6 = -XiX5 + 2X2X7, 

xi = 8(xix5 + 2x2x1 ), 

x~ = 4x7, 

X~ = 4(X2X5X6 + X2X4X7- 2X3X5), 

x4 = XiX5- 2X2X7, 

X~ = XiX4 + 2X2X6- 4X3, 

X~ = -XiX7- 2XiX2X5- 4X~X7, 

±1 = XiX4 + 2x2xa- 4x3, X~ = 8X2X3 + 2XiX2X4- 4X~X6- XiX6· 

(10.51) 
We denote these vector fields by Vi and V2 • Consider also the bivector field 
{ · , · }' on C7 , defined by the following matrix, 

0 0 -16x7 0 0 0 -Bxi 

0 0 0 0 -4 0 0 

16x7 0 0 2x7 -2xa -4x2X7 8x3- 4x2xa 

0 0 -2X7 0 4x2 0 -xi (10.52) 

0 4 2x6 -4X2 0 -Xi 0 

0 0 4x2X7 0 X1 0 2x1X2 

8x1 0 4x2xa- 8x3 Xi 0 -2XiX2 0 

It follows by direct computation that { · , · }' satisfies the Jacobi identity, as 
well as {·, ·} + {-, ·}'. Moreover, it is easy to see that Fi, F2 and F5 are 
Casimirs of { · , ·}' and that F3 and F4 generate (up to a constant) the vector 
fields Vi and V2. Thus, Vi and V2 are hi-Hamiltonian vector fields. 

We now show that the Bechlivanidis-van Moerbeke system is a.c.i. We see 
that V1 becomes weight homogeneous, by assigning to the variables Xi the 
following weights, 

v = ro(xi, ... ,x7) = (2, 1,4,2,2,3,3). 
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With respect to these weights the constants of motion Fi are also weight 
homogeneous, with weights 

ro(F1, ... , F5) = (2, 3, 4, 5, 6), 

and the time involution is given by 

The indicia! locus I is given by 

2x~0) - 8x~0) = 0, 

x~o) + 4x~0) = 0, 

4x~0) + 2(xi0)x~0) + x~0)x~0)) = 0, 
2x(o) - 4x(o) x(o) - x(o) - 0 

4 2 5 7 - ' 

2x~0) + x~o) - 4x~0) xio) = 0, 

3x~0) - x~o) x~o) + 2x~0) x~o) = 0, 

3x~0) + x~o) xi0) + 2x~0) x~o) - 4x~0) = 0, 

and it is easy to check that it consists of the following five points, 

I' ( t: 1t:) := 0,-2,0'-8'8'0,0 ' 

If:= (2,-t:,O,-~,~'~'~), 
I 2 := ( -4,0,-~,-~,0,0,-1), 

(10.53) 

where E = ±1. The Kowalevski matrix at an arbitrary K (w) is given by 

2 0 0 0 0 0 -8 

0 1 0 0 4 0 0 

0 0 4 2 (0} x7 2 (0} xa 2 (0} 2 (0} x5 x4 
K(w)= 0 -4x(o) 5 0 2 -4x(o) 

2 0 -1 

0 4 (0} - x4 0 -4x(o) 2 2 1 0 
(0} 

-x5 2 (0} x7 0 0 (0} 
-xl 3 2 (0} x2 

(0} 
x4 2 (0} 

X a -4 (0} 
xl 0 2 (0} x2 3 

so that we find the following expressions for the characteristic polynomial 
x(J.L; w) := IJ.Lld7 -K(w)l at these five points: 

w =I', 
{ 

(J.L + 1)(J.L- 1)(J.L- 2)(J.L- 3)2(J.L- 4)(J.L- 5), 

x(J.L; w) = (J.L + 2)(J.L + l)(J.L- 2)(J.L- 3)(J.L- 4)(J.L- 5)(J.L- 6), w =If, 
(J.L + 2)(J.L + l)(J.L- 2)(J.L- 3)(J.L- 4)(J.L- 5)(J.L- 6), w = I 2. 
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In fact, one easily computes that 

dF1 (I') = dx1 + 4~:dx2 - 8dx4, 

dF2(I') = -~dx1 + 4dx6, 

dF3(I') = -~dx4- ~dxs + dx3, 

dF4(I') = -~dx6 + ~dx7- ~dx3, 
dF5 (I') = 0, 

which explains, in view of Theorem 7.30, the occurrence of the eigenvalues 
2, 3, 4 and 5 of K(I') (recall that w(Fi) = i+ 1), while one similarly computes 
that all dFi(If) and dFi(I2) are different from zero (i = 1, ... , 5), explaining 
by the same Theorem the occurrence of the eigenvalues i+ 1, with i = 1, ... , 5, 
in K(If) and K(I2). Moreover, Proposition 7.11 implies in the three cases the 
occurrence of the eigenvalue -1, and the sum of all eigenvalues is Trace( X:) = 
2:: w(xi) = 17, in view of Proposition 7.12. This yields for the points If and 
I 2 the characteristic polynomial of K, as given above, while for the points I' 
we could predict, using these arguments, only that the eigenvalues of K(I') 
are { -1, 2, 3, 4, 5, A, 4- A}, with A unknown. 

It follows that only the points I' can lead to a principal balance and that, 
if I' leads indeed to a principal balance, then trivial free parameters b, c, e 
and f will appear at steps 2, 3, 4 and 5, while effective parameters a and d 

will appear at steps 1 and 3. We give the first 4 terms of these balances, 
thereby determining the effective parameters; two other trivial parameters (e 
and f) will appear at steps 4 and 5. 

x1(t;I') = 2w- 2a2 - (8d + 2w(a2 + cl/3)) t + O(t2 ), 
t 

t: a 3a2 + c1 ~:c 2 3 
X2(t·I') = ---- + Et+ -t +O(t) , 2t 2 6 4 , 

1 
x3(t;I') = 16t (c- 4d) + 0(1), 

1 
x4(t;I') =- St2 (1 + (a2 + ct/3)t2 + t3(8d- c)+ O(t4)), (10.54) 

xs(t;I') = 8~2 (1 + (a2 + cl/3)t2 + ct3 + O(t4 )), 

1 
x6(t; I') = 4t2 (a+ ~:t2 (8d- c + at:(a2 + cl/3)) + O(t3 )), 

1 
X7(t;I') = 4t2 (at:+ t2(4d + at:(a2 + cl/3)) + O(t3)). 

One of the trivial parameters, b, was already replaced by the value c1 of the 
constant of motion F1: we have that F1(x(t;I')) = c1. 
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If we put these principal balances into the remaining equations Fi = 
ci, i = 2, ... , 5, where c = (c1, ... , c5) is generic, and if we eliminate4 the 
remaining three trivial free parameters c, e and f, then we get the equation 
of an affine curve r~, to wit, 

(10.55) 

Notice that the equation of this curve is independent off, so that the two 
Painleve divisors r: and rc- are isomorphic. It is seen at once from (10.55) 
that r~ is hyperelliptic and has genus two. It has two points at infinity, 
denoted oo~, where f/2 = 1. A neighborhood of these points is described in 
terms of a local parameter ~ by 

-1 
a=~ ' 

We now look for weight homogeneous polynomials which have a double 
pole in t at most, when any of the two principal balance is substituted in it. In 
the notation of Paragraph 7.7.1 this means that we wish to construct a basis 
of Zp as a 1£-module, where the pole vector p is chosen as p := (2, 2). The 
following observation is useful in this case. Assume that the Bechlivanidis
van Moerbeke system defines indeed an irreducible weight homogeneous a.c.i. 
system and denote by V~ the image of the curves Fi by the corresponding 
embedding. Then each of these divisors will define a principal polarization on 
the smooth compactification of the generic fiber F c of the momentum map, 
which is an Abelian surface T~. This means that T~ is (isomorphic to) the 
Jacobi surface Jac(V~), and, by (5.38) that a basis of Zp consists of 

dimL(2(Vt + V;)) = (2Vt ~ 2V;)2 = (4~t)2 = 16(g(Vc)- 1) = 16 

elements, assuming that 2V;t" and 2V-; are linearly equivalent. In view of 
Piovan's Theorem (Theorem 5.37) we can construct such a basis by using 
products and Wronskians (with respect to both vector fields) ofthe functions 
in Z(l,l)i a basis for the latter space consists of (1,x1,x2,xa) as is read off 
at once from (10.54). Besides the functions zo := 1 and Zi := Xi, where 
i = 1, ... , 7, we arrive at the following functions, which are listed together 
with their leading behavior. 

E(4d- c) 
zs := Z2Z3 ,..., 32t2 ' 

a(4d- c)f 
Zg := Z1Z3 ,..., - Bt2 ' 

a2 
Z10 := Z1Z4 - 2z2Z6 "' 2t2, 

4 In the sequel we will only need the value of c, which is given by c = 12d+af(cl + 
4a2)- c2f, as follows from F2(x(t;I')) = c2. 
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a2t: 
Zn := Z1Z5 + 2z2Z7 "' - 2t2 1 

4d-c 
Z12 := Z4Z7 + Z5Z6 "' 32t2 1 

a(4d- c) 
z1a := z2z12 - 2zazs "' 32t2 , 

2 (4d-c)2 

Zl4 := Za "' 256t2 ' 

a2(4d-c) 
Z15 := Z1Z12 + 4zaZ7 "' - 4t2 · 

The resulting embedding ofF c into P 15 will be denoted by ct'ci notice that 
it is an isomorphic embedding since each of the phase variables x1 , .•. , x7 
is taken as one of the embedding variables. Taking the coefficients of r 2 of 
the balances z0 (t; r~) •... , z15 (t; r~). we get an embedding cp~ of each of the 
Painleve divisors r~ into P 15 . Explicitly, 

cp~: r~ ~ pls 

(a, d) 1-t (0: 0: 0: 0: 1: -f: -2a: -2at:: 16t:6: -64at:6: -4a2 : 4a2t:: 

165: 16a6: -12882 : -128a26), 
(10.57) 

where 6 := (c- 4d)f64. Notice that this is indeed an embedding of the affine 
curves since a and d appear linearly in the map; also the two affine curves 
are embedded disjointly because f also appears by itself in the embedding. In 
order to see what happens at the points at infinity of the embedded curves, 
write a neighborhood of the points co" by using (10.56) and let t ~ 0. For 
doing this computation the reader will find the following local expression of 
6 near co" useful: 

1 
6 = 64~3 (4('7 + t:) + c1(71 + t:)~2 - ca('7 + t:)~3 - 8c377~4 - 8c471~5 + 0(~6 )). 

Notice that 6 "' ±(2~)-3 when 71 = f, while 6 "' -c3~/8 otherwise. Taking 
limits we find 

lim cp~(p) = lim cp;(p) = (0: .. ·: 0: 1: 0) =: 0, 
p-too+ p-too-

lim cp~(p) = (0: .. ·: 1: -1: 0:0: 0: 0) =: p+, 
p-too-

lim cp;(p) = (0: · · ·: 1: 1: 0: 0: 0: 0) =: p-, 
p-too+ 

so that the two curves V~ := cpHFf) have one point in common (the point 
0). It is actually a tangency point, as follows by computing the linear term 
in~ in the above limits. 
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Notice that this is equivalent to saying that the adjunction formula (7.50) 
is satisfied. For by Remark 5.43 and Table 5.1, the adjunction formula re
quires that 

dim(L(2Vt + 2V;)) = g(2(Vt + V;))- 1 

= 4 ((V~f + (V;)2) + 41J+. v-
2 2 c c 

= 4(g(Vt)- 1 + g(V;)- 1) + 8 

= 4 X 2 +8 = 16. 

We represent the geometric configuration of these two divisors in P 15 in 
Figure 10.3. 

p+ p-

v+ c v-c 

Fig. 10.3. For generic c the Bechlivanidis-van Moerbeke divisor Vc consists of 2 
isomorphic non-singular hyperelliptic curves V;t and V; of genus 2. They intersect 
in the point 0, which is a point of tangency; moreover, the vector field vl is tangent 
to Vc at 0 and at the points p+ and p-. 

We now check that the two vector fields (<pc)• V1 and (<pc)• V2 extend to 
holomorphic vector fields on P 15 , that we will denote by V1 and V2 • To show 
this we establish that these vector fields can be written as quadratic vector 
field in the two charts Z0 =1- 0 and Z2 =1- 0 (see Lemma 7.58). For the vector 
field ( <pc)• V1 this is almost obvious in the chart Z0 =/- 0 because V1 is itself 
quadratic (at most), and because the functions zs, ... , Z15 were constructed 
by Piovan's Theorem. We only give the three quadratic equations that are a 
bit harder to find: 

i12 = (z10 - 4z3)Z4 - zszu - Zg - cs, 
. 3 1 

Z13 = -2Z3Z6- 2Z1Z8- 2(C1Z3- 2c3Z1 + 4c4Z2 + 2cs)z2, 

i1s = -2z1z9- 16z~ + 2c2zs + (c3z1- 2c4z2- cs)zl. 
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In the same chart we can write (cpc)• V2 as 

z~ = 8zu, 

z~ = 4z7, 

z~ = 4zla, 

z4 = Zu - 4Z2Z7, 

z~ = 4(z2Z6 - za) + z10, 

z~ = -z1z1- 2z2zu, 

z~ = 8zs - z1za + 2z2z1o, 

z~ = 4(zaz7 + z2z1a), 

z~ = 4z2Zl5, 

z~0 = zu(2zl- c1)- 2c2z7, 

z~ 1 = Z1Z10 - 4zg + Bz¥ + 8z5zu + 2z2(8zs + c1za + 2c2z4), 

Z~2 = -2ZlZ8- C1Z2Z3- C2Z3 + 2c3Z1Z2- 4C4Z~- 2C5Z2, 

(10.58) 

Z~3 = 4(Z7Zl2- ZaZs + 6z14) + (cl - ZI)hza/4 + C4Z2) + C2Z2(2c3- 3za) 

-16caza - 2c5z~, 

z~4 = 8zaz1a, 

z~5 = l6(zuz12 + zszlo + 4z2Zl4) - c2za(c1 + 3zt) + 2c2caz1 

-4c4(2z10 + 8za + c2z2) - 2c5z1z2, 

and so in the chart Zo =f. 0 both vector fields are quadratic. For the chart 
Z2 =f. 0, define Yi := zi/z2 fori= 0, ... , 15. Then the vector field (cpc)• V1 can 
in this chart be written as follows, 

ilo = -4yoy5, 

Yl = -4YoYu, 

iJ2 = o, 
ila = 2YoYI3, 

Y4 = 4Y4Y5 + Y7 - (yu - CIY5)Yo, 

Y5 =By~- 4y~ + Ya- (Yl- C!Yo)Y4, 

Ya = Yu + 4Y5Ya - 2c2YoY5, 

iJ1 = -ylO - 4c4Y5 + 2(c2Yo - 2ya)Y4, 

Ys = 2(Y13 + 2Y5Ys), 

ifg = 2(YIY13 - 4Y7Ys), 

Y10 = (4ya- C2Yo)Y7 + 11f(ciYo- YI) 

ilu = 2c2(YoYa- Y4)- (c1 + 8ya)Ya- 8ys- 4y5yu, 

Y12 = -~YaYlO- c2y~ + ~(2c2Y4- 8ys + CIYa) + llf(clY5- Yu), 

Y13 = 4(YaYs- Y5Yla)- ~c1Ys- !c2y3- ca(4ya- C2Yo) 

-!f(Yl - C1Yo- 8y4)- C5, 

YI4 = 4(YsYI2 - Y5YI4), 

Y15 = -8ysYlo + 4clY3Y6 + c2((l2y3 + Ylo)Y4- YlY3- Y5Yu) 

-4c4(Yl0 + 4ya)Yo - c5y1. 

while the vector field (cpc)* v2 can in this chart be written as follows, 



Yb = -4YoY7, 
Y~ = 4(2yu - Y1Y1 ), 

y~ = 0, 

y~ = 4(Yls - YsY7 ), 
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Y~ = -yu- 4(YoY12 + YsYa) + 2c2YoYs, 

y~ = -ylO- 4(Y4Y6 + C4Y5) + 2C2YOY4, 

Y~ = ~(8y4 - Y1 + clyo)Yn - c2YoY1, 

y~ = 8(ys + y~)- 4y? + C1Ya + 2c2(Y4- YoYa), 

Y~ = Yls(Yl- 8y4- c1yo), 

Y~ = -16(2YsY12 + YBYls)- 4(clY3Y7- C2Y12), 

Y~o = -4Y7Ylo - ( c1 + By a )yu + 2c2 (YoYn - Y1), 

Y~1 = 8Y1Ys- (4ya + c1)Y10 + c2(YlY4 + YoYlO)- 8csY1- 4c4(8y4 + ClYo)Yo, 

Y~2 = 16y~ + 8ysY1s- hlY9 + c1(c4 + tCIYs)Yo + c2(2csyo- c4y5- 2ys) 

-16csYoYs- 2cs(1 + 2YoY4), 

Yb = 4(2Yl4 + Y7Yls) + 7(4ya + cl)ys + Sif(Y4Ylo- YsYn - 10ys- 8YsY4) 

-16csYs + ~(8- YoYI) + c4(16YoYs + c1) + ~(c1cs- c2c4)Yo- !fY1. 

Y~4 = 4(2YsY13 - Y7Yl4), 

y~5 = -4Y7Yl5 + 16YnY13 + 4ygy10 + 32YlY14- 4cl (clYsY4 + 2YaYs -By~ 
-4(YsYls + CsYa - c4y4)) + c2(2csY1 - 3Y1Ys- 2csyo- 4c4 - c1ys) 

-32csys(3yl - 16y4- cl) + 32ys(8cs + C4Yo) - 8(c4y10 - CsYa), 

and thus, in the chart Z2 f. 0 both vector fields are quadratic. 
We now show that the flow of V1 that starts from the points 0 and p± 

goes into the affine immediately. Since the only non-zero coordinate of 0 is 
the one that corresponds to z14 we need to show that the series 1jz14(t; r,t) 
has a non-zero limit at 0; to do this, write the coefficients of the latter series 
in terms of a local parameter' around 0 (by using (10.56), with 'f/ = +1) to 
find that 

For the points p± one considers the series z10(t; rf), writing the coefficients 
of the series in terms of a local parameter around P~ to find, with slightly 
less effort that 

To conclude, we need to check that no other divisors pass through the points 
0 and p±. Since the vector field V1 is tangent to each irreducible component 
of the Painleve divisor at these points, as we will see, we need to check this 
by using the vector field v2, which we checked to be holomorphic. 
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Notice that since Z14 and z 10 have a double pole along Vt and define the 
local chart at 0 and p± respectively, the expected degree of the divisor at 
0 is 4, while it is 2 at the points p+ and p-. We first compute at p± the 
principal balances of 1/ z10 with respect to V2 = ', which can be done by 
computing the first two terms in the holomorphic series only. Indeed, using 
(7.39) and (10.58) we compute the first few terms of the holomorphic series 
zl(}(t2; Ff) (it is holomorphic since V2 is holomorphic and Z10 =/= 0 defines 
the chart): 

1 1 ( 1 )' -(t2; Fg=) = -(t; Fg=) + - (t; Fg=) t2 + O(t~), 
ZlO Z10 lt=O Z10 it=O 

= B~t2 + O(t~), 

so that the degree of the divisor at infinity at p± is indeed 2. The check 
at the point 0 is simplified by the fact that the function z14 which defines 
the chart at 0 is a square, Z14 = z~. With some effort one shows that the 
holomorphic series: 

1 ± -(h;Fe) 
ZJ 

=_!_(t;Fg=) +(_!_)'(t;Fg=) t2+(_!_)"(t;Fj=) t;+O(t~), 
za l•=o Za l•=o Za l•=o 

= 4~2t2 + 16t~ + O(~t~, t~), 

so that; (t2;Ff) has multiplicity 2 at 0 and hence 1/z~4 = 1/z~ has mul
tiplicity 4, as desired. Strictly speaking, about 0, where the chart is defined 
by z 14 , we only know that the series zi/ZI4(h; Ff), with 0 ~ i ~ 15 is holo
morphic, but z3 /z14 = 1/z3 , so 1/za(t2;Ff) is holomorphic and so we must 
have as a holomorphic series identity 

and this is why it is honest to just compute 1/ za(t2; Ff) and square it. 
This shows that the divisor at infinity has no other components than Vt 
and V;. We conclude that the generic fiber Fe of the momentum map of 
the Bechlivanidis-van Moerbeke system completes into the Jacobian of the 
curve Fe by adjoining two copies V~ of Fe that are tangent at their common 
intersection point 0. Let us show that the vector field V1 is (simply) tangent 
to V~ at 0 and at the points p±. To do this we follow the method that was 
given in Section 7.6.7. 

In the notations of Example 7.54 we choose Yo := x1 andy := x2 so that, 
using (10.54) 

y~o) = 2£a, 
y(O) = -f/2 

y~l) = -2a2, 
y(l) = -a/2 
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and using (10.51) and (10.54), 

v2 [~] = €, 
Yo lv~ 

It follows that 

8 __ 1 I 2w € 1- _Ed 
- 4a2 -2m2 - a3~vd - ag. 

The holomorphic one-form on 'De is therefore given by w1 = da/(8d). In a 
neighborhood of the points 0 and p± we have that w1 = -~d~/(47J), where 
1] = ±1, as follows by substituting (10.56) in Wl· This shows that vl is indeed 
simply tangent to the divisors V!' at the points 0 and p±; see Figure 10.3. 

10.4.3 Almost Algebraic Complete Integrability 

Following [30] we now relate the Goryachev-Chaplygin top to the Bechlivani
dis-van Moerbeke system. Recalling that M = {('y,a) E C6 1 K2 ('y,a) = 0}, 
consider the regular map 1r : M -t C7 , defined by 

(x1, ... , X7) = (ai +a~, Hag, 1'5, ')'1, H'Y2, Ha1 ')'g, a2-yg) . (10.59) 

Using (10.47) one easily checks that it preserves the constants of motion, in 
the sense that 

(F1, ... ,Fs) o 1r = (2H,HKg,K1,0,0) 

and that the Goryachev-Chaplygin vector field (10.46) is 1r-related to V1, 
the first Bechlivanidis-van Moerbeke vector field (10.51). Although 1r is not 
a Poisson map with respect to the Poisson structures defined by (10.49) or 
(10.52) there is another Poisson structure on C7 with respect to which 1r is 
Poisson. Its Poisson matrix is given as follows. 

( 

0 0 -4(XSX6 + X4X7) 2X7 -2Xe 4X2X7 + 2XlX5 4X2X6- 2XlX4) 
0 0 0 -Xs -X4 X7 X6 

4(X5X6 + X4X7) 0 0 0 0 -2X3X5 2X3X4 

-2X7 X5 0 0 0 0 X3 

2xe x4 0 0 0 X3 0 
-4X2X7 - 2XlX5 -X7 2X3X5 0 X3 0 -2X2X3 

2XlX4 - 4X2X6 -Xe -2X3X4 X3 0 2X2X3 0 

This Poisson structure has Fg, F4 and Fs as Casimirs, while F1 and F2 
generate the two commuting vector fields (10.51) of the Bechlivanidis-van 
Moerbeke system. 

It is clear that the Goryachev-Chaplygin top is not a.c.i.: if we solve 
(10.59) for (a1, ... ,-yg) and we substitute the principal balance (10.54) in it 
then we find a solution which is not single-valued (see Paragraph 6.2.2): one 
finds for example that 

a2 = ±x1 , 
6 

so that a2 (t;I') "'rgl2 , which is not single-valued. 
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The map 1r, restricted to the generic fiber of the momentum map, is 2 : 1 
and unramified and maps the integrable vector fields to the linear vector 
fields on a torus. By the above the map must be ramified at infinity, so the 
generic fiber of the momentum map of the Goryachev-Chaplygin top natu
rally compactifies into a double cover of a genus two hyperelliptic Jacobian, 
where the cover is only ramified at infinity; the affine part supports two holo
morphic commuting vector fields that are independent at each point. The 
Goryachev-Chaplygin top is an example of an almost a.c.i. system, defined 
as follows. 

Definition 10.5. Let (M, {-,·},F) be a complex integrable system, where 
M is a non-singular affine variety and where F = (F1, ... , F8 ). We say that 
(M, { · , ·},F) is an almost algebraic completely integrable system or an almost 
a.c.i. system if there exists for generic c E C 8 an r-dimensional Abelian 
variety T~ and a regular map 1r c : F~ -+ T~, such that 

(1) 1l"c is finite and unramified; 
(2) 7rc(Fc) is an affine part ofT~; 
(3) Each of the integrable vector fields XF, is 1l"c-related to a holomorphic 

(hence linear) vector field on T~. 

Clearly, every a.c.i. system is an almost a.c.i. system. We have shown that 
the Goryachev-Chaplygin top is an example of an almost a.c.i. system that 
is not a.c.i. For another example, see [169], where one also finds a natural 
family of Liouville integrable systems that are neither a.c.i. nor almost a.c.i. 

10.4.4 The Relation Between the Toda and the Bechlivanidis-van 
Moerbeke System 

It has been shown by Bechlivanidis and van Moerbeke in [30] that the 
Bechlivanidis-van Moerbeke system and the periodic sl(3) Toda lattice are 
intimately related. Namely, considering the geometry of the fibers of the mo
mentum map of both systems, and comparing in particular the divisors to 
be glued at infinity they first construct a basis for the functions that have 
a simple pole at most at only two of the three curves in the Toda divisor. 
In order to present these functions explicitly and compute from it the map 
from this Toda lattice to the Bechlivanidis-van Moerbeke system, we first 
recall from Section 9.4 that the periodic sl(3) Toda lattice (i.e., the a~1 ) Toda 
lattice) is given by5 

Yo = Yo(Y5 - Y4), 

Yl = Yl (Y3 - Y5), 

Y2 = Y2(Y4- Y3), 

Y3 = Yl - Y2, 

Y4 = Y2 -Yo, 

Y5 =Yo- YI, 

(10.60) 

5 We did a simple relabeling x; --+ y; and F; --+ G; because in this section the 
coordinates x; and the constants of motion F; are reserved for the Bechlivanidis
van Moerbeke system. 
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with the following constants of motion 

G1 := YoY1Y2, 

G2 := Y3 + Y4 + Ys = 0, 

G3 := t(Y~ + Y~ + y~)- Yo- Yl- Y2, 

G4 := Y3Y4Y5 + YoY3 + YlY4 + Y2Y5· 

(10.61) 

Notice that we are considering here the Toda lattice on the hyperplane y3 + 
Y4 +ys = 0 (see 9.4). Using (9.30) it is easy to verify that (1, y3, Y1Y2, Yo+Y4Ys) 
is a basis for the functions that are finite along one of the Toda curves (i.e., 
for each of these functions f the series f ( t; wo) has no pole in t), while having 
a simple pole at most along the two other Toda curves (i.e., for each of these 
functions f the series f(t; wl) and f(t; w2) have at most a simple pole in t). If 
one looks for a polynomial map that respects the weights of the variables then 
the fact that ( 1, x1, x2, X3) is a basis for the functions that have a simple pole 
along the Bechlivanidis-van Moerbeke divisor suggest to search for a map for 
which x1 "'Yo+ Y4Y5 and x2 "'Y3 and X3 "'YlY2· Comparing the invariants 
(10.61) with (10.50) and the vector field (10.60) with (10.51) leads to the 
map 

given by 

where 

'1/J : M1 C C6 -t M2 c C7 

(Yl' ... ' Y6) 1--t ( Xl ' ... ' X7) 

x1 =Yo+ Y4Ys, 

X2 = -y3j2, 

X3 = -YlY2/16, 

X4 = -(yl + Y2)/8, 

Xs = (Y2 - yl) /8, 
X6 = -(Y2Y5 + YlY4)/8, 

X7 = -(Y2Y5- YlY4)/8, 

M1 = {y = (y1, ... , Y6) E C6 1 G2(y) = o}, 

(10.62) 

M2 = {x = (x1, ... ,x7) E C7 1 F3(x) = F4(x) = 0, X3-:/:- 0, X4-:/:- xs}. 

It is easy to verify that this injective map '1/J maps the Toda vector field (10.60) 
to (10.51); to check this one uses a few times that G2 = Y3 + Y4 + Ys = 0. 
Similarly, one easily checks that 

which implies, since G2 = 0, that the map 'ljJ maps the constants of mo
tion of the Bechlivanidis-van Moerbeke system to the constants of motion of 
the Toda lattice. 
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The inverse map which is only defined on the subspace F3 = F4 = 0, and 
which is rational, is given by 

Yo = (x1x3 + x~ - x~)jx3, 

Y1 = -4(x4 + xs), 

Y2 = 4(xs - x4), 

Y3 = -2x2, 

Y4 = (x6- x7)j(x4- xs), 

Y5 = (x6 + X7)j(x4- X5). 

Notice that the restriction of 1/J to the generic fiber of the momentum map will 
be a regular map with rational inverse, which accounts for the fact that the 
divisors to be added to these fibers consist of three translates of the theta 
divisor in the Toda case, and only two in the Bechlivanidis-van Moerbeke 
case. 

The Bechlivanidis-van Moerbeke system contains an affine part of any 
two-dimensional (hyperelliptic) Jacobian as a fiber of its momentum map. It 
is isomorphic to the two-dimensional even Mumford system, which has, for 
any g, a natural g-dimensional generalization; the latter contains an affine 
part of any g-dimensional hyperelliptic Jacobian as a fiber of its momentum 
map. For this, we refer the interested reader to (169, Chapter VI]. 
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irreducible Abelian variety, 124 
irreducible representation, 18 
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Jacobian, 129 
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Kodaira Embedding Theorem, 115 
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Kowalevski matrix, 204 
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Kronecker product, 290 
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Laurent series, 11 
Laurent solution, 165 
Laurent tail, 121 
Lax equation, 59, 68, 82 
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Lax operator, 99 
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Lie algebra splitting, 83 
Lie bracket, 8, 16 
Lie derivative, 15 
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Liouville integrable, 73 
Liouville Theorem, 78, 79 
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mass density, 421 
mass distribution, 421 
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non-degenerate metric, 269 
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Picard Theorem, 9 
Piovan Theorem, 143 
Poincare Reducibility Theorem, 124 
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Schotky problem, 129 
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section, 113 
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singular distribution, 12 
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strict Laurent solution, 165 
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Torelli Theorem, 130 
transition functions, 109 
transpose, 39 
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