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Preface.

These are notes for a course of lectures given at

Princeton University during the academic year 1965-66. The

subject of the lectures was compact Riemann surfaces, considered

as complex analytic manifolds. There are already several expo-

sitions of this subject from basically the some point of view;

the foremost is undoubtedly Hermann Weyl's classic "Die Idee der

Riemannschen Fllkche," and most of the later treatments have

followed Weyl's approach to a large degree. During recent years

there has been considerable activity in the study of complex

analytic manifolds of several dimensions, and various new tools

and approaches have been developed. The aim of the lectures, in

addition to treating of a beautiful subject for its own sake, was

to introduce the students to some of these techniques in the case

of one complex variable, where things are simpler and the results

more complete.

The material covered is indicated by the table of con-

tents. No familiarity with manifolds, sheaves, or sheaf coho-

mology was assumed, so those subjects are developed ab initio,

although only so far as necessary for the purposes of the lectures.

On the other hand, no attempt was made to discuss in detail the

topology of surfaces; for that is really another subject, and

there are very good treatments available elsewhere. The basic

analytic tool' used was the Serre duality theorem, rather than the

theory of harmonic integrals or harmonic functions. The detailed

treatment of the analytic properties of compact Riemann surfaces



begins only in §7. Unfortunately, there was not enough time to

get very far in the discussion; so the lectures have the air of

being but an introduction to the subject. This may explain some

of the surprising omissions, also. I hope to have an opportunity

to continue the discussion further sometime.

With the possible exception of parts of §9, there is

nothing really new here. References to the literature are

scattered throughout, with no attempt at completeness. In addition

to these and to the book of Hermann Weyl, the following general

references should be mentioned here: Paul Appell and Edouard

Goursat, "Theorie des Ptmctions Alge"briques," (Gauthier-Villars,

1930); Kurt Hensel and Georg Landsberg, "Theorie der algebraischen

Funktionen einer Variablen," (Teubner, 1902; Chelsea, 1962); and

Jean-Pierre Serre, "Corps locaux," (Hermann, 1962).

I should like to express my thanks here to Richard

Hamilton, Henry Laufer, and Richard Mandelbaum for many suggestions

and improvements; and to Elizabeth Epstein for typing the manuscript.

Princeton, New Jersey R. C. Gunning

May, 1966
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§1. Fundamental definitions.

(a) The field of real numbers will be denoted by
e and the field

of complex numbers by C ; both are topological fields, with the

familiar structures. The cartesian product of Ht with itself n times,

the usual euclidean n-space, will be denoted by fl ; note that, as

topological spaces, C and can be identified with one another.

Definition. An n-dimensional topological manifold is a

Hausdorff space M such that every point p E M has an open neighbor-

hood homeomorphic to an open cell in fl .

Let M be an n-dimensional topological manifold. A coordinate

covering (Ua,za} of M consists of an open covering {Ua} of M

together with homeomorphisms

za: Ua -- Va

from the subsets Ua C M to open cells Va C t' . The sets Ua will

be called coordinate neighborhoods, and the mappings za will be

called coordinate mappings. By definition, any topological manifold

admits a coordinate covering. On each non-empty intersection Ua n U

two different homeomorphisms into IF are defined; the compositions

fad = za o zl: zP(Ua n T za(Ua n u,)

will be called the coordinate transition functions of the coordinate

covering. Thus for a point p e Ua fl u, , the two coordinate mappings

are related by za(p) = fa3(zP(p)) . The following diagram should

illustrate these concepts.

-1-
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§1. Fundamental definitions.

(a) The field of real numbers will be denoted by R , and the field

of complex numbers by C ; both are topological fields, with the

familiar structures. The cartesian product of I with itself n times,

the usual euclidean n-space, will be denoted by HP ; note that, as

topological spaces, C and l? can be identified with one another.

Definition. An n-dimensional topological manifold is a

Hausdorff space M such that every point p e M has an open neighbor-

hood homeomorphic to an open cell in H' .

let M be an n-dimensional topological manifold. A coordinate

covering (Ua,za} of M consists of an open covering (Ua) of M

together with homeamorphisms

za: Ua -- Va

from the subsets Ua C M to open cells Va C IF . The sets U. will

be called coordinate neighborhoods, and the mappings za will be

called coordinate mappings. By definition, any topological manifold

admits a coordinate covering. On each non-empty intersection Ua fl u,

two different homeomorphisms into IF are defined; the compositions

fa3 = za a z1: zP(Ua n u

will be called the coordinate transition functions of the coordinate

covering. Thus for a point p e Ua fl u, , the two coordinate mappings

are related by za(p) = fa3 (zP(p)) . The following diagram should

illustrate these concepts.

-1-



M (Ua n UU shaded)

(z,,(U,, n u,,) and z,(u(, n u,) shaded)

Note that a description of the sets (Va) and of the mappings

(fa$) is enough to reconstruct the original manifold M ; for M can

be obtained from the disjoint union of all the sets (Va) by identi-

fying a point za a Va and a point z a VV whenever za = fa,3(zd

As a convenient abbreviation, the sets V. will sometimes also be

called coordinate neighborhoods for M

Suppose that (Ua,za) and CUOIL,za) are two coordinate

coverings of the manifold M . The union (Ua,za) U (U&,za) of these

two coordinate coverings is the new coordinate covering consisting of

all the coordinate neighborhoods and mappings from the two given

coverings. It is important to observe that the set of coordinate

transition functions for the union (Ua,za) U (U'a,za) is properly

larger than the union of the sets of coordinate transition-functions

for (Ua,za) and for (Ua,za) ; for, in addition to the coordinate

transition functions associated to the intersections Ua n U and

those associated to the intersections ua, n ut , there are the coor-

dinate transition functions associated to all the intersections

ua n u, 0

For most of the subsequent discussion, the manifolds under

discussion will be of dimension 2; and the coordinate neighborhoods



(Va) will be considered as lying in the complex line C rather than

in i . The coordinate transition functions za = f (zP) are hence

continuous complex-valued functions defined on subsets of the complex

line C . All manifolds will be assumed connected.

(b) Coordinate coverings having particular properties can be used

to impose a great many additional structures on topological manifolds.

A coordinate covering {Ua,za) of a 2-dimnsional manifold M will

be called a complex analytic coordinate covering if all the coordinate

transition functions are holomorphic (that is.. complex analytic)

functions. Two complex analytic coordinate coverings will be called

equivalent if their union is also a complex analytic coordinate

covering. It is easy to see that this is indeed a proper equivalence

relation. (Since symmetry and reflexivity are trivial, it is only

necessary to verify transitivity. Consider, therefore, complex

analytic coordinate coverings (Uaza} equivalent to (Ua,z&) , and

(Ua, za) equivalent to (Y' ,z") . For any point p e Ua fl t3 there

will be a coordinate neighborhood Uy such that p e Uy ; and in a

suitably small open neighborhood of z" (P) it is obvious that

fad = fa7
fyP , with the obvious notation. Since faY = za a (zy)-1

and fyP = o are holomorphic by iypothesis, and since any

composition of holomorphic functions is again holomorphic, it follows

that fcep = za o (z')-' is holomorphic near z" (P) . This holds for

all points p eU. fl Till , and that suffices to prove the desired

transitivity.) An equivalence class of complex analytic coordinate

-3-



coverings of M will be called a complex analytic structure (or simply

a complex structure) on m . in the traditional terminology, a surface

M with a fixed complex structure is called a Riemann surface.

It should be noted that the only property of holomorphic

functions needed for the preceding definitions is that holomorphic

functions are closed under composition, whenever composition is defined;

this will be called the pseudogroup property. Thus, for any class of

homeomorphisms with the pseudogroup property, it is possible to intro-

duce a corresponding structure on manifolds. (For a general discussion

of pseudogroups and their classification, see for instance V. W.

Guillemin and S. Sternberg, "An algebraic model of transitive differ-

ential geometry," Bull. Amer. Math. Soc. 70 (1961+), 16-47, and the

literature mentioned there.) As an example, the set of homeamorphisms

of EF which possess continuous partial derivatives of all orders has

the pseudogroup property; the corresponding structure on a manifold

will be called a differentiable structure, (or more precisely, a CO

differentiable structure). Since holomorphic functions are also

infinitely differentiable, a complex analytic structure on a manifold

belongs to a unique differentiable structure; the complex analytic

structure will be said to be subordinate to the differentiable struc-

ture. These differentiable structures do not play a significant role

in the study of Riemann surfaces, since in fact there is a unique

differentiable structure on any 2-dimensional manifold; (see J. R.

Munlares, "Obstructions to the smoothing of piecewise-differentiable

homeomorphisms," Annals of Math. 72 (1960), 521-554). This situation

_4_



is quite different in the higher-dimensional cases, however.

Some further pseudogroups and related structures, subordinate

to complex analytic structures, will appear later in this discussion.

(c) It M be a Riemaan surface, and (Ua,za) be a complex

analytic coordinate covering belonging to the given complex analytic

structure on M . A mapping f from an open subset U C M into the

complex line C will be called a holomorphic function in U if for

each intArsection u fl U. 0 the mapping

fe to: za(UflUa)--->C

is a holomorphic function in the subset za(U fl Ua) C C . It is easy

to see that the property that a function be holomorphic is independent

of the choice of complex analytic coordinate covering belonging to the

complex structure; the verification will be left to the reader. The

set of all functions holomorphic in U will be called the ring of

holomorphic functions in U , and will be denoted by 0'u ; this set

is clearly a ring, under the pointwise addition and multiplication of

functions, and contains the constant-valued functions as a subring

isomorphic to C . In terms of the differentiable structure associated

to the complex analytic structure of M , a differentiable function,

(or more precisely, a C" complex-valued function) is defined corre-

spondingly as a mapping f: U T C such that for f o za is Co"

in each set za(U fl Ua) # 0 ; the ring of differentiable functions in

U will be denoted by C U , and the ring of all continuous complex-

valued functions in U will be denoted by a U . Note that these



these rings are related as follows:
CU C &U C C

U
00 C C°U

The field of meromorphic functions in an open subset U C M

can be defined correspondingly as well, and will be denoted by
"EU

It should be noted that a meromorphic function is not, properly

speaking, a mapping into C ; thus the field
lU

is not really com-

parable to the rings (o° U or CU . An interpretation of mU as a

set of mappings will be given later, however; (see part (e) of §1).

Let f E 1-0'U for an open set U C M , and consider a point

p e U . The order of the function f at the point p is defined to

be the order of the holomorphic function f e is at the point

za(p) e C , for any coordinate neighborhood Ua containing it ; and

this order will be denoted vp(f) . Recall that the order of a holo-

morphic function of a complex variable z at a point z = a is the

order of the first non-zero coefficient in the Taylor expansion of the

function in terms of the variable z - a ; and note that the order is

independent of the complex analytic coordinate covering belonging to

the complex analytic structure of M . Of course, p(f) > 0 at all

points p e U ; and vp(f) > 0 only at a discrete subset of points

of U , if f is not identically zero. Similarly, for a meromorphic

function f eU , the order can be defined, and will also be denoted

p(f) ; in this case, vp(f) can be negative as well, but again _

v
p
(f) 0 except at a discrete subset of points of U .

Lemma 1. If M is a compact connected Riemann surface,

then B'M=C

Proof. As noted above, the ring of constant-valued funct ons



is a subring C C &M . If f e B'M , then since M is compact,

the function IfI must attain its maximum at some point p e M If

Ua is a coordinate neighborhood containing p , then if , z11 reaches

its maximum at an interior point za(p) a za(U n Ua) ; hence f
zal

must be constant in an open neighborhood of za(p) , and f must be

constant in an open neighborhood of p . It follows directly from

the identity theorem in function theory that the interior of the set

of points at which f is constant is both open and closed in M

since that set is non-empty, and M is connected, f is actually

constant on M and thus d M C C.

(d) The notion of a holomorphic function on a Riemann surface can

be generalized as follows. Let M and M' be two Riemann surfaces;

and let (Uaza} and (Ua,z&} be complex analytic coordinate coverings

belonging to the two given complex structures. A mapping f: M --> M'

is called a holomorphic mapping if, for any point p e M and for any

coordinate neighborhoods U. C M, U1 C M' such that p e U. and

f(p) a U1 , the function z' o f o za is a holomorphic function in

the usual sense in some open neighborhood of the point za(p) e C .

It is easy to see that the property that a mapping be holomorphic is

independent of the choices of complex analytic coordinate coverings

belonging to the two complex analytic structures; the verification

will be left to the reader. Note that a holomorphic mapping is neces-

sarily continuous; morever, such a mapping is also differentiable (or

more precisely, C") in terms of the differentiable structures on the

surfaces. A holomorphie function is the special case of a holomorphie



mapping from M to the Riemam surface C .

These holomorphie mappings can be characterized very con-

veniently by their effects on holomorphic functions. Let f: M -4 M'

be any continuous mapping between two Riemann surfaces M,M' , and let

U' C M' be any open subset of M' . The map f induces a homomorphism

f*: (U' -- 4U , where U = f-1(U') C M, by defining

f*(hU,) = hU, f ; in particular, f*( dqUt) C CU is a well defined

subring.

Lemma 2. A continuous mapping f: M --? M' between two

*
Riemann surfaces is a holomorphic mappinggif and only if f ( OU' ) C OU

for every open subset U' C M' , where U = f-1 (U') .

Proof. Select any point p e M , and coordinate neighborhoods

Ua C M, U'' C M' such that p e Ua and f(p) a U' . If the mapping

f satisfies the conditions of the lemma, then considering in par-

ticular the holomorphic function z,, a oU' , it follows that

f*(zl) = z' o f is holomorphic, that is, that z o f , za is holo-

morphic; therefore f is a holomorphic mapping. Conversely, if the

mapping f is holomorphic and if h' is a holomorphic function in

an open neighborhood U' C U' of f(p) , then f*(hl) o za =

h' o f o
za1

= (h' a o (z' o f z-1) is a holomorphic

function in a neighborhood of za(p) , since it is the composition of

the holomorphic functions h' o (zO) and z' 0 f .
z-1

; hence f

satisfies the conditions of the lemma.

Extending the previous discussion, a topological homeomorphism

f: M --? M' between two Riemann surfaces will be called a olomorphic

a



isomorphism if both mappings f and f -l are holomorphic mappings;

the Riemann surfaces M and M' will be called isomorphic if there

is a holomorphic isomorphism between them. Clearly, the real interest

lies in the isomorphism classes of Riemann surfaces.

(e) The simplest example of a Riemann surface is the complex line

C ; of course, since any subdomain of a Riemann surface is again a

Riemann.surface, subdomains of C are also contenders for the title

of simplest Riemann surface. As for compact manifolds, the 2-sphere

is clearly the simplest case; thus there arises the question whether

the 2-sphere admits a complex structure.

The 2-sphere, considered merely as a topological manifold M

can be given a coordinate covering as follows. Let a, a e M be two

distinct points of M , which can be envisaged as the north and south

poles of the 2-sphere. The open sets UO = M-s and Ul = M-n cover

M , and are topological cells; so select some homeomorphisms za

between these sets and the standard 2-cell, which can be taken to be

the full euclidean plane C . This describes a coordinate covering

(U0,z0), (U1,z1) of M . There is no loss of generality in supposing

further that z0(n) = 0 e C , and z1(s) = 0 e C ; so the coordinate

transition function
f01

is a homeomorphism

f01: (C-0) --> (C ,

which takes the interior of an open topological disc about the origin

in C -0 onto the exterior of another such set. Conversely of course,

any choice of such a homeomorphism f01 can be realized as the coor-

-q-



dinate transition function for a coordinate covering of the 2-sphere

M of the above form; the question of the existence of a complex

analytic structure on the 2-sphere thus becomes merely the question

of the existence of a complex analytic homeomorphism z0 = f01(zl) of

this form. In particular, the function zo = f01(zl) = 1/z1 will

serve the purpose; and the 2-sphere with this complex structure will

be called the complex projective line, and denoted by R'.

It should be noted that the complex line IF as described

above is actually the one-dimensional complex projective space in the

usual sense; (see for instance W. V. D. Bodge and D. Pedoe, Methods of

Algebraic Geometry, volume I, chapter V, (Cambridge University Press,

1953)). Thus let C = C - 0 , considered as a multiplicative group;

and let C
*

act as a transformation group on the space C2_ 0 =

{(t1,t2) # (0, 0)} by t-(t'1 1) = (tto,tt1) for t e r.* . The

quotient space (C - 0)1C' is the one-dimensional complex projective

space; each point of the projective space can be represented by a pair

of complex numbers (t1,t2) / (0,0) called the homogeneous coordinates

of the point, this representation of course being far from unique.

The two sets

U0 = {Q0,y a C2it0 0}/C, Ul = C(50, 1) a L%21 51 01

cover the projective space, and each ca41 be mapped in a one-one manner

onto the complex line C by a mapping

z0 = Y 0 or z1 =

Then (U0,z0) and {U1,z1} form a coordinate covering of the space,

exhibiting it as the Riemann surface P descried above.



One trivial property of the complex projective line deserves

note here. Consider an arbitrary Riemann surface M , and a holo-

morphic mapping f: M - P . In an open neighborhood U of each

point p e M the mapping f can be described in terms of the homo-

geneous coordinates on P by f(p) - (f0(P),fl(P)) , where fa(p)

are holomorphic functions on U in the usual sense. Then the quotient

f0(p)/f1(p) is a meromorphic function in U ; this function is clearly

independent of the choice of homogeneous representation, and so is

defined throughout the Riemann surface M . Conversely, any mero-

morphic function on M can be represented locally as the quotient of

holomorphic functions, f0(p)/fl(p) ; and then f(p) = (f0(p),fl(p))

is a well-defined holomorphic mapping f: M --a P . That is to say,

the meromorphic functions on M are in natural one-to-one corre-

spondence with the holomorphic mappings f: M ---> P P.

(f) The next simplest compact 2-manifold is a surface of genus 1,

a torus; complex analytic structures are also easy to describe in this

case. in the complex line C select any two complex numbers wl,w2

which are linearly independent over the reels; so wi are non-zero

complex numbers, and wl/w2 J R . The numbers wl,w2 generate a

subgroup A C C , namely

A = (nlwl + n2w2lnpn2 e Z = additive group of integers).

The quotient group C/A is a well-defined topological space, a sur-

face of genus 1'. It is evident that C/A has a natural structure

inherited from that of C ; as coordinate neighborhoods in C/A take

-11



open subsets of C which contain no points congruent to one another

modulo A . -

In discussing the sphere, a single complex analytic structure

was described; indeed, it will later be shown that there is a unique

complex structure on the sphere. In discussing the torus, there were

two arbitrary parameters Involved in the description of the complex

analytic structure, the two constants W1,W2 . It is natural to ask

whether there are different complex analytic structures on the torus,

corresponding to various choices of the parameters W1,w2 ; this is

indeed so, showing thusly that a given topological surface may carry

a variety of inequivalent complex analytic structures. Suppose then

that A = (nlwl + n2w2Ini a Z) and At = Cnlwt + n2w'Ini e 2 } are

two lattice subgroups of C , with associated Riemann surfaces

M = C/A and M' = C/A' . If the surfaces M and M' are isomorphic,

there is a topological homeomorphism f: M --> Mt such that f and

f-1
are holomorphic mappings. Now the mapping f lifts to a mapping

F from the universal covering surface C of M = CIA to the uni-

versal covering surface C of M' _ C /Al ; and in view of the defi-

nition of the complex structures on M and M' , the mapping

F: C -* C must be a complex analytic mapping. Moreover, since F

arises from the homeomorphism f: C/A ---* C,/A' , it follows that

(1)
5

F(z+w1) =F(z)

F(z+w2) =F(z)+a'211+e'22w2'

for some integers aii e Z , such that
a'11a22 a12a21 = ± 1 °

Differentiating the'above equations, F*(z+wl) = F'(z) and F'(z+w2) _

Ft (z) ; so F' (z) is invariant under A , b ace determines a holomorphic



function on M = C/A . Since C/A is compact, it follows from

Ira 1 that the function F' (z) must be constant on M , hence

Ft(z) __ c ; and therefore F(z) = cz + d for some constants c,d

There is of course no loss of generality in translating the surfaces

so that d - 0 ; so F(z) __ cz , for some complex constant c 0

Now from equations (1) it follows that

(2) cwl - allw1 + a]2w2, cw2 = e.lw1 + a22w2

The complex numbers w = wl/w2 and w' = associated to the

complex analytic structures of M and Mt are therefore related by

(3)

allwt + a12
w=

s'21
,

for some integers
ai3

such that alla22 - a72a21 = + 1 . Conversely,

if w and w' are so related, there is a complex constant c # 0

such that (2) holds, and the function F(z) - cz then satisfies (1);

and therefore M and M' are isomorphic. Consequently, the Riemann

surfaces M = CIA and M' = C/A' are isomorphic if and only if

w = wl/w2 and wt = w1t/w2 are related as above. The set of all

possible complex structures of the above form in a complex torus thus

correspond to all non-real complex numbers w modulo the equivalence

relation (3); for a. more detailed description of the latter relation,

see for instance J. Lehner, Discontinuous Groups and Automorphic

Functions, Chapter XI, (American Mathematical Society, 1964).



§2. Sheaves

(a) Sheaves have proved to be a very useful tool in the theory of

functions of several complex variables, and have occasionally been

used in one complex variable as well. For the purposes of an eventual

simplicity and of convenience of generalization, they will be used

systematically throughout the present discussion of Riemann surfaces.

However, no previous acquaintance with sheaves will be assumed here.

Those readers already familiar with the general properties of sheaves,

and with the cohomology theory of sheaves, can readily skipthis and

the following section.

Definition.,l) A sheaf (of abelian groups) over a topological

space M is a topological space I , together with a mapping

7r: .1 -a M , such that:

(i) 7r is a local homeomorphism;

(ii) for each point p e M the set I
P

= 7r 1(P) C J has the

structure of an abelian group;

y

(iii) the group operations are'continuous in the topology of dI.

The third condition in the above definition is, more explicitly,

the following. In the cartesian product ,6 X J with the product

topology introduce the subset

{(s1,s2) E JXJ hr(s 7r(s2)} ,

Throughout this and the following section, the discussion will be
limited to sheaves of abelian groups; it is left to the reader to note
the obvious modifications necessary to the consideration of sheaves
of rings or fields, etc.
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with the topology it inherits from the imbedding , o C x B

The mapping .J a J - ,st given by (sips 2) e J.) -+ si s2 a ,aQ

is well-defined; the condition is that it be continuous. In the sheaf

the mapping 7r: J -+ M is called the projection; and the-set

= 7r1(p) is called the stalk over p . Each stalk is an abelian

group, although different stalks may be quite different groups.

As a simple example, let G be any abelian group with the

discrete topology; let ,1 be the space J= G X M with the product

topology, and 7r: G X M -;;b M be the natural projection mapping:

Then is a sheaf over M , called a constant sheaf.J

Let 7r: J T M be a sheaf, and U C M be an open subset

of M . A section of the sheaf J over U is a continuous mapping

f: U --->J such that 7r o f: U ---> U is the identity mapping; note

that necessarily f(p) a J P = 7r 1(p) for any p e U . The set of

all sections of 1 over U will be denoted by r(U,J ) . For any

point s e J there must be an open neighborhood V of s in I

such that

HIV: V --+ U

is a homeomorphism between V and an open subset U C M ; the inverse

map (w-1 V)
1
: U --> V is also a homeomorphism, hence is indeed a

section of d over U . Therefore each point s e pQ is contained

in the image of some section; and the images of all such sections

form a basis for the open neighborhoods of s . As a consequence of

this, if f,g a r(U, J ) and if f(p0) = g(po) for some point p
0

e U

'then f(p) = g(p) for all points p of some open set U' with



PO a U' C U . Now, if f,g a r(U, J ) again, the mapping

f X g: p c U --s; (f(p),g(p)) e 4 x Al

is a continuous mapping from U into the subset .1 o J C ,e xJ

the composition of f X g with the natural mapping APo) -- J ,

namely the mapping

f - g: p e U -* f(P) - g(p) a

is therefore also a section. That is to say, the set P(U, ) is a

group, under the pointwise addition of sections. The zero section,

the map p e U --a p e j
P

where 0p is the zero element of the

group ,dt

P
, is clear]y a section. In general, it is rather difficult

to determine whether there are any non-trivial sections, that is, any

sections other than the zero section.

(b) In a sense, the sections of a sheaf determine the sheaf com-

pletely. This observation can be made more precise in the following

manner.

Definition. A
rep

sheaf (of abelian groups) over a topological

space M consists of:

(i) a basis (Ua} for the open sets of the topology of M ;

(ii) a separate abelian group ,fit a associated to each open set

Ua of the basis;

(iii) a homomorphism pad: .jo -- a associated to each in-

clusion relation Ua C UP , such that pa4,pm = pay whenever

UaCUPCUy .y

To each sheaf J over M and basis (Ua} for the open sets

_1 h_



of the topology for M there is a naturally associated presheaf,

which will be called the presheaf of sections of the sheaf I ; this

is the presheaf which assigns to the set Ua the abelian group

,e a = r(Ua,,1 ) , and assigns to the inclusion Ua C U0 the restriction

mapping paa: r(UW J ) r(Uu,I ) of sections over U0 to the

subset Ua . Conversely, to any presheaf (Ua, ,1a, pa3) over M

there is an associated sheaf, which is constructed as follows. For

each point p e M consider the collection

ZL (p) = (UaIp a Ua) ;

this"set is partially ordered under inclusion. Form the disjoint

u n i o n J p = U
e U a ; and. for any two elements fa E 1a ,

O:

f0 e J
p

, write fa " f0 if there exists a set U
7

e ZC(p) such

that Uy C Ua fl U0 and pyafa = p70f0 . It is a straightforward

exercise to verify that this is an equivalence relation. The set of

equivalence classes in J p will be denoted by J
P

. For any set Ua

there is a natural mapping ppa: ;a - + which assigns to an

element f ea Ja its equivalence class in
p

Again it is a simple

matter to verify that these mappings ppa induce on the set J p the

structure of an abelian group, in such a manner that the mappings ppa

are group homomorphisms. (The group J p constructed from the family

{J a} as above is called the direct limit group,

d p = dir. lim. U
e u

(p) Ja ; for a more general discussion of this
a

concept, see S. Eilenberg and N. E. Steenrod, Foundations of Algebraic

Topology, Chapter VIII, (Princeton University Press, 1952)). The

space of the sheaf is defined to be the set



Up E M JP ,

with the projection mapping 7r: --> M given by 7r( J p) = p . As

a basis for the open sets to define the topology of J take sets of

the form

[ fa] = Up E Ua Ppa(fa) C J

for the various elements fa e ) a . (To see that these sets do form

the basis for a topology, it is necessary to show that for any point

s e [f] n [fP] C J there is an element f
7
E J y so that

s e [fy] C [fa] n [fPI Now if s e [fa] n and if p = 7r(s)

then p e Ua n UP and ppa = ppPfP ; by definition of the mapping

Ppa , there mist be a set U7 such that p e U7 C Ua fl UP and

pyafa = pypf,3 . Therefore s e [fy] C [fa] n [f] , as desired.) With

this topology, it is clear that the mapping 7r: 4 T M is a local

homeomorphism. Finally, to show that J is a sheaf, it merely remains

to verify that the group operations are continuous. Select any point

(s1,s2) a J o J and any open neighborhood [fa] about sl- s2

and let p

2

= 7r(s1) = 7r(s2) . Further, select elements f1 a ,dp and

f2P2 a ,e such that ppp1(fly1) sl and ppP2(f2'32) s2 Then

ppa(fa)
=

ppp1(f1P1)
-

ppP2(f202) ; so by the definition of the mapping

Ppa , there must be a set U
7

such that Pya(fa) = PyP(fly ) -P7P(f2p )
1 1 2 2

Now under the mapping J of --> J it follows that

([Pyf

1

(fly

1

)] x [pyP2 (f2,2)])n J.1 is an open neighborhood of

(sl,s2) which maps into [fa] , proving the continuity.
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starting with a sheaf J , form the presheaf of sections of j

for some basis {Ua) for the topology of M . It is clear from the pre-

ceding construction that the associated sheaf of the presheaf of sections

of A is canonically isomorphic to I itself. In this order, the two

constructions introduced above are thus inverse to one another. It is

not true, however, that these constructions are inverse to one another

in the other order; that is, the sheaf of sections of the associated

sheaf to a given presheaf is not always isomorphic to the given presheaf.

For example, a presheaf in which
a = Z for all a , and

pad
is

the zero homomorphism, has the zero sheaf as its associated sheaf; and

the presheaf of sections of the zero sheaf associates the zero group

to each Ua . Clearly the problem is to characterize those presheaves

which arise as the presheaf of sections of some sheaf.

Definition. A presheaf (U
a, .Jc , pad)

over a topological

space M is called a complete presheaf if, whenever U0 = UP UP for

a subcollection U0, {U of the basis {Ua} , the following two

conditions are fulfilled:

(i) if fo,g0 e j o are such that pPo fo = p0ogo for all Up ,

then fo
= go ;

(ii) if fP E J
P

are elements such that pyO fP = py0fP
1 1 2 2

whenever Uy C U0 fl UP for any elements Uy of the basis,
1 2

there is a n element fo e j0 such that fP = p fo for

all UP .

Lemma 3. A presheaf (Ua, J
a,

pa$) over a topological space

M is the presheaf of sections of some sheaf over M if and only if

it is complete.



Proof. It is obvious that the presheaf of sections of any

sheaf is complete; the converse assertion is the one of interest. Let

J be the associated. sheaf to the given presheaf. There is a canonical

homomorphism P: ja --> r(Ua, J ) defined by p(fa) _ [fa] =

U
E U ppa(fa) .

It suffices to prove that p is an isomorphism,
a

for each set Ua . Suppose firstly that P(fa) = 0 , that is, that

Ppa(Fa) = 0 for all p e Ua . Then for each point p e Ua there must

exist a set UP such thatN p E Up C Ua and poa(fa) 0 . Since

these sets (Ucover Ua , it follows from property (i) of a complete

presheaf that fa = 0 . Next, consider any section f e r(Ua, al ) .

For each point p e Ua there must exist a set UP with p e UP C Ua ,

and an element f13 e 1j
P

such that ppp(fP) = f(p) . The sections f

and [fe] coincide at p , hence in a full open neighborhood of p ;

so by restricting UP further if necessary, pgP(fP) = f(q) for all

points q e Up . The seta (UJ) cover Ua , and obviously satisfy

condition (ii) of the definition of a complete presheaf; therefore

there is some element fa e such that P Cfa) = ff , hence such

that f = [fa} This suffices to complete the proof.

(c) Let M be a Riemenn surface, and (Ua) be any basis for the

open sets in the topology of M . To each set Ua associate the ring

(9-
U

of functions holomorphic in Ua ; and to each inclusion relation
a

Ua C UP associate the natural restriction mapping Pte: 5U

0
--> NU

a
Clearly (Ua, &

U l
pad) is a presheaf over M ; the associated sheaf

a
is called the sheaf of germs of holomorphie functions on M , and will

be denoted by 0 . (For the purposes at hand, it is 'the additive



structure of the rings c
Ua which will be considered, to obtain a

sheaf of abelian groups. Actually, of course, (. is a sheaf of rings

over the space M , using the obvious modifications of the preceding

definitions. The ring structure plays a very important role in the

case of holomorphic functions of several complex variables; for more

in this direction, see R. C. Gunning and H. Rossi, Analytic Functions

of Several Complex Variables, Chapter IV, (Prentice-Hall, 1965).)

To interpret the stalk Q-p of the sheaf OL at a point

p c M, select a coordinate neighborhood U containing p and a

coordinate mapping z: U --> V C C such that z(p) = 0 . The con-

struction of the stalk 61p being local, it is sufficient to consider

the entire construction within the set V C C . To each open neigh-

borhood of 0 in V consider the ring of functions holomorphic in

that neighborhood. Two such functions are equivalent if they agree

in some smaller open neighborhood of D ; and the equivalence classes,

called the germs of holomorphic functions at 0 , form the stalk 61p .

To each function holomorphic in an open neighborhood of 0 associate

its power series expansion at the point 0 ; equivalent functions

clearly determine the same power series, and every convergent power

series arises from some unique germ. Therefore 61p is isomorphic to

the ring C (z) of convergent, complex power series in the variable z.

Note that the presheaf (U., &" , pa$) is obviously complete;
a

hence with the natural isomorphism it is possible to identify

r(Ua, () = 8U . That is, the sections of the sheaf d over any
a

open set U C M are identified with the ring 6 U of functions holo-

morphic in U . A similar construction, beginning with the multiplicative



groups 0 U
of nowhere-vanishing holomorphic functions on U leads

to the sheaf Q- of germs of nowhere-vanishing holomorphic functions;

again, in the same manner, it is possible to introduce the sheaf of

germs of meromorphic functions on M , (a sheaf of fields, actually),

or the multiplicative sheaf of germs of meromorphic functions

not identically zero on M .

Considering merely the differentiable structure of M , and

the rings an U or G U of infinitely differentiable or continuous

functions on open sets U C M , leads in a similar manner to the sheaf

a 00 of germs of C°° functions on m , or the sheaf !o of germs of

continuous functions on M . Note that there are the natural inclusion

relations

6C dOC C

(d) Various-r-elations between sheaves over a fixed topological

space M are of importance in the applications. First, for a sheaf

I over M , let E C M be an arbitrary subset of M . The

restriction of the sheaf .d to E is the subset fir 1(E) C I ,

where 7r: J - M is the projection mapping; the restriction, which

will be denoted by .J IE , is clearly a sheaf over the set E . In

particular, for a point p e M , d lp = dp is just the stalk of

J over p . (For example, if M is a Riemann surface, then an

open subset U C M is also a Riemann surface, and its sheaf of germs

of holomorphic functions is just 6JU , the restriction of the sheaf

(9- over M to the subset U . If E C M is not an open subset,

the sheaf 19 1 E cannot generally be interpreted as a subsheaf of the



sheaf of germs of continuous functions on the space E itself; the

case in which E is a single point of M illustrates why.)

Again let J be a sheaf of abelian groups over M , and let

P, CJ be a subset of i . Then . is called a subsheaf of ,g if:

(i) . is an open subset of ; and

(ii) for each point p e M, R p = X n J p is a subgroup of 1 .

Clearly . is itself a sheaf of abelian groups over M , its projection

mapping being the restriction to T, of the projection mapping 7r of J

The quotient sheaf 9 = ,! / P, is then defined as follows. For each

point p e M let 0 p = ,Qp/ P,p be the natural quotient group;

and let 0 = Up
e
M ap , with the projection mapping w: '? --;- M

given by 7r(g p ) = p . The natural mapping q): ,a{ which

associates to arty element of 4 p its coset in p = ,JP/ gc,p com-

mutes with the projections it in J and in . Introduce on 0 the

natural quotient topology, defining a set U C a to be open if and

only if c l(U) is open in ) . It is an easy matter, which will be

left to the reader, to verify that 0 is then a sheaf.

For example let M be a Riemann surface, and 0- be the sheaf

of germs of holomorphic functions on M , as usual. Let P = (pl,...,pn)

be a finite number of distinct points on M , and for each open subset

U C M consider the set

W U = (f e & Ulf(pi) = 0 whenever pi e U, i = l,...,n}

Note that each W U is a subgroup of 6 u ; and that the groups (2;U}

for all the open subsets of M , with the natural restriction mappings,

form a presheaf over M . The associated sheaf is then a subsheaf



C (. , and this leads to a quotient sheaf 3 = (Q I P . To describe

this quotient sheaf, note that for a point p / P necessarily

PIP= QI
P

, hence a
P

= 0 . However for a point p1 E P , R C £
P1 P1

is the subgroup consisting of those germs of holomorphic functions

which vanish at pl , or equivalently, the subgroup of those convergent

power series with zero constant term; thus )
pl

= (12
Pi

/ ;; C ,

1
the latter ispmorphism being that which associates to any power series

in 0p its constant term. That is to say, the sheaf ) will have
1

a trivial stalk (consisting of the zero group alone) at all points

p / P , and it will have stalk 0
P
= C at the points p e P . A

sheaf of this sort is sometimes called a skyscraper sheaf.

Now suppose that 2 and D are two sheaves of abelian groups

over M , with projection mappings o: J -- M and r: M

A mapping cp: is called a sheaf mapping if: (i) cp is con-

tinuous; and (ii) r o cp = a . The second condition implies that,

for any point p e M, cp( J
P
) C D

P
; so a sheaf mapping preserves

stalks. Further, for any f e I'(U,.J) for an open subset U C M

W , f will be a continuous mapping from U into 0 such that

-r o (c o f) = a o f = the identity; that is, q) o f e r(U,'

Therefore the sheaf mapping qp yields an induced mapping

qi : r(U, .4 ) -- . r(u, 'J ) . In particular, since (f(U)) , for all

open subsets U C M and all sections f e r(U,,4 ) , is a basis for

the topology of J , the sheaf mapping is open as well as continuous;

and since the mappings a and r are local homeomorphisms, so is (p.

That is to say, any sheaf mapping is necessarily a local homeomorphism

between the spaces I and ) . The sheaf mapping p is called a



sheaf homomorphism if it is a homomorphism on each stalk; the induced

mapping 'p is then a homomorphism between the groups of sections,

called the induced homomorphism. A sheaf isomorphism is a sheaf homo-

morphism with an inverse which is also a sheaf homomorphism; the

notation j _ 0 will be used to indicate that the sheaves J and

over M are isomorphic.

For example, considering again the sheaf (-over a Riemann

surface M , to each germ fP e ( associate the germ

e(fp) = exp.(2Tii p) a p . This determines a sheaf homomorphism

e: (9--->
m-

. Similarly of course, considering merely the sheaves

of germs of continuous rather than holomorphic functions, there is a

sheaf homomorphism e:
C- .

For any sheaf homomorphism p: J -> 3 over a space M ,

the kernel of cp is the subset of j consisting of those points which

map into the zero element of any group p ; that is, the kernel is

the subset (p-1 (0) Cj where 0 e r(M, is the zero section of

Since the zero section is an open subset of . , the kernel is clearly

a subsheaf of d . The image of p is apsubsheaf of 3 as well;

and it follows readily that image(p) = ad /kernel(cp) , where denotes

isomorphism of sheaves. Given sheaf homomorphisms cp: 'k---> J and

4r: J --> 0 , the diagram

will be called an exact sequence of sheaves if the image of 'p is

precisely the kernel of ' . Similarly, a longer string of sheaves

and sheaf homomorphisms will be called an exact sequence if for any
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two consecutive homomorphisms, the image of the one is precisely the

kernel of the other. In particular, if 0 denotes the trivial sheaf

with stalk the zero group at each point of M , a sequence

is exact if and only if 'p is an injection, (an isomorphism from

to a subshea iof J ), * is a projection, (a homamorphism with image

all of 3 ), and the kernel of yr precisely the image of '' ; hence,

J _ J /cp( 7, ) . Conversely, if X is a subsheaf of 2 the

inclusion mapping is & -> J is a sheaf homomorphism; and the

natural mapping tp: J --* J/ R. is a sheaf homomorphism, such that

is an exact sequence of sheaves.

For example, on a Riemann surface M the subset Z C 6 of

germs of holomorphic functions which take only integer values is a

subsheaf of & isomorphic to the constant sheaf; and this is precisely

rp LQ -- Q1 introduced above.the kernel of the sheaf homomo hism e:

This homomorphism e is a projection, since any germ f e has
p p

a holomorphic logarithm near p . Therefore there arises the exact

sequence of sheaves

0 ---> Z ---* & -- &* --> 0 .

Similarly, considering the sheaves of germs of continuous functions,

there is the exact sequence

0 Z -> C- 6*-->o.



§3. Cohomolo9Y

(a) It M be a topological space, and = (Ua) be an open

covering of M . To this covering of M there is associated a sim-

plicial complex N(2 ) , called the nerve of the covering 11L , and

defined as follows. The vertices of N(om) are the sets Ua of the

covering. Vertices UO...,Uq span a q-simplex a - (U0,...,Uq) if

and only if UO n ... n Uq # 0 ; the set UO n ... n Uq = (al is called

the support of the simplex a . Let ,S be a sheaf of abelian groups

over M . A q-cochain of V with coefficients in the sheaf 2 is a

function f which associates to every q-simplex a e N(Vt) a section

f(a) c r(lal,2 ) ; the set of all such q-cochains will be denoted by

Cq01L, J ) . Whenever f, g e C"(?JZ J ) , their sum

f +g a Cq(%, ,J) , where (f+g)(a) = f(a) + g(o) ; so Cq(?A , J
is an abelian group. There is also an operator

b: Cq(Vi , ) ) ---> Cq+1( 211 , J ) called the coboundary operator,

defined as follows. If f e Cq(v1 , 2 ) and a = (UO,...,Uq+l) e N(72

then

q+l i

(1) (Sf)(UO,...,Uq+l) = E (-1) plalf(UO,...sUi-1'Ui+1'...aVq+l) ,

i

where plal denotes the restriction of the section

f(UO,...,Ui-1'Ui+1'...,Uq+l) e r(UO n ... n
Ui-1 n Ui+1 n ...

n Uq+1)

to lal = UO n ... n Uq+1 . It is clear that S is a group homomorphism;

and it is a straightforward calculation to show that SS = 0 . The

subset Zq(Vt, J) _ (f a Cq( ,J )lSf = 0) is a subgroup of

Cq(7R , J ) called the group of q-cocycles; the image

SCq-'(?A ,I ) C Cq(?1Z , j ) is called the group of q-coboundaries,



and is a subgroup of the group of cocycles since SB = 0 . The quotient

group

Zq(1q , . )/scq-1(Vl
, j ) for q > 0

ZO(TR, .1 ) for q = 0

is called`lhe q-th cohomology group of 1/L. with coefficients in the

sheaf 2 .

Lemma 4. HO(b7 , J ) r(M,I ) .

Proof. By the above definition, HO(V , J) = ZO( u , 1 ) .

A zero-cochain f e C0(Zk ,2 ) is a function which assigns to each

set U e Vt a section f(U) a r(U 8 ) ; and its coboundary

Sf a Cl(Vt , .1 ) is a function which assigns to each pair of inter-

setting sets U0,U1 e a section

(5f)(UO,U1) = PUO n Ulf(U1) - PUO n Ulf(Ul) e r(UO n U1,. ) . if

Sf = 0 , the sections f(Ua) agree in each non-empty intersection

UO n U1 , hence altogether determine a section of. ,B defined over the

entire space M ; and conversely, the zero-cochain defined by

restricting a global section of j over M to the various subsets

Ua is a zero-cocycle. This suffices to prove the desired result.

(b) In order to have a cohomology theory associated intrinsically

to the space M , it is necessary to consider various possible

coverings of M . A covering u = (Va) is called a refinement of

the covering = CU(X) if there is a mapping .: Y --a W& such that

Va C AVa for each Va c ; the mapping µ is called a refining

mapping. The covering may of course be a refinement of X by



various different refining mappings. Notice that the refining mapping

induces a mapping

µ: Cq (111 ---> Cq ('lr , I ) ,

as follows. If f e Cq( Ul , ,B ) and o = (V0, ..., Vq) a N(`j(' ) , then

(µf)(VO,...,Vq) = P(1f(RVO,...,MVq) ; since

µV0 fl :.. fl µVq J VO fl ... (1 Vq # $ , then (µV0, ...,µVq) is a

q-simplex of N(l1 ) , and the mapping is thus well-defined. It is

clear that g is a group homomorphism, and that µB = Sµ ; therefore

µ determines a homomorphism

µ*: Hq(A , J ) *> Hq( H , j ) .

Lemma 5. If If is a refinement of R , and if µ: -- ZZ

and v: u' --> n are two refining mappings, then µ* = V*

Proof. When q = 0 , the mappings µ*: HO(7? i ) - > HO(T -

and v*: HO(IR ,J ) T HO(' , J ) are both the identity mapping, in

view of Lemma 4; so it is only necessary to consider the case q > 0

In this case, construct an associated e: Cq(U1 , J ) T Cq-1 (1C ,.2 )

as follows. If f e Cq( jJ( , J) and o = (V0, ...,Vq_1) e N(11

define (ef)(VO,...,Vq_1)
qz

(-1)j Plalf(µVO,...,µVj,VVj,...,VVq-1)
J=O

Now whenever o = (VO,...,Vq) a N(X observe that

(Sef)(VO,...,Vq)

q+1 J-1 i
E (-1) P E (-1)

J=0 i=0

q
+ E (-1)i+1 Pf(µV0,...,µVj,WVj,...,VVi-1,VVi+1,...,VVq)

i=,j+l

z
(-1)i+1

vf(o) - µf(a)

J=0
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Therefore, if f e Zq(7 , 2 ) so that Sf = 0 , it follows that

Vf - µf = 59f , that is, that Vf and µf determine the same coho-

urology class. Therefore µ* Q V' , as desired.

Now for any two coverings u , 14 of M , write 2r < 11Z if ?1`

is a refinement of l ; the set of all coverings is partially ordered

under this relation; and by Lemma 5 there is a unique homomorphism

Hq( ZQ , I ) -> Hq( )t ,J ) whenever if < IQ . It is clear that
these homomorphisms are transitive; hence it is possible to introduce

the direct limit group

Hq(M, ) ) = dir. lim. Hq( V, , J) ,

which will be called the q-th cohomology group of the space M

with coeffie,ents in the sheaf J . (Recall that to define the direct

limit, introduce the disjoint union U
A

Hq( , J. ) ; and for coho-

mology classes f e Hq(1R "j ), g e Hq( i' ,') , write f , g if
there is a refinement kP < vI and 2 < )f , such that f and g

have the same image under the natural homomorphisms

Hq( Y1 , .J ) Hq(W, ,J ) and Hq(y , j ) --> Hq(

This relation is an equivalence relation, and the set of equivalence

classes in the direct limit group Hq(M, i ).) For each covering YL ,

there is the natural homomorphism Hq(yj Hq(M,.1) . It

follows immediately from Lemma 4 that

(2) H0(M, A ) ° r(M, .8 )

It should be noted that for a constant sheaf such asv Z ,

the cohomology introduced above coincides with the ordinary tech

cohomology with coefficients in the group Z ; (see S. Eilenberg and

N. E. Steenrod, Foundations of Algebraic Topology, Chapter ]X,



(Princeton University Press, 1952).)

(c) Consider an exact sequence of sheaves of the following form,

over the space M :

0 ---.> P_ J 0 ---ate 0.

For any open subset U C M , the sheaf hom morphisms cp, induce

homomorphisms c*,** between the corresponding groups of sections,

and there results an exact sequence of groups and homomorphisms of

the form

o-->r(U, -r(U, J)- >r(U,0) .

Exactness this far is obvious, since q) can be considered as an

injection of 3L as a subsheaf of J , and * as the passage to the

quotient sheaf; but in general the mapping r* will not have all of

r(u, 3 ) as its image. (For instance, let M be the annulus

1 < Jzl < 2 in C , and consider over M the exact sequence

0 --4 Z --> & S * --4 0 introduced in §2(d); the function

z e r(M, D*) cannot be written in the form z = exp. tai f(z) for

any f(z) a r(M, 1) , since necessarily f(z) = tai log z and no

branch of log z is a single-valued holomorphic function on M .)

The cohomology theory considered above furnishes a convenient measure

of the extent of the inexactness of the sequence of sections. How-

ever, it is necessary to have further restrictions on the underlying

topological spare M .

(Recall that an open covering = (Ua) of a topological

space M is called locally finite if each point p e M has an open

neighborhood V which meets at most finitely many of the sets U. .



A Hausdorff space M is called paracompact if every open covering has

a locally finite refinement. Any separable manifold is paracompact.

In defining the cohomology groups of a paracompact space, it is suffi-

cient to consider merely the locally finite coverings rather than

all open coverings, in the direct limit construction introduced above.

For further discussion of the topological properties, see for instance

J. L. Kelley, General Topology, (Van Nostrand, 1955).)

Theorem 1. If M is a paracompact Hausdorff space, and if

is an exact sequence of sheaves of abelian groups over M , then

there is an enact sequence of cohomology groups of the form

** 0) s H2(M, ) -- ... .H1(M, .1 ) Hl (M

Proof. Let ilL = (Ua) be a locally finite open covering of

the apace M . For each simplex a e N(V? ) there is an induced

exact sequence o ---* r(Ia , R. ) -4 r(IaI, 4 ) --*-> r(IaJ, 0 ) ;

end since the cochain groups are merely direct sums of the groups

r(jaJ, * ) , there follow the exact sequences of cochain groups

, )-> 0 j1> cq(UtDefiningo__> cq(UZ,V

in , 0 ) = *0 (VZ , j ) c Cq(llt 0 ) , these sequences can be

extended to full exact sequences of the form

0--->Cq( TCq()il,.d) >Cq(711, )--.0. The
homomorphisms c and * clearly commite with the coboundary mappings,

in the sense that qr = 8cp and *8 = Sir ; there results an extensive



commutative diagram of the following sort, in which all the rows are

exact sequences of groups.

! 1 1

o --> Cq-l(?A Cq-1( 71 , .1 ) Cq-1( 11Z , ) -- 0
51 sl s j

0 >Cq(11Cq(111,.1) * Cq(IZ0
51 Sl sj

0 -- Cq+l( VI , W..) - Cq+l( ill , J.) . Cq+l( ?ft, V) -- 0

I I I

Now it follows immediately from an examination of this diagram that

for each index q there is an exact sequence of cohomology groups

Hq( y1 , g ) -4 Hq( 111 ,1) Hq(1/i , ) where by definition

Hq(M , 3 ) = Zq( tl ,) 3) and
Zq(-n , D) =(f a cq(Vi, 3 )ISf = 0) . Mappings

S*: Hq(1!1 Hq+l(ZI are then constructed in this manner.

If f e Cq( iL, D ) is an element for which Sf = 0 , select an element

g s Cq(111 ,
j

) such that *g = f ; then since $5g = S*g = Sf = 0 ,

by exactness there must exist an element h e Cq+l(71Z, R) such that

qh = Sg . Define S*[f] _ [h] , where [f] a V( U1, ) is the

cohomology class of f and [h] e Hq+l( VI 'k ) is the cohomology

class of h .. Of course, it is necessary to observe that 5h = 0 ,

and that [h] is independent of the choices made in this construction,

namely, the choice of representative f in the cohomology class [f]



and the choice of the element g ; this is straightforward, and will

be left to the reader. Finally, another simple diagram chase, which

will also be left to the reader, shows that the resulting cohomology
* * *

sequence' ... - Hq( X) Hq(TZ , ) ? Hq( 111 , 0
Hq+1(, ) Hq+l( .J) ,,, ... is an exact sequence.

Next, consider a refinement µ: IP --> jjt of the covering 2L .

There is a similar exact cohomology sequence for the covering ; and

it is easy to see that the induced cohomology homomorphism µ com-

mutes with the homomorphisms *, **, S* of each cohomologr sequence.

(in particular, µHq(7l , 7 ) C 1(W , 0 ).) Upon passing to the

direct limit, there then follows an exact cohomology sequence for the

space M ,

... -- Hq(M, ) -2-> Hq(M, Hq(M, 0 ) 8 Hq+l(M, ) - ...

Up to this point, the regularity properties of the space M

have not been required; but the cohomology groups Hi(M, 0 ) remain

to be investigated. It will next be demonstrated that, for a para-

compact Hausdorff space M , Hq(M, 0 ) = Hq(M, 0 ) , which will

suffice to complete the proof. It clearly suffices merely to show

the following: given a cochain f e Cq(21 , 9 ) , there exist a

refinement µ: If - YL and a cochain g e Cq( Ir , j ) , such that

µf = *g . Since M is paracompact Hausdorff, and hence normal, there

are open sets Wa such that 9U C U a and the Wa cover M ; and

the covering 71t- can be assumed to be locally finite. For each point

p e M , select an open neighborhood
p
V of p sufficiently small

that:



(i) p C Wa for at least one set Wa ;

(ii) if P fl Wa # 0 then P C Ua ; and

(iii) if a = (UO,...,Uq) a N(UZ ) and p s Jul
, (so

necessarily Vp C then pV f(a) is the image

p
under * of a section of j over

VP

For each set P select a set µ(P) = Up e IQ such that Vp C Wp C Up ;

this is always possible by (i), and then exhibits the set 1( _ (P)

as a refinement of . For any q-simplex a = (V ,...,V ) e N(7C
po pq

note that 101 = Vpo n ... n Vpq c W
PO

fl ... n w

pq
; since

Vpo fl W

pi
it follows from (ii) that Vpo C U

pi
for each i

hence that a C Vpo C U
PO

n ... fl U

pq
- Iµal . Therefore

Pf(a) = P+alf(PPo....,PV ) = PlaJPV f(Upo,..., Pq) . However it
0

follows from (iii) that the restriction to V of the section f(µe)
0

already lies in the image of and this suffices to conclude the

proof.

(d) Let J be a sheaf of abelien groups over the topological

space M , and let = (Ua) be a locally finite open covering of

M . A partition of unity for the sheaf j subordinate to the covering

1l( is a family of sheaf homomorphisms, qa: d ---> ,d such that:

.(i) qa( J p) = 0 for all p e M - U ;

(ii) Ea r;a(s) = s for any s e j

Note that since IQ is locally finite, it follows from (i) that the

sun in (ii) is a finite suet, hence is well defined. A sheaf j is



called fine if it has a partition of unity subordinate to any locally

finite open covering-of M .

F9r example, on any Riemenn surface M , the sheaves ( and

are fine sheaves. To see this, recall that for any locally

finite open covering 71L of M there are C" functions ra on M

such that ra(p) = 0 for p e M - U. and Eara(p) = 1 ; for a proof,

see for instance L. Auslander and. R. E. MacKenzie, Introduction to

Differentiable Manifolds, (MacGraw-Hill, 1963). The operation of

multiplication by the e function ra clearly defines a homomorphism

rya
in the sheaf of germs of a or of continuous functions) and

these homomorphis are a partition of unity for the sheaf.

Theorem 2. If lit = (Ua) is a locally finite open covering

of a topological apace M , and is a fine sheaf on M , then

H'(Vt ,.t ) = 0 for all q > 0 . Hence, for any fine sheaf A over

a paracompact Hauadorff apace M, Hq(M, I ) = 0 for all q > 0 .

Proof. Let (qa) be a partition of unity for the sheaf j

subordinate to the covering Q , and consider an arbitrary cocycle

f e Zq(7R , J ) , for q > 0 . For any fixed index a and any

(q-l) simplex a = (UO,...,Uq-1) , the induced homomorphiam Tea on

sections yields a section q* (Ua,UO,...,Uq-Z) e r(Ua n IQI, J ) ;

since T6f vanishes identically over IaI - Ua n IaI , this section

can be extended by values 0 to determine a section

ga(a) = 111 laf(Ua,UO,...,Uq-Z) e r(IQI,

These sections then define a (q-l) coahain ga a Cq-l( Note

that, for a q-simplex v = (UO,...,Uq) ,

"C



q i
SBa(a) = io(-1) PIQIga(ai) , where ai =

q
iE0(-l)ip1alElalr f(Ua,UO,...,Ui-lUi+l,...,Uq

EIa1Sr1f = TIaf(a) ,

recalling that f is a cocycle. This holds for all indices a ,

and ga(a) vanishes identically outside the set U. . The cochain

g = Eager is well-defined, since l1L is locally finite, and

Bg = Ear f = f , in view of the properties of a partition of unity.

Thus,aaiy cocycle is cohomologous to zero, and Hq(111 ,.8) = 0 as

desired. This suffices to prove the theorem.

By applying this theorem, the cohomology groups can be

described in the following frequently useful manner. A fine

resolution of a sheaf J of abelian groups over a topological space

M is an exact sequence of sheaves of abelian groups of the form

(3) 0 --> -f --> J0
d0 J1`dl

J2
d2 ... ,

where the sheaves Ji are all fine sheaves. For each of the sheaf

homomorphisms di , there is the induced homomorphism of the groups

of sections over an open subset U C M ,

di: r(U, .1 i) -k r(U, J i+l) ;

but the corresponding sequence of these groups and group homomorphisms

is not generally exact.

Theorem 3. If (3) is a fine resolution of the sheaf J over

a paracompact Hausdorff space M , then



Hq(M, J ) _ (kernel dq)/(image dq-1) , for q > 0

Proof. Let X i C .11 i be the kernel of the sheaf homo-

morphism 41 ; then the exact sequence (3) can be rewritten as the

following collection of short exact sequences:

d

d
0 i>1.

A portion of the exact cohomology sequence associated to the first

of the above short exact sequences is as follows:

... ---> Hq-1(M, ) ) - Hq-1(M, X 1) --> ON, J) --> ON, J 0) -> ...

Since j 0 is a fine sheaf and q > 0 , it follows from Theorem 2 that

Hq(M, J 0) = 0 . If q = J. , the formula of the present theorem follows

immediately from this exact sequence since

Hq-1(M, 1(i ) = HO(M, X 1) = (kernel d1) ; while if q > 2 , then

Hq-1(M, j 0) = 0 and Hq(M, J ) = Hq-1(M, 7'1) . The exact cohomology

sequence associated to the second short exact sequence above, for the

case i = 1 , contains the terms

... -> Hq-2(M, J1) - Hq-2(M, '2) -+-. 0-1(m, 1) -> Hq-l(M,, J1) -> ...

Since j 1 is fine and q > 1 , Hq-1(M, J 1) = 0 . If q = 2 , the

desired result follows immediately, while if q > 2 , then

Hq-2X
.1 1) = 0 as well, so

Hq-2(M, K2) Hq-1(M,
X 1) =

Hq(M)

I ) .

Continuing this process, the desired result follows eventually.

-38-



In many cases arising in practice, a fine resolution of a

given sheaf appears naturally at hand, and the preceding theorem

provides a very useful approach to the problem of calculating the

cohomology groups; an illustration of this will be taken up next.

But before turning to the example, it may be noted that a fine

resolution can be constructed for any sheaf J , so that the results

of the preceding theorem can be applied theoretically to an arbitrary

sheaf. For any sheafany and any open subset U C M , let J U be
the set of all mappings f: U such that rr o f: U ---> U is

the identity on U ; for emphasis, note that the mappings f are not

required to be continuous. The collection of these groups J U

together with the natural restriction mappings, form a complete pre-

sheaf over M ; the associated sheaf J
*

will be called the sheaf

of discontinuous sections of J . It is clear that J is a fine

sheaf. For given any locally finite open covering Y t= (Ua] of M

select some subsets Ka C Ua so that Ka fl K for a and

UaKC = M ; and define a mapping qa. J* --> J by putting nfa(s) = s

if s E Ka, Tja(s) = 0 if s J Ka . It is easy to see that these

maps qa are sheaf homomorphiams, and they form a partition of unity

Flrthermore, there is a natural injection mappingfor J * .
J --> J * . Now, to construct the fine resolution, put ? 0

put )l = ( )0/J
)*

; and so on.

(e) For an example which will be of some use later in the present

discussion, consider a connected open subset M of the complex line

C . Introduce on the space 0o M the first-order linear partial



differential operators

Note that the Cauchy-Riemann equations for a complex-valued function

f can be written of/az = 0 ; that is to say, given a function

f E Ca M , then f e 61. if and only if of/az = 0 . The mapping

f --> of/az is a homomorphism from the ring (o M to itself; and

hence this mapping induces a sheaf homomorphiam

a: 6 °° T 6' .

The Cauchy-Riemann c ndition can then be interpreted as the assertion

that the kernel of t iia homomorphism is precisely the sheaf 6L of

germs of holomorphic functions on M ; thug there is an exact sequence

of sheaves

0--> tv --> (p, a> avw

.

The sheaf Co

m
is a fine sheaf over M , as noted earlier; so this

provides part of a fine resolution of the sheaf 61, and raises the

question of whether this can be extended further as a fine resolution

of 0 .

Lemma 6. Let g c e M , and let D be a connected open

subset of the complex line C such that D is compact and i) C M

Then there exists a function f e C M such that af(z)/az = g(z)

whenever z e D .

Proof. Select a c function r on the complex line L'

such that r(z) = 1 for z e D , r(z) = 0 for z e C -M, and

r(z) # 0 only on a compact subset of C . The function

-40-



h(z) = r(z)g(z) for z e M, h(z) = 0 for z e C -M ,

is then a e function on the entire complex line, coincides with

the given function g on the set D C M , and vanishes outside a

compact subset of C . Now put

f(z) = 2 .
ffc h(z+5)

d ^d

here the complex differential form notation is used, writing

dt=d6+idn if t_ $+irk, sothat dt^dd= -2idg ^dr), and
thus dt ^ dT is (-21) times the ordinary plane measure. Note

that in terms of polar coordinates (r,e) , writing t = reie , it

follows that (dt ^ d))/t _ (-2irdr ^ de , and

hence f(z) is clearly a well-defined and a function in the entire

complex line C . Differentiation yields the formula .

of
= 21 JJC

it

= 23i
JJC ah(z+t) dt ^ d

az 31

=
271

IIC aT (ham)) a5 - dT

Now fix the point z e C . Select a disc A centered at the origin

and large enough that the function h(z+0 vanishes identically for

t e C- A ; and a disc Ae centered at the origin and of radius E

small enough that A C A . The boundary of A will be called 7 ,

and the boundary of De will be called ye ; here, 7 and ye are

circles about the origin, with the positive orientation. Then

27fi of
= lim Ifa a (h(- ))d dT

;
rz e-j0 ea5

and applying Stokes' theorem, and recalling that on the portion y of



the boundary of A-6
.

the integrand vanishes identically, secure

that

27ri
of = in f h(z+5) d5

az E - o yE T-
Parametrize the circle yE by writing t = ceie , 0 < 0 < 27r , so

2w
27ri

of
= lira f h(z+ceie)ide

az e -> 0
e-0

27r

fe=0
h(z)ide = 27x1 h(z)

Therefore f(z) is the desired function, and the lemma is thereby

proved.

As an immediate consequence of this lemma, if g is the

germ of a r function at any point p E C , there exists a germ f

of a C7 function at the point p such that of/2z = g . Conse-

quently the following is an exact sequence of sheaves of abelian

groups:

0 --> 0 --k 4, a C, --> 0 .

Considering the associated groups of sections, it follows immediately

from Theorem 3 that

H1(M, r(M, r(M, 00) , and
az

Hq(M, D ) 0 for q > 2

In fact, a slight extension of the above lemma leads to an interesting

and useful result.

Theorem 1+. Let M be a connected open subset of the complex

line, and g e M . Then there exists a function f e gyp' M such



that af(z)/az = g(z) for all z r; M.

Proof. Select a sequence of connected open subsets Dn C M

with the following properties:

(i) Dn is compact, and fn C n+l

(ii) Un=1 Dn = M ;

(iii) any function holomorphic in Dn-l can be approximated

uniformly well on Dn-2 C Dn_l by functions holomorphic

on Dn

(The last condition is an approximation theorem of the Runge sort;

to see that this construction is possible, see for instance E. Hille,

Analytic Function Theory, vol. II, pp. 299 if., (Ginn and Co., 1962).)

Next, by induction on the index n , observe that there is a

sequence of functions fn with the following properties:

(iv) fn is a C" function in n i

(v) afn(z)/az = g for all z e Dn

(vi) If(z) - fn-1(z)I <
2-11

for all z s a-2

To see this, suppose given the functions fl,...If n-1 , for some

index n > 0 . By Lemma 6, there is a function hn a 0 '0 such that

hn(z)/z = g(z) whenever z e Dn . In case n = 0 or 1 , there

is nothing further to show. In case n > 2 , the functions hn and

n-1 are both C- in Dn-1 , and a(hn(z) - fn-1(z)Xz = g(z) - g(z) = 0

for z e n-1 ; that is, hn(z) - n-1(z) is holomorphic in n-1

There exists a function h(z) holomorphic in n such that

Ihn(z) - fn-i(z) - h(z) I < 2-n for. all z e n-2 , as a consequence

of the approximation property (iii) above. The function

fn(z) = hl(z) - h(z) then satisfies the desired conditions.



Now for any point z e M , the sequence (f
n
(z)) converges

toy some limiting value f(z) . Indeed, for all points z c n 9

CO

f(z) = fn+2(Z) + E (fl(Z) - f(z))
m--n+2

Since If 1(z) - fm(z)l < 2-m for z s n C Dm-2 , m > n+2 , by (vi),

the series is absolutely uniformly convergent in Dn ; and since the

individual terms of the series are holomorphic in n by (v), the

sum is also holomorphic. Therefore f(z) is e in Dn ; and

af(z)Iaz = g(z) in Dn by (v). This suffices to

conclude the proof.

Corollary. If M is a connected open subset of the complex

line C , then

H((M, 0)=0 for q> l .

Proof. This result is an immediate consequence of formula (1+)

and the preceding theorem.

(f) The cohomology groups of a space with coefficients in a sheaf

have been defined as direct limits of cohomology groups of coverings

of that space. It is natural to ask when the cohomology of the space

can be read directly from the cohomology of some covering; and the

answer is provided by the following result.

Theorem 5. Let J be a sheaf of abelian groups over a para-

compact Hausdorff space M , and _ (Ua) be an open covering of M

such that

H l ( I a l , , ) = 0 for all a cN(?tj) and q>l.



Then

ON, A?) =Hq(111,, .J ) for all q> 0 .

Proof. Select a fine resolution

d - J0 dc-- Jl >J2
of the sheaf ,d over M Then for the induced homomorphisms

d r(M, d i) - r(M, j i+l) ,
it follows from Theorem 3 that

Hg(M, J) _ (kernel dq*)/(image d,*
1

q) for all q > 1 . For any simplex

a e N(V?. ) , the cohomology groups Hq(jal,J ) are determined simi-

laxly by restricting the resolution (5) to Ivl ; but since

Hq(lal, £ ) = 0 by hypothesis, it follows that the sequence of

sections

0 --4 r(laI, $ ) -a r(IQI, do) d-°4 r(IQI, J1) ...

corresponding to (5) is actually an exact sequence. Since further

the cochain groups are merely direct sums of groups of sections over

the various simplicea of N(V. ) , there follows an exact sequence

of groups of the form

(6) o -> cq( cq( Ill , 0) d- cq( ?J2 , 1)
d

... .

The coboundary maps commute with the homomorphisms of the exact

sequence (6), so that all of these sequences can be group together

in the following commutative diagram:



(7) 0 0 0 0

1 *

a r(i, J) - r(M, .d 0) d°-T r(M, d 1) r(M, J2) -

i 1 * *
-- CO( CO( U? , d 0) d>

C,(Zq

, 1) C0( 2 d2)

sl sl * sl * sj
d a

0

0--> c1(7n,1)->c1(Iq , 10):04cl?n, 11 C,(vi, J2

sl sl Sl Sl**

0 -_> C2 (71i , ) c2 (UZ , ) 0) c2 1) c2 ( 2a , j2)

1 1

All of the rows except for the first are exact, from the exactness of (6);

and the measure of inexactness of the first row, in the obvious sense,

is the cohomo7.ogy of M . Since all the sheaves mt i are fine, all of

the columns except the first are also exact sequences, by Theorem 2;

and the measure of inexactness of the first column is the cohomology

of the covering 1l( . The desired result follows immediately from a

diagram chase through (7); the details will be left to the reader.

As a terminological convenience, a covering of the space

M which satisfies the conditions of Theorem 5 will be called a Leray

covering of M for the sheaf J
Corollary 1. If 24 and 2/ are Ll/eray coverings of a para-

compact Hausdorff space M for a sheaf Q , and g: H -- Ul, is a

refinement, then the induced mapping

µ*: Hq(l , J) '# Hq (f s J )

a



is an isomorphism.

Proof. The natural homomorphisms u: Hq( ?1L , J) -> Hq(M,

and v: H"('Y' H"(M, J ) are isomorphisms, by Theorem 5;

and since v o µ* = u , it follows that necessarily µ is an iso-

morphism.

Corollary 2. If 7f_ is an arbitrary open covering of a para-

compact Hausdorff apace M , the natural mapping

u: Hl( Vi. , J ) ---> H1(M, J )

is an injection, (i.e., has kernel 0).

Proof. For an arbitrary open covering of M there corre-

sponds a commutative diagram (7); the columns are all exact, except

for the first column, but without the hypothesis that VZ is a Leray

covering, the rows need not be exact beyond the second place. How-

ever, a diagram chase shows that it is still possible to conclude that

the mapping Hl(?I? , I ) --' Hl(M, J) is an injection; details again

will be left to the reader.



0. Divisors and line bundles

(a) One of the main approaches to function theory on Riemann

surfaces involves the study of functions from properties of their

zeros and singularities. The sheaf machinery developed in the pre-

ceding two sections proves quite useful here. On a fixed Riemann

*
surface M , consider the sheaves of germs of nowhere-vanishing

holomorphic functions and of germs of not identically vanishing

meromorphic functions; in both cases the group structure in the sheaf

is multiplicative, and The quotient sheaf

is called the sheaf of germs of divisors on the Riemann surface. A

section of the sheaf A over a subset U C M will be called a

divisor on the subset U . Note that a germ of a divisor at a point

p e M , that is, an element of the stalk is an equivalence

class of meromorphic functions, where two meromorphic functions are

considered as equivalent when their quotient is holomorphic and no-

where vanishing; thus an equivalence class consists of all the germs

of meromorphic functions having the sane order (the same zero or

pole) at the point p . In this sense, divisors merely furnish a

description of the zeros and singularities of meromorphic functions.

In the case of a single complex variable, the sheaf

an alternative and much simpler description; and this simplicity is

one of the distinctive differences between the function theory of

one and of several complex variables. For any germ f e mp* , the

equivalence class of f in Sp is described uniquely by the order

vp(f) of the function f at the point p ; the stalk ZIP = 7, / (/p

-J.8-



is therefore naturally isomorphic to the additive group of the inte-

gers. (Recall that p(f-g) = p(f) + Vp(g) , so that the multipli-

cative structure in m p corresponds to the additive structure of

the orders V(f) e Z .) To describe the topology of , = 7t/ O* ,

recall that such a quotient sheaf is always topologized by defining

the images of sections of 'YY(* over a basis of the open sets of M ,

as a basis for the open sets of ' . Now for any open subset U and

any meromorphic function f e T(U, flt*) , the image set in J is the

divisor of the function f ; and the important thing to note is that

the order of a meromorphic function f is non-zero only at a discrete

set of points in U . Thus an open set in .4 will consist of an

integer associated to the points of an open subset U C M , in such

a manner that non-zero integers appear only for a discrete set of

points in U . It is thus clear that the sheaf J can be described

as follows. To any open subset Ua C M associate the additive group

61a
of all mappings V: Ua -- Z such that V(p) 0 only on a

discrete subset of Ua ; the group structure is of course the point-

wise addition of the functions. If Up C Ua , the natural restric-

tion of such functions from Ua to UA is a group homomorphism

pPa:
This defines a complete presheaf over M , and

the associated sheaf is just the sheaf A of germs of divisors.

This latter description will generally be used henceforth. Note

that, from this description, it is obvious that jS is a fine sheaf

over M ; the details of the verification will be left to the reader.

As for notation, divisors will generally be denoted by German

script d , namely, " . To describe a divisor e r(u, 4) ,



it is of course sufficient to give the orders (the integers) at only

those points of the discrete subset of U where the order is non-

zero; thus divisors will be written

vi.pi, where Vi a Z, pi a U, and Ui pi C U is discrete.

For a meromorphic function f e r(u, M*) , the divisor of f will

be denoted by 9'(f) ; thus

(f) A p e U Vp(f)'p

where the sum can be restricted to the discrete subset of U con-

sisting of points at which vp(f) # 0 . Note that

- (fg) _ $ (f) + , (g) ; and that ,5 (f) is not defined for the

function f 0 . The divisors over U can be given a partial order-

ing by defining

j = £i Viepi
> 0 provided Vi > 0 .

Note then that holomorphic functions f over U are characterized

by the condition that 9 (f) > 0 ; and more genernnal]y, A (f) > ,9(g)

if and only if f/g is holomorphic. Divisors N such that n4 > 0

will be called positive divisors.

The mapping which associates to a meromorpluc function f

its divisor ,t9 (f) is just the natural homomorphism ,,9 : 711* -> ,(9

from the sheaf 7M * to its quotient sheaf; this can be described by

writing the exact sequence of sheaves

(1)

where i is the natural inclusion mapping. (The notation 0 will

always be used for the trivial sheaf, whether the group structure of



the stalk is considered additive or multiplicative.) Corresponding

to this sheaf sequence over M is the familiar exact eohomology

sequence, in which appears the homomorphism

,g *: r(M, ?'i.*) -+ r(M, AQ ) . An element ,9 a r(M, A5.) is a

divisor defined over the entire Riemann surface M ; while an element

in the image of ,a is the divisor of a meromorphic function

defined over all of M . That there exist non-trivial divisors

defined over all of M , or equivalently that r(M, L ) # 0 , is

completely obvious; but that there exist non-trivial meromorphic

functions defined over all of M , or equivalently that r(M, M) / ©,

is far from trivial, is indeed one of the basic existence theorems of

the subject. Thus the question of whether or not the mapping

is onto is one of some interest. In a special case, the answer is

immediate.

Theorem 6. (Weierstrass' theorem) If M is any connected

open subset of the complex line 0 , the following is an exact

sequence of groups:

o-->r(M, r(M,fl#)-r(M,

Proof. The exact cohomology sequence corresponding to the

exact sheaf sequence (1) begins as follows:

1o - r(M, Q *) ---> r(M, %t*) - r(M, H1(M, cD *) - ...
therefore to prove the theorem, it suffices to show that

II'(M, t ) = 0 . Recalling the exact sheaf sequence

0 -- Z -4 (t - -- 0, when a (f) = exp. 21r i f

there is an associated cohomology sequence, which includes the

segment



HI(M, B ) -- H1(M, I? --+ 112(M. B) .

Nov by the collorary to Theorem 4, H'(M, ) = 11(M, 9) = 0 ; so

that 11(M, B *) _ H2(M,Z) . But since M is a non-compact two-

dimensional manifold, H2(M,Z) = 0 , and therefore H1(M, & *) - 0 ,

as desired. (Seethe topological appendix for a discussion of the

assertion that H2(M,Z) - 0 .)

Remarks. The corresponding theorem holds for an arbitrary

non-compact Riemaam surface M ; the only result needed is that

R1(M, Q ) = R2(M, ®-) - 0 . (For the proof) see for instance

R. C. (kenning and H. Rossi, Analytic Functions of Several Complex

Variables, p. 270, (Prentice-Hall, 1965).) The theorem implies that

an arbitrary divisor on M is the divisor of a global meromorphic

function on M . The Weierstrass factor-theorem gives an explicit

representation for a function with the prescribed divisor; (see for

instance L. Ahlfors, Complex Analysis, p. 1,57, (McGraw-Hill, 1953) )

For compact Riemann surfaces the preceding theorem does not

hold at all; we shall see eventually that (M, A) # 0 . An

investigation of the precise extent to which the theorem fails will

be one of the main topics of consideration. A few trivial obser-

vations and further definitions are in place here. Recall that the

sheaf & of germs of divisors on a Riemann surface was noticed

above to be a fine sheaf; hence by Theorem 2, H'(M, 0-) = 0 .

Therefore the exact cohomology sequence associated to the exact

sheaf sequence (1) has the form

(2) o -4 r(M, 4 #) - r(M, 7 #) -> r(M, ,) --
H1(M, £*) '*> H'(M,7 *)--0.



The quotient group

;(M) r(M, A )/ J*r(M,

is really the measure of the extent to which Theorem 6 fails to hold;

and in terms of that group the exact sequence (2) can be written

(3) 0 -- A(M) -> Rl(M., 4 *) -a Rl(M, %t*) -a 0

As a matter of terminology, the group r(M, At) will be called the

group of divisors on M . Two divisors A91, J2 a r(M, ,(Q) will be

called linearly equivalent, written n¢1 2 , if their difference

is the divisor of a meromorphic function on M , that is, if

JZ - n¢2 = AQ (f) for some f e r(M, WL) This is an equivalence

relation, is indeed the equivalence relation corresponding to the

homomorphism ,. in (2); in particular, the image of * is the

group of divisors linearly equivalent to zero. The group A(M) is

called the divisor class group on M , and is the group of linear

equivalence classes of divisors on M . The exact sequence (3) will

later permit a rather complete description of the group A(M) , and

thus settle the question of the extent to which the Weierstrass

theorem holds on compact Riemann surfaces.

(b) In the further discussion of these questions, one is led in

a very natural manner to investigate a special class of sheaves. To

introduce these sheaves, consider the group h1(M, ) , which

appeared notably in the above discussion. This group will be called

the -grroup of complex line bundles over M ; and a cohomology class

9 E H (M, 0 *) will be called a complex line bundle over M .



(The terminology arises from an interesting geometric interpretation

which can be given to the elements g c H1(M, Q*) ; this geometric

interpretation is totally irrelevant to the purposes at hand, although

it is not uncommonly injected into the discussion of these topics,

and will be ignored here. The interested reader is referred to

F. Hirzebruch, Neue Topologische Methoden in der Algebraischen Geo-

metrie, (Springer, 1956).)

For any complex line bundle 9 e H1(M, QL*) , select a basis

ll
{Ua) for the open sets of M , and a cocycle (L ) e Z1( U(, )

representing that cohomology class; since bases are cofinal in the

open coverings of M , there always exists such a representation. The

elements
Ea¢ are holomorphic, nowhere-vanishing functions defined

in the open sets Ua fl u, , and the cocycle condition asserts that

CO
(P) . gP7(P) _ gy(p) whenever p e Ua n UP f1 7 . To each open

set Ua a associate the group J a = r(Ua, s-) of holomorphic

functions in Ua . To each inclusion relation UP C U a associate

the group homomorphism pPa: a -> Jp , which associates to a

function f e Ja = r(Ua,.) the function pra(f) a ,1
P

= r(UP, LT )

defined by

(PO4) (P) = gPa(P) f(P) for p e UP C Ua .

Note that whenever Uy C UP C Ua and f e,da , then (pyP(pO ))(p) _

= Ey0(P) - f(P) _ g,a(P) f(P) = (p7 ) (P) for all p e Uv ;

that is, p7Ppsa = pya . Therefore {U1 , J ,pap) is a presheaf

over M , which is readily seen to be a complete presheaf; the associ-

ated sheaf is called the sheaf of germs of holomorphic cross-sections

of the line bundle g , and will be denoted by 9-Q) . It is a



straightforward exercise, which will be left to the reader, to show

that the sheaf d-(9) is defined independently of the choice of co-

cycle representing the cohomology class g , that is, that the sheaves

constructed in terms of two cocycles representing the same cohomology

class are isomorphic sheaves.

Since the above presheaf is complete, there is a natural

identification r(Ua, c (g)) a Ja = r(Ua, 9-) . It is then clear

that an element f e r(M, to (g)) corresponds to a collection {fa} ,

where fa e r(Ua, (Q ) and

(4) fa(p) _ o(p) d' (p) whenever p e Ua fl u, ;

these sections of will also be called holomorphic cross-sections

of the line bundle Note that the set of all such sections has

the structure of a complex vector space, as well as just that of an

abelian group; and that (9 = ( (1) , where 1 E H'(M, a *) is the

trivial line bundle.

The construction just described could have been carried

through just as well for the groups J a = r(Ua, 711) ; the homomor-

phisms p.a are well defined, as above, and the collection

{ J, po} is again a complete presheaf. The associated sheaf

will be called the sheaf of germs of meromorphic cross-sections of

the line bundle g , and will be denoted by 9i (9) . The elements

f e r(M,1, (a)) correspond to collections {fa} , when the functions

fa are now meromorphic functions satisfying the relations (4); such

sections will also be called meromorphic cross-sections of the line

bundle 9 . Or, in the same manner, using the groups

,d a = r(Ua, there arises a sheaf G (t;) which will be called



the sheaf of germs of CO* cross-sections of the line bundle g .

The sheaf 6 °'(9) is of course always a fine sheaf, an observation

which will be of use later.

For a cross-section f 6 the order of f at a

point p is a well-defined integer P(f) ; for defining

vp(f) = vp(fa) when p e U« , and recalling that the meromorphic

functions (fa3 satisfy equations (4) where 1a3 are holomorphic

nowhere-vanishing functions, it follows that P(fa) P(fd) when-

ever p e Ua n u, . Note that for any section f which is not

identically zero, the order is non-zero only on a discrete set of

points; hence to the section f there is associated a well-defined

divisor

(f) F EMVv(f).r

called the divisor of the cross-section f e r(M, Then

r(M, ® ( )) C r(M, ?j W) appears merely as the subgroup of mero-

morphic cross-sections of the line bundle g having positive divisor,

that is,
r(M, al (0) _ (f a r(M, 'l (01 A (f) > 0) .

One further general remark of importance is that, for any line

bundle g e H1(M, m *) , g = 1 (the trival line bundle) if and

only if there exists a cross-section f e r(M, B (1)) such that

(f) = 0 . For 4 (f) = 0 means that the functions (fa) are

holomorphic and nowhere-vanishing in U(I , and from equation (4) they

form a zero-cochain in Co(U( , a *) having I as its eoboundary,

so that g = 1 ; convdrsely, if 9 = 1 , then r(M, ®(g)) ffi r(M, ® )

and this contains the non-zero constant functions. Of course, in a



1
parallel manner, for a cohomology class g e Hl(M, 7Y1*) , 9 = 1 if

and only if there is a cross-section f E r(M, %(g)) which is not

identically zero. Recalling the exact sequence (3), every element

g e H1(M, 'VA*) can be represented by an element of 111(m,
(y.*)

;

therefore one can assert that on any Riemann surface, l1(M, 9t*) = 0

if and only if, for every line bundle g e H1(M, 6 *) , r(M,ryn(g)), 0.

The vanishing of the cohomology group H1(M, 7)(*) is therefore

equivalent to the fundamental existence theorem for Riemann surfaces,

namely, the theorem that every line bundle has a non-trivial (not

identically vanishing) meromorphic cross-section; and this is also

of course equivalent to the assertion that every line bundle is the

line bundle of a divisor on the surface.

To any divisor ,R a r(M, 41) there is associated by the

exact sequence (2) a line bundle 8*JT a R'(M., (9*) , and hence also

the sheaf 6(8*A ) of germs of holomorph c cross-sections of that

line bundle; to simplify the notation, set ®. (J ) = Ql(8*4- ) .

Nov the sheaf S (f& ) has another interpretation of interest as

well. To the divisor A associate a subsheaf (9m ( ) C 9 de-

fined as follows. For any point p e M let

(( g )p = (f e'j{1pleither f = 0 or j (f) > J near p

and put OM (A ) = p E M (lm )p . It is clear that each

O k (,9 )p C rM p
is a subgroup, and that £M (J ) C 1 is an

open subsets hence dM is a well-defined dubsbeef of rill

lemma 7 The sheaves and (TM (,9 ) are canonically

isomorphic.



Proof. It is necessary to examine the homomorphism 8 ' in

the exact sequence (2) a bit more closely. For the given divisor

A a r(M, IQ.) , it follows from the exactness of the sheaf sequence (1)

that there are open sets (U.) forming a covering of M , and

meromorphic functions da defined in the various sets Ua , such that

J (da) _ J IUa . Then in each intersection Ua n UP the function

gCO = d/da is holomorphic and nowhere-vanishing; and the collection

(g00 ) of all such functions define the line bundle

g = 6#,9 a H1(M, 0 *) . (The functions (da) form a zero-cochain in

Co (V1 , 1M *) which maps onto the zero-cocycle j a Z°( 11l , £!) ;

and the functions (gap) form the one-cocycle which is the coboundary

of the cochain (da) ; recall the proof of Theorem 1.) To each germ

f e OM( nQ )p C N and to each open set Ua containing p asso-

ciate the germ fa = f/da e 'fr p . Since n9 (fa) = A (f) - j (da) _

J_(f) - A > 0 near p , the germ fa will necessarily be holomorphic

at p ; and if p e Ua 11 Up , then fa - f/da = f- F,,a p/dp = gcp ° f,. There-

fore the functions (fa) define the germ of an element in

(,' ) ,0 (g )p )p . This defines a mapping from (( W ) to if

which is readily seen to be an isomorphism, and thus completes the

proof.

Since the sheaf 9 is defined in terms of holomorphic

functions, it is the easier to handle analytically and will play the

greater role in the present discussions. However, in view of the

isomorphism V (,D) '= aM(A ) , any results about the sheaf (J )
carry over to results about the sheaf Q7, and this re-inter-

pretation frequently leads to interesting statements. For exanple,



r(M, &( Q_ )) is the vector space consisting of those meromorphic

functions f defined on the entire Riemarni surface M such that

j (f) > ,,¢ ; and the dimension of this vector space is a number ofa

some interest.

(c) For a compact Riemann surface M the spaces 11(M, Q-(g))

are finite-dimensional complex vector spaces for all dimensions q > 0

and any line bundle g e H1(M, (*) ; in fact Hq(M, S (g)) = 0 for

q > 2 , as we shall see in the following section, so it suffices to

prove the finite -dimensionality only for q = 0 and 1 . In demon-

strating this, it is convenient to topologize the cochain and coho-

urology groups and apply a few simple results of the theory of topo-

logical vector spaces. At this stage there is a choice to make,

since one can either topologize the full spaces of cochains (as

Frechet spaces), or pass to certain subspaces of cochains which admit

simpler structures as topological vector spaces (namely, as Hilbert

spaces). The latter approach has been selected here, to minimize

prerequisites; but the arguments are basically the same in either

approach, and in higher dimensions as well, following H. Cartan and

J. P. Serre, (C. R. Acad. Sci. Paris) 237(1953), 128-130)-

First, let U C C be a connected open subset of the complex

line, with z = X+ iy as the complex coordinate function on U , so

that dx ,. dy is the standard Euclidean plane measure in U. Define

.r0(U, C- ) = {f a r(U, I)IffUlf(z)12dx dy < .o) ;

thus ro(U, a) C r(u, B') is a vector subspace, which will be called

the space of square-integrable analytic functions in U. For any two



functions f,g a r0(U, 6L) , it follows innnediately from the Cauchy-

Schwarz inequality that

(5) (f,g).U = ffUf(z)g(z)dx . dY

is a well-defined positive definite Hermitian inner product on the

space TO(U, (1) , in terms of which r0(U, 6 ) is a pre-Hilbert

space, (that is, PO(U, 9 ) is a Hilbert space in all but complete-

ness); the norm in this space is given by IIfIIU = (f,f) U . Now if

f e PO(U, 61), z0 E U , and A(z0,r) is a disc of radius r centered

at z0 and such that A(z0,r) C U , note that

(6) If(zo) I < r IIfIIU
Yir

(For writing z = z0 +
peie

a A(z0,r), 0 < p < r , the Cauchy integral

formula reads

hence

2

f(z0) = jr Jp=O 1e=0 f(z0+pe3A)pdpde

therefore

If(z0) I <
-r2

ffa(zO,r) If(z) IdX dy

<
2

(ffA(z0,r) 1 dX .. dY)1(ffA(zO,r)If(z)I2dx dY)i

s r
IIfIIU

as desired.) Now it follows readily from this that r0(U, I ) is

complete in the above norm, hence that r0(U, Q ) is a Hilbert space.



To see this, consider any Cauchy sequence of elements f e PO(U1 -) .

For any compact subset K C U , select a number r > 0 so small that

0(z,r) C U for any point z e K ; then by (6),

fm(z) - fn(z) I < 1 11f
m

- fn""U for all points z e K , so thatr7r r
the sequence (n (z)) is uniformly Cauchy on K , hence is uniformly

convergent on K . The limit function f(z) = limn fn(z) is then

holomorphic in U , and is the limit of the sequence fn in norm as

well.

If U C V C C are two connected open subsets of the complex

line, the restriction mapping

pU: T0(V, .) --> r0(U, 9- )

is a bounded linear operator between these Hilbert spaces. Further,

if U is compact and U C V , this restriction mapping is even a

compact operator, (that is, takes any bounded subset of r0(V, 61)

to a subset of T0(U, (9 ) having compact closure). This is actually

merely a restatement of Vitali's theorem; for if (fn) is any bounded

sequence in r0(V, OL ) , it follows from (6) that the functions

(fn(z)I are uniformly bounded on the compact subset U C V , and

hence by Vitali's theorem there will be a subsequence which is uni-

formly convergent on U .

To apply these considerations to the problem at hand, select

a line bundle g e H1(M, 4*) over the Riemann surface M. Let

(f _ (U«) be a coordinate covering of M in terms of which the

line bundle g is representable; that is, let Pt be an open covering

of M such that:



1 (i) each set Ua is contained within a single coordinate

(7)
neighborhood;

(ii) the line bundle has a representation cocycle

(tCO) e ZI(V\ , V#)

For any simplex a e N(V(. ) , then, r(ja , a(g)) = r(1vI, 61 ) ;

and IaJ is contained within a single coordinate neighborhood.

Selecting any fixed coordinate mapping for the set IaI , one can

then introduce the subspace r0(jaj, &(E)) C r(JaI, 61(g)) of square-

integrable sections of CL (9) over I aI ; and the direct sum of these

spaces, over all q-dimensional simplices a e N( V( ) , is a subgroup

C Cq(Vl , Q (g)) which will be called the group of

square-integrable cochains of llt with coefficients in Co(g)

Since the coboundary operator involves only restrictions and Finite

summations, it is clear that

B: C"( ?A , 111(8)) --> CO+l(

introducing the kernel Z0( Ul , QL (g)) C Cg( Vt, (Y (g)) of the co-

boundary mapping, the corresponding square -integrable cohomology

groups are defined by

H (?!1 , (g)) = zo(vl , m(g))I s Co-l(u, (g))

Notice that the inclusion 1: Cg( UI , (Q (g)) - Cq( M , a (g) )

induces a homamorphism

ice: Ho( U(, Hq( 7JZ, (D (g))



Lemma 8. Let Vt = (Ua) and = (Va) be open coverings

of M , where 7A is a refinement of W such that Ua C Va ; and

suppose that both coverings satisfy condition (7). Then, for

dimensions q = 0 and q = 1 ,

HH(Yt, (p (a)) = Hq( ?1Z, (D (a)) Hq(MO(a))

Proof. First, observe that the homomorphism

i*: HH()Jl , ()1(g)) -a Hq( VI , (P (a)) is an injection (isomorphism

into) for dimensions q = 0, 1 . This is entirely obvious for q= 0.

For the case q = 1 , select a cocycle (fCO) a Z1(U1 , (P (a)) , and

suppose that (fa4) is cohomologous to zero in H1(Ut , (Q (a)) ,

that is, that
f ao =

fa - f13 for (fa) a Cl('Ui , (Q (a)) ; it suffices

to show that each fa is square-integrable over Ua . For any point

p e IUa , select an open set UP such that p e UO ; thus in

Ua n u, , fa = fad + fo . However, the functions
fad

and fP are

both square-integrable in the intersection of Ua with some open

neighborhood of p in M ; hence fa is square-integrable there as

well. Since Ua is compact, finitely many of these neighborhoods

cover aUa , and so clearly fa is square-integrable in U. , as

desired.

Now, since each simplex a of either covering 2( or V lies

within a single coordinate neighborhood, and on lal there is the

isomorphism (a) = ( P, it follows from the corollary to Theorem 4

that Hq(a,, (a)) = 0 for all dimensions q > 1 ; hence, by

Theorem 5, Hq(1 , (Q (g)) = Hq(lf , (Q (a)) = Hq(M, (V (a)) , for all

dimensions q > 0 Indeed, as in Corollary 1 of Theorem 5, the



homomorphism µ*: Hq(y , (9 (1)) -- Hq( , Q! (g)) induced by the

refinement µ: l1Z ---> It is an isomorphism. Note that for any

simplex a e N(Jjl ) , its support I a I lies within a compact subset

of 'µ(a)' ; so clearly the mapping µ* can be factored as follows:

*

q(1f °> Ho(1n Hq(vt , d

Since µ* = i*µO is an isomorphism, and i is an injection in

dimensions q = 0, 1 , it follows that p
*
* is then an isomorphism,

and that concludes the proof.

Theorem 7. If M is a compact Riemann surface and

e H1(M, G *) , then the cohomology groups Hq(M, LV (g)) are finite-

dimensional complex vector spaces for dimensions q = 0 and q = l .

Proof. Let UJ = {TIa), `W _ (V(,}, and )i/ = {W«} , be finite

open coverings of M , where 11t is a refinement of I' such that

Ua C Vu, and 1f' is a refinement of )ZO such that V. C Wa ; and

suppose that all three coverings satisfy condition (7). For any

simplex a in the nerve of any of these coverings, the space

r0(Ia1, (9(k)) has a Hilbert space structure; thus the square-

integrable cochain groups are Hilbert spaces, since they are finite

sums of Hilbert spaces. The coboundary map being continuous, the

square-integrable cocycles are also Hilbert spaces; but one cannot

immediately say the same thing for the cohomology groups, since the

space 500-1(VZ , (T (a)) of coboundaries is not yet known to be a

closed subspace.

First consider the case of dimension q = 0 . Since

HO( ZO( lf(, (Q (g)) , this cohomology group is a Hilbert



space. The refinement mapping p: 7 ---> 10 induces a bounded linear

operator µ*: Hg ()r s m (9)) ---> H6 (VI It follows directly

from Lemma, 8 that p is an isomorphism of complex vector spaces,

hence by the open mapping theorem is an isomorphism of Hilbert spaces.

On the other hand, as a consequence of Vitali's theorem as noted

earlier, the mapping t*: r(Va, G (g)) ---> r(Ua, CL is a compact

operator; and since the cochain groups are finite sums of these spaces,

the cohomology homomorphism is also a compact operator. These two

observations taken together show that Hg( Z(, 3 (a)) is a locally

compact Hilbert space, hence is necessarily finite-dimensional.

Next, for dimension q = 1 , consider the Hilbert space

CO( 1k , (g)) + Z10 ( ( , (Q (a)) . Applying the coboundary mapping

to the first factor and the refinement mapping µ to the second

factor yields a homomorphism

(8) (s,µ): C0(V7 , c W) + Zl('W , 6 W) ---> I_Ua , (Q W)

It follows from lemma 8 that this mapping is suriective; for since

i : H'-('e , 0 (c)) ---> '_( 1 , (g)) is an isomorphism, any cocycle

of the covering VI must be cohomologous to a cocycle of the covering

If . On the other hand, as noted above, the refinement mapping µ

alone is a compact opertor; so applying the zero mapping to the first

factor and µ to the second factor yields a compact operator

(9) (o,4: co(1R , C' (g)) + Zo(W , y (f)) l_(

The difference (8,µ) - (0,µ) of the two mappings in (8) and (9) is

Just the coboundary map 8: CO( jf(, QI (a)) - z o-( uj the



desired result, that the quotient ZZ (Vz , a (g))/S(o( LO (g)) is

a finite dimensional vector space, is then an immediate consequence

of the following lemma.

Lemma 9. Let X and Y be Hilbert spaces, and p: X --> Y

and *: X - Y be bounded linear operators such that qi is sur-

jective and yr is compact. Then (ep_i): X T Y has closed range

of finite codimension in Y .

Proof. (For some of the general properties of linear

operators required here, see N. Dunford and J. T. Schwartz, Linear

operators, vol. I, (Interscience, 1958).) Let p*: Y -- X ,

Y --> X be the adjoint mappings to p and respectively;

then cp is a one-one mapping with closed range, and yr is a

compact mapping. Note first that the kernel K of the map q -

.is a finite-dimensional subspace of Y . For suppose that (yn} is

any bounded sequence of elements of K , so that (p* -yr*)(yn) = 0

Since yr# is cong,act, then after passing to a subsequence if neces-

sary, the sequence yr (yn) will converge; and therefore

rp#(yn) = yr4(yn) converges. Since cp* is one-one and has closed

range, it is a homeomorphism between Y and its range, hence (yn
}

converges. This shows that K is locally compact, hence finite-

dimensional.

Now, factoring out by K , we may assume that -yr is a

one-one mapping; and we then show that cps -yr# has closed range.

Consider a sequence (yn) of elements of Y such that

((P* - **) (yn) --a x . If (yn) has a bounded subsequence, then as



above we may suppose that **(yn) converges; but then

CP(Yn) = (Yn) converges, so again yn converges

to an element y , and (p _**)(y) = x . If IIynII consider

the elements yn =
YnIIYnII-1

; these elements have norm 1, and

(cp(Yn) = 0 . Again we may suppose that

**(yn) converge, so that p*(y'n) and hence yn converge, say to

an element y' . Now 11Y' II = 1 , and ((P* - 4r*) (y') = 0 = ((P* - yr*) (0)

this contradicts the assumption that p -$ is one-one, and this

second case cannot occur.

Tp conclude the proof of the lemma, since T - $ has

closed range, the same is true of p -fir ; so the quotient space

Y' = Y/(cp- p) (X) is a Hilbert space. Now p induces a mapping

p': X -3 Y' which is surjective, and i induces a mapping

X - Y' which is compact; and since clearly p' = *' , the

space Y' is locally compact, so finite dimensional, which concludes

the proof.



§5. Differential forms and Serre duality.

(a) Some familiarity with differential forms, at least the defi-

nitions and most elementary properties, will be assumed here. (As

references for this material, among other books are: L. Auslander

and R. E. MacKenzie, Introduction to Differentiable Manifolds,

(McGraw-Hill, 1963); and S. Helgason, Differential Geometry and

Symmetric Spaces, Chapter I, (Academic Press, 1962).) We shall only

consider the case of two-dimensional manifolds M , and shall adopt

the following notation. The sheaf of germs of complex-valued C`*

differential forms of degree r will be denoted by S
r

; thus the

vector space of such differential forms over an open subset U C M

is just the space r(U, (r) . For the case r = 0 , since a diff-

erential form of degree 0 is a function, f 0 = (o . Within any

coordinate neighborhood U , note that tol 9 O + DO , and

c2 _ 0
, (considered as sheaves of abelian groups); for if x,y

are local coordinates in the neighborhood U , and p e U is any

point of U , then any element rp e
p

can be written uniquely in

the form q, = f dx +g dy for sane germs f, g e £ P -C B , and any

element r a G_ P can be written uniquely in the form r = h dx dy

for some germ h e 10 F . Of course, e r = 0 whenever r > 2

These are clearly all fine sheaves over M

The operation of exterior differentiation is a sheaf homomor-

phism d;
, r r+l ;

and there arises the exact sequence of

sheaves (the de Rham sequence)
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(1) 0-bc--> f0 a_> gl a>e2-->0,

recalling again that M is 2-dimensional. Since the sheaves F r

are all fine, it follows immediately from Theorem 3 that

Hq(M,C) 9 ker d*/im d# for all q > 0 ,
q q-1

where dQ: r(M, fc) -> r(M, Cq+l) is the homomorphism of sections

induced by exterior differentiation; this is of course de Rlzam's

Theorem. For the particular case q = 2 , it takes the form

2
(2) g2(M,C)

ar(M, P

l)

If M is a compact 2-dimensional manifold, then as is known,

H2(M,c) S C ; (see the topological appendix for further remarks).

Using (2), this isomorphism can be described explicitly as follows.

For any differential form c e r(M, E2) , the integral ffMcp is a

well-defined complex number; the mapping cp ---> f1Mcp is clearly

a linear mapping from
rKC,2)

onto the complex numbers. If cp = d*

it follows from Stokes I theorem that j fMcp = j jMd.* - 0 , so that

this mapping yields a well-defined linear homomorphism r(M, t 2)/dP(M, P

-> C , which must indeed be an isomorphism since both sides are

one-dimensional complex vector spaces.

Now suppose that M has a complex structure; and select some

coordinate mapping z« = xx' + iya in an open neighborhood of a point

p e M . Writing dza = dd a + idya and dza = dd x - idya furnishes



a new basis for the e P-module e 1 I so that

(3 ) epa 1Pdza+epdza.

If z = x, + iyo is another complex analytic coordinate mapping

defined in anopen neighborhood of p , then since za = f(z)

is a holomorphic function of zP it follows from the Cauchy-Riemann

equations that

and so,

dza = fap dz,
J. `tea a3

p
GpdZa=Gp

ar

pdzPCpdzP

It follows that the splitting (3) is intrinsically defined, that is,

is independent of the choice of local coordinate mapping. Writing

110 0 dz and to" - e0 dz , the splitting (3) becomes
p p a p p a

e 1 a tp'0 + Fp'l

Since 5 P F p a , d ya
F p

dza % dza
J.

we shall for the sake

F 2 = 11 , and similarly F
0 = 0,0

of uniformity write
,

p p p p

Thus
to r,s

denotes the sheaf of germs of complex.valued differen-

tial forms of total degree r + s involving r basis elements dza

and s basis elements dEa ; of course here r = 0 or 1 , but

the situation in the case of several complex variables is quite

parallel.



Ma terms of the splitting (31), the exterior derivative

d: F0 > F1 = F 110 + e0,1 can be split as a direct sum

d = a + a where a: F 010 , F 1,0 and 610,0 > to0,1 .

For a coordinate mapping za a + iya , and a function f(x,y)

f(z) , secure

of of of dz + () dzxa a+C`a°F- a a
a

where a/aza and O aza are the linear differential operators intro-

duced in §3(e), (page 40); this is a straight forward verification

which will be left to the reader. It thus follows that

of = dza , of = a dzaTz-
a aza

In a parallel manner, for a differential form w = fadza +gadza of

degree 1 it follows that

g
dw

a
dz Adz + - dza A dza = 6(f a ) + ()(gadz

az

a a a)

a

The de Rham sequence (1) then splits as follows:

It is interesting to look at the separate pieces of this
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splitting of the de Rham sequence more closely. First of course

there is an exact sheaf sequence (the Dolbeault sequence)

(4) 0 --> d---- £0,0 a 60,1 > 0 .

The exactnees follows immediately from Lemma 6, and (4+) is really

merely an invariant form of the exact sequence of page 4+2. Since

all the sheaves F r, are fine, it again follows from Theorem 3

that Hl(M, e) = r(M, FO'1)/ar(M, FO'0) and that Hq(M, 19-) = 0

for q > 2 ; this is Dolbeault's Theorem, and is an invariant re-

statement of equation (4) of page 4+2. Next, there is an exact se-

quence of sheaves of the form

(5) 0 > d1'° ---> S1'0 >a ei'l > 0

where 6L
1,0

C 9
1,0

is defined as the kernel of the hamomorphism

a in (5). Introducing a local coordinate mapping za in the

neighborhood of appoint p g M , a germ of a differential form

fa(za)dza a `-p10 belongs to the subsheaf Q 1'0 if and only

if

0 ° aq) ° ' )dF ^ dza

that is, if and only if the function fa(ze) is a holomorphic`func-

tion near p . The sheaf d 1,0 is therefore called the sheaf of

germs of holomorphic differential forms of type (1,0) , or also

the sheaf of germs of Abelian differentials; a section of this sheaf



is a holomorphic differential form or an abelian differential.

Note that for an abelian differential p , dp _ Zkp + p = 0 ;

thus every abelian differential is a closed differential form.

These forms can be introduced in several complex variables as well,

but in the higher-dimensional cases they are not automatically

closed forms, which makes for further complications.

(b) Now select a complex line bundle g e H1(M, e) ; and recall

the construction given in §l+(b) for the sheaf 400(g) of germs of

COD cross-sections of the complex line bundle g . ' It is clear that

the parallel construction yields sheaves t r's(g) of germs of Cm

differential forms which are cross-sections of the line bundle g .

(To carry out the construction, let ?ll. - (Ua) be a basis for the

open sets of M such that each Ua is a coordinate neighborhood and

that the line bundle t
can be represented by a one-cocycle

(E _) a To each open set Ua associate the additive

group J a = r(a,Fr's) ; and to each inclusion relation a C U

associate the group homomorphism PaP: 'OtP -> ,j a which takes a

differential form pp a r(UU,
a r,s)

to the differential form

a r(%, e r's) defined bypap 'pp a

(Paa pO)(P) = gas(p) * cp,(P) for p e Ua C UO .

This defines a complete presheaf, whose associated sheaf is the

sheaf E
r,s(g)

.) These are clearly fine sheaves.
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The ordinary exterior derivative cannot be applied to these

sheaves to obtain an analogue of the de Rham sequence, since exter-

ior differentiation does not commute with multiplication by lap .

However there does arise an analogue of the Dolbeault sequence. For

if cp e e r,
s (g )p at a point p e M , then cp is represented in

each coordinate neighborhood Ua containing p by a germ cpa of

a differential form of type (r,s) at p ; and if p e U n U
a

then a pp Now since the functions
6P

are holomorphic,

that is satisfy aF = 0 , it follows that acpa = FP acpP i there-

fore (acpa) - acp is a well-defined element of C r, s+l(g )p . This

leads to a sequence of sheaves (the Dolbeault-Serre sequence)

(6) o -- e°'°w a> P011(t) ---- 0

In a single coordinate neighborhood this sequence reduces to the

Dolbeault sequence, hence (6) is an exact sheaf sequence. The

following generalization of formula (4) of §3(e) then follows trivially.

Theorem 8. If M is any Riemann surface and

is a line bundle over M , then

t H H1(M, *)

H1(M,e(t)) a r(M,E0 1(t))/ a rX e°'°W)
Hq(M O(t)) = 0 for q> 2

Proof. Since the sheaves £
r,s(t)

are fine, the Dolbeault-

Serre sequence (6) is a fine resolution of the sheaf & (g)
1 the

desired result then follows immediately from Theorem 3.



There is one result of prime importance, which is the basis

of the further study of compact Riemann surfaces; indeed, the core

of the analytic side of the theory consists of this result (and

Theorem 4 or its analogues).

Theorem 9. (serve's Duality Theorem). Let M be a compact

Riemann surface, and t e H1(M, B *) be any complex line bundle over

M . Then the vector spaces H1(M, 6 (g)) and H0(M,
m1,0(t-1)) are

canonically dual to one another, hence have the same dimension.

The proof of this theorem will be given in the next section,

following Serre (Un Theoreme de DualitLe, Comm. Math. Helv. 29 (1955),

9-26). In fact, the techniques in the proof of the theorem are of

quite a different sort than the applications, and the reader who is

willing to take this theorem on faith can omit the proof entirely

and pass on to the applications. It is perhaps of interest to indi-

cate briefly here just what the duality actually is, though. if

q) e r(M, F0'l(t)) and y e r(M, e" O(t-1))
are any two C" cross-

sections of their respective line bundles, then note that their ex-

terior product q) ^ y e r(M, F1'1) . For in any coordinate neighbor-

hood Ua these sections are represented by a differential form cpa

of type (0,1) and a differential form ya of type (1,0) ; and

at a point p e Ua n U these differential forms satisfy Ta(p) _

60(p) pi(p) and a(P) yP(P) The products p(,
" ya

are then differential forms of type (1,1) , and Ta(p)
^

*a(p)

Ti(p) yi(p) for p e Ua n U0 ; therefore the products
Ta - *a

define a global differential form of type (1,1) on the manifold

M . Since M is compact, the integral



(7) ((P,*) - ffM cP - *

is a well-defined complex number; then (7) defines a bilinear mapping

r(M, F°'1(g)) x r(M, F1'°(g_1)) --> c .

Now if q) e a r(M, £010(8)) C r(M, e0
1(0)

, so that p = of where

f e r(M,F°'°(g)) , and if * e r(M,1'0(g_1))C r(M, 91'0(8.1)) ,

so that a* = 0 , then

(T,*) = j"M of * - ffm a(f*) = ffM d(fi) = 0 3

for since M is compact, and since fir a r(M, a l,0) C r(M, Fl)

it follows from Stokes' theorem that ffM d(f*) _= 0 . Therefore the

pairing (7) leads to a pairing

r(M, (0'l(g))l a r(M, a°'°(g)) x r(I`'I, m1'0(g-1)) -> g .

By Theorem 8, H1(M, ®(g)) 2 r(M, £0 l(g))/ a r(M, F°'°(g)) s and

as always, H0(M, &10((1)) = r(M, O 1'0(g-l)) . This therefore

describes a bilinear pairing

H1(M, & (g)) X H0(M, dl'O(g_l)) --> C .

The assertion of Serre's theorem is that this is a dual or nonsingular

pairing, hence that the two spaces are dual vector spaces. The

spaces are then isomorphic as complex vector spaces; but whereas the



above duality is canonical, the isomorphism is not. For most of

the applications, what is required is merely that the two vector

spaces have the same dimension.

It should be remarked in passing that the Serre duality theorem

holds for higher-dimensional manifolds as well, in the sense that

Hq(M, B(g)) and Hn-q(M,
& n,O(g-l))

are dual on any 2n-dimensional

compact complex manifold M for any integer 0 < q < n . The greater

strength of the theorem in the case of Riemann surfaces lies in the

fact that all questions can be expressed in terms of the zero-dimen-

sional cohomology groups in that case; in higher dimensions, one

is faced with the problems of handling the cohomology groups

Hq(M,0 (t)) for q - 1,2,...,[7] as well.

(c) The Serre duality theorem can be expressed without explicit

mention of differential forms, by observing that the differential

forms involved can be considered as cross-sections of line bundles

themselves. This introduces a particularly useful line bundle,

defined intrinsically on any Riemann surface as follows. Let

7f(.= (Ua) be a complex analytic coordinate covering of the Riemann

surface, with coordinate mappings za: Ua > C . The coordinate

transition functions
fap

are complex analytic local hameomorphisms

between open subsets of C , such that za(p) = fap(zP(p)) for

all p e Ua n U0 Now introduce the functions K, defined in

the intersections Ua M UP by
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Kc(P) = (f (ZP(P))l'1 ;

since the functions
faP

are holomorphic and nowhere-vanishing,

the same is true of the functions KaP . Furthermore, if

p e Ua A UP n U then za(P) = ay(zy(P)) ,

that by the chain rule

Kay(P) =
[fay(zy(p)!l-1

= (f' (fP7(zy(p)))

K P(P) KPy(p)

so

thus (KaP) c Z1(ZJt
1

*) The element K E H1(M, CO) defined by

this cocyele is called the canonical line bundle on the surface.

Note that this bundle is independent of the choice of covering, since

it can be constructed for a maximal covering of the surface M .

Now consider the sheaf 4
1,0

of germs of Abelian differen-

tials on M . In terms of a coordinate covering = (Ua) , with

coordinate mappings za: Ua -> c , an element q) e
611,0

is

represented by a germ of a differential form Ta

a
dza in each

coordinate neighborhood Ua containing p if p c Ua n UP , then

a dza = fP dz, , so that fa = dzWdza fP =
KUP

fP ; thus

the coefficients fa can be considered as elements of the sheaf

(K) . This then establishes an isomorphism 61'0 ° 6 (K) . In

a completely parallel manner there is an isomorphism (91'0(8) _ ® (Kg)

for any line bundle g , where the product Kg is taken in the

group (M,
(9*)

. Considering C" rather than holomorphic sheaves,
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there is the isomorphism
(1,O (g) 9 p 0,0(Kg)

= t "(Kg) . (The

sheaf $ 0,1(g)
can be considered as isomorphic to the sheaf

60°(Kg) j, when K denotes the complex conjugate of the canonical

bundle, in the obvious sense.)

In these terms, the Serre duality theorem can be restated

as follows.

Theorem 91. Let M be a compact Riemann surface, and

e H7(M,(*) be any complex line bundle over M . Then the vec-

tor spaces H1(M, 0(g)) and H0(M, & (Kg-1)) are canonically dual

to one another.



§6. Proof of Sarre's duality theorem.*

(a) The proof will require some rather simple results about distri-

butions; for the benefit of those not too familiar with distributions,

we begin with a brief but self-contained review of those results which

will be needed. The first part of this discussion will be restricted

to subdomains U of the complex line C , with the coordinates

z = x + iy . For a function f e C U , the s ort of f is the

point set closure in U" of the set (z C Ulf(z) # 0) ; the support

is thus a relatively closed subset of U , which will be denoted

supp f . The subset of 0 U consisting of those functions having

compact support will be denoted by o rp U . To simplify notation,

derivatives of functions f e U will be denoted by

(V11v2)
6V1+V

D
Vf

2f

= D (f) _ , where V

3xV1ayV2

(V1,v2)

Definition. A distribution in U is a linear mapping

T: o U --> C , such that for every compact subset K C U there

are constants M and n with the property that

(1) IT(f) I < M E sup IDVf(z)1 when supp(f) C K
Vl+V2 < n z e K

If the integer n can be chosen independently of K , the least

possible value is called the order of the distribution. The set of

all distributions in U is a linear space which will be denoted by kU

This section can be omitted on first reading, or omitted altogether
by readers willing to take the Serre duality theorem on faith. '



As an example, suppose that g is a Lebesgue measurable

function in U which is integrable over any compact subset of U ;

there is an associated distribution T9 defined by

Tg(f) = f f(z)g(z)dx .. dy for f e o
a

U
U

It is clear that this is actually a distribution, indeed, a distri-

bution of order zero. In particular, the space a U of infinitely

differentiable functions is thus naturally imbedded as a subspace

C U C n U. As another example, to any point a e U there is

associated a distribution 8a , the Dirac distribution centered at

a , defined by

C 00

8(f) = f(a) for f e
o

U

This is also clearly a distribution of order zero; and one sees thus

that the space of distributions is properly larger than the space of

locally integrable functions.

If T e , U and gee
U

, the product gT e is the

distribution defined by

(gT)(f) = T(fg) for f e
o

r°U

10

It is obvious that this is a distribution, and that it has order at

most that of T if T is a distribution of finite order. Note also

that whenever g,h e 6 U , then Tgh = thus the product

U X xU -- '`U
is compatible With the ordinary product of func-

tions, on the subset U C X
U

. However, this cannot be extended

to an associative product on the full space '1 U of distributions.
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If T e ) U , the derivatives of that distribution are defined by

for feo9U

It is also obvious that these derivatives are distributions, and that

aT/ax and aT/ay are distributions of order at most n+l if T is

a distribution of order n ; higher derivatives are defined inductively.

Also, the linear partial differential operators a/az and a/az

introduced in §3(e) can be applied to distributions as well as to

functions. It should be observed that this definition is compatible

with the usual notion of differentiation on the subspace
U
0D C 2

For if f e o 0 v and g e I U, then

a(f)=-Tg =-Ug(z)afz)dxAdy

_ - f -E(g(z)f(z))dx .. dy + I f(z)
a z)

dx A dy
U

Since supp(gf) is a compact subset of U , it follows from Stokes'

theorem that fU a(gf)/ax dx ,. dy - 0 ; and therefore

6T
(z)

('Rg(f) _ f f(z)
a

dx dy = Tag/6x(f)
U

as desired. The same result holds also for a/ay and for all higher

derivatives as well. This observation can be used to give a meaning

to derivatives of arbitrary locally integrable functions, considered

as distributions; and in fact, all distributions arise in this manner.

Note that Leibniz' rule holds for differentiation of the product of a

e function and a distribution.



If V C U are two aubdomain$ of the complex lines then

clearly
o G Y C o U; for every function

f e 0 4 v can be

extended to a function f e o e U by setting it identically zero in

U -V . Then any linear functional T defined on (Q°

'
defines a

o U

linear functional pWT on o V by restriction. In particular,

if T e x U it is obvious that the restriction pWT is a distri-

bution in V . The restriction mapping is thus a homomorphism

pW: ---A X V ; and it is clear that ppW = pW wherever

W C V C U . Thus if / = (U) is a basis for the open sets in the

topology of C , then the set (vj , 2U,pw) defines a presheaf

over C ; the associated sheaf will be denoted by N , and will be

called the sheaf of germs of distributions over © .

Lenmta 10. The presheaf of distributions is a complete

presheaf; hence there is a natural identification F(U, X) _ )(U

for any open subset U.

Proof. Let U be a fixed open subset of 0 , and let

(Ua) be an open covering of U . Recalling the definition of a

complete presheaf (page 19), there are two assertions to be proved.

First, suppose that S,T a )(U are distributions such that

pU US - pU UT
for all Ua ; then it must be shown that S = T . ByU a

passing to a refinement of the covering if necessary, there is no

loss of generality in assuming that (Ua) is locally finite. Let

(ra) be a, C" partition of unity subordinate to the covering (Ua)

with supp ra compact for each a . For any f e o U , write

f = £ of ; since supp f is compact, only finitely many terms of



this series do not vanish identically. Thus since the stmt is finite,

and supp(raf) C Ua , it follows that S(f) - S(£j(xf) - a,S(raf)

= aT(raf) = T(Earaf) - T(f) , which suffices for the desired result.

Second, suppose that Tae NU are distributions such that
a

PUa n PUa fl UP,UPT
for all Ua n u, ;then it must be

shown that there is a distribution T e x U such that pU UT = Ta
0:

for each a . Again assume that (Ua) is a locally finite covering,

and select a subordinate partition of unity (r(.) with compact

supports; so that any f e o C U can be written f = Faf^, where

the sum is a finite sum. Define a linear functional T:
o coo --'> C

by setting

T(f) = Zcja(raf) for f e o e U.

On the one hand, note that pU UT = To ; for if f e o U
is such

that supp f C U0 , then since supp(raf) C ua n u, it follows that

T(f) = EaTa(raf) = Ea(PUa UPIUaTa)(raf) = a(PUa n UP,UPTP)(raf)
n

aT13 (raf) = TP(f) . 'On the other hand, observe that T is actually

a distribution. For given a compact set K C U and a function

f e o 6 v with supp f C K , since the sets Ka = K fl supp ra C ua

are compact and the Ta are distributions, it follows that

IT(f)l < Z ITo;(raf)l

Ea% E sup IDV(rof)(z)I ;
Vl+V2 < na 2 E Ka

the set of indices a in the above summation is actually finite, and

depends only on the set K , so the above inequality clearly reduces

to an inequality of the form (1), when n = max na and M is suitably

chosen. Then T is a distribution, and the proof is concluded.



The support of a distribution T e K
U

is defined to be the

set of points in U which have no open neighborhood to which the

restriction of T is the zero distribution; the support will be de-

noted by supp T , and is clearly a relatively closed subset of U

Note that for a function g e U , supp g = supp Tg ; and note

further that w h e n T e xU and g e
U s u p p (gT) C supp gflsupp T

Then multiplication of distributions by a C" partition of unity

defines a partition of unity in the sheaf that is, the sheaf

of germs of distributions is a fine sheaf.

(b) In a sense, the Cauchy-Riemann conditions hold for distri-

butions as well as for differentiable functions. Before turning to

the proof of this assertion, a few further simple properties of dis-

tributions are required.

Lemma 11. Suppose that g(z,t) is a Coo function in

C X 8 , and that for any number t in an open interval i C R the

support of g(z,t) as a function of z alone is contained in a

fixed compact set K . Then if T is a distribution in an open

neighborhood U of K , the function Tg(z,t) of t is a C"

function in the interval I .

Proof. For any point t e I and any h # 0 , note that

(2) h[Tg(z,t+h) - Tg(z,t)] = T
FE(z,t+h)- g(z,t

L J'

As h -. 0 , for a fixed value t , the function [g(z,t+h)- g(z,t)]/]

as well as its partial derivatives of any order with respect to x

and y , converge uniformly on K ; and their supports are always con-

tained in K . It then follows immediately from the definition of a



distribution that the expression (2) approaches T[ag(z,t)/at] .

Therefore Tg(z,t) is a differentiable function of t , and Its

derivative is

H
Tg(z,t) = TIag- (aE 1 .

Repeating the argument, the function Tg(z,t) is thus e as a

function of t in the interval I .

Lemma 12. Suppose that G(z,9) is a C" function in C X C ,

and that supp G C K X L where K,L C C are compact sets. Then if

T is a distribution in an open neighborhood U of K ,

(3) T If G(z, )ds ,. dt = f f TG(z, t)dt .. d
C C

Proof. Note that Ife d1 is a r function of

z with support contained in K , and that TG(z,t) is a r func-

tion of t by Lemma 11, and has its support within L ; therefore

both sides in (3) are well defined. The Riemann sums for the integral

ffe G(z,t)ds dd are all COO functions of z with support con-

tained in K ; and these sums, as well as their partial derivatives,

of any order with respect to x and y , converge uniformly on K

Then (3) follows again immediately from the definition of a distri-

but ion.

With these properties out of the way, the Caucby-Riemann

conditions for a distribution read as follows; recall that the holo-

morphic functions can be considered as imbedded in the space of

distributions, by associating to a holomorphic function h the

distribution Th



Theorem 10. If T is a distribution in a subset U C C

such that aT/az = 0 , then T is a holomorphic function in U

Proof. For any constant e > 0 let Ue C U be the subset

of U consisting of points whose distance from C - U is at least

e ; and select a C** function r = re in C such that

r(z) = 1 for Iz(< e/2, r(z) = 0 for (z() E .

Then to any function f c o G U with supp f C Ue associate the

function

h(z) = 2 ff dt .. d
C bb

this function is clearly Cr everywhere, supp h C U , and

tai ah =
ff of z+ I (t) dt . dd= ff of z+) I (t) d5 .. dT .

az C az a
For a fixed point z e C let L. be a disc of radius 5 centered

at z ; then

22ti
2h

= lim If
of z+)

dt ,. dT

az 5 -40 C-

= lim ff a (f(z+S) r Q dt dT)
5 -4 0 C- AB

lim f f f(z+t) fr- 1 dt A dT
5->0 C-ii5 ` -̀lJ

= 2ai f(z) - f f f(z+S) dt .. dT

as in the proof of Lemma 6. Note that the function



I
a r

2[i for # 0 ,

0 for =0,

is actually C`0 everywhere, since r(S)/S is holomorphic for

0 < Ifl < e/2 . Then write

f(z)
ah z)

+ ff f(zts)ge(S) d ^ dS
2Z C

izz) + If g6(5-z)f(S) dS .. dd
C

Since aT/az = 0 , it follows that T(?h/az) (h) = 0 ; and so,
BE

applying Lemma 12,

if - ff Tg6(5-z)f(5)d5 .. dd
C

That is to say, the restriction of T to the set UE is the function

which is a
C00

function of t by Lemma U. Since

aT/az = 0 and T is a C' function in UE , it follows from the

ordinary Cauchy-Riemann conditions that T is a holomorphic function

in Ue . This holds for any value s > 0 , hence T is indeed

holomorphic throughout U thus concluding the proof.

It is possible to continue in this vein, securing a fine

resolution of the sheaf 61- by sheaves of germs of distributions,

paralleling the discussion of §3(e); in particular, for any subset

MCC,
xl(M, 0) = r(M, X )

a
r(M, x) .Ai

We shall not need this, so pursue the matter no further here.



(c) In order to extend the discussion of distributions to Riemann

surfaces, it is first necessary to discuss the transformation pro-

perties of distributions. Suppose that U,V are subdomains of the

complex line C , and that h: U - V is a C" homeomorphism.

*
The mapping h induces a linear mapping h °e V ---> e U , defined

by h (g) = geh , the composition of the two functions g and h

It is clearly of interest to extend the mapping h* to a linear

mapping
h*:

XV ---> XU , recalling again the natural imbedding

e U C X U which associates to a function g e 6 U the distribution

T9 E XU . For this purpose, define a linear mapping

h*: xV - xU by

(4) (h T)(f) = T[(f°h-l)Jhl]

where T e xV, f e P U , and Jh is the Jacobian determinant of

the mapping h . Write z = x+ iy for a point in U and _ + irk

for a point in V , so that the mapping is of the form t = h(z)

Then for any functions g e V and f e o (oD U note that

(h Tg)(f) = T9[(f°h-1)Jhl]

= f f g(S)f(h l(5)) a(xon) dt A dr)

C V

= f f g(h(z))f(z) dx dy
z E U

Th*(g)(f) .

Therefore the mapping h* on X V , when restricted to the subspace

V C Y, V , coincides with the earlier definition of h* on that

subspace. It is a straightforward verification that when g E 6ji V

and T e N
V

then



(5) h*(9T) = h*(g)-h*(T) ;

and that when k: V -> W is another C" homeomorphism and

T e 9(W then

(6) (koh) T - h*(k T)

The details will be left to the reader.

Now let M be a Riemann surface, with a complex analytic

coordinate covering (UJ,za} and coordinate transition functions

za = fa13 (zP) . A distribution T on the coordinate covering

(Ua,za} is defined to be a collection (Ta) of distributions on

the various subsets za(Ua) = Va C ( such that for each non-

empty intersection Ua n u, C M ,

(7) fa43(pza(Ua fl u ),V.a) = 'z,(Ua n U,),VPTP

Two distributions T and T' on coordinate coverings (Ua,za) and

(UJ,za) are called equivalent if they define a distribution on the

union of those coordinate coverings; that this is an equivalence

relation in the proper sense is a consequence of (6). An equivalence

class of distributions on coordinate coverings of M is defined to

be a distribution on the Riemann surface. The sheaf 9{ of germs

of distributions is then a well-defined sheaf of abelian groups on

M , and by lemma 10 the global sections of the sheaf X are pre-

cisely the distributions on the Riemann surface. The natural

imbedding of the C" functions in the distributions exhibits

goo C /< as a subsheaf, in view of the remarks above. Furthermore,

I e Iio(M, the corresponding sheaf ?(for any line bundle

of germs of distribution cross-sections of the line bundle I can



be constructed, paralleling the discussion of §4(b); for that con-

struction merely requires that the multiplication of local sections

of x by e functions be well defined, and so using (5) there are

no difficulties. Details will be left to the reader. Adopting the

notation of §5(c), we shall write X"°() = X (Kg), <O'lw

and x(KK9) , where K E H1(M, (g is the canonical

bundle on the surface.

The description of the sheaf ^ can be put in a somewhat

more invariant form as follows. Again let (Uaza) be a coordinate

covering of M , with Va = za(Ua) and with coordinate transition

functions za =
043

(zo) ; note that the Jacobian determinant of the

mapping
fad

is

a(xa,ya)
x

dza

dzO = IKpa12 ,

2

where K is the canonical bundle of M . Suppose that

q) E r(M, tl'l) = r(M, e°°(IK12) , and that T e r(M, 9( Thus q)

corresponds to a family of functions cpa E r(va, a W) such that

f*a(cpp) = I Koal2cpa in each intersection Ua fl u, # 0 ; and T

corresponds to a family of distributions Ta a P(Vc,, )( ) such that

f'(Ta) = T, in each intersection Ua n u, # 0 . (The precise

meaning of the phrase "in each intersection Ua n U. " is of course

given by equation (7); the additional notation is cumbersome and of

no great necessity, so will be dropped.) if supp-tcp c Ua n u, , then

a a(cP0)Jf(f'Ta)(Q = Ta['Poef0a)Jfl
1

=T
(P



so that T((p) is well defined. More generally, let (ra) be a C"

partition of unity on the manifold M , and suppose that supp tp is

a compact subset of M ;then define

(8) T(W) = Ea Ta(ra(p)

There are at most finitely many values of a for which Ta(ra(pa) 10

so that only a finite scan is involved; and as above, the sun is readily

seen to be independent of the choice of partition of rUty. (To see

this, suppose that (sa) is another such partition of unity. Then

Za Ta(ratpa) _ 7-
Zap

Tp(rspcpp) = T, TO(socpp) , since
C43 P

supp(rasocpa) C Ua fl u, .) Therefore the elements of r(M, x) can

be envisaged as linear ftmctionals on the subspace o (M, x`1'1) c

r(M, 01'1) consisting of differential forms of compact support.

In particular, if g e r(M, B00) and Tg is the associated distri-

bution, then Tg((p) = ffM gtp . It is thus clear why the distributions

must be considered as linear functionals on the space of differential

forms of degree 2 rather than on the space of functions; for this

integral has an invariant meaning only inthis case. In a precisely

parallel manner, for any line bundle I e H1(M, (k*) the space

r(M x (g-1)) can be viewed as a space of linear ftmctionals on

or(M, J'111(f)) ; the details will be left to the reader. The latter

assertion can of course be rewritten, so that the space

r(M, can be viewed as a space of linear functionals on

or(M, or yet again, the space I(M, x l,0(9-l))
can be

viewed as a space of linear functionals on o (M,
r0,1(0)

if

the distributions rather than the functions are required to have

compact support, the corresponding assertions clearly hold; so that



0r(M, (g-1)) can be viewed as a space of linear functions on

r(M, "'(I)) , and so on. If the Riemann surface M is compact,

then o (M, V *(j)) = r(M, C O*(j)) and or(M, x (j)) - r(M, '((g)).

One can, in fact, say considerably more. To simplify this

discussion, suppose that M is a compact Riemann surface, and that

(Ua,za) is a finite coordinate covering of M with the property

that the mapping za can be extended to be a C`0 homeomorphism of

an open neighborhood of Ua into C ; and put Va = za(Ua) C C as

before. For any integer n > 0 and any element

f = (fa) a r(M, 2 °°(g)) put

(9) pn(f) - Z E sup IDVfa(za) I ,
a Vl+v2 < n za a Va

with the notation as in §6(a). It is clear that the functions pn

so defined on r(M, Q"(g)) are norms, in the sense that:

W pn(f) = 0 , with equality holding only when f - 0 ;

(ii) pn(f+g) = Pn(f) + Pn(g) ; and (iii) pn(cf) =

for any constant c e C . Introduce on r(M, Q`D(g)) the topology

defined by this family of norms; so r(M, (p° 0(9)) is a topological

vector space, and a basis for the open neighborhoods of the zero

element consists of sets of the form (f a r(M, C°°(WIIPn(f)I < E

for some n ) . (This makes r(M, 0 "(g)) into a Frechet space;

cf. C. Goffman and G. Pedrick, First Course in Functional Analysis,

Prentice-Hall, Englewood Cliffs, N.J., 1965.) A linear functional

T: r(M, C is continuous in this topology if and only if

there are an integer n and a constant c such that IT(f)1 < cpn(f)

for all, f e r(M, c "W) .



lermna 13. On a compact Riemann surface M , the space

r(M, 21l()) is the space of continuous linear flanctionals on

the topological vector space r(M, 000(g))

Proof. If T = (Ta) a r(M, X 1'l(I)) , then T determines

a linear functional on r(M, C°(g)) by (8), where Cr.) is any

suitable partition of unity. Since Ta are distributions, the con-

tinuity of T follows immediately from a comparison of the definition

of a distribution, (equation (1)), and the definition of the norms

pn , (equation (9)). Conversely, suppose that T is a continuous

linear functional on r(M, Any function f e oa v can
a

be extended to a section f e r(M, 000(e)) by putting

fa(za) = f(za) ; and putting g-'(zoffoo(zo)) for

zP a zP(Ua fl U0) C VP , extended to a function in VP by setting

it zero on the rest of V . Setting Ta(f) = T(f) defines a

linear functional Ta: o V
C ; and it again follows readily

a
from a comparison of (1) and (9) that Ta is a distribution in Va .

Note that if f e o r V has supp f c za(ua n u) , then

(f (f) = T(fefCO)a) Koa12) _ IK where g e V

is defined by f(f,(z,)) . Since ga(zes) a Pa(za)g(fpa(za))-

9-1a(za)f(za)
9-(zafa(za) ,

it follows that T(g) 1T(f) ;

therefore
foes]

= J 1$aj2Ta , so that [Ta) a r(M, .(i1))

Now for any f e r(M, C°°(g)) and any partition of unity (ra) it

follows that T(f) = T(F raf) = Z P(raf) = Va(raf) ; this therefore

identifies T with the section (Ta) a r(M, a( and serves

to conclude the proof.



(d) With these preparations out of the way, let us now turn to

the proof of the Serre duality theorem. Recall that the statement

of the theorem is as follows.

Theorem 9. Let M be a compact Riemann surface, and

e (M, 0*) be a complex line bundle over M . Then the vector

spaces H1(M, V(g)) and H°(M, 6110(g-1)) are canonically dual

to one another.

Proof. Introduce the complex vector spaces

A = r(M, 80,O(g)) , B - r(M, a °'1(g)) ,

and the homomorphism A T B , as in §5(b). It follows from

Theorem 8 that H'1(M, (4(g)) B/aA , and from Theorem 7 that this

quotient space is a finite-dimensional complex vector space.

Further introduce the norms pn given by (9), in both of the spaces

A and B ; this makes these spaces into Frechet spaces, and it is

obvious that the homomorphism a: A -? B is a continuous mapping

in terms of this topology. Note further that the image aA C B is

a closed subspace of B . (To see this, let K C A be the kernel

of the mapping a , so that K is a closed subspace of A ; thus

A/K is also a Frechet space, and the mapping a: A/K B is a

continuous linear mapping with trivial kernel. Let L C B be a

finite-dimensional subspace of B which is complementary to

S(A) = a(A/1{) . The Product (A/K) X L is then a Frechet space,

and the mapping a + is (A/K) X L -4- B given by

is a continuous mapping. This mapping also has trivial kernel, and

its image is all of B ; so by the open mapping theorem, it is an



isomorphism of Preehet spaces. Since (A/K) X 0 C (A/K) X L is a

closed subspace, it then follows that ( + i) (A/K x 0) = aA is a

closed subspace of B , as desired.) The fact that a is closed

means that B/ inherits from B a topology as a Prechet space,

which must of course coincide with the usual topology of a finite

dimensional vector space. The conclusion of interest here is then

that any linear functional on the quotient space B/dA , which is

necessarily continuous since B/aaA is finite-dimensional, leads to

a continuous linear functional on B which vanishes on the subspace

Now, purely formally, let A*, B* be the dual spaces to

the topological vector spaces A and B ; and let a : B* -> A*

be the dual homomorphism to a . It then follows readily that the

kernel K* C B of the homomorphism is the dual space to B/dA .

For on the one hand, any linear functional T on B/dA determines

a continuous linear functional T on B which vanishes on dA ,

as noted above; and thus T e B* , indeed T e K . Conversely if

T e K* then T defines a continuous linear functional on B

which vanishes on aA , hence a linear functional on B/BA .

Then, to conclude the proof, we need merely appropriately

identify the spaces AB*, and the homomorphism It follows

immediately from lemma 13 that

A* = r(M, x 1'1(g-1)) s B = r(M, u 1,0(t-1)) ;

and recalling the definition of the derivatives of a distribution,

it is clear that V _ -a , where a is the familiar operator as

applied to distributions. Now B/aA = 111(M, 0 (f)) is therefore



dual to the kernel of the mapping

-a: r(M, x 1'0(1-1)) r(M,

but by Theorem 10 this kernel is precisely r(M, (9
1,0(1-1)) _

H0(M,
6]l'0(9-1))

, and thus the proof is concluded.

An examination of the proof indicates that the duality is

indeed that described in §5(b); details will be left to the reader.



§7. Riemann-Roch theorem.

(a) Before turning to the Riemann-Roch theorem itself, it is

necessary to introduce a fundamental invariant associated to W

complex line bundle, its Chern class or characteristic class. This

is actually the first step in the classification of complex line

bundles, in the sense of providing a detailed description of the

group xl(M, 4*) over a compact Riemann surface M . Recall the

exact sequence of sheaves (cf. §2(d))

0 --> z (9 e 0

where the homomorphism e was defined by e(f) = exp 2itif . The

associated exact cohomology sequence includes the segment

H1(M,z) - > H1(M, B-) -. H-(M, A*) __> H2(M,Z) ---> H2(M, ) .

Since H2(M, -) = 0 by Theorem 8, this sequence can be rewritten

(1) o --> H1(M, iff )/H1(M,Z) T H1(M, *) --k H2(M,Z) o .

The coboundary homomorphism in (1) will be called the characteristic

homomo1rphism c: H1(M, . 9*) H2 (M, Z) ; for a line bundle

g e ii(M) (4*) , the image c(g) will be called the characteristic

class or Chern class of the line bundle g . The sequence (1) goes

a good deal of the way towards describing the group of line bundles

in more detail; there remains the problem of investigating the group

H1(M, (7 )/H1'(M,2Z) , and this will be tackled in a later section to

complete this point.

In a sense, the Chern class measures the topological proper-

ties of the line bundle g . To make this precise, consider the

sheaf <°"* of germs of C complex-valued, nowhere-vanishing



functions on M , the group structure being multiplicative. The

sheaf 19* is a subsheaf of ro , the natural inclusion defining

a sheaf homomorphism is e T 10"* ; and also there is an exact

sheaf sequence of the form 0 --> Z - Q" -s> 4:"* -> 0 ,

paralleling the above sheaf sequence in the analytic case. Alto-

gether, these two exact sequences can be written as parts of the

commutative diagram of sheaves and sheaf homomorphisms, as follows.

0->Z -> Q e> 0*> 0

0 --> Z -> (°" e-> r* > 0

The cohomology sequences can then be written together as a commu-

tative diagram o. groups and homomorphisms of the form

H-(M, m)->H'1(M, &*)e>

i*j i*1 ° 1

Hl(M, ") T Hl'(M, 4"*) -T H2(M,Z) - H2(M, 6 ")

The homomorphism c in the second line is the parallel to the

characteristic homomorphism in the first line; but in the second line

c is an isomorphism, since H1(M, d-) = H2(M, 0-) = 0 because

these sheaves are fine. Now if g e H1(M, 0
*)

is a line bundle

(g) = 0 , the image i (9) e H (M, /° ) will satisfysuch that c * l *

ci*(9) = c(g) = 0 by commutativity; but since c is an isomorphism

at that level, i*(9) = 0 . The converse holds as well, as is

obvious, so that c(g) = 0 if and only if i*(9) = 0 . Now 1*(g)

is the topological form of the line bundle g , so that we may say

that the line bundle is topologically trivial precisely when it has



zero Chern class. Selecting a representative cocycle

(IOP) a Zl( , 9 *) for the line bundle g , the condition that

i*(9) = 0 is Just that there exist nowhere-vanishing C" functions

fa defined in the various sets Ua and such that f(p)/fa(p) =

9CO(p) for p c Ua fl u, , and the condition that g = 0 is that

there exist holomorphic nowhere-vanishing such functions fa ; this

observation may help to clarify the above discussion.

Since we shall henceforth assume that M is a compact two-

dimensional manifold, it is known that H2(M,Z) = Z ; the Chern

class c(g) a H2(M,Z) of a line bundle g can thus be considered

as an integer, under the above identification. This identification

of the Chern class as an integer can be made more explicit as follows.

The class c(g) can be considered as an element of the group H2(M,C);

for either apply the cohomologyr homomorphism 1?(M, Z) ---> H2 (M, C)

derived from the inclusion mapping X C C of sheaves, or recall from

the universal coefficient theorem that it (,C) ~ Ii (M,Z) ® C

Under the isomorphism H2(M,C) = r(M, C 2)/dr(M,
jp1)

furnished by

de Rhem's theorem, the cohomology class c(g) E H2(M,C) will be

represented by a differential form sp(g) a r(M, F 2) ; and then

ffM Cp(g) e C will be the constant associated to that cohomology

class under the identification H2(M,C) = C introduced in Section 5.

In fact, this will be an integer, and will be called the Chern class

of g and also denoted by c(g) . A useful explicit form for the

Chern class in this sense is given as follows.

Lemma 14. Let (tCO) a Z1(V , 0 *) represent a line bundle

and suppose that (ra) are nowhere-vanishing C" functions

defined in the open sets U(, and satisfying ra(p) = r0(p)(g0a(p)12



for p e Ua fl U . Then cp =tai as log ra E P(M, F2)

defined differential form on M , and

c(E) - !IM q) - ffM as log raN-ti

Proof. This is a straightforward matter of tracing through

the identifications in the preceding paragraph, recalling the explicit

form of the eoboundary homomorphism of an exact sheaf sequence as

given in the proof of Theorem 1. First, to pass from the line bundle

to its characteristic class, consider the exact sheaf sequence

0 --4- Z -- 0 !4 B* ---a. 0 . The cocycle (tCO) e Z1'Ut ,

will be the image under a of a cochain (aC43 ) E C1'(UZ , 6,) ;

indeed, merely take aa3 - 2ni log too , for any fixed choice of a

branch of the logarithm in each set Ua fl UO # 0 ; by suitably

refining the covering, all such intersections can be taken to be

simply connected, and the logarithms are thereby well-defined. The

characteristic class c(g) a 1?(M,Z) is represented by the 2-co-

cycle given by the coboundary of the 1-cochain (aa3) , namely, the

2-cocycle cao, a Z2(Vt.,z) where c,,, = a07, - aar +
aCO

-

-
'CO

+ 'P7 + aya . Now this 2-cocycle can be envisaged as belonging

to the group Z2(Vt C) , and the homomorphisms given in de Rham's

theorem follow from the exact sheaf sequence

0 C r0 d> e 1 d> e2 -_> 0 . Introducing the subsheaf

F e C f
1

of closed differential forms, consider the exact sequence

0- C -> G 0 d; 1 -> 0. The 2-cocycle (ca37) considered

as an element of Z2('Ut , 40 0) will be the coboundary of some

1-eochain (ai ) a ZI(l!'t , 0) ; the condition is that

cap? = a 'a0 + a 9 + a' . Then (da!) E Z1(VL, 91) . In fact,



referring to the first part of the proof, we shall merely take

a = av , so that da' = 21 d log J . Now from the exactL

C43

sequence 0 -- ° c 11 d 0 , the element (dam)

considered as an element of Zl(n , P 1) will be the coboundary of

some 0-cochain (Ta) a C0(V , t'1) ; the condition is that

do'00 = TP - Ta . Then dTa = dTP , so (dTa) define a global dif-

ferential form, a 1-cocycle of Z0(jk , 4- 2) . To be explicit,

selecting any C" differential forms Ta of degree 1 in the sets

Ua such that

(2) Ta =
2

d log ga3 + TP in U a fl U .

The differential form cp a r(M,
e2

) defined by = dTa in Ua

is well-defined, and the Chern class (as an integer) is given by

C(g) - ffMdfP .

Now, to finish the proof of the lemma, the functions ra

are nowhere-vanishing, hence have well-defined logarithms; and these

logarithms satisfy

log ra(p) = log ri(p) + log gy(p) + log for p e Ua fl Up

Since the functions gPa(p) are holomorphic, a log gPa = d log gP

and a log spa = 0 ; thus the differential forms Ta = log ra

clearly satisfy (2). The differential form p will then be given

by q)= dTa = 2n d a log ra - 2a a log ra ; and

c(g) = tai
fff as log ra ,

as desired.

Remark. There always exist functions {ra(p)) having the

properties required in the preceding lemma, and indeed the functions



can always be taken to have strictly positive values. For introducing

the sheaf r of germs of positive-valued C" functions, the col-

lection (Iga3I2) defines a 1-cocycle in Z1(j , 2z,) , and the

desired functions fra) form a zero-cochain having this 1-cocycle

*
as its coboundary; thus it suffices to show that H1(M, , ) = 0 .

Nov the subsheaf W C (o
'

of real-valued functions is clearly fine,

and the ordinary exponential mapping exp: is a sheaf

isomorphism; hence Hn-(M, *) H1'(M, .) = 0 , as desired.

Theorem 11.. For any line bundle g e H1(M,
C9-*)

on a com-

pact Riemann surface M , and any non-trivial cross-section

f E r(M,'n2*(i)) ,

c(g) = E V (f) ,
P CM p

where V(f) is the order of the cross-section f at the point

p e M , as defined in §4(b).

Proof. Since M is compact there are only finitely many

points p e M at which Vp(f) # 0 ; calling these points pi , the

divisor of f has the form

N (f) = Ei

and the assertion of the theorem is that c(,j) = Ei Vi . Let

_ (Ua) be a coordinate covering of M such that the bundle

is represented by a cocycle (gad) a Z'(2. , *) ; and suppose that

the covering is so chosen that each point pi has an open neighbor-

hood Vi for which Vi C Ua for some index ai but Vi fl Ua = 0
i

for a # ai . The functions fa representing the cross-section

ry *
f E r(M, "l (g)) are meromorphic in Ua and satisfy fa = gapfP



in Ua fl UJ . The functions
Ifal2

are thus C" and nowhere-

vanishing in va - (Uipi) fl Ua , and satisfy I fa) l= I tM I2. I fO l 2 ;and

these functions can be modified arbitrarily within the sets Vi

without changing the functional equations. It is thus evident that

there are C" , positive-valued functions % defined in the various

sets Ua , such that

ga= It I2gp
in UaflU,,

ga = I fall in Ua - Ua n UiVi

By Lemma 14, the Chern class of the bundle g is given by

gC'c(g) - 2n1 jjM as log
41

= 2 jjM as log

Since ga = IfaI2 on M - UiVi , and

as log ga = aa(log fa + log fa) = 0 since fa is holomorphic there,

it follows that

c(g) Ei 11v
i

as log so, .

By Stokes' theorem, since as log ga - d log g. , secure that

c(j)
1

2i Ei jaVi log ga

where aVi is the boundary of Vi . Now gix = fa on aVi , so that

actually

c(g) = 2i T-i jaVi
a log fa 2i i javi d log fa

= Ei Vi

by the residue theorem; this completes the proof.

It is an immediate consequence of the preceding that all

meromorphic cross-sections of the bundle g have the same total order

on the Riemann surface M , where the total order is by definition



p e M
Vp(f) . This can be taken as the definition of the charac-

teristic class of a line bundle, since as we shall shortly see every

bundle does have a non-trivial meromorphic cross-section. One further

useful trivial consequence of this theorem is the following.

Corollary. If g a H1(M, £*) is a line bundle on the

compact Riemann surface M such that c(g) < 0 , then there are no

non-trivial cross-sections of the sheaf m or equivalently,

r(M, tD (a)) = 0 .

Proof. If f e r(M, 0 (a)) and f is not identically zero,

then
P a

M vp(f) > 0 ; thus necessarily c(g) > 0 , by the theorem.

(b) Again suppose that M is a compact Riemann surface, and

consider a line bundle g e R (M, ® ) . Introduce the expression

(3) X(9) = dim RO(M, d (1)) - dim R1(M, S (9)) - cW ;

the cohomology groups are finite-dimensional complex vector spaces,

and the dimension is meant in that sense. Note that, applying the

Serre duality theorem, this expression can also be written in the

form

(3'.) X(9) - dim P(M, V (g)) - dim r(M, m (Kg-1)) - c(g) ,

where K is the canonical bundle of the surface M . The content

of the Riemann-Roch theorem is that this expression X(9) is inde-

pendent of the choice of the line bundle $ . A first step in the

proof of this assertion is the following.



Lemma 15. Let n be a divisor on the compact Riemann

surface, and let n = S*n9' a
H1(M,

(¢ *) be the line bundle corre-

sponding to that divisor, as in §4(b). Then for any line bundle

I e n (M, m'*) ,

x(gn) = x(g) .

Proof. Clearly it is sufficient to prove this assertion in

the case that the divisor is a single point, say 4 = 1-q . Parallel-

ing the discussion in J4(b), introduce the subsheaf LI.,(,9 ,g) C 1rj(1)

defined by

)p = (f f =? 0 or J(f)>A near p);

since J- l q > 0, actually ( (A , E) C 9 (1) . The quotient

sheaf 1 = (g (1)/ (DM(A , g) clearly has the form

0 if p# qp
1 C if p = q

(compare with the example discussed on pages 23 and 24). As in

Lemma 7, it follows that

Or, (4 ,g) mcgn) .

There thus follows the exact sequence of sheaves

0 ---? - - > > 9 (g) ---. J -> 0 .

Consider then the associated exact cohomology sequence:

(4)

0 T H0(M, (9 (9i1)) - > H0(M, m (9)) - . ON, J) --.

p

H'(M, ((gn))->H'-(M, m(g))-->Hl(M,-A)-->.-. .

Since J is a skyscraper sheaf, having stalk C: at a single point,

it follows readily that H°(M, J ) _ C and H''(M,I ) = 0 . Now in



an exact sequence of complex vector spaces as in (4), the alter-

nating sum of the dimensions of the vector spaces is zero; this can

be rewritten as the equality

(5)

dim HO(M, ) (gn)) - dim H-(M, Q! (gn)) + 1

= dim HO(M, m (g)) - dim Hl(M, (9(g))

Note that c(n) _ -1 . (This peculiar observation results from the

notational conventions adopted. Recalling Lemma 7, and its preceding

discussion, the line bundle of a divisor 4 was defined to be the

element S*(A ) e H1(M, 9 *) in the exact sequence (2) of §4. If

(da) are local functions defining the divisor, then the functions

l/da are a meromorphic cross-section of the sheaf rn*(,9 ) , by

this convention. The total order of the divisor n9 is thus the

negative of the total order of any meromorphic cross-section of its

associated line bundle. Hence, for the line bundle n associated

to the divisor it follows from Theorem 11 that c(n) = -1 .)

Then, replacing 1 in equation (5) by -c(n) = c(n-1) , adding c(g)

to both sides of the equation, and recalling that c(g) + c(n-1) =

= c(W1) , it follows that X(9n-1) = X(g) , which suffices to con-

clude the proof.

Now by using this lemma and the Serre duality theorem, it is

an easy matter to prove the fundamental existence theorems on a

Riemann surface. The discussion in §4(b) should be recalled here.

Theorem 12. On a compact Riemann surface M , H1(M,
'Y'*)

= 0;

equivalently, every line bundle on M has a non-trivial meromorphic

cross-section, hence every line bundle is the bundle of a divisor.



Proof. The equivalence of the three assertions of the

theorem was noted in §4(b). Noting that a line bundle is the bundle

of a divisor on M precisely when the bundle admits a non-trivial

meromorphic cross-section, it clearly suffices to show that, given

any complex line bundle I , there exists a line bundle q of a

divisor such that 11 has a non-trivial meromorphic cross-section.

In fact, we shall show more, namely, that given a line bundle g ,

there exists a line bundle rl of a divisor such that gq has a non-

trivial holomorphic cross-section, that is, such that r(M, 6L(W) 10 -

Suppose, contrarily, that r(M, Of (gi)) - 0 for every line

bundle rj of a divisor on the surface M . By Lemma 15 the expression

x(gq) - dim r(M, 0 (fin)) - dim r(M, ® (Kg-1n-1)) - can)

is independent of q ; and since dim r(M, 61 (h )) a 0 for all q

by assumption, it follows that

dim r(M, m (Ki-In-1))
+ c(gn) - C

is independent of rl . There are bundles rl with arbitrarily given

characteristic classes c(q) ; and by taking c(ry) to be large

enough, c(Kg_lq-1) = c(Kg-1) - c(q) < 0 . Thus, by the Corollary

to Theorem 11, it follows that dim r(M, V
(KI'l1-1)) - 0 whenever

c(q) is large; but then c(1q) - c(g) + c(q) would also be inde-

pendent of q t which is absurd. This contradiction then proves the

theorem.

This existence theorem then shows that the study of divisors

on the surface can indeed be reduced to the study of line bundles.

In particular, referring to equation (3) of page 53, the divisor

class group A(M) of the surf8' M is isomorphic to the group



H (M, 61) of line bundles on the surface.

Corollary. On a compact Riemann surface M the charac-

teristic X(g) = dim H°(M, IV (9)) - dim H1'(M, 61(g)) - c(g) is a

constant, independent of the choice of the line bundle 9 .

Proof. Since every line bundle g on the surface M is

the line bundle of a divisor as a consequence of the theorem, it

follows from Lemma 15 that X(g) - X(1) for any , which serves

to prove the desired result.

It is of course of some importance to determine the constant

X(g) for a given surface M . For this purpose set 1 , the

trivial bundle, and note (using Serre duality) that

X(1) = dim r(M, (1) - dim r(M, (9l'0) - c(l)

= 1 - dim r(M, 6
1,0)

.

The constant

(6) g = dim r(M, S 1'°) ,

the dimension of the space of abelian differentials on the surface

M , is caled the genus of the surface M . This constant has a

simple topological interpretation as follows. Considering the exact

sequence of sheaves

0 -? - B d>
m

1, 0 --> 0

the associated exact cohomology sequence has the form

0 - H°(M, C) H°(M, H°(M, 41, 0) ---> H1'(M, C) T
Hl'(M, ) --D H'1(M, 110) --> H2(M,cr) --- 0 ,

since
?(M,

) = 0 by Theorem 8. Now H°(M,C) = H°(M, ®) _ C ,



since all the global holomorphic functions on a compact Riemann sur-

face are constant; and H2(M,d") _ C as noted earlier. Therefore,

recalling that the alternating sum of the dimensions of the terms in

a finite exact sequence of vector spaces is zero, it follows that

dim H0(M, 0
1,O)

- dim H1(M,C) + dim H1(M, m )

(7) - dim HZ(M, Q 1,0) + 1 = 0 .

By definition, dim H0(M, d
1,0)

= g , and by the Serre duality

theorem,

dim H1(M, 1D) = dim H0(M, 0
110)

= g , and

dim Hl(M, 19 1,0) = dim H0(M, &) = 1 ;

therefore (7) becomes

(8) 2g = dim H1(M,C)

That is to say, H1(M,C) is an even-dimensional complex vector space,

and its dimension is twice the genus of the surface M . The constant

X(g) = 1 - g . As yet another interpretation of the genus, consider

the canonical bundle K ; then

1- g = X(K) = dim H0(M, Q (K)) - dim H1(M, 0 (K)) - C(K) .

By definition, dim H0(M, 0 (K)) = dim H0(M, ®l'0) = g ; and by the

Serre duality theorem, dim H1(M, m (K)) - dim H1(M, 0
1,0) =

=dim HO(M,IV )=1-

(9)

Therefore

C(K) = 2(g- 1) ,

relating the genus to the characteristic class of the canonical bundle.

Since cross-sections of the canonical bundle are just abelian differ-

entials, it follows from Theorem 11 that the total order of an abelian



differential on M is precisely 2(g -1) .

In terms of the genus, the Corollary to Theorem 12 can be

restated as follows.

Theorem 13. (Riemann-Rock Theorem) if M is a compact

Riemann surface of genus g and 9 e Hl(M, 6*) is a complex line

bundle on M , then

dim H°(M, 61(x)) dim H1(M, ! g ;

or equivalently,

dim r(M, dim r{M, & 1 - g ,

where K is the canonical bundle.

In some cases, the Riemann-Roch Theorem furnishes explicitly

the dimension of the space of holomorphic cross-sections of a complex

line bundle; the following table may prove useful in keeping this in

mind. As a notational convenience, for a line bundle E e Hl(M,
&7*)

we shall write

(10)

Then:

f
(a) cW < 0

(b) cW = 0

(]1)
(c) c(g) = 2g-2

(d) cW > 2g-2

7(a) = dim r(M, 62(9))

=-> YW = 0
1 if =1

-= > 7(0 = 0 if 1

=__> 7(9) -
g if K

g-1 if K

=s> 7(e) = c(9) - (g-1)

To see that '(11) holds, recall first that c(s) < 0 implies that

r(M, 01(9)) = 0 , by the Corollary to Theorem 11. Furthermore, by



that same corollary, if c(g) = 0 and y(g) > 0 there must exist

at least one non-trivial (i.e., not identically vanishing) holo-

morphic cross-section of the line bundle I , and its divisor must

have total order c(g) = 0 ; that is, that cross-section must be

holomorphic and nowhere-vanishing on M . This means that g = 1

(cf. page 56), and hence 7(g) = 1 . Now when c(g) = 2g - 2,

recalling that c(K) = 2g - 2 and applying part (b) of (11) to the

bundle Kt-1 , it follows that

7(Kf-1) =
1 if

Kg-1
= 1

0 if Kg-1 1

Then by the Riemann-Roch Theorem, 7(g) = y(Kg-1) + c(g) - (g-1)

= y(Kg-1) + g -I , from which (c) follows immediately. Finally, if

c(g) > 2g- 2 , then c(K9-1) = c(K) - 0 , so it follows from

part (a) that 7(Kg-1) = 0 ; and part (d) follows immediately from

the Riemann-Roch Theorem again.

For the line bundles between the trivial bundle and the

canonical bundle, that is, for those. bundles I e H1(M, 0*) such

that 0 < c(g) < 2g - 2 , the Riematin-Rosh Theorem merely provides

the equality

y(g) = Y(K¢-1) + C(E) - (g- 1) ;

and thus the formula merely relates two unknown quantities. How-

ever, it is easy to qbtain some useful inequalities for line bundles

in this range. First, since 7(Kg-1) > 0 , it follows that

(12) y(g) > c(g) - (g -1) for all g e H1(M, ) .



To obtain inequalities in the other direction, select a line bundle

t with cW = 1 and 7(t) > 1 ; for instance, the line bundle

associated to the divisor can be taken as 5 , since it has

at least one holomorphic cross-section h . Now multiplying a cross-

section of any line bundle by the section h yields a cross-

section of the line bundle ; and thus y(gt) > y(g) . Repeating

this process, y(gCr) > y(g) for any index r > 0 . if

c(g) < 2g - 2 , talk in particular r - 2g - 1 - c(g) ; then

C(gtr) = c(g) + 2g - 1 ,

so by (11d) it follows that

Y(g5r) - g -

It then follows that y(g) < g whenever c(g) < 2g - 2 . If

0 < c(g) < 2g - 2 , then C(Kg-1) < 2g - 2 so that y(Kg-l) < g ;

and by the Riemann-Roch Theorem, Y(g) = y(Kg-1) + c(g) - (g-1) <

c(g) + 1 . Consequently,

(13) Y(g) _ min(g,c(g) + 1) for 0 < c(g) < 2g -2 .

The following table may help to keep these inequalities in mind:

(14)

c(g): 0 1 2 ... g-2 g-1 g g+1 ... 2g-3 2g-2 2g-1

max Y(g): 1 2 3 ... g-1 g g g ... g g g

min Y(g): 0 0 0 ... 0 0 1 2 ... g-2 g-1 g

We shall next see that for a general line bundle g the value y(1)

is the minimum given in the table.



(c). At this stage it is possible to extend a bit further the

discussion begun in §4, concerning relations between divisors and

line bundles on a compact Riemann surface M . For any point p e M

select a complex line bundle tp e Hl(M, () , such that there is a

section f e r(M, (-(tp)) for which J'(f) = there always

exists such a bundle, since the line bundle associated to the divisor

under the exact sequence (2) in §4 will do. In fact, the bundle

5P is determined uniquely by the point p ; for if were any

other such bundle, with f' a r(M, -()) its corresponding section,

then f'/f e 1(M, (¢( /tp)) is a holomorphic nowhere-vanishing

section, hence necessarily !/gyp = 1 . Line bundles of this form

will be called point bundles on the surface M . Note that c(sp)= 1

for any point bundle 5p , by Theorem 11; and that y(ip) > 1 , since

by definition a point bundle has at least one non-trivial section.

Lemma 16. If M is a compact Riemann surface of genus

g > 0 and 5p is a point bundle on M , then y(ip) = i .

Proof. Suppose contrariwise that 2 ; of course,

then, y(ip) = 2 by the inequalities (14). Select two linearly

independent sections fl,f2 e r(M, 9-(tp)) , and consider the mapping

M -- ;;- 1-1 defined by

(15) q e M --4 (f1(q), f2(q)) a P ,

in terms of homogeneous coordinates on the projective line. Since

the values of fl(q), f2(q) in two different coordinate neighborhoods

are multiplied by the-same non-zero constant when passing from one

neighborhood to the other, these values determine the same point in

the projective line. If both functions fl, f2 vanish at a point,



then dividing by their greatest common divisor will yield the same

mapping into projective space, thus extending that mapping to the

common zero of the functions fl, f2 . It is thus evident that (15)

is a well-defined complex analytic mapping from M into N'1

For any point (al,a2) e P1 consider the section

e2fl - alf2 a r(M, o (s))) . By Theorem 11 again, there is a unique

point q e M for which this section vanishes, that is, for which

(fl(q), fq(q)) = (a1,a2) e . The mapping (15) is therefore one-

to-one, so that the surface M is analytically equivalent to the

surface , and hence the genus must be g = 0 . This contradicts

the hypothesis, and therefore concludes the proof.

Now if M has genus g > 0 , it follows that the point

bundles gyp, Sq are equal if and only if the points p, q are

equal. For if tp = tq for p # q , then the bundle tp = tq

would have at least two non-trivial sections, one vanishing at p

and one at q ; and thus y(ip) > 2 , which is impossible by the

preceding Lemma. Therefore, if M has genus g > 0 , the mapping

p T 5p is a one-to-one mapping from the surface M to the subset

of H1(M, (9-*) consisting of those complex line bundles C for

which cQ) = 1 . For the case of genus 0 , it follows from

the Riemann-Roch theorem that cQ) = 1 implies yQ) = 2 , and

thus as in the preceding Lemma, M = 1P . On P1 there exists a

meromorphic function with an arbitrarily prescribed simple zero and

simple pole; so any two points p,q are linearly equivalent divisors,

and thus Sp = tq for all points p,q e P1 . There is hence a

unique line bundle on IF
1

with cQ) = 1 . That is, if M



has genus g = 0 , then M = P' and all the point bundles of M

coincide.

An arbitrary complex line bundle on M can be built up from

these point divisors. First, if g e H1(M, (*) is a line bundle

for which y(g) > 0 , select a non-trivial section f e r(M, 19-(g))

and write r(f) _=1 1-pi , where r = c(g) and the points

pi e M need not be distinct. It is then clear that _ p .. ;

i r
for if fi a r(M, 6-(Sp )) are non-trivial sections of the point

i

bundles, so that fi vanishes precisely at pi , then

f1fl...

i
e r(M, (g5-1. ..C,p1))

pl
is a holomorphic, nowhere-vanishing

section, so necessarily g1... -1 = 1 . This representation of
pr

course only holds for bundles g with 7(e) > 1 ; but if c(g) > g

it follows from (i4) that y(g) > 1 , and such a representation is

possible. Next, for a, general line bundle g e H1(M, 6L*) , let

r = c(g) and select some point p e M as base point; then

g , so that as above there is a representation

,,-r
. It therefore follows that, having selected a

r
base point p e M , an arbitrary bundle g e H1(M, 9 ) can be

represented in the form

(16) pl...,pg r-g where r = c(g)

the points pi e M depending upon the bundle

The representation (16) may not be unique; if it is not,

there will be points gl,...,g e M such that r-g =Cpl...5pgfip

C ...C
Sr-8

hence such that

g

p t = 5 ...5 , where the
ql 9g P g gl

q8

sets (pl,...pg} 01,...gg} . This then means that 7Qp ...Sp ) > 2

1 r



for there is one section with divisor and another with divisor

Since the converse is clear, it follows that the representation

(16) is unique precisely when yQ
P1

...C
Pg

) a 1 .

To examine this condition further, consider more generally a

complex line bundle f - .. ; the associated divisor AO =
1-Pi

p1 Pr
can be written AO 1 vigi

, where the qi are the distinct pointsa

occurring among the points pl,...,pr . Let hl,...,hg E r(M,O-(K)) be

a basis for the space of Abelian differential forms on the surface M ,

and as an abbreviation let b denote the column vector

h =

4
h )

In terms of a coordinate system zi centered at the point qi , the

functions hi are complex analytic functions of the complex variable

zi in an open neighborhood of the origin. The values of these func-

tions and of their derivatives at the origin are well-defined, and

$ and the corre-will be denoted by h (gi), hl,(gi),...,hj
j

sponding column vectors will be denoted by h(gi),h'(gi), " ''h(v(gi), ..In

terms of a different coordinate system centered at the point qi

a different set of values will of course be obtained; the vector h(qi)

will be replaced by a nonzero constant multiple of itself, and a vector

h(v)(gi) will be replaced by a suitable linear combination of the

vectors h(gi)t h'(gi),...,h(v)(g Thus the rank

(17) p = rank(h(g1),h'(g1),...,h(vi
1)(ql);...;h(ga),h'(gs)'...,h(vs-1)(qs)

at least will be invariantly defined; the matrix in (17) has r = v1+...+vs



Lemma 17. For a complex line bundle J _
pl

...

r

on a com-

pact Riemann surface of genus g ,

Y(9) - r -P+l

where p is the rank of the matrix (17).

Proof. Since, c(l) = r , it follows from the Riemann-Roch

theorem that y(e) = r- g+1+y(Kg-1) . If fl,...,ft is a basis for

the vector space r(M, 6-(Kg-1)) , where t = y(Kg-1) , and if

gi a r(M, 0-(sp )) , so that N9-(gi) = 1-pi , then clearly the elements
i

figl " .gr a
r(M, ti(K)) , 1 < i < t , form a basis for the subspace

of Abelian differentials consisting of those elements h e r(M,

such that (h) > 90 , where
^¢ 0

Ei=1
l-pi .

Thus

y(Kf-1) = aim(h a r(M, & (K)) p9(h) > o)

Letting h1,...hg be a basis for the apace of Abelian differentials,

any element h E r(M, @-(K)) can be written uniquely in the form

h = c1h1 + ... + cghg for some complex constants ci . The condition

that 4 (q)) >
A0

just means that

h(qi) = EE cjhj(gi)

ht (gi) = EE cJhi(gi)

= 0 ,

=0,

h(Vi-1)

(vi-l)(gi) = Ej cihj (qi) = 0

where qi are the distinct points in the divisor and this in

turn means that the row vector (cl,...,cg) is annihilated by the

matrix (17). Consequently y(Ki-l) = g - p , where p is the rank of

the matrix (17); so that y(t) = r - g+l + y(Kt-1) = r - p + 1 , as

desired.



We dhall return later to exploit this result more thoroughly,

but for the present shall be content with some simple observations.

When r = g , the matrix appearing in (17) is a g X g square matrix;

the vanishing of its determinant is equivalent to the condition that

p < g , and hence by Lemma 17 is also equivalent to the condition

that y(1) > 1 . Therefore y(j) = y{ ...t ) > 1 if and only if
p1 pg

(v i) (v -1)
(18) det(h(g1),h'(g1),...,h 1 (q1);...;h (gs),h'(ga),...,h s (qa)

where 7=1 Pp
i v1q.

and the points qi are all distinct. In
i 3.

particular, when all the points pi are distinct, y(Sp ...tp ) > 1

if and only if det(h(p1),h(p2),...,h(p9)) = 0 . The functions com-

posing the vector q are linearly independent, so that it is evident

that this determinant does not vanish identically; there are thus

always distinct points pi so that y(C p1... C

pg
) = 1 . Indeed, if

pi are distinct points of M and Ui are coordinate neighborhoods

about them with coordinate mappings z
i

: Ui ---> C , then the function

det(h(zl)h(z2),...h(zg)) is a non-trivial complex analytic function

of g complex variables in the domain U1 x ... X U9 C Cg ; the set

of points at which this determinant vanishes is a proper analytic sub-

variety of U1 X ... X U9 , so that in this sense y(tp ...gyp ) = 1
1 g

for a general set of g distinct points pl,...,pg . Thus in general

the representation (16) is unique; and in the same sense, as the reader

will easily verify, y(g) in general takes the minimum value in

table (14).

Note in passing that if hl,...,hg a r(M, (Q (K)) is a basis

for the space of Abelian differentials on a compact Riemann surface M

of genus g > 0 , then the functions hi have no common zeros on the



surface M . For if p is any point of M, y(cp) = 1 by Lemma 16;

then applying Lemma 17 in the particular case r = 1 , it follows

that 1 = 2 - p , hence that p = 1 where p rank(h(p)) ,

so that hi(p) # 0 for at least one function hi .

(a) Of particular interest are divisors of the form or

equivalently line bundles of the form p , where p e M is a given

point on the surface and V = 1,2,3,... . As noted above, there is

always an Abelian differential hl c r(M, (Q (K)) which is non-zero

at the point p , so that p(hl) = 0 . Let h2 a r(M, 6L(K)) be

an Abelian differential which vanishes at p , but such that

p(h2) - P2 - 1 is the minimum possible value. Then let

h3 e r(M, 9 (K)) be an Abelian differential which vanishes et p at

least to the order p2 , but such that V(h3) = p3 - 1 is the mini-

mum possible value. Continuing in this manner leads to a basis

hl.,h2,...,h9 for the space of Abelian differentials on the surface

M , such that P(hi) = Pi -1 where

(19) =P1<p2<... <pg<2g

(Since the total order of an Abelian differential on the surface is

2g - 2 , as noted above in discussing equation (9), it follows that

p(hg) pg- 1 < 2g-2 , hence that pg < 2g .) It is clear that

this sequence of integers pi = pi(p) is uniquely determined by the

point p c M ; it ism1led the Weierstrass gap sequence at the point

p , and the values pi = pi(p) are called the Weierstrass gaps at

the point p . The significance of this sequence is indicated by

the following result.



Theorem 14. Consider the Weierstrass gap sequence at a

point p on a compact Riemann surface.

(a) Then

so that

y( V) = v+ 1 - (number of gaps < v) ;

0 if V is a gap,

YaV) -
y(tv-1)

p p 1 otherwise.

(b) There exists a meromorphic function on the surface, whose only

singularity is a pole of order precisely V at the point p , if

and only if V is not a gap.

Proof. Let h denote the column vector consisting of a

basis for the Abelian differentials on the surface, where the basis

is normalized as above so that vp(hi) = pi - 1 for the Weierstrass

gap sequence (pi) at p . Then it is evident that the matrix

(h(p),h'(p),h"(p ),...) has the form

1 2 ... p2 p2+1 ... p3 p3+1 ...

(20)
0 0 ... *

0 0 ... 0 0 ... *

... ... ... ... ...

where the headings denote the numbers of the columns, and * stands

for a non-zero constant. For an integer V > 1 , the matrix con-

sisting of the-first v columns of (20) clearly has rank

p = (number of gaps pi < V) . Therefore from Lemma 17 it follows that

Y(Sp) = V- p+l = v+1 - (number of gaps pi < v)



The second part of assertion (a) is an obvious consequence of this formula.

As for assertion (b), let g e r(M, (.(gyp)) be any non-trivial

section, so that ,9-(g) = Then if f e I'(M, 6Qp)) , the quotient

f/gV will be a meromorphic function on the surface M , whose only

singularity is a pole at p of order at most V ; conversely, any such

meromorphic function can be so realized. Therefore y( V) is the

dimension of the space of meromorphic functions on M , whose only

singularities are poles at p of orders at most V . If V is not a

gap, then y(( pV) = y(V-1)+ 1 , so there must exist a meromorphic

function on M whose only singularity is a pole at p , and such that

the order is at most V but not at most v -1 ; in other words, the

order is precisely V . On the other hand, if v is a gap, then

y(5pV) = yQpV-1) ; so for any function meromorphic on M whose only

singularity is a pole at p , if the order of the pole is at most V ,

then it must actually be at most V - 1 . This serves to complete the

proof.

For any given.point p e M the Weierstrass gaps at the point

p satisfy the inequalities pi(p) > i for i = 1,2,...,g , as a

trivial consequence of (19). The discussions in the preceding part (c)

might lead one to suspect that in general the Weierstrass gaps would

actually take on these minimal values; for by Theorem 14 that would

correspond to the dimensions y(Sp) being least possible. (Since

y(5P) > 1 , the least possible values for these dimensions differ from

the general results given in table (l4) in that the zeros of that table

are replaced by ones.) This is indeed so, and quite precise results

are possible. The Weierstrass weight of a point p e M is defined in

terms of the Weierstrass gaps pi(p) at p by

g
(21) w(p) = Z (Pi(p)- i)

i-1



Note that w(p) > 0 for all points p e M . A point p e M is

called a Weierstrass point if w(p) > 0 . The Weierstrass points

on the surface M are thus those points at which the Weierstrass

gaps do not attain their least possible values. There are actually

only a finite number of Weierstrass points on any Riemann surface,

as a trivial consequence of the following result.

Theorem 15. If M is a compact Riemann surface of genus

g , the Weierstrass weights of the points on the surface M satisfy

the equality

E w(p) = (g-1) g(g + 1)
p e M

Proof. Let h1,...,hg a r(M, Q(K)) again be a basis for

the space of Abelian differentials on M , and let h denote the

column vector of length g formed from this basis. If (Uaza) is

a coordinate covering for the Riemann surface M , then on each set

za(Ua) C C this vector is a column of complex analytic functions

h(za) ; and for points in Ua n u, , where the coordinate transition

function is za = fa$(z0) , these column vectors satisfy

h(za) = KC43 h(z where Koo(zo) = dz /dza . Differentiating this

equation with respect to za , it follows that

h'(za) _ (dz/dza) dz0 h(zp)) = K2a (z.) h'(zp) + (*) h(z,)

where (' ') stands for some holomorphic function. Continuing in this

,

manner, in general

(22) h(v)(za)
=

KV+l(z0)h(v)(z
+ (*)h(v'1)(z + ... +

The function

ga(za) =
det(h(za),h'(za),...,h(g-1)(za))



is then holomorphic in za(Ua) ; and from (22) it is evident that

in UafUJ,
-

z
)g(g-1)/2,5(z

)

ga(zes) - Kap(zn)1'+2+...+(B-1).g,3(zp)

That is to say, the functions g = (ga(zes)) define a section of the

line bundle
Kg(g-1)/2

. Then, by Theorem 11 it follows that

(23) E V (g) =
AL-1) c(K) _ (g-1)6(8+1)p e M P 2

The order vp(g) is of course unchanged when the functions hi are

subject to any nonsingular linear transformation; so when considering

a point p e M there is no loss of generality in supposing that

vp(hi) = pi(p)- 1 , where (pi(p)) are the Weierstrass gaps at p

If z is a local coordinate mapping defined in a neighborhood of p

and such that z(p) = 0 , then in the power series expansion in terms

of the variable z , the function hi(z) will begin with a term of

order precisely pi- 1 . The lowest order terms in the power series

expansion of the function g(z) then obviously come from the

expansion

P 1-1 p 1-2 P 1-g\
z (p1_l)z ... (p1-1)...(pi g+l)z

zp2-1 (P2-1)zp2-2
...

(p2-1)...(p2-g+l)zP2-g

det

P -1 p -2 P -g
z g (Pg 1)z g (pg 1)...(Pg-g+l)z g

p-1
Since the functions z

i

are linearly independent, this Wronskian

determinant cannot vanish identically; and since each monomial in



the expansion of the determinant has order

(P1+P2+...+Pg) - (1+2+...+g) _ (p1-1) + (p2_2)+...+(Pg-g) = W(P)

that is the order of the full determinant. That is to say,

vp(g) = w(p) ; and upon substituting this into equation (23), the

desired result follows immediately, thus concluding the proof.

According to Theorem 15, a surface of genus 0 or 1 has

no Weierstrass points. This is of course trivial for genus 0 ;

while for genus 1 , it could have been noted as a consequence of

the last remark in part (a) above, since in that case the unique

Abelian differential on the surface is nowhere zero. (As a conse-

quence, the canonical bundle of a surface of genus 1 is necessarily

the trivial bundle.) In general, it is clear that the minimum pos-

sible weight for a Weierstrass point is w(p) = l ; and that this

corresponds to the Weierstrass gap sequence of the form 1,2,...,g-l,g+l,

where g is the genus of the surface. A Weierstrass point is called

a normal Weierstrass point if it has this minimal form, that is, if

w(p) = 1 ; and the surface M is called a normal Riemann surface if

all of its Weierstrass points are normal Weierstrass points. By

Theorem 15, a normal Riemann surface has precisely (g-1)g(g+l)

Weierstrass points. By Theorem 14, the dimensions 7( V) can be

read off immediately, and depend merely upon whether or not p is

one of the Weierstrass points; and the meromorphic functions having

but a single pole on the surface must have a pole or order at least g .

The consideration of the other extreme behavior of Weier-

strass points is a bit more subtle, and depends on the following

observation. For a fixed point p on the surface, suppose that



v1, V2 are non-gap values; then by Theorem 14 there are meromorphic

functions f1 f2 on the surface, such that fi has as its sole

singularity a pole of order precisely vi at the point p . The

product f1f2 has a pole of order precisely V1 + V2 at p , and

is regular otherwise; so by Theorem 14 again, V1 + V2 is also a

non-gap value. Therefore, the set of non-gap values at a point is

closed under addition, (forms an additive sub-semigroup of the

positive integers). Letting r be the least non-gap value at the

point p , it follows that whenever V > r is a gap value, then

V- r is also a gap; consequently, all the gaps occur in finite

arithmetical sequences of the form i, i+r, i+2r,...,i + X
i
r , (where

i = 1,2,...,r-1 and X
i

In particular, a point p

is called a hyperelliptic Weierstrass point if its least non-gap

value is 2 ; at such a point the Weierstrass gap sequence has the

form The weight of a hyperelliptic Weierstrass

point is

w(P) _ [1 + 3 + ... + (2g-1)] - [1 + 2 + ... + g]

= [1+2+... +2g] - 3[1+2+ ... +g]

=2g(g-1)

A Riemann surface is called a hyperelliptic surface if all of its

Weierstrass points are hyperelliptic Weierstrass points; by Theorem 15,

such a surface will have 2(g+l) Weierstrass points altogether. By

Theorem 14, the dimensions y(V) can be read off immediately, and

depend merely upon whether or not p is one of the Weierstrass

points; and for each hyperelliptic Weierstrass point there exists a

meromorphic function having a double pole at that point but being



regular otherwise. surface of genus g = 1 is called

an elliptic Riemann surface. For such a surface, it follows from

the Riemann-Roch theorem that y(c2p) = 2 for every point p ; and

therefore, for every point p on an elliptic surface there exists

a meromorphic function having a double pole at that point but being

regular otherwise. For this reason, elliptic curves are sometimes

considered as falling within the class of hyperelliptic curves, even

though they have no Weierstrass points at all. However we shall not

adopt-this convention, but shall distinguish between elliptic and.

hyperelliptic surfaces; so hyperelliptic surfaces all have genus

g>1.)
Now turning to the case of a general Weierstrass point, the

following assertion can be made.

Theorem 16. If p is a Weierstrass point on a compact

Riemann surface of genus g , its weight satisfies the inequality

1<w(P) <2g(g-1) ;

w(p) = 1 precisely when p is a normal Weierstrass point, and

w(p) = 1 g (g - 1) precisely when p is a hyperelliptic Weierstrass

point. The total number N of Weierstrass points on the surface

satisfies the inequality

2(g+l) < N < (g-1) g(g+l) ;

N = 2(g + 1) precisely when the surface is hyperelliptic, and

N = (g - 1) g(g + 1) precisely when the surface is normal.

Proof. Letting r > 1 be the least non-gap value at a

Weierstrass point p , the gap values can be written in the form

i, i+r, i+2r,...,i+Xir , (i = 1,2,...,r-1; Xi = 0,1,2,...) .



The total number of gaps is

(24)
r-1 r-1

i=1 i=1

The weight of the point p is then

r-1
W(P) = E E (i+Jr) - 2 g(g+1)

i=1 J=0

r-1
= E [i(xi+l) + 2rXi(,`i+l)J - 2g(g+l)

i=1

x
r (r-1) + E lXi(2i+rxi+r) -2g(g+l)

i=1

Since (i+ rXi) is a gap value, it follows from the inequality (19)

that (i+r.i) < 2g-1 ; so 21+r.i+r < i+(2g-1)+r <
(r- 1) + (2g - 1) + r = 2(g+ r - 1) . Then from (24),

rE 2(21+rxi+r) < (g+r-1)
rE

i = (g+r-1)(g-x+1) .
i=1 i=1

Therefore

w(p) <2g(g-1) - 2(r-1)(r-2)

The maximum value of w(p) is therefore

2

g(g -1) , and this is

attained only for r = 2 , which is the hyperelliptic case. The

assertion about the minimum value for w(p) was proved earlier.

Finally, the results about the total number of Weierstrass points

follow immediately from the inequalities on the weights and

Theorem 15, thus concluding the proof.

For emphasis, recall again that surfaces of genus 0 or

1 have no Weierstrass points.



§8. Picard and Jacobi varieties

(a) The first step in the detailed classification of complex

line bundles over a compact Riemann surface M was taken in §7(a),

with the introduction of the Chern class of a line bundle; from the

exact sequence of sheaves

(1) 0 ---> Z -- > 9 e-> CT* --> 0

there followed the exact cohomology sequence

(2) 0 -> Hl(M, d )/H1(M,Z) -o> Hl(M, d)*) -t-> Z --> 0 ,

where c is the homomorphism associating to a complex line bundle

its Chern class. The subgroup of complex line bundles having Chern

class zero is thus isomorphic to the group H3(M, (4-)/H1(M,Z) , and

the investigation of this group is the next step. To begin, consider

the following exact sequence of sheaves

(3) 0 --_> C --. B- a > C} 1, 0 __> 0 ,

where d is the operation of exterior differentiation. The associated

exact cohomology sequence over the Riemann surface M begins

c

0 - r(M,C) T r(M, r(M, L4l'o) S->
H-(M,C) --->

- HH(M, H1(M, H2(M,C) --> H2(M, & ) --> ...

Since M is compact, r(M,C) = r(M, C9) = C , and also H2(M,C) =.D
Furthermore, H2(M, 69) = 0 by Theorem 8, and

H1(M, 1'0) HO(M, C-) = C by the Serre duality theorem. Therefore

the above exact cohomology sequence leads to the exact sequence



(4) 0Tr(M, 011'°)-5-> iI'(M,c)-->Hl(M, CO-) ---> 0.

Since the inclusion Z C t can be factored through the inclusions

Z C C C 9 , it follows that the homomorphism H1(M,Z) ---> H1(M, ( - )

in the exact sequence (1) can be factored through the homomorphism

H1(M,C) -4 H1(M, (9) in the exact sequence (4). Consequently

(5)
Hl M 0 ) ti Hl(M,C)

(M, z) H1(M,Z) + SP(, (Q1,0)

where 6 is the coboundary homomorphism arising from the exact

sequence (3). For later purposes, recall that this homomorphism has

the following explicit form. For any element cp a r(M, m 1'0) , and

for any suitable coordinate covering 7Z = (Ua) of M , there will

exist holomorphic functions fa a r(Ua, (Q-) such that cp = dfa in

Ua . The constants

(SCP) = f0 - fa

form a one-cocycle NO e Z1(2 C) , representing the cohomology

class 5q) a H1(M,C) . Note further that this homomorphism is actually

an injection; indeed, the following somewhat stronger assertion can

be made.

Lemma 18. Consider the homomorphism S: r(M, 110) --- H1(M,C)

for a compact Riemann surface M . If cp a r(M, p 1'0) is an element

such that

By a H1(M,M) C HI(M,C) ,

then 9 = 0 .



Proof. In terms of the above explicit form for the homo-

morphism S , it is apparent that Scp a H1(M,ffi) if and only if,

for a suitable coordinate covering VC= (Ua) of the surface M ,

there exist holomorphic functions fa a P(Ua, d1-) such that T = dfa

in Ua and such that f0 - fa is real. The functions

ga = exp 2711 f a are thus holomorphic in Ua , and Igaj _ IgJ in

Ua n u, . Since M is compact, the globally defined function IgaI

must attain its maximum at some point of M ; but then gs is con-

stant in an open neighborhood of that point by the maximum modulus

theorem, and hence all the functions ga are constant by the identity

theorem for analytic functions. The functions fa

constant as well, so cp - dfa = 0 , as asserted.

are necessarily

Another, although equivalent, approach to the classification

can be made through a slightly different exact sequence of sheaves.

For any germ of function f e (9 define

d2(f)=211 dlog'f a 0:l'0

this is clearly a sheaf homomorphism d2: 0l'0 . The mapping

dE is onto; for any germ of holomorphic differential form cp e X1,0

can be written cp = dg for some function g e 0-, and then

cp = d8(exp 2711 g) . The kernel of d2 is the subsheaf CC (- of

constant functions. There is thus the exect sequence of sheaves

0 ___> C --? m * U > fl 1' 0 --? 0 .

The associated exact cohomology sequence over the Riemann surface

M begins



, _ _ '-, Y / Al ,1'1, M. / ---sa

T Hl(M, *) 2 Hl(M, 6'1'0) H2(M,C) --> H2(M, m*) ... .

Since M is compact, r(,C*) = r(M, 6L*) _ C* , and also
H2

(M,C) = C . Furthermore, H2(M, tD-*) = 0 ; for from the exact

cohomologr sequence associated to (1) there is the segment

H2(M, L, ) --> H2(M, *) T H3(M,Z) , while H2(M, V) = 0 by

Theorem 8, and H3(M,Z) = 0 since dimension (M) = 2 . The Serre

duality theorem shows that H1(M, 61,0) = HO(M, @ ) = C ; and the

image of the mapping c* is hence the kernel of a homomorphism
ti

C and will be denoted by Z . (Note that Z is the kernel

of a particular homomorphism C -? C

*

; as might be expected, we

N
shall shortly identify Z with Z .) As a consequence of these

observations, the above exact cohomology sequence leads to the exact

sequence

(6) o -> r(M, 6 110) s Hl(M'C) R1 (M' 0' *) -L> Z 0

The group H1(M,C) will be called the group of flat complex line

bundles over M . The homomorphism i* is that induced by the

*
natural inclusion mapping C --k 01 ; so the image of i* thus

consists of those complex line bundles g which admit representative

cocycles consisting of constant functions.

The Serre duality theorem merely asserts that H1(M, QL1,0

is canonically dual to the group HO(M, CL ) - C ; the actual iso-

morphism H1(M, 19
110)

= C therefore involves an element of choice,

which will be made in the following manner. Considering a cohomology

class / a H1(M, a 1 'O) as a linear functional on C , associate to



mat, Uonomo.i.ogy class zne complex Constant 7t-1) . WLZJI tnls

choice, the homomorphism c* in the exact sequence (6) can be

described as follows.

Lemma 19. For a complex line bundle 9 e h1(M, B *) over

a compact Riemann surface M , c*(9) E C is the Chern class of

that bundle.

Proof. This is a straightforward matter of tracing through

the various mappings involved. First, the explicit form of the

duality in Serre's theorem was described in §5(b). For any coho-

mology class a e H1(M, X1'0) select a representative cocycle

(a01) a Z1( UZ , ffl 1'0) in terms of a suitable locally finite coor-

dinate covering _ (Ua) of M . There is a zero cochain

(Ta) a C0(.A , t 1,0) having coboundary (a01) , so a01 = T13 - Ta

in Ua n U . Then 'r = aTa , and the differential form

(aTa) a r(M, 1e1") represents the cohomologyr class a under the

Dolbeault isomorphism Hl(M, 61110)'_-'Y r(M, 01'1)/6r(M, e 0,1)
.

Thus the constant corresponding to the cohomology class a under

our chosen isomorphism H1(M, ig 1,0) =11C is just - IIM(?Ta) .

Next, for a complex line bundle a H1(M, *) with a representative

cocycle Q01) a Z1('In , 0*) , the image a = c*Q) is represented

by the cocycle aa1 = d.e(t ) d log tat . As in Lemma 14,
C43 fiRr

select nowhere-vanishing e functions ra in the various sets Ua

so that r1 =
raIt01I2

in the u.-fl U1 ; then

1101a1ogg 01=27-1i7 (a log rl-a logra)

Thus in the explicit form of the Serre duality mapping we can put
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c*(9) ffM 2fiI aa(log ra) = 2.1ifi fff as log(s)

However, by Lemma 14 the latter integral is precisely the Chern class

c(O , concluding the proof.

It follows immediately from Lemma 19 and the exact sequence

(6) that the complex line bundles arising from flat line bundles are

precisely those complex line bundles of Chern class zero; or equiva-

lently, the necessary and sufficient condition that a complex line

bundle g e H1(M, (9 ) admit a representative cocycle Q a$) con-

sisting entirely of constant functions is that c(L) = 0

In summary of the preceding, the group of complex line bundles

of Chern class zero can be described in the following three equiva-

lent forms:

H1(M, C)

HZ(M,z) +. br(M, 1 0)

(7) (9 EH-(M, O)Ic(0=

Moreover, the isomorphisms (7) lead to isomorphisms between the

three groups on the right-hand side, which are explicitly as follows.

First, from the exact cohomology sequence associated to the exact

sheaf sequence (1+) there arises the homomorphism H1(M,C) --k Hl(MO

which induces an isomorphism

H1(M,C) --? H1(M,(.)

H1(M,z) + Br(M, 41'0) H1(M,Z)
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Next, from the exact cohomology sequence associated to the exact

sheaf sequence

0-Z-> C -kC*->0
there arises the homomorphism H1(M,C) T H1(M,C) , which induces

an isomorphism

(M, C) H1 M,C )

H1(M,Z)+ sr(M, l'0) s*r(M, m1'0)

The first assertion was proved above; verification of the second

assertion will be left to the reader.

(b) The expressions (7) permit an additional structure to be

imposed on the group of complex line bundles of Chern class zero.

in general, a lattice subgroup of a finite dimensional real vector

space is defined to be an additive subgroup of the vector space

generated by a set of elements which are linearly independent over

the real numbers; and a lattice subgroup of a finite dimensional

complex vector space is defined to be a lattice subgroup of the

associated real vector space. Thus in an n dimensional complex

vector space, with its natural associated structure as a 2n dimen-

sional real vector space, a lattice subgroup has at most 2n

generators. Considering the first form given in (7), recall that

H1(M,C) has the natural structure of a 2g dimensional complex

vector space, where g is the genus of the Riemann surface M .

As is known (cf. the topological appendix), H1(M,Z) C H1(M,C) is

a lattice subgroup; indeed, any 2g generators of H1(M,Z) form

a basis for the complex vector space H1(M,C) . By Lemma 18 the



_- .. r.... . o.,, / - n Mu) is injective, hence the

image is a g dimensional complex linear subspace; so the quotient

apace

V - H1(M,c)/5r(M, 0-110)

has the structure of a g dimensional complex vector space. Let

XI,... ? g be a set of generators for the lattice subgroup

Hl(M,Z) C H1(M,C) ; and let 1,...'X2g be the corresponding

elements it the quotient space V . Then Tel,... generate a

lattice subgroup of V . For if there were real numbers x1,.... x2 ,

g

not all zero, such that Ei xi i 0 , then

Ei x
i
X
i

a 5r(M, 0-1'0) C H1(M,C) ; but then by lemma 18 this would

imply that Ei x
i
X
i
= 0 , contradicting the fact that Tl,...,T2

generate a lattice subgroup. As a consequence, the quotient group

.El(M'CC)

H (M,z)+Sr(M, 61-1,0)

has the structure of the quotient space of a g dimensional complex

vector space V by a lattice subgroup generated by 2g elements;

this structure will be called the Picard variety of the Riemaan

surface M , and will be denoted by P(M) . As remarked above,

v = H1(M,c)/Br(M, (11,0) Hl(M, (9 ) , so the same structure can be

described in the form P(M) = H1(M, O-)/H1(M,Z) . The Picard variety

is in particular an Abelian group, and its role in the classification

of complex line bundles lies in its occurrence in the exact sequence

(8) 0 ---> P(M) --+ H1(M, (9*) -c --40. 0

The group of all complex line bundles over M therefore has the

natural structure H1(M, (S*) ti Z + P(M)



To consider in more detail this additional structure, let

V be any g dimensional complex vector space, and a° C V be a

lattice subgroup of V . Of course, as an abstract group

for some integer r < 2g , which will be called the rank of the

lattice subgroup; the rank clearly can be characterized also as the

dimension of the real vector subspace of V spanned by the elements

of it . We shall consider here only the case in which X has the

maximal possible rank. First, ignoring the complex structure, con-

sider V as a 2g dimensional real vector space. A set of generators

of can be used for a basis for the real vector space V , so that

V/Z lpg/Z2g
= (B/Z)2g . The space V/ a"e can thus be factored

as a Cartesian product of 2g circles, and thereby has the structure

of a compact manifold of dimension 2g . The vector space V is

obviously the universal covering space of this manifold, the covering

mapping being the natural projection V - V/o° ; thus

7rl(V/ K ) _ Z2g . Now returning to the complex structure, V can

be considered as a complex analytic manifold, and the covering

mapping V -4 V/oZ° defines a natural complex analytic structure

on the quotient space V/c° ; those coordinate neighborhoods on V

small enough to project homeomorphically to V/;° can be taken as

coordinate neighborhoods on V/oZ° . Therefore V/;C has the

structure of a compact complex analytic manifold; a manifold of

this form will be called a complex analytic torus. It is obvious

chat the group operations are complex analytic, in the sense that

the mapping

V/ &' x V/ Z -> V/ a'c
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aerinea by (p,q) --1 p - q is a complex analytic mapping. Thus

V/&;° is a complex Lie group, indeed an Abelian complex Lie group.

(Lie groups here are connected.)

As those who are familiar with Lie groups know, any compact

Abelian complex Lie group is of the form V/o2' . (See for instance,

C. Chevalley, Theory of Lie Groups I, (Princeton, 1946); the dis-

cussion there is for the real case, but goes through in the same

manner in the ,complex case.) It is obvious that an isomorphism

V/ate[ ___I V'/ ' between two compact Abelian complex Lie groups

is equivalent to a complex linear isomorphism V --4 V' which takes

the lattice X into the lattice il°' . Therefore the structure we

are investigating is nothing more nor less than that of a compact

Abelian complex Lie group. Actually, however, the Lie group aspect

need not be considered any further; for the complex structure itself

essentially carries all the information.

Lemma 20. Let V,V' be g dimensional complex vector

spaces, and eX C V, XI C V' be lattice subgroups of rank 2g

The compact complex manifolds V/X , v'/' ° ' are holomorphically

equivalent if and only if there is a complex linear isomorphism

P: V V' such that F( ,'L° ) = ;C' .

Proof. First, a complex linear isomorphism F: V -4 V'

is a complex analytic homeomorphism; and if F(X ) - aiO' it is

evident that F induces a complex analytic homeomorphism

f: V/ T V'/ c2°j . Next, assume conversely that there is a

complex analytic homeomorphism f: V/,T -> V'/X ' . The compo-

sition of the natural projection V --> V/a' and the mapping f



yields an analytic local homeomorphism V --> V'/ k ' ; and since

V and V' are simply connected, the latter mapping can be factored

through an analytic local homeomorphism F: V --> V' . That is to

say, there will exist a complex analytic local homeomorphism

F: V --> V' which induces the given mapping f: V/o'Z° ---> V'/ Z'

so that for any element X e Z there will exist an element X' a

such that

(9) F(p+ X) - F(p) + X'

for all points p e V . In terms of coordinate systems (z1,...) zg)

for V and (w1,...,wg) for V' , the mapping F will be given

by a g-tuple wi = Fi(p) of complex analytic functions of g com-

plex variables. Differentiating equation (9), it follows that

(aFi/azi)(P + x) = (aFi/azi)(P)

for all points p e V and all elements X e a' . The functions

aFi/az3 are thus invariant under 7 , and so define complex

analytic functions on V/oZ° ; but since V/ e2' is compact, it

follows from the maximum modulus theorem as in lemma 1 that

aFi/az3 is constant. The mapping F is consequently linear; and

being a local homeomorphism, F is nonsingular. For F to induce

a homeomorphism from V/°'_ onto V/EZ° ' , it is then necessary

that F( e ) - 02'' , and the proof is therewith concluded.

It is then evident from this Lemma that two compact

Abelian complex Lie groups V/1L° and V'/ oZ°1 are isomorphic pre-

cisely when their underlying complex analytic manifolds are analyt-

ically equivalent. Therefore in future investigations the group

structure can be ignored, in part. For emphasis, it should be



repeated that a complex analytic manifold will only be called a

complex analytic torus when it is analytically equivalent to a

manifold of the form V/,Z , where V is a g dimensional complex

vector space and a° C V is a lattice subgroup of rank 2g ; and

thus a complex analytic torus carries a unique further structure of

a compact Abelian complex Lie group.

It is frequently useful to be much more explicit in the

description of a lattice subgroup or complex torus. So choose a

basis for the vector space V , or equivalently, an isomorphism

V = Cg ; the elements of . will be written as complex column

vectors of length g . Also choose a set of generators .., g

for the lattice subgroup vT . Each vector X3 e a° C (l will be

represented by a column vector Ai _ (xii), i = 1,...,g ; and the

set of all 2g of these vectors form a g X 2g matrix A = (Xi3)

called a period matrix for the lattice subgroup Z C V or complex

torus V/2 ° . Then the 2g x 2g square matrix

where X denotes the complex conjugate of the matrix A , will be

called an associated full period matrix.

Lemma 21. A complex matrix A of g rows and 2g columns

is a period matrix for a compact complex torus if and only if its

associated full period matrix
(XA)

is nonsingular.

Proof. By definition, the columns of A generate a lattice

of maximal rank in Cg (equivalently define a complex torus) if
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and only if they are linearly independent over the real numbers;

therefore the contradiction of this situation is the assertion that

there exists a real column vector x of length 2g , not identically

zero, such that Ax = 0 . If there exists such a vector x , then

(AW

x = 0 , so the full period matrix is singular. Conversely suppose

that the full period matrix is singular; there will then exist a

complex column vector z = x + iy of length 2g , not identically

zero, such that (WA) z = 0 , or equivalently, such that Az = Az = 0 .

But then Ax - Ay = 0 , where x,y are real and not both are identi-

cally zero, and that suffices to complete the proof.

Remark. There are of course several equivalent ways of

expressing the condition that a g x 2g complex matrix A be the

period matrix of a compact complex torus; the version used in the

preceding lemma is perhaps the simplest to state. The version closest

to the definition is that, for a real column vector x e
mpg

,

Ax = 0 if and only if x = 0 ; this is just the assertion that the

columns of A are linearly independent over the real numbers, and

the preceding lemma demonstrated that this assertion is equivalent

to the assertion that the full period matrix be non-singular. Yet

another version is that for a complex column vector z e Cg ,

T,
zA is a real vector if and only if z = 0 ; here tz denotes

the transpose of z , hence a row vector. To show that this assertion

is equivalent to the condition of the lemma, it suffices to show

that there exists a non-zero vector z e Cg such that tzA is real

if and only if ( A ) is singular. First suppose that tzA is real,

that iss that
tlllzA /=ztril s for a non-zero vector z ; then
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- 0 ,(yz, z)
lW

I =
T

hence is singular. Conversely, suppose that is singular;

writing A = R + iS where R,S are real matrices, this is equivalent

to the condition that (S) is singular. Since this is a real matrix,

there must exist a non-zero vector (b) a
jFg

so that

(ta,tb)(") = taR + tbs - 0 ; but then

Im {(tb + ita)A) = Im {(tb + its) (R + i5)) = taR + tbs = 0

which proves the desired assertion.

The period matrix associated to a complex torus is not unique,

since two arbitrary choices were made; so it is important to examine

the effects of these choices. First, choosing a different basis for

the vector space V amounts to applying an isomorphism C _ e ;

representing this isomorphism by a non-singular g x g complex

matrix M , the period matrix is obviously transformed into the

period matrix MA , since each vector Ai is transformed into the

vector M%i . Second, a different basis Xj,..., g for the lattice

subgroup Z is necessarily of the form XjI - Tk Ani, , where

N = (nom) is a 2g X 2g matrix of integer elements and of deter-

minant +1 ; this change clearly replaces the period matrix A by

the matrix AN . Consequently, two period matrices A,A' represent

the same complex torus if and only if

(10) A' = MAN where M e GL(g,C), N e GL(2g,Z) .

(Here GL(n,R) denotes the group of invertible n X n matrices

over the ring R .) This equivalence relation can be used to bring
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a period matrix into a simpler form, as follows. Decompose a period

,matrix A into two square g X g blocks of the form A = (Al,A2)

By multiplying A on the right by a suitable integer matrix

N e GL(2g,Z) , it can be arranged that the matrix A2 be non-

singular; to see this, merely recall that there are g linearly

independent columns in A , and a suitable matrix N can be found

rearranging the columns to make these the last g columns. Then

the matrix A and the matrix A21A = (A21A1,I) represent the same

complex torus; so any complex torus can be represented by a period

matrix of the form A = (A1,I) , where I denotes the g X g identity

matrix. This is still far from associating a unique period matrix

to a complex torus, however. To proceed further, suppose that

A = (A I) and A' _ (Ai,I) represent the same complex torus, so

that A' = MAN as in (10). Decompose N into the g X g matrix

blocks

N=(AB)
C DJ

then

Hence A1B+D

(Ai,I) - M(Al,I)
(
C D)

= (M(A1A+C), M(r1B+D)) .

is non-singular, and M = (A1B+D)-1 ; and

Al = (A1B+D)-1(AIA+C) . The converse being apparent, it follows that

two period matrices matrices A = (A1,I) and A' =(A1,I) represent

the same complex torus if and only if there exists a matrix

such that A,B+D

N = (C D) a GL(2g,Z)

is non-singular and

Aj = (A1B+D)-'(A1A+C)
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ivuUe UnaU, oy i.emmn et, a matirax !n1,1) is rove period matrix of

a complex torus if and only if Im Al is non-singular, where In

denotes the imaginary part of the matrix.

It is useless to proceed any further in this direction just

at the present point; but the special case g = 1 provides an

interesting and illustrative example. The period matrix can be

taken in the form A = (hi,l) , where X, e C and In XI # 0

and two matrices A = (T,,I) and A' = (%I1) represent the same

complex torus if and only if there is a matrix

' a GL(2,Z)N = 1 a bd
such that

aXi+ c
`J = bAl + d 3

note that bX1 + d is always non-zero, since Im Xl # 0 . This is

in fact precisely the equivalence relation discussed in §1(f), for

the complex tori are the compact Riemann surfaces of genus 1 dis-

cussed there. Note that it is evident that there actually are

distinct complex analytic tori, so that the structure introduced

is a non-trivial one.

Finally, to obtain an explicit description of the Picard

variety P(M) of a compact Riemann surface M of genus g
ti

choose a basis for H1(M,Z) , or equivalently, an isomorphism

H1(M,Z)
as
Z g ; the same elements form a basis for H-(M,C) , so

there is a corresponding isomorphism H'(M,C) _ eg . Further,

choose a basis cpl,...,cpg a r(M) 0 110) for the space of Abelian

differentials on the Riemann surface M ; the associated cohomologyr
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classes will then be of the form

rli
W2 i

eWg.

kW2gi)

The collection of all such vectors form a 2g x g matrix A = (mji)

called the period matrix of the Abelian differentials on M . Note

that by Lemma 18, if z e Cg is a vector such that SEz e g , then

necessarily z = 0 ; hence by Lemma 21 (recalling the remarks fol-

lowing that lemma), the matrix a is the period matrix of a compact

complex torus. (Actually, to parallel the earlier discussion we

should consider the transposed matrix to rather than n ; but

this merely amounts to considering the rows of 0 rather than the

columns of tSl , a trivial distinction which will be left to the

reader to sort out.) The period matrix of the Abelian differentials

is of course not unique, but depends on the choices of bases for

1 (M,8) and for r(M, (. l'0) ; it is quite obvious that different

choices have the effect of replacing the matrix SZ by a matrix

N f M, where N e GL(2g,Z) and M e GL(g,C) . Therefore, recalling

equation (10), all of these choices lead to the same compact complex

torus, which will be called the Jacobi variety J(M) of the Riemann

slxrface M

Now the Picard variety of M is given by

P(M)
H1(M

C)
+ sr(M, 61,0)

so selecting any linear mapping A: H1(M,C) --# Cg having precisely
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01lM, as xernel, ^M) is the compact complex torus

PP(M) - Cg/AH-(M8) . In terms of the isomorphism H1(M,C) _ g

chosen above, the mapping A: Wg -> Cg is represented by a g X 2g

complex matrix A = (xij) ; since the image of A must be all of

C9 , the matrix A must have have rank g . The condition that

A(sr(M, OL110)) = o is evidently that An = 0 , since the columns

of f1 span the subspace Br(M, C71-10) C Cog . The lattice subgroup

H1(M,z) _ g C C2g is generated by the 2g column vectors e
1

,

where the entries of ei are zero except for a one in the i-th place;

and since is just the i-th column of the matrix A , the image

AH1(ii,z) C Cg is the lattice generated by the 2g column vectors

of the matrix A . Therefore A itself is a period matrix of the

Picard variety of M .

In summary then, let 12 be a period matrix for the Abelian

differentials on M ; the Jacobi variety J(M) of M is the compact

complex torus defined by the period matrix
t11

. Let A be any

g X 2g matrix of rank g such that All = 0 ; the Picard variety

P(M) of M is the compact complex torus defined by the period

matrix A .

(c) Not every compact complex torus can be the Jacobi or Picard

variety of a Riemann surface; in fact, it is still an unsolved

problem to describe precisely which tori arise from Riemann surfaces.

A very important partial answer is provided in the form of an addi-

tional structure which the Jacobi and Picard varieties inherit from

the multiplicative, structure of the cohomology of a surface.
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Recall that there is a skew-symmetric bilinear mapping

Hl(M,C) x Hl(M,C) I?(M,C)

oh the cohomolo®r of a surface M , called the cup product. Perhaps

the easiest way to describe this is in terms of differential forms.

Under the deRham isomorphism as described in §5(a),

H1(M,C) a (q) r(M, £1)Idcp = 01
dr(M, c 0)

so any cohomology class in H1(M,C) is represented by a closed dif-

ferential form. If cp,+y are two such forms, their product cp ,.'

is a closed differential form of degree 2 , hence ]represents an

element of Hdi(M,C) under the deRham Isomorphism. It is clear that

the cohomology class represented by cp ' is unchanged when either

cp or ' is replaced by a differential form representing the same

one-dimensional cohomology class; for instance, if f e r(M, 'r 0)

then ((p+ df) ,.' = cp * + d(f4') . The mapping

(q), *) --.> cp

then defines the cup product operation in cohomology. To vary the

description slightly, consider the natural identification

H2(M,C) = C as introduced in §5(a). The cup product can then be

envisaged as a bilinear mapping H-(M,C) X H1(M,C) --- C ; and in

terms of differential forms, this mapping can be described as

((p,'4')>ffm (p-*

Note that the subgroup Hl(M,la) x Hl(M, ) C Hl(M,C) X H1(M,C) is

mapped into the subgroup B2(M,la) = R under the cup product, and
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H2(M,Z) = Z . The cup product of cohomology classes a,P a H1(M,C)

will be denoted by a U 0 , considered as an element of C .

Choosing a basis for the group H1(M,Z) , that is, an '

isomorphism H1(M,Z) = S g , the cup product 2F9 X Z2g -.> Z is

defined by a skew-symmetric 2g X 2g integer matrix X , called

the intersection matrix of the surface. M ; explicitly, if

m,n a g are column vectors representing one-dimensional coho-

mology classes, their cup product is the integer .tmXn . The same

matrix of course describes the oup product in real or complex

cohomologr, in terms of the same basis. A change of basis in

H1(M,Z) is described by a matf ix N e GL(2g,Z ); and this replaces

the intersection matrix X by the intersection matrix
t lXH-l .

Theorem 17. Let M be a compact Riemann surface of genus

g > 0 ; and let X be the intersection matrix and £ be the period

matrix of the Abelian differentials on M ; in terms of some basis

for H1(M,Z) - Then

(i) t11X R = 0 , (Riemann's equality); and

(ii) itf X fl is positive definite Hermitian, (Riemann's

inequality).

Proof. Let q)1,...,(Pg a 1'(M, .l'0) be a basis for the

Abelian differentials on M , so that the cohomology classes

Ski = (wji) a H1(M,0) = form the column vectors of the matrix

a . Note that the differential forms cpi are closed, and that

the mapping (pi - Sq) i of (4) coincides with the deRham mapping;



the conjugate differentials tpi are also closed, and under the

deRham mapping correspond to the conjugate cohomology classes. Thus

the cup products of these cohomologyr classes can be calculated by

integrating products of the Abelian differentials and their conju-

gates. Firstly, note that cpi - cpp m 0 , since the product would

be a form of bidegree (2,0) ; therefore the cup product

ffM cpi ,. (p j = 0 . In terms of the intersection matrix X , however,

this cup product is given by

0. E (dki)k2 )2j = (toX 12)ij
k,£

that is to say, is the entry in row i, column j, of the matrix

t9 X 12; and hence to X 12 - 0 . Secondly, if (p a T(M, O.l' 0) is

any Abelian differential, then in a coordinate neighborhood Ua

with a coordinate mapping za that differential form can be written

ep = ha(z(P )dza , where ba(za) is a holomorphic function; thus

ilha(za)I2dza .. dza = 21 ha(za)I2dxa ..dye,

writing za = xa + iya . Since dxa ,. dye is the local area element,

then for the cup product it follows that

iffMcp..cp>0,

with equality occurring only when (p = 0 . In terms of the basic

Abelian differentials, write cp = Eicicpi for some complex constants

Cl ; so

0 < f fM c p .. c p = E cicj I f fM (Pi cpj = E ciPi je j
i,j i,j

where

Plj="-ilfm
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fun mmt,rix r = krij) is clearly Hermitian, and the above inequality

shows that it is positive definite as well. In terms of the inter-

section matrix however,

Pi3 =
E

Wki (tnXS2)ij
k,2

or in other words, P = itt]X 7 , which serves to conclude the proof.

A matrix Sl with 2g rows and g columns is called a

Riemann matrix if there exists a skew-symmetric integer matrix X

with 2g rows and columns, such that:

(12)

tc X C = 0 , and

itaXla is positive definite Hermitian.

The matrix X is called a principal matrix for the Riemann matrix

fl ; the net (n,X) consisting of a Riemann matrix fl and an associ-

ated principal matrix is called a Riemann matrix pair, and it is this

pair which is of primary interest. Theorem 17 is then the assertion

that the set (n,X) , consisting of the period matrix n of the

Abelian differentials on a compact Riemann surface and the inter-

section matrix of the surface (in terms of some choice of basis for

H1(M,Z)), is a Riemann matrix pair.

If (n, X) is a Riemann matrix pair, and if M e GL(g,C)

and N e GL(2g,Z) are arbitrary matrices, then clearly

(Nam, tNlXN-1) is also a Riemann matrix pair; this merely amounts

to verifying condition (12), a trivial calculation which will be

left to the reader. Two Riemann matrix pairs (f)X) and (0',X')

will be called equivalent when fl' = NfM and X' =
tN l)N-1

for

some matrices M e GL(g,C) and N e GL(2g,Z) . Recalling equation



(10), it is evident that the period matrices to
and tn' repre-

sent the same complex torus whenever (n,X) and (n',X') are

equivalent Riemann matrix pairs. A complex torus whose period matrix

is a Riemann matrix will be called an Abelian variety; and the pre-

ceding observation shows that all the period matrices representing

an Abelian variety are necessarily Riemann matrices. Actually of

course, an equivalence class of Riemann matrix pairs determines an

Abelian variety with an additional structure; such an equivalence

class Will be called a polarized Abelian variety, and will be viewed

as an Abelian variety with the additional structure determined by a

fixed principal matrix for any period matrix defining the underlying

complex torus. With this terminology, Theorem 17 has the following

immediate consequence.

Corollary. The Jacobi variety of a compact Riemann surface

of genus g > 0 has a canonical structure as a polarized Abelian

variety.

Proof. For any choice of a basis for H1(M,Z) and a basis

for r(M, 0-1'0) , Theorem 17 shows that the pair (92,X) , consisting

of the period matrix of that basis for the Abelian differentials and

the intersection matrix for the surface, is a Riemann matrix pair.

Another choice of a basis for H1(M,Z) is determined by any matrix

N e GL(2g,z) ; and another choice for a basis for r(M, G', 0) is

determined by any matrix M e GL(g,C) . As noted earlier, the new

period matrix is then NOM , and the new intersection matrix is

tN-1)O 1
; go this leads to an equivalent Riemann matrix pair, suf-

ficing to conclude the proof.



wne aiseuss].on so far has concerned only the Jacobi variety

J(M) of the Riemann surface M , and it remains to show how this

structure is reflected in the Picard variety P(M) . Again choosing

bases for H1(M,Z) and for f(M, & 1'0) , let X be the intersection

matrix of the surface and n be the period matrix of the Abelian

differentials on the surface; and let A be any g X 2g matrix of

rank g such that An = 0 .

Lemma 22. The Riemann matrix pairs (n,X) and (tA, -x-l)

are canonically equivalent.

Proof. That (fl,X) is a Riemann matrix pair was proved in

Theorem 17. To show that (tA, tX i) is an equivalent Riemann matrix

pair it is only necessary to find matrices M e GL(g,C) and N e GL(2g,Z)

such that
t
A - N fl M and tX-l = tN-lxN l ; and selecting the matrices

M,N in a canonical manner will show that the equivalence is canonical.

Let P be the non-singular g X g matrix P = itn X7f , and let Q

be the g X g matrix Q = A32 ; since An = 0 , rank A = g , and

rank (R,fE) = 2g , it is clear that the matrix Q is also non-singular.

The proof will be completed by verifying that the matrices

M = - i tP 1 tQ
and N = X satisfy the desired conditions. It is

obvious t h a t N-1 = tx1XXl = t)Cl . For the remaining con-

dition, note that

A X An -/ 0r

`A (An A75 1\ 0
QfI

'
and therefore

A s
1 A/
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tMtatN
tMtnx

t tfx(a,j)` Tl AQl A;Ti =tMiPQln=n,
4-l

A

so NnM = tA , as desired.

This lemma shows that the Picard variety P(M) and the

Jacobi variety ,(M) of a compact Riemann surface are canonically

isomorphiq as compact complex tori, hence as compact complex Lie

groups; and thus that variety also has a canonical struc-

ture as a polarized Abelian variety. It is convenient to retain

both of these names, with their oonnotations of different simple

standard representations of the same Abelian variety P(M) = J(M) ;
M, IV

and it is important for later purposes to note the explicit form of

the isomorphism between these two representations. Considering

J(M) as the quotient of the vector space Cg of column vectors

(z) by the lattice generated by the columns of
to

, and considering

P(M) as the quotient of the vector space Cg of column vectors
N

by the lattice generated by the columns of A , write

.T (M) °
eg:

(z) , P(M) = gw)

The isomorphism is then given by

(13) w= - iQPlz.

(w )

The verification is straightforward, and will be left to the reader.



that, for a suitable choice of basis for H1(M)Z) , the intersection

matrix of the surface has the form

to -I
(14) X = J = ,

I 0

where I denotes the g x g identity matrix and 0 the g x g

zero matrix; a basis of this form will be called a canonical basis

for the surface. (The notation J or Jg will be reserved for

matrices of the form (14).) A Riemann matrix pair defining the

(polarized) Jacobi variety of a compact Riemann surface can thus

always be taken in the canonical form (n,J) . /Splitting the matrix

n into g x g matrix blocks of the form fl = (

/
, the Riemann

conditions take the form

(15)

(i) tn2fl - tnla2 = 0 , and

t t
(ii) i( SE S2 - A T2) is po

2 1 1 2

this is \an easy calculation, which will be left to the reader. Thus

n =( S2 1 is a Riemann matrix with associated principal matrix J

if and only if (15) holds. Note that the matrices a1 and 11; are

both necessarily non-singular. For if n2 were singular, there would

exist a non-zero constant vector c e 09 such that n2c = 0 ; but

then
tc

t0'2 = .52a = 0 , hence itc(t9251
t

- "192)
= 0 , contradicting

the positive definiteness of the matrix (15ii).

As in the earlier discussion of the period matrices of

general compact complex tori, so in the discussion of Riemaui matrix

pairs, it is of some interest to examine simpler representatives of

of an equivalence class. If J is the associated principal matrix

sitive definite Hermitian;



of one representative of the equivalence class, then we can restrict

consideration to those Riemann matrix pairs of the form (11,J) in

the given equivalence class; and since the principal matrix is fixed,

it suffices merely to consider the Riemann matrix f alone. The

most general Riemann matrix 11' in the some (restricted) equivalence

class is then of the form n' = NfM , where N e GL(2g,Z) ,

M e GL(g,C) , and tN 1JN l = J (or equivalently, J = tNJN)

The set of all matrices Be GL(2g,Z) such that tNJN = J form a

group called the symplectic group of rank g , and denoted by

1(G l , the matrix A2 is non-singular, asSP(g,Z) Ffriting fl = nl
2

noted above; hence 11' =
11122-1

is an equivalent Riemann matrix.

Thus, an equivalence class of Riemann matrix pairs with principal

matrix J always contains a Riemann matrix of the form 12 =(I I .

In this case, it is readily seen that equations (15) take the form

1 (i) 111 is symmetric, and
(16)

(ii) In n3- is positive definite.

1
'\

Thus 12 = l I f is a Riemann matrix with associated principal matrix

nl
J if and only if 121 satisfies (16). Now suppose that n = I

and 12' are two equivalent such matrices; there must then

exist matrices N e SP(g,Z) and M e GL(g,Z) such that at - NOM .

And writing N = (C
Ll

, it follows as in equation (11) that

(16') 111 = (An1 + B) (Cn1 +
D)-1

thus two Riemann matrices ( 1), C 21/ with associated principal

matrix J areequivalent if and only if there exists a sympeetic
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C D) es ucu coati k.Lo Holds. Note that, as a con-

sequence of the obvious observation in the preceding paragraph,

Cal + D is always non-singular. The set of matrices a1 satisfying

(15) is called the Siegel generalized upper half space, and denoted

by j g . The symplectic group SP(g,z) acts as a group of trans-

formations on
( g

, and the quotient space ('g/SP(g,z) is in one-

to-one correspondence with the equivalence classes of Riemann matrix

pairs (n,J) . This leads to a fascinating area of study, but there

is not enough time to continue further in this direction here. Let

it suffice merely to remark that the symplectic group acts discon-

tinuously, and that the quotient space is a complex analytic space

having the same dimension as (q g , namely 2(g + 1) . Note that it

is clear from this discussion that not all complex tori are Abelian

varieties.

(d) It naturally occurs to one to enquire about the relation-

ships between the complex structure of a Riemann surface M and

the complex structure of the Picard or Jacobi variety of M . To

pose a precise question, for any two points p,q e M consider the

associated point bundles cp,
q
; the complex line bundle

_
ql

has Chern class zero, hence can be considered as an

element of the Picard variety P(M) . There is thus a mapping

M X M --4. P(M) , defined by (p,q) - psg e P(M) ; and the

question is whether this is a complex analytic mapping.

Lemma 23. On a compact Riemann surface M of genus

g > 0 consider any two points p,q , and the complex line bundle
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pt-l a P(M) ; and let r be an arbitrary differentiable are

from, the point q to the point p in M . Then representing the

Picard variety in the form

P(M) - H1(M,C)

Hl(M,z) + 5r(M, '0)

the line bundle g e P(M) can be represented by a cohomology class

c E Hi(M,C) such that

(17) au (&p)=ITw

for every Abelian differential W e r(M,
(91,0)

Proof. To begin, suppose that the points p,q , and the

are T lie in a contractible coordinate neighborhood UO C M ; the

coordinate mapping z0 can be talon to be a homeomorphism of an

open neighborhood of the point net closure U0 C M into the complex

line C , mapping UO to a closed disc. Choose an open set V0 C M

such that T C VO C V0 C UO . Further, choose an open covering

of M consisting of the set UO and some additional sets (Ua)

with the properties that: (i) Ua fl V0 = 0 for a # o ; and

(ii) the covering 14 is a Leray covering for the sheaves 6- and

C . (Recalling §3(e) and §3(f), it is only, necessary to require

that the sets Ua be coordinate neighborhoods, and that these sets

and all their intersections be contractible.) Since c(g) = 0

the line bundle g can be represented by a cocycle (ga$) E Z1(,
C*)

formed of constant functions. And since g = ptg1 , t#tere will be

a meromorphic section (fa) a r( M *(g)) with divisor

,,, (fa) = the functions fa thus satisfy fa = gad f

in Ua fl 0 . In each set Ua for a # 0 the function fa is



nolomorphic and nowhere vanishing; selecting some branch of the

logarithm, introduce the holomorphic functions

as=-2tt1 logfaeMa,a) .

In the annular region U0 - VO the function log f0 will also be

single-valued, since the sum of the residues of the function

d log f0 within V0 is zero; so select a CO* flmction o0 in

the set U0 which coincides with - log fO in the annular

region UO - VO . (For instance, select a branch of - 2ai log f0

in an open neighborhood of the point set closure U0 - VO , and

multiply it by a C`O function which is identically one on UO
- VO

and which vanishes identically on a suitable subset of VO .) Then

defining aa6 = a0 - as in Ua fl u, , it follows that exp 27ri aC _

faffP = ga$ ; these functions are therefore constants, so form a

cocycle (aa$) e Z1(Vt C) Recalling §8(a), this cocycle deter-

mines a cohomology class a c g1(M,C) which represents the complex

line bundle g

To calculate the cup product a u (5p) of this cohomology

class with the cohomology class 5p e H1(M,C) represented by an

Abelian differential cp a r(M, L-l'0) , observe that the differential

form (daa) a r(M, Ee1) represents the cohomology class a under

the deRham isomorphism; and obviously, tp represents the cohomology

class 5q' under the deRham isomorphism. Consequently

a u 5q a 11M daa A cp . Since both cp and daa are holomorphic

differential forms, hence differential forms of degree (1,Q)

everywhere outside of the set UO , it follows that daa ,. tp = 0 on

M - U0 ; so that a'u 5cp = ff,0 da0 cp . Select a holomorphic
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function h in the set U0 so that dh = c ; then from Stokes'

theorem,

a u 5P = ffU da0 ,A dh = - f f

U
d(hda0)

0 0

= ff hda0

The function a0 was chosen so that it coincided with - 2,1-Ri log f0

along the boundary 3U0 ; so applying the residue theorem, and

remembering the definition of the function h ,

au 5P_-f hdv0=12- f hdlogf0
0 0

= h(p) - h(q) = f dh = f c
T T

This demonstrates the theorem in the special case that p,q, and T

lie within a coordinate neighborhood. In general, any arc T can

be split into segments Ti from points qi to qi+l , such that

qi' qi+1'
and Ti lie in a coordinate neighborhood; there will

then be a cohomology class ai e H1(M,C) representing the line

bundle t Cl , so that ai u 5p = fT p . The sum
qi+l qi i

a = Eiai a Hl(M,C) represents the line bundle IIitq
tql = tptgl

i+1 i

and

a U 5cp = E1(ai u 5q) = Ei fT T = fT u ,

which completes the proof in general.

Now choose a basis for H1(M,Z) , thus identifyizig

Hl(M,C) _ C , H1(M,Z) = ig ; and choose a basis

cpl, ...,cpg a P(M, 6L-110) for the Abelian differentials on M. Let

X be the intersection matrix of the surface M in this basis,



fl be the period matrix of the Abelian differentials on M , and A

be any g x 2g matrix of rank g such that An = 0 ; and introduce

the non-singular g X g matrices

P- itaXSF, Q=All.

The Picard-Jacobi variety of the surface M then has the standard

representations

J(M)tg, ti(M)&g

which are related as in equation (13). With this notation, and the

convention that all vectors are viewed as column vectors, the fol-

lowing holds.

Theorem 18. (Abel's Theorem) Let T be any differentiable

are from a point q to a point p on the compact Riemann surface

M , and introduce the vector t e CF with coordinates

ti I i=1,...,g .

Then the complex line bundle
pC-1

e H1(M, *) , considered

as an element of the Picard-Jacobi variety .1(M) = P(M) of the

surface M , is given explicitly as

t e Cgftfg = J(M) ,

- i QF-1t e C9/AZ 2g = Pti(M) .

Proof. Let v = (si) a H1(M,C) = C 2g be a cohomology

class as given in Lemma 23; thus

ti = f i - a U (eq'1) _ E sk
T k'A

or in matrix form
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(19)

Recalling that tX = -X , and that (S2,3f)"1 = I Q" n f as in
1. A

Lemma 22, rewrite (19) in the form

t = - tnX(fl,n)
\ Q"1. / s = (0,iP) ( Q_1 A) s =

A A
iPQ-1As

Now by construction, As a Cg/Ag = P(M) represents the complex

line bundle g ; that is to say,

I = As = - iQP-lt a CF/AZ2 = ti(M) ,

which is the second assertion of equation (18). The first assertion

of equation (18) then follows immediately from equation (13), and

the proof is thereby concluded.

There are a number of almost immediate consequences of

Abel's theorem, as stated here.

Corollary 1. For any fixed point q e M , the mapping

M --> P(M) defined by p --
pCl

is a complex analytic mapping.

Proof. It is more convenient to consider the mapping

M -> 3(M) determined by the canonical isomorphism r(M) = P(M)

By Theorem 18 this map has the form

p E M --4 (fp (p ) e fg/t 2g = J(M)

The value of the integral is obviously a complex analytic function

of the upper end-point p , and hence the corollary follbws at once.

Corollary 2. For any points pip ...'pr'g1,...,gr E M ,

choose differentiable arcs Ti from qi to pi on the surface M .
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Then ... t _ t ... if and only if the vector t e
Pi Pr ql qr

with coordinates

r
ti

J1 1Ti i

belongs to the lattice to 29
.

Proof. By Theorem 18 the line bundle gJ = tql as an

3 J

element of the Jacobi variety in given explicitly by the vector

tJ e r-g/tIM2g - J(M) having coordinates

tij = fT Ti ;

hence the bundle I ... it is given explicitly by the vector

r
t NOV ... if and only if g -1

t =1 iJ P1 pr ql qr

which corresponds to the condition that t = 0 in Cg/t1Mg , that

is, that t e
tg

, as desired.

Corollary 3. Fbr any points .,qr E M

choose differentiable arcs TJ from qJ to pi on the surface M

Then ... t . 5 if and only if there is a close.
1 Pr q1 qr

differentiable loop T on the surface M such that

r
z fTq) =ITfQ

J=1 j

for all Abelian differentials cp a P(M, (511,0)

Proof. Let,..., g be closed differentiable loops

on the surface M which generate the homology group H1(M,Z)

and choose the dual basis for the cohomology group H1(M, . Then

for the Abelian differentials (pi a r(, it follows that



Cdki = fIrk
q)i for 1=1,.. .,g and k:mL,...,2g .

By Corollary 2, 61 ...
SPr

= tql ... 5qr if and only if there is

an integral vector n - (nk) e Z 2g such that

r 2g

J
1 fT, cpi == kl nkWki = 4 Ti

2g
where T = Z nk . Since cpi form a basis for the Abelian

k=1

differentials, the latter condition is equivalent to the condition

that
r

r

z fT (p fT
J=1 j

for all Abelian differentials cp , as desired.

Recallin, that ... 5 C1 .. t-1 = 1 if and only if
1 pr ql qr

there is a meromorphic function f on the surface M such that

r r
9' (f) E 1'Pi - E 1.q1 ,

i=1 i=1

Corollaries 2 and 3 can be restated as necessary and sufficient

conditions for the existence of such meromorphic functions; this is

the traditional form in which Abel's Theorem is stated.
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12,
(a) There are interesting structures which are finer than com-

plex analytic structures on manifolds, but which play an important

role in complex analysis. Recall from the discussion in §1(b) that

the important property of complex analytic functions, for defining

a complex analytic structure, is the pseudogroup property: the com-

position of two complex analytic local homeomorphisms is again a

complex analytic local homeomorphism whenever the composition is

defined. If a subset of the set of complex analytic local homeo-

morphisms has the pseudogroup property, then there is a further

structure on complex manifolds associated to that subset. Perhaps

the most interesting such subsets are defined by differential

equations; these are the only such subsets which will be considered

here.

Suppose that f: U ---> V is a complex analytic local

homeomorphism between two open subdomains U,V of the complex

line C ; the condition that f be a local homeomorphism is of

course just that f' (z) 0 for all points z e U . Introduce

the differential operators e1,62 , defined as follows:

(1)
eif(Z) = fz

(2) e2f(z) =
2f'(z)f"(z) - 3f"

(.)2

2f'(z)2

Since f' is nowhere vanishing in U , the functions ef are

holomorphic throughout U . The differential operators 0V are

of particular importance for their behaviour under the composition

of mappings.
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Lemma 24. Let f: U - V and g: V - W be complex

analytic local homeomorphisms between subdpmains of the complex

line C , and let h - g a f be the composition of the two.

Writing w - f(z) ,

(3) evh(z) = evf(z) for V=1,2

Proof. Since h(z) = g(w) and ds = f'(z) , it follows

from the chain rule for differentiation that

h'(z) = g'(w)f'(z) ,

h"(z) - g"(w)f'(z)2 + g'(w)fu(z)

Thus

h'"(Z) =
gm(w)f,(z)3 + 3g"(w)f'(z)f"(z) + g'(w)fm(z) .

elh(z) =
g.,;w)fg(z)2 t w)f"(Z)

= elg(w).f'(z) + e1f(z)

and

(z)-2g'f'(97W)3+3g"f'fm+g'f".1-3[(97)2(f') +2g'g"(f.')2ff+(g')2(f,)2
02h

2(g' )2(f,)2

= 92f(z) ,

which complete the proof.

Now let
;'V

be the family of all complex analytic local

homeomorphisms f such that 0Vf(z) = 0 at all points z where f

is defined. It is an obvious consequence of Lemma 24 that the family

J v has the pseudogroup property; this introduces the new structures

next to be investigated. (It naturally occurs to one to ask why

these two differential operators are selected; the reason is that

they are essentially the only such operators. More precisely,
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one dimension, defined as the set of solutions of a system of

differential equations involving only the first and higher deriv-

atives, and possessing the pseudogroup property; then either

a _ 9 1 or 4.92 . This is not really difficult to show,

but is too much of a digression to enter into here; it is of course

part of the general problem of classifying pseudogroups. For

further discussion, see for instance Elie Cartan, Sur la structure

des groupes infinis de transformations, Ann. Be, Normale, 21(1904),

153-206; or the paper of Guillemin and Sternberg referred to earlier

(page 4).)

The families 9'v are in fact very familiar, in a more

explicit form. Firstly, if f e R l , then f"(z) s 0 , so that

necessarily f(z) = az + b for some constants a,b ; the condition

that fl(z) 0 is merely that a 0 . Thus, a 1 consists of

the complex affine mappings. Secondly, it is an easy calculation

to show that

(It) 82(z) _ - 2 fI (z)j f' (z)-*

dz

Therefore, if f e 9
2

it follows that
-2

77
f'(z)_

s o , so that
dz

fl(z) _ (cz + d) -2 for some constants c,d ; and integrating again,

necessarily

f(z) az +b
ez+d

for some constants a,b,c,d . The condition that f'(z) 0 amounts

merely to the condition that ad - be 0 . Thus, 9 2 consists of

the complex projective transformations. (These are also c4lled the



11near iract].onaJ_ or Mooius transrormations oy some writers. ) me

differential operator B2 is also called the Schwarzian derivative.

Turning next to the associated structures on manifolds, let

M be an arbitrary two-dimensional topological manifold, and let

(Ua,za) be a coordinate covering of M , with the coordinate

transition functions za = in the intersections Ua fl UP .

The coordinate covering (Ua,za) will be called an -9* v coordinate

covering if all the coordinate transition functions belong to the

family 3 v . Two a v coordinate coverings will be called equi-

valent if their union is also an 3
v

coordinate covering. It is

a consequence of the pseudogroup property of 3 v that this is

actually an equivalence relation; recall the discussion of complex

analytic structures on page 3. An equivalence class of 9L v coor-

dinate coverings will be called an a v structure on the manifold.

The adjectives affine and projective will frequently be used in

place of 3- 1 and a2 respectively, in view of the explicit

form of these families of mappings; thus an affine structure is

an 3 1 structure, and a projective structure is an a2 struc-

ture. Note that an affine coordinate covering is also a projective

coordinate covering, since C 3 2 ; and that two equivalent

affine coordinate coverings are also equivalent when considered as

projective coordinate coverings, for the same reason. Hence an

affine structure belongs to a well defined projective structure;

the affine structure is said to be subordinate to the projective

structure. In the same manner, a projective structure is subor-

dinate to a well defined complex analytic structure. For this
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on a Riemann surface, meaning projective or affine structures sub-

ordinate to the given complex structure. Observe that it remains

to be seen whether a complex structure actually has a subordinate

projective or affine structure, and whether that subordinate

structure is unique.

To investigate these questions, consider any complex analytic

coordinate covering [Ua,za) of the Riemann surface M . Recall

from §5(c) that the canonical bundle K e RZ(M, &*) is defined

by the cocycle (Kc¢) a Z1( 1/t there %p(p)
MB(z0(p)-1

for points p e Ua n U. , and fQ* are the coordinate

transition functions. To each intersection Ua n UP associate the

complex analytic function efC43 (z,) defined in yUU n UP) ;

and consider the element ava, a T(Ua n UP, -(Kv)) naturally

associated to that function. Thus in terms of the local coordinate

mapping zP defined in U0 ,

(5) a (zP(P)) = eyfC'0(e (p)) ;

and if p c U,, as well, then in terms of the local coordinate

mapping zy, defined in UY ,

av (zy(p)) =

The coordinate transition functions satisfy the condition that

f ey (zy) = fa d o fly (zy ) for zy, e zy,(Ua n U0 n Uy,) ; so by

Lemma 24,

eVf (zY) = eVfV(zd f1ay(zr)v + eVffy,(z,,) .



Rewriting the latter equation

(6) Q,,a,(zy(p)) = aV
(za(p))-K07(p)-V

+ aVa7(z7(p)) ;

or equivalently,

aVCP (z7(p)) = a (z7(p)) + oVPY(z7(p))

4r

However, this means that the elements (ate) define a cocycle

(aVa0) e'Z1(Vt , 6QKV) ) . Thus to any complex analytic coordinate

covering b7 of M there is canonically associated a cocycle

(avai) =(e fo'd e Z1(LM, e (KV)) , V=1,2.

An 4
V connection for the covering Ut is a zero cochain

_h = (ha) e co(V1 (KV)) such that 8h = aV . The connections

h,h' for two coverings M , Z41 will be called equivalent if to-

gether they form part of a connection for the union of the two

coverings. (Note that the cocycle aV associated to the union of

the two coverings consists of the original cocycles for the two

separate coverings, in view of the fact that it is canonically

defined. The equivalence condition is just that the two connections

h,h' can be extended to form a connection for the union of the

two coverings.) An equivalence class of connections will be

called an 3 V connection for the manifold M . As before, an

9 1 connection will also be called an affine connection, and an

13 2 connection will also be called a projective connection.

Explicitly, an a V connection for VI consists of sections -

(ha) a r(Ua, 4 (KV)) such that

ova (P) = hf3(p) - ha(P) for p e Ua fl u,3 .

-169-



- .. . .. .6%J16aW. UUAPFling xuncti1on za in the coordinate- neigh-

borhood Ua , the section ha is realized as a complex analytic

function ha(za) in za(Ua) ; and the coboundary condition can be

restated as

(7) avC43 (z0(P)) - h0(z0(P)) - KI(P)-Vha(za(P)) for p E Ua n UJ .

Theorem 19. There is a canonical one-to-one correspondence

between the a
V

connections on a Riemann surface and the

structures on that surface.

aV

Proof. Let h be an av connection on a Riemann surface

M , and choose a representative connection (ha) E C°(Vt , B (KV))

for some complex analytic coordinate covering V = (U(,za) of M.

Note first that, after passing to a refinement of the covering if

necessary, there will be complex analytic homeomorphisms wa on

the sets za(Ua) = VaC C such that ha(zes) = evwa(za) . To see

this, it is only necessary to show that in some open neighborhood

of any point there will exist a solution wa of the differential

equation eVwa = ha , such that wa # 0 . For the case v = 1

the differential equation is the linear equation w'a - haws = 0

which has solutions with arbitrarily prescribed values for wt - at

any point. For the case V = 2 , recalling formula (4), the dif-

ferential equation can be rewritten da + 2hava = 0 where

w'a = va , and the same result holds. Note further that the most

general such homeomorphism is of the form wa = va , wa for some

element vas &
v

. For if wa is any analytic homeomdrphism

satisfying ha(zes) = evwa(za) , then putting va = wa V. wal

write wa = va a wa ; but by Lemma 24,



ha = evwa = ev(va 0 wa) _ evwot = hot

hence evvv = 0 and va E

Now for the given open covering (Ua) , the most general

complex analytic coordinate covering is of the form (U wo, a za)

f o r some c o m p l e x analytic homeomorphisms trot: V a --> W o e C ( V the

associated coordinate transition functions are

N
foo = (we a za)e NO a z0) = wa a fcS a w;l , where fcS are the

coordinate transition functions for the covering (U.,za) . Writing

Wa a fco = fC4,3 a wo and applying Lemma 24 again,

(evwa)(faO)V + (evfoo)
=

(ejC4)(w;)v
+ (evw,)

or upon rewriting,

(Bv? a3)(w0)V =
avQ

+ ha h0

N
where hot = evwot . From equation (7) it then follows that evfa = 0

precisely when ha is a connection for the covering VI . Thus

each 14
v

coordinate covering corresponds to an av connection;

and from the observations in the preceding paragraph, this is a

one-to-one correspondence. It is obvious that equivalences are

preserved, hence the theorem follows as stated.

Corollary 1. An 3 v coordinate covering Ut = (Ua,za)

on a Riemann surface M represents the a v structure canonically

essociated to the
V

connection h if and only if h is repre-

sented by the zero 3v connection (ha) e Co(U , (KV)) for the

covering v4 .

Proof. Since the structure canonically associated to the

connection h is described in terms of an analytic coordinate



covering (Uce za) by a

satisfying evwa = ha ,

Note that if h

equation (7) it follows

h+ g where

set of -

change of coordinates by homeomorphisms wa

this is entirely obvious.

= (ha) is an 9°v connection, then from

that the most general av connection is

g e r(M, 8 (KV)) is an arbitrary section; thus the .

connections, if non-empty, form a complex linear mani-

fold of dimension

surface M admits

structures form in

dimension y(KV) .

y(KV) . And applying Theorem 19, if a Riemann

any 3v structure, then the set of all

a canonical manner a complex linear space

For affine structures this dimension is

of

y(K) = g ; and for projective structures this dimension is

7(K2) 3g - 3 , by the Riemann-ROch theorem.

As for the existence of an 3'v connection, it is clear

from the definition of a connection that the necessary and suffi-

cient condition is that av = 0 in Rr'(M, (9 (KV)) , where ay is

the cohomology class defined by the cocycle ava¢ = evf a z1(Ul, ({ KV)).

Recalling the preceding investigations of these cohomology groups,

the following existence theorems arise.

Corollary 2. A compact Riemann surface of genus g > 1

always admits projective structures.

Proof. By the Serre duality theorem

R-(M, -(K2)) = r(M, D (K-1)) ; but since c(K-1) = -c(K) = 2 - 2g

it follows that c(K) < 0 for g > 1 , and therefore that

R1(M, 6-(K2)) - r(M, &(K-1)) - 0 , which suffices to prove the

assertion.
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Corollary 3. A compact Riemann surface admits affine

structures if and only if c(K) - 0 , hence if and only if the

surface has genus one.

Proof. By the Serre duality theorem again, H1(M, &(K))

is canonically dual to r(M, Q." ; hence there is an isomorphism

H1(M, m (K)) = C . Select a coordinate covering _ (U(X,za) so

that the cohomology class a1 E H (M, 6(K)) is represented by a

cocycle
'.ice

E Z1(Vt, 15-(K)) ; recall that

alb = elf
C43

03 f - dz log f'
dz

log

Considering aB$ E Z1(R ,
0-1,0) ,

$ut this is the same form of cocycle

Lemma 14+; so, applying the arguments

then a100 dzP = -d(log Kim)

considered in the proof of

there (especially on page 102),

it follows readily that under the chosen explicit form of Serre's

duality, the cohomology class a1 corresponds to the constant

- 2iri c(K) . Hence a1 = 0 if and only if c(K) = 0 , which

suffices to prove the assertion.

It was demonstrated earlier (page 115) that p1 is the

only compact Riemann surface of genus zero, and it obviously has a

projective structure; this case is essentially trivial, and will

henceforth be excluded from consideration. The Riemann surfaces

of genus 1 are the only compact Riemann surfaces which admit affine

structures, as a consequence of Corollary 3. This can actually be

seen directly as follows. If (Ua,z() is an affine coordinate

covering, the transition functions are of the form za = azp + b
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for some constants a00,b00 e C ; and so the canonical bundle is

defined by the functions KC49 = (dza/dzo)-1 - a . As in §S(a),

line bundles defined by a constant cocycle necessarily have Chern

class zero, hence 0 = c(K) - 2g - 2 and so g = 1 . An affine

structure is itself a projective structure; and we shall later see

that in this case there is a one-to-one correspondence between

affine and projective structures. In general, for Riemann surfaces

of genus g > 1 , there are no affine structures at all, by

Corollary 3; but each surface admits a family of projective struc-

tures, by Corollary 2.

(b) The families ,3-v can be considered as groups, rather than

merely as pseudogroups. In view of Corollary 3 of Theorem 19, for

the remainder of the discussion here we shall consider explicitly

only the family of projective transformations; the reader can

readily provide corresponding statements for the family D-1 of

affine transformations. Viewing a projective transformation as a

complex analytic homeomorphism cps ]P ---> ]P (as discussed in

L. Ahlfors, Complex Analysis, (McGraw-Hill, 1966), for example),

compositions are well-defined for any two projective transfor-

mations, so the set of all such form a group; this group is called

the projective linear group of rank 2 over the complex numbers,

and will be denoted by PL(2,C) .

The projective structures on a surface can in a sense be

described by a slight modification of the cohomological machinery

which has been used earlier. Let V& = (TJ.) be an open covering

of the topological surface M , and G be any abstract group,



(not necessarily commutative). A q-cochain of the covering It with

coefficients in G is a function qp which associates to any

q-simplex (Ua ,..., a) a N(an element
q0

Ta ...a = P(Ua ,...)u
) e G ; the set of all such q-cochains will

o q o 9
be denoted by Cq(1 G) , but this is now viewed merely as a set,

with no specified group structure. A one-cochain (cpaa) a Cl(UZ,G)

is called a one-cocycle if IPa = p,, and
%6107 = 'Pay

whenever

Ua n U. n U7 0 i and the set of one-cocycles will be denoted by

Z'(V(.,a) . Two cocycles ((pCO))(*M) will be called equivalent

if there is a zero cochain (ea) a C°( It ,G) such that

*CO = eacp e0- l ; the set of equivalence classes will be denoted by

H1( 1,G) ,
and will be called the one-dimensional cohomology set

of M with coefficients in G . If 2P is a refinement of the

covering X , with refining mapping g: ) -> l , then as in §3(b)

there are induced mappings µ: Cq(y1 , G) -> Cq(V , G) . It is
easy to doe that these lead to a mapping µ*: HI'(VL , G) -> H'(( , G)

verification will be left to the reader. Further, as an analogue

of Lemma 5, if w -'? I, and V: ' -> l are two refining

mappings, then µ* = V* . (For if ((pp) _ ((p(U(,,,u )) a Zl(Vt,G) ,

then define a zero-cochain (a) e C°(Ir ;G) by

6a = e(a) p(µ ,,vva) . Then µ**p(Va,VV) =

tp(µVa,VVa)cp(VVa,vVP)T(v VO,µVo) a .v*v(Va,V0).e , so that

µ*(p is equivalent to v*(p .) Then put

H'(M, G) = dir.lim.
Y.

Hl(29 , G)

to define the first cohomology set of M with coefficients in the

group G .
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Lemma 25. There is a canonical mapping from the set of

projective structures on a surface M into the cohomology set

Hl(M,PL(2,C)) .

Proof. For air projective structure select a representative

projective coordinate covering (Ua,za} , with coordinate transition

functions ((p
M ) . The elements (per can be considered in two

ways: either as mappings qqa$: z0(Ua n u,) - za(Ua n U0) , or as

elements (P. = PL(2,C) associated to non-empty intersections

Ua n UP C M . In either case `Poo _ lp , and (poPq)07 = `pay when-

ever Ua n U n U7 # 0 , so that ((p) determine a cocycle in

zI(Vt ,PL(2..C)) . If (Ua,za) is an equivalent projective coor-

dinate covering defined in terms of the same open covering Vt of

M and having coordinate transition functions ((PCO) , then there

are elements sa a PL(2,C) such that p = B q 0-1 ; so the co-
ati a P

cycles ((pad) and (pa13 ) are equivalent. There is thus a well-

defined mapping, from equivalence classes of projective coordinate

coverings of M defined in terms of the open covering Vi., into

the cohomology set H1(Zn ,PL(2,C)) . A projective coordinate

covering (U.,za) induces a natural projective coordinate covering

for any refinement If < 1)L , and this is evidently compatible with

the cohomology mappings H1( Dt ,PL(2, C)) --- H1(]I' ,PL(2, C)) .

Finally, two projective coordinate coverings (Ua,za) and (UU,za)

are equivalent if and only if they induce equivalent projective

coordinate coverings for a common refinement V of Vt and

This serves to conclude the proof.

The element of H1(M,PL(2,C)) corresponding to a projective

structure will be called the coordinate (cohomology) class of that



structure. The mapping which associates to a projective structure

its coordinate cohomology class a H1(M,PL(2,C)) is neither one-

to-one nor onto. However, restricting consideration to the pro-

jective structures subordinate to a fixed complex structure, the

mapping is one-to-one, in the sense that two projective structures

on a Riemann surface are equivalent when they have the same coor-

dinate cohomology class. Before turning to the proof of this

assertion, it is convenient to introduce some further terminology.

Again consider an abstract group G , but now suppose that

G acts as a group of homeomorphisms on a topological space S .

For any cohomology class cp E Rl(M,G) , select a basis V& = {Ua)

for the open sets of the topological surface M and a represen-

tative cocycle ((pao) E Z'(VL G) for the cohomology class cp

To each set Ucc a , associate the set a of continuous

mappings from Ua into S ; and to each inclusion Ua C U0

associate the function pPa: ,da IJP which takes a mapping

za E ,0 a into the mapping E ,d 0 defined by

(Poaza)(P) = WOa(za(P)) for p e Ua C U

Since cpPa: S ---- S is continuous, this definition makes sense.

Whenever Ua C U0 C Uy and za a e a , it follows readily from

the cocycle condition on (T.) that pyppp = pya . Therefore

( Vi , AM,pa13 ) is a presheaf of sets over M , which is easily seen

to be complete; the associated sheaf will be called the sheaf of

germs of continuous sections of cp with values in S , and will be

denoted by 9c ((p,S) . A section z = (za).E r(M, 4 (cps)) corre-

sponds to a family of continuous mappings 2 a: Ua - S such that



za(p) _ % (zo(p)) whenever p e Ua n UP . If 8 has a complex

structure, and G acts as a group of complex analytic homeomor-

phisms Of S , then in the same manner we can define the sheaf of

germs of complex analytic sections of T with values in S , a

sheaf which will be denoted by d-((p,S) . If S has an algebraic

structure, and G acts as a group of automorphisms of that struc-

ture, then the sheaves 9((p, S) and e-((p, S) can be given the

structures of sheaves of those algebraic structures. The space S

will be dropped from the notation if there is no danger of confusion.

Two examples will be of particular interest here. The first is that

in which G = GL(n,C) and S = Cp ; G acts as a group of complex

analytic isomorphisms of the complex vector space 6t . A coho-

mology class cp a 111(M,GL(n,C)) will be called a flat complex

vector bundle of rank n over M ; the corresponding sheaf t(gp,C$)

of complex analytic sections has the structure of a sheaf of com-

plex vector spaces. The case n = 1 is just the case of flat

complex line bundles, as considered earlier. Of course, the group

SL(n,C) can be used in place of GL(n,C) . The second is -that in

which G = PL(2,C) and S = P . A cohomology class (p a H1'(M,PL(2,C))

will be called a flat projective line bundle over M

Note, by the way, that if (p a H1(M,PL(2,C)) is the coor-

dinate cohomology class of a projective structure on M , and if

VC = (ii,za) is a projective coordinate covering with coordinate

transition functions (cp a$) a Z1(UZ ,PL(2,C)) which represent the

eohomology class cp , then actually (za) e r(M, a ((p,P )) . Indeed,

the sections za have the further property that they are local

homeomorphisms from M into P . Conversely if (p a H1(M,PL(2,C))



has sections (za) a r(M, C ((p,]P)) which are local homeomorphisms,

then those sections define a projective coordinate covering of M

upon suitable refinement, and cp is the coordinate cohomology class

of that projective structure. The subset of r(M, e (c),l?)) con-

sisting of sections which are local homeomorphisms will be called

the set of coordinate sections, and will be denoted by ra(M, a ((P,1P)).

Thus a cohomology class cp a H1(M,PL(2,C )) is the coordinate class

of a projective structure on the topological surface M if and only

if there exists a coordinate section (za) a ro(M, 9 ((p,g')) ; the

set of all coordinate sections, module the obvious equivalence

relation, correspond to all projective structures on M with the

given coordinate cohomology class. And similarly, (p is the coor-

dinate class of a projective structure on the Riemann surface M

if and only if there exists a coordinate section (za) E

the set of all analytic coordinate sections, module the obvious

equivalence, correspond to all projective etruatures subordinate to

the given complex analytic structure on M and with the given

coordinate cohomology class.

To any matrix T = ( as d) a SL(2,C) there corresponds a

projective transformation \qt = (pT a PL(2,C) , of the form

(8)
(P(z) _ ,I b

cz+d

every transformation qp e PL(2,C) can be so represented, and two

matrices. T;T' represent the same projective transformation if and

only if T' = + T . The mapping p: T -,> (pT is a group homomor-

phism, forming part of the exact sequence of groups



(9) o .-- (+ i) -> SL(2, C) -L> PL(2, C) --> 0 ,

where 0 stands for the trivial group. (Since PL(2,C) = SL(2,C)/(+ I),

this provides the projective linear group with the structure of a

complex Lie group.) For any covering _ (Ua) of M , the homo-

morphism µ clearly induces a mapping

µ: Cl( UL ,SL(2,C)) --> Cl( Vt, PL(2,C)) ; it is easy to see that
this mapping takes cocycles into cocycles and preserves equivalence

classes, hence induces a mapping

(10) µ*: HC'(M, SL(2, C)) --0 H1(M,PL(2, C)) .

Lemma 26. If M is a compact Riemann surface and

rp e H1(M,PL(2,C)) is the coordinate cohomology class of a pro-

jective structure on M , then there exists a cohomology class

T e R1(M,SL(2,C)) such that rp = µ*(T) . Further, if

(za) E r0(M, ( ((p,g')) is any coordinate section, then there exist

a flat complex line bundle t r: H1(M,C) and a section

h = (hla,h2a) E r(M, 0. (tT, )) such that z. = hlo/l a

Remark. It is clear that whenever 9 e H-(M,C) and

T e H1(M,SL(2,C)) , the product gT a H1(M,GL(2,C)) is well

defined.

Proof. If qp a H1(M,PL(2,C)) is the coordinate cohomology

class of a projective structure on M , select a projective coor-

dinate covering UL = (Ua,za) with coordinate transition functions

(%'0) a Zl( VL,PL(2,C )) which represent the cohomology class

For each element
1PQ13

select a matrix Tas E SL(2,C) such that

(Pm = µ(T) ; so the coordinate transitions can be written



a z (p)+b
(11) za(P) = cz p +d for p e Ua fl U0 ,

where

c d
1 a$

Note that the canonical bundle K is defined by

T
=Cam b/

OO

Kap(p) r_
1

= (cyp)+dC,0)2 for p E U1 (1 U,3

Select any g-1 distinct points p1,p2,...,pg-1 E M , where g is

the genus of M ; and introduce the complex line bundle S = IIi
2

pi

where
i

are the point bundles of §7(c). Write _ iK for some

complex line bundle n ; since c(C) = 2(g-1) = c(K) , then c(i) -0

so we can suppose that n e (M,C) . Now there is an analytic

section g = (ge) E r(M, ai (c)) = r(M, Q1 (r)K)) such that

(g) = Ei the condition that g be a section is just that

ga(p) = r6r(c'VzO(p) + for p e Ua (1 Uo,

where (t) are constants representing the cohomology class n

Since the divisor of g is even, in each coordinate neighborhood

Ua we can select a well-defined branch of h2a(p) g ) . The

functions h2a are analytic in Ua ; and

(12) h2a(p) _ 9
CO

(ca,z,(p) + da$)h2p(p) for p e Ua fl U. ,

for some constants 9a3 . Introduce further the analytic functions

hla(p) = za(p)h2a(p)
. It follows readily from (li), (12 ), and

these definitions, that
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(13)
J

hla(p) = to(a,4,3h1S(p) +

h2a(p) _ $C49 (coohlo(p) + d
for p e Uaf US .

The analytic functions hla, h2a are clearly linearly independent.

So it follows immediately from (13) that the matrices S00 _ 9OOTCO

satisfy the cocycle condition, or in other words, represent an

element S e Hl(M, GL(2, C)) ; and it is evident that µ*(s) = p .

Dividing all the matrices by their determinants will then yield a

cohomology class in Hl(M,SL(2,C)) setisfying the desired condi-

tions. Then, for the second part of the lemma, write the coordi-

nate transition functions for the coordinate section (za) in the

form (ii), where T = (Tai) a FIl(M,SL(2,C)) , and repeat the above

part of the proof. The constants (0aa) define a flat line bundle,

since both (To,) and (J Ta$) satisfy the cocycle condition;

and by (13) the functions ha - (hla,h2a) determin6 a section in

r(M, O while by construction za(p)
=
hea(p)/h2a(p)

That concludes the proof.

Theorem 20. On a compact Riemann surface, the projective

structures subordinate to the given complex structure are determined

uniquely by their coordinate cohomology classes.

Proof. Let (UJ,za) and (Ua,wa) be two projective coor-

dinate coverings having the same coordinate cohomology class T ;

there is no loss of generality in assuming that the two coverings

actually have the same coordinate transition functions

(%4,3) a Z1(UL ,PL(2,C)) . Applying Lemma 26, select a cohomology

class T a H1(M,SL(2,C)) such that p*(T) = q , and suppose that



(TaO) a Z1( Vt ,SL(2,C)) isarepresentative cocycle. Further, select

flat complex line bundles t = (Ea0) and n = (nay) , together with

complex analytic sections g = (gla,g2a) a r(M, (¢ (gT,)) and

h = (h1a,h2a)...e r(M, O (nT,C )) , such that za(P) - gia(P)/g2a(P)

and wa(P) = hia(P)/hn(P) The matrices

Fa(P) =

are complex analytic functions in each set Ua , and

Fa(P) =

M )C
nab

for p E

Therefore the functions det Fa are complex analytic in each set

Ua , and

det Fa(p) = 9C43 n u, ;

that is to say, (det Fa) a r(M, a(in)) . Since c(9n) = 0 , either

det FCC vanishes identically, or det F. is nowhere vanishing, by

Theorem 11. From the proof of Lemma 26, recall that the functions

gla
and g2a for instance both vanish at g-l points; and there-

fore necessarily det Fa =- 0 . This condition means that the

vectors (g1a,gga) and
(hla,hha)

are everywhere linearly de-

pendent, or equivalently that za = wa everywhere. Therefore the

two projective coordinate coverings coincide, and the desired

result has been'demonstrated.

This theorem shows that the mapping which essociates to

the projective structures on a Riemann surface their coordinate
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cohomology classes is one-to-one; hence the coordinate classes can

be used to describe the set of projective structures on a given

Riemann surface. This result is definitely false for projective

structures on a topological surface; a construction of L. Bers

("Simultaneous uniformization," Bull. Amer. Math. Soc. 66(1960),

pp. 94-97) provides coordinate classes with two different projective

structures, such that the underlying complex analytic structures

can be any two arbitrary Riemann surfaces of the same genus. There

now remains the problem of determining the subset of H1(M,PL(2,C))

consisting of the coordinate cohomology classes of the possible

projective structures on a Riemann surface M . Before approaching

this problem, as a slight digression we shall consider another

description of the cohomology sets Hl(M,PL(2,C)) .

The cohomology sets H1(M,G) for any grc+.zp G can be

described as follows. Again consider an open covering = [U(X)

of the space M . A chain of the covering Vt based at o E

is a finite sequence 7 = (Ua ,U ,...)Ua ) of elements Ua a

o al m i

such that Ua = Uo and Ua n Ua for i = 1,...,m ; and

0 i-1 i

the chain is said to be closed if Ua = U0 also. A simple jerk
m

on such a chain consists either in replacing a pair U. ,U of
i i+l

consecutive elements of the chain by a triple U011, UJ, aU

i+l
when Ua n v0 n va or in performing the inverse operation.

i i+l

Two chains are called homotopic if it is possible to pass from one

to another by a finite sequence of simple jerks; this is clearly

an equivalence relation, and the set of equivalence classes will
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be denoted by 71'1( t ) If (Ua , ... , Ucc ) and Oce , ... , Ua) are
o m o n

closed chains, their product is defined to be the closed chain

(Ua I...,Ua ,Ua I...IUcc it is clear that this product can be

o m o n

carried over to the set 7r1( ) of equivalence classes of closed

chains, and that 7r1( Vt,) is then a group. (The associativity

property is obvious; the identity is the equivalence class repre-

sented by the closed chain (Uo) , and the inverse of the equiva-

lence class represented by a chain (Ua ,...,Ua ) is represented
0 m

by the chain (Ua ,Ua ,...,Ua ) . Details will be left to the
m m-1 o

reader.) The group depends of course on the choice of the base

point Uo , and the notation 7r1(t/L Uo) will be used when it is

necessary to specify the base point. If IC is a refinement of V1,

with refining mapping µ: ) and if there is a set o e

such that µ7o = U0 , then µ induces a homomorphism

µ*: 7r1(1( ,Vo) 7r1(Vt , a) (For any closed chain

(Va ,V I.... Va) based at o set µ(V, ,V a,...,Va
o a7 m o 1 m

_ (µVa ,µVa,...,µVa it is evident that this mapping preserves
7.

equivalence classes, and defines the desired homomorphism µ* .)

Moreover, if V: U -> V( is another such mapping, then µ* = V*

(To see this, it is sufficient to observe that for any closed chain

(Va ...,VCC ) based at V. and any index r = 1,2,...,m-1 , it is

o m

possible to pass from the chain (µVa ,...) µVa VVa ,..., wa
o r-1 r m

to the chain (PV, ,...,µVa , wa ,..., wa ) by the succession
o r r-1 m

of simple jerks (µVa ,wa ) -,> (µVa ,µVa ,wa ) and
r-1 r r-1 r r



(µVa ,VVa VVC, ) --> (µVa ,VVa ) .) Now select a fixed point
r r r+1 r r+l

p e M , and consider the family consisting of open coverings

V( _ (Ua) together with a fixed element Uo a V( such that p e a.

This is a directed set, defining (U IV
0
) < (1( Uo) if Y is a

refinement of Vt with a refining mapping µ: -A so that

µ(Vo) = Uo . Then put

lr1(M, p) = inv.lim. (u
Uo)

7r1('U( , Uo)

(Recall that the inverse limit group is the subgroup of the direct

product II(Trl(U( ,U0)) consisting of those elements

(Y
24

U) a R(7rI(Vt ,U0)) such that µ*(y,V,
V

) = Y when-'o o o
ever (T Vo) < (WL ,U0) .) It should be remarked that a change

of the base point has the effect of an inner automorphism on the

fundamental group 7r1(M) .

Now for any abstract group G , let Hom(7r1(M,p),G) be the

set of homomorphisms from 7r1(M,p) into G . To any pear of ele-

ments X e Hom(7r1(M,p),G) and g e G there is associated another

group homomorphism Xg a Hom(7r1(M,p),G) defined by Xg(7r) - g-1X(7r)g

for 7r e 7r1(M,p) i two elements X,X a Hom(7r1(M,p),G) are called

equivalent if X = Xg for some g ; and the set of equivalence

classes will be denoted by

Hom(7r1(M,p),G)IG

Actually of course, the mapping X - Xg exiibits G as a group

of operators on Hom(7r1(M,p),G) , and the above set of equivalence

classes is merely the quotient space under this group action.

Lemma 27. For any surface M and any group G , there is

a natural one-to-one correspondence between the cohomology set

H1(M,G) and the set Hom(7r1(M,p),G)IG .



Proof. Let V _ (Ua) be an open covering of M , with

base point Uo containing p . For any cohomology class

q) a H1(V(, G) select a representative cocycle (%f3) e Zl(jtt , G) ;

and for any chain (Ua ,u ,.. .,u ) based at U. define
0 m

gs(Ua ,U ,...,Ua ) _ 9a 9, a
oal ai. m-1 m0 al Si

Since c is a cocycle, this last expression is unchanged under

siMPle jerks; for if
u01

fl U n Ua 4 0 , then % =

i i+l i i+l

= cpa
i. `Paa

. Thus (A) defines a mapping
i+1

Xg: Tr1( Vt ,Uo) -> G ,

which is readily seen to be a group homomorphism. If ((ua) and

($aa) are equivalent cocycles, then there are elements ea e G

such that *aa =
ea(PC4e0l

; so for any closed chain

(15) *(Ua )U ,...,UCC = ea (D(Ua ,U ,...,Ua
o`x1 m o o al m o

since Ua = Ua . Hence, considering X as ap element of
o m

Hom(7r1()/t,U0),G)/G , that element is independent of the choice of

cocycle (qua) representing the cohomology class cp ; and the map

qP --> XT thus takes H1(11. G) into Hom(7r1( Vt ,U,), G)/G . We

shall actually show that this mapping is a one-to-one correspondence.

First, suppose that (q)aa) and (4r ) are two cocyclea in

Z1(V( G) leading to the same element in Hom(7r1(V ,U%),G) ;

recalling (15), it is clear that
*aa

can be replaced by an

equivalent cocycle such that
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*(Ua ,u ,..,ua) = g7(Ua )U ,...,Ua )
o a1 m o al m

for every closed chain. Then for any element Ua a Vl. select a

chain Ira = (Ua ,U , ...,Ua ,Ua) and put 0,, = *(ial)(P(7ra)
o a7. m-1

where 7ral indicates the chain Ira in the reverse order. The

element 8a is independent of the choice of chain Ira ; for if

ira is another such chain, then

a) _ ( al)4P(r , since

7rr l is a closed chain. Then Wa,V _
_ *(Uceua ,...,U ,Ua ,Ua ,Ua ,...:Ua *(7ra)*(ir)M_1

a] 0 0 1 m-

= Pl = B (Dap'G0 . The cocycles (cps) and (fir )

are hence equivalent, so the map cp -3 XT is one-to-one into.

Next, for any element in Hom(7r1(X ,U.),G)/G , select a represen-

tative X e Hom(7rl( UL ,U0),G) . Again for any element Ua e Vt

select a chain Ira = NO ,U ,...,Ua Ua) ; and whenever
o al m-1

U. n UP j 0 define % = X(7ra,Ua,Up,7rp_1) , noting that

(Toe Ua,U,7rl) is a closed chain. Then whenever Ua n U. n y # 0,

observe that TaJfy =
X(7ra,UWUy77 yl) _ rpay , since the chains (7ra,Ua,Uo,7r;1,7rp,UpU,,7ryl)

and (7ra,UaU7,,7ryl) are homotopic. Thus ((poo) determines a co-

cycle in Z1(1j1 G) ; and it is clear that X is the element asso-

ciated to the cohomology, class of cp under the correspondence

considered here, thus showing that the map q -> Xq, is onto as

well.

Thus for any covering lit with a selected base point Uo a VI

there has been defined a natural one-to-one correspondence

H1(?j ,G) 4-- Hom(7r1( U(,, U0 ),G)/G . It is evident that these



correspondences behave suitably under refinements of the covering,

and hence in the limit lead to the desired correspondence; details

again will be left to the reader.

Remark. The elements of H1(M,G) can be viewed as fibre

bundles with totally disconnected group, (flat fibre bundles); and

Lemma 27 is just the classification theorem for such bundles in

terms of their characteristic classes. For a discussion from this

point of view, see N. E. Steenrod, The Topology of Fibre Bundles,

§13, (Princeton University Press, 1951).

At this stage it would perhaps be of interest to see some

examples. It should be remarked that the group 7r1(M,p) defined

above is actually isomorphic to the fundamental group of the sur-

face, hence will be assumed known to the reader. (See the topo-

logical appendix for some further discussion.) First, as a rather

trivial example, the projective lint'=7P has a trivial fundamental

group, 7r1(P) = 1 . For any group G it then follows from

Lemma 27 that H1(M,G) consists of a single element; and consid-

ering in particular the group G = PL(2,(), there is by Theorem 20

a unique projective structure on IP, which should not be very

surprising. Next, for a compact surface of genus 1 the fundamental

group is a free abelian group on two generators: 7r1(M) _ z + Z .

Letting 71,72 be two generators, an element X E Hom(7r1(M),G)

is completely determined by the values Xi = X(7ri) , and these are

arbitrary subject only to the condition that X1X2 = X2 X1 ; thus

we can identify Hom(7r1(M),G) G X GIX.X2 = X2 X1) .

Calling two pairs (Xl,X2) and ()j,XX) equivalent if for some
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element g e G they satisfy Xi = g lXig for i= 1,2 , the set of

these equivalence classes can be identified with Hom('7r1(M),G)/G

For the special case G = PL(2,C) , recall from the exact

sequence (9) that an element X E G can be represented uniquely up

to sign by a matrix T e SL(2,C) . Recall also that by an inner

automorphism any element T e SL(2,C) can be reduced to one of the

following canonical forms:

(16) a 0
(iii) T=\

/0 l/a

and except for replacing a by 1/a in (iii), none of these

matrices is equivalent to. any other under an inner automorphism.

Now consider a pair of elements (X1,X2), Xi a PL(2,C) , such that

X1X2 = X2X1 ; if Ti is a matrix in SL(2,C) representing Xi ,

then T1T2 = + T2T1 . By an inner automorphism, T1 can be reduced

to one of the forms (16); thus there are three cases to consider.

(i) If T1 is the identity, then T2 is arbitrary; and by a

further inner automorphism, T2 can easo be reduced to one of the

standard forms (16). (ii) If T1 has the form (ii) and

, then T2 must satisfy the conditionT2 =\a2
b2/C2 d2

(a2+b1c2 b2+b1d2 = + a2 a,bl+b2)

c2 d2 c2 c2bi+d,,

/(i) T =
1 0

t ) ; (ii) T
=(1 b)

, b # 0 ;
0 1 0 1

If the + sign holds, it is easy to see that c2 = 0 and

a2 = d2 = + 1 ; while the - sign can clearly never occur.



The forms of T1 and T2 cannot be further changed by an inner

automorphism. (iii) If T1 has the form (iii), then T2 must

satisfy the condition

1,281
b2a1 = + a2a1 b2/a1lCc2/al

d2/al -
\c2a1 d2/al

If the + sign holds, it is easy to see that b2 = c2 = 0 , and

1,2 - 1/d2 ; further inner automorphisms can only have the effect

of simultaneously replacing al, a2 by 1/al, 1/a2 . If the -

sign holds, it follows readily that al = + i, a2 = d2 = 0 , and

c2 = - 1/b2 ; by an inner automorphism, it is further possible to

make b2 = +1 . Now considering all three cases together, and

writing the elements as projective transformations, the elements

of B.1(M,PL(2,C)) = Hom(i1(M),PL(2,C))/PL(2,C) can be represented

by the distinct pairs of transformations on the following list:

(i) Tlz = alz+bl, T2z = a2z+b2 ,

(17) where ala2 # 0, (aZ 1)bl = (a2-1)b2 = 0 ;

(ii) Tlz = - z, T2z = - 1/z .

These pairs of transformations are inequivalent, with the excep-

tions that

T T2z = az and Tlz =

a
z, T2z = 1 z

1 1,2

are equivalent.

Two aspects of this description should be pointed out.

First, the image µ"'I'(M,SL(2,C)) C H1(M,PL(2,C)) under the map-

ping (10) consists precisely of the elements representable in the



form (17 (i)); for only in the case (17 (ii)) was the matrix

equation T1T2 = - T2T1 solvable. This example thus shows that

the first assertion in Lemma 26 is a non-vacuous one. By that

lemma, the element (17 (ii)) can never be the coordinate coho-

mology class of a projective structure. Second, all the elements

(17 (i)) are actually affine, hence the cohomology classes so

represented can be reduced to affine cohomology classes. Thus,

recalling the first comment above and applying Theorem 20, it

follows that any projective structure on a compact Riemann surface

of genus one can be reduced to an affine structure; in other words,

projective and affine structures coincide in this case.

(c) The main problem here is that of determining the pro-

jective structures on a compact Riemann surface in a sufficiently

explicit manner; in view of Theorem 20 and the subsequent

discussion, this problem can be rephrased as that of determining

explicitly which elements of H1(M,PL(2,C)) = Hom(rrl(M),G)/G are

the coordinate cohomology classes of projective structures on the

Riemann surface M . Although some further discussion of

properties of complex vector bundles seems necessary before

directly tackling this problem, there are some interesting pre-

liminary results which sould be mentioned here. The projective

structures on M correspond to projective connections, as in

Theorem 19; so the question arises, how to determine the coor-

dinate cohomology class of the projective structure corresponding

to a given projective connection on M



To begin, select a complex line bundle k a R1(M, Q-)

such that
X2

= K , where K is the canonical bundle of the

Riemann surface. Since the Chern class of K is even, and the

group of line bundles of Chern class zero has the simple form

described in §8, it is evident that there exists such a line

bundle. There is not a unique such bundle of course, and for

present purposes mw choice will suffice. It should be noted that

these bundles X can be described very simply in terms of any

projective structure on the Riem1ann surface M . As in Lemma 26,

choose a cohomology class T e H1(M,SL(2,C)) representing that

projective structure; if (Ua,za) is a projective coordinate

covering for the structure, and (Tcc) s Z1(Vt.,SL(2,C)) are

matrices representing the cohomology class T , then the coor-

dinate functions (za) satisfy equation (11). It follows readily

that the functions

(18) XCO (p) - c,,z8(p)+dM , p s Ua n Ud ,

represent a complex line bundle X e H1(M, m*) for which X2 = K ,

as desired.

Lemma 28. Let M be a compact Riemaan surface,

h = (ha) a C°(7/Z, O( X2)) be a projective connection on the

surface, and X e H1(M, (9-*) be a complex line bundle such that

A2 = K is the canonical bundle of the surface. In each coor-

dinate neighborhood Ua of a coordinate covering of the surface

select two linearly independent analytic functions Pla(z(x)'

f2a(za) which are solutions of the differential equation



(19) 2fa(za) + ha(za)fa(za) = 0 ;

and introduce the vector-valued functions f (z )
cx a

(flc'(Zcd
2a(zd)

Then to each intersection Ua n U0 there corresponds a unique

matrix Tao a C3L(2,,C) such that

(20) f (za(P)) _ %C'P(P)-1T (zP(P)) for p e Ua n u, .

These matrices form a cocycle T e Zl(lfl ,GL(2,C)) such that

µ*(T) a H1(M,PL(2,C)) is the coordinate cohomology class of the

projective structure on M corresponding to the projective

connection h .

Proof. Note that (19) is a linear differential equation

with complex analytic coefficients, and the coefficient of the

highest term is nowhere zero. Hence, as is well known, there

exist complex analytic solutions in a smell enough neighborhood

Ua of any point on the surface; and the set of all these solutions

form a two-dimensional complex vector space. If fa(za) is any

solution in the open set V. = za(Ua) C C , and if Ua fl UP 10

then introduce the complex analytic function g0(z in

zP(Ua fl U0) C VP defined by

gp(zP(P)) = ?ap(P)fa(za(P)) , for p E Ua fl U.

Applying the chain rule for differentiation,

gh(z.) = dz [X (zO)fa(za)]

_ C43(z0)fa(za) + XC43(zo) lfa(za)

1911



since dz/dzo = Kcio(zp) 1 = 1 (zo)-2 . Differentiating again,

6, (zP) (zP)fa(za) +
P C43

Since fa(za) is by assumption a solution of the differential

equation (19), it follows that

g'(zo) _
" (zO)fa(za) -

ha(za)X8(zO)-3fa(za)

( X? ,,(z.) - 2 ha(za)X,43(zI3) 4]g0(zP)

For the coordinate transition functions za = fao(zo) it follows

readily from formula (A) that

Q2a (z0) = 62f0(zP) _ (zd ;

and recalling the defining property of a projective connection as

given in formula (7),

hP(zP) _ (zP)-4ha(za) - A %CO(zp)"17`oO(zp)

Ooneequently g"0(zo) ho(zo)go(zo) ; that is to say, the

function g,(z,) is a solution of the differential equation (19)

in the set z0(Ua fl u0) CYO . Now if f1a(za) and f2a(za) are

two linearly independent solutions of (19) in the set za(U(x)

the functions g10(z0) - 7 fia(z(,) and
g2,(zB) = ?,, f2a(z(,)

are linearly independent solutions of (19) in the set

zo(Ua fl u.) ; so for any other linearly independent solutions

f1 (z13), f213(zO) of (19) in zP(UP) , the functions gio(z0) are

unique linear combinations of the functions fi13 (zP) This

demonstrates equation (20), and at the same time shows that the

matrices (TC43) form a cocycle T E Z1(t1 , GL(2, C )) .

-1199
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wa(za) = fla(za)1f2(za) in each coordinate neighborhood

za(Ua) C C . Since the functions fia(za) are linearly inde-

pendent solutions of (19), their Wronskian

fla(za)f2a(za) - fla(za)f2a(za) is nowhere vanishing in za(Ua)

but this clearly means that wa(za)
9 0 at the regular points of

that function, and (l/wa(za))' # 0 at the poles of the function

wa(za) . Thus the mapping za -- wa(za) is a local homeomorphism

from za(Ua) into IP , and the composite functions W. o za are

a complex analytic coordinate mapping on the Riemann surface M

Differentiating the function wa , note that

f
ftla 2awa = war -

/la 2a

Since the functions
fia

are solutions of (19),

t l!/f
112

(:'fia)--2 ha_\fia/

therefore

f 2 f, 2 f, f, 2

-( la _ 2a
<'a) +\ f2a/

+ VC,
fia f2a

}
f2a=-2a f2a

Differentiating once again,
2

wa =hawa+6wa( Vi` .

2a

Finally, substituting these results into (2), it follows that



Recalling Theorem 19, this means that the coordinate mappings

wa a za are a projective coordinate covering representing the

projective structure corresponding to the connection. The coor-

dinate cohomology class is therefore defined by the coordinate

transition functions for this coordinate covering; and by (20),

this class is just
µ*
(T) , where µ*: H1(M,GL(2,C)) -> H1(M,PL(2,C))

is the mapping associated to the natural mapping

µ: GL(2,C) --> PL(2,C) . This then completes the proof.

. Again let ) e H1(M, (r9*) be any complex line bundle such

that X2 = K is the canonical bundle on M , and let

*
(T.aO) a Zl(Vt, ) be a representative cocycle. Then consider

the holomorphic non-singular matrix valued functions
Aap

defined

in intersections Ua G U0 by

d
Aa0 (z8) dz

(21) A (z for z e z (Ua n Up).

It is a straightforward matter to verify that

(22) Aap(zP(p))-A07(z,,(p)) - ACer (z,,(P)) if p e Ua fl U0 fl U7 ;

the details will be left to the reader. Also, let

µ*: Hl(M,GL(2,C)) -y> H (M,PL(2,C)) be induced by the natural

homomorphism µ: GL(2,C) ---.> PL(2,C)

Theorem 21. A cohomology class T e H1(M,GL(2,C)) on a

compact Riemann surface of genus g > 1 has the property that

µ*T a H1(M,PL(2,C)) is the coordinate cohomology class of a

projective structure on the Riemann surface if and only if, for a



-- - -J- UuvCrJ.ug VI - (ua, zaj or M and a

representative cocycle (T4) a Zl( 7/'(,GL(2,I)) , there exist

holomorphic non-singular matrix-valued functions FCe in the

various sets Ua such that

Fa(p)Aap(p) -
'00,0

(p) for p e Ua n u, .

Proof. If µ T is the coordinate cohomology class of a

projective structure on the Riemann surface then by Lemma 28 there

exist holomorphic vector-valued functions fa In the various sets

Ua , such that the entries in fa are linearly independent

solutions of (19) in Ua ) and that

(za)XCO(zO) s Ta (z,) in Ua n U(23) fazLO
Differentiating the above equation with respect to z0 and

recalling that dza,/dzP _(zd-2 , secure that

(24) f'a(za)Xa (zO)-1 + fa(za)XL (zp) - (zp)

Introducing the holomorphic matrix-valued functions

Fa(za) _ (fa(za), f'(za))

equations (23) and (24) can be written together in the form

Fa(za)Aa,(z,) = TOOFO(z0)

and since the entries of fa(za) are linearly independent solu-

tions of (19), their Wronakian det Fa(z(x) is nowhere vanishing.

These functions Fa(za) are then of the desired form.



un the other nana, suppose tnat tnere exist no.Lomorpnic

matrix-valued functions F. satisfying the conditions of the

theorem, and let fa be the holomorphic vector-valued functions

consisting of the first column of the matrix Fa . The functions

f (za) satisfy equation (23) then, so their derivatives neces-z-a

sarily satisfy equation (24+); and the holomorphic matrix-valued

functions Ga(z(,) = (fa(za),f'a(za)) also satisfy Ga(z(X)Aap(zP)=

TCOG0(z0) . Therefore det Ga(za) = det TCO-det GP(zP) , or in

other words, the functions det Ga are holomorphic cross-sections

of the complex line bundle (det Tap) ; and since TCO are con-

stant matrices, so that (det TCO) has Chern class zero, either

det Ga(za) __ 0 or det Ga(za) never vanishes. In the second

case, it follows immediately that the mapping za ---J Wa(za) ,

defined by wa(za)
=

fia(za)/f2a(za) , is a local homeomorphism;

and from equation (23), the local coordinate functions wa.za

define a projective structure on M. with coordinate cohomology

class T . Thus to prove the theorem, it is only necessary to

show that det Ga(za) A 0 . Now if det Ga(z(,) = 0 , the entries

in the vector-valued functions fa(za) would be linearly dependent;

thus these functions could be written in the form f (za)= fa(za)C'

where fa(zes) are ordinary holomorphic functions and ca are

constant vectors. Note that neither fa(zes) nor S. can be zero

anywhere, since the original function Fa(zes) was by assumption

non-singular. Equation (21) would now have the form

fa(za)Xap(zp)Zac = fP(zP)Tap=p

but this would imply that fa(za)%043(zP) = c fP(zP) for some
CAB



constants
ca13 . This latter condition is impossible; for since

the functions fa(za) are nowhere vanishing, the line bundles

X00 and c would necessarily be equivalent, but their Chern

classes are g- 1 and 0 respectively. This contradiction

completes the proof of the theorem.

Corollary. The functions Fa(za) in Theorem 21 can be so

chosen that

0 -4- ha(za)

1 0

where (ba(za)) is the projective connection corresponding to the

projective structure.

Proof. The matrix function F(za) can always be taken

in the form Fa(za) _ (fa(za),f'(za)) , where(za) is a

solution of the differential equation 2(za) + ha(za)f'a(za) = 0

as in Lemma 28. Then

dza Fa(Za) _ (,f ' (Za),(Za) ) _ (Za), - 2 ha(za)(za) )

= (f (z ) f'(z ))

as desired.

0 2 ha(za)

1 0

Let !b 2 be the sheaf of germs of complex analytic

mappings from a Riemann surface M into the group GL(2,C) ; note

that this is merely a sheaf of sets, with no group structure de-

fined. As in the discussion on page 174+ and the following pages,

it is possible to introduce a non-abelian cohomology set l(M'/d2);

the elements of this cohomology set are called complex vector bundles

dz Fa(Q
Fa(z(x)

a

=a a I za a



of rank 2 over the Riemann surface M . The concept is straight-

forward, in view of what has been discussed so far, but a more

detailed treatment will be postponed to a later section. The

constant functions form a subsheaf GL(2,C) C b 2 , and the

inclusion mapping between these sheaves induces a mapping

i : H1(M,GL(2,C)) -- H'(M, 2) ; thus the flat complex vector

bundles introduced on page 178 determine well-defined complex

vector bundles. In this terminology, Theorem 21 asserts that the

flat vector bundles T e H1(M,GL(2,C)) such that

µ*T s K1(M,PL(2,C)) is the coordinate cohomology class of a

projective structure on the Riemann surface are precisely those

flat vector bundles such that i*T = A E E (M, 'b 2) , where A is

the complex vector bundle defined by the transition functions (21).

The problem is that of determining explicitly the flat forms of

that canonical complex vector bundle.

(d) On a surface endowed with a projective structure, there is

a generalization of the deRham sequence which is of some interest;

this was introduced by M. Eichler, who used it in studying alge-

braic correspondences on some Riemann surfaces arising in number

theory. (See M. Eichler, "Eine Verallgemeinerung der Abelschen

Integrals," Math. Zeitschr. 67(1957), 267-298; and G.Shimura,

"Sur les inte'grales attaches aux former automorphes," Jour.

Math. Soc. of Japan 11(1959), 291-311.) As yet this structure

has not been studied extensively on general Riemann surfaces.



Let M be a Riemann surface with a fixed projective

structure, and let X e H1(M, LIL*) be a complex line bundle of

Chern class c(%) = g- 1 . Choose a projective coordinate cover-

ing jtl_ (Ua,za} of the surface M , belonging to the given

projective structure, and let za = f(z) be the coordinate

transition functions; thus (fap) E Z1(VC,PL(2,C)) represents

the coordinate cohomology class of that projective structure. As

in Lemma 26, choose matrices (Tap) a Z1( lit , SL(2, C)) which

represent these projective transformations, that is, such that

*
µ (Tap) = fap . Writing these matrices out explicitly as

(25) Tap =

aap

cap

recall as above that the functions (capzp + dap) represent a

complex line bundle of Chern class g - 1 ; therefore it is

evident that

(26) XCO(p) = gap(cCOzp(P) + dap) for p e Ua fl Up ,

where .(gap) are complex constants representing a complex line

bundle g E 11(M, (g) of zero Chern class.

For any integer n > 0 consider the sheaf 04%-n) of

germs of holomorphic cross-sections of the complex line bundle

,-n . If p e Ua is a point on the surface and f s 64X')
p

is a germ of a cross-section at p , then f is represented by

an analytic function fa(za) in some neighborhood of p ; and

if p E Ua fl up , these local representations are related by

(az,+ b \
(27) fp(zpap(zp)nfa(za) ap(c zp+dap)nfa

ca,'+dap/I



Having written these conditions out so explicitly, there is an

obvious subsheaf of
-(,-n)

, as follows. Note that if fa(zes)

is a polynomial in za of degree < n , then from (27) it

necessarily follows that f0(z0) is a polynomial in z of

degree < n also. Therefore we can introduce the subsheaf

11 n(T n) c (.(T. n) consisting of those germs of analytic sec-

tions of n which are polynomials of degree < n in any local

projective coordinate system of the given projective structure.

For the case n = 0, Fo(x°) = C , the subsheaf of constant

functions; and this subsheaf is the kernel of the sheaf homomor-

phism d: 6 -4 O-(K) defined by exterior differentiation. As

a generalization:

Lemma 29. On any Riemann surface M with a fixed

projective structure, there is an exact sequence of sheaves

for any n > 0 , where do+l is the homomorphism which associates

to a germ f s
LJ (X-n)

p represented by a local analytic function

fa(zes)' the germ do+lf a represented by the local

analytic function do+lfa(za)/dza
1

Proof. The first thing to prove is that
do+l

is a well-

defined sheaf homomorphism. If f e d-(? n)p is represented by

two local analytic functions fa(zes) and fP(z when

p e Ua n u, , those two functions are related by formula (27).

Select a simple closed curve 713 C Z0(U encircling the point

z0(p) and such that fP(zP) is analytic on an open neighborhood



form

* *
(29) 0 -+ r(M, 6(Kn+1x-n) )

H1(M, Fn(,-n)) L> r(M, & (T1nKn+1x-n))*+ 0,

where r(-)* denotes the dual vector space to r(-) .

Proof. The complex line bundle X can be defined by a

cocycle of the form (26) for some flat line bundle E , and = g2.

The exact sequence (28) of Lemma 29 can be rewritten

0 ---> V ('1) OL Wn) do-> LIQ (Kn+l
n) --> 0

The corresponding exact cohomology sequence on the surface M then

begins

` r (M, V (,n))
r (M,

62 (,-n)) r(M, 6.
(Kn+1 n)) S*0 T -- --T -

H1 (M, ?n(X n)) > Hl(M, (Q ( n)) (d') r Hl(M, &(Kn+1T n)) -> ...

Since the line bundle k-31 has Chern class c(%-31) = -n(g-1) < 0 ,

it follows from the Corollary to Theorem 11 that r(M, 0
(,,-n))

= 0;

then of course r(M, T n(A n)) = 0 as well. From the Serre duality

theorem, n (M, a (X-")) = r(M, (V (KO))* r(M, I (TnKn+l%
n))*

and H1(M, Lk (Kn+1X n)) r(M, & (K n%n))* = r(M,
&(,,i, -n))*

= 0 ,

since c(,n,--n) = c(% n) < 0 . Upon substituting these results

in the exact cohomology sequence, there follows the exact sequence

(29), as desired.

Corollary. If the complex line bundle X in the pre-

ceding theorem is such that T.2n = Kn , then

dim H1(M, f n(x n)) = 2 dim
r(M,(O(Kn+l%-n))



Proof. The additional hypothesis is essentially just that

In
I = 1 ; the first and last terms in the exact sequence (29) then

have the same dimension, from which result the Corollary follows

immediately.

The groups R-(M, pn(X-n)) are called the Eichler coho-

mology groups associated to the given projective structure on the

Riemann surface M . For the special case n = 0 , note that

H1(M, T° (x°)) = H1(M,c) , the ordinary cohomology of the surface

M . For any value T) > 0 , these cohomology groups are finite-

dimensional complex vector spaces, as a consequence of Theorem 21;

and indeed, these groups can be described explicitly in a purely

algebraic manner, in terms of the coordinate cohomology class of

the given projective structure and the cohomology class of the flat

line bundle n . Recalling from part (b) above that the coordinate

cohomology class can be viewed as an element of

Hom(rrl(M),PL(2,C))/PL(2,C) , and that the bundle n can be

described as an element of Hom(Trl(M),C) , it is evident that the

description involves only the fundamental group of the surface M.

There is at present no need to carry out this description in great

detail, so we shall consider the matter only rather briefly. An

element a e H1(M, p n(T n)) can be represented in terms of a

projective covering ul = {Uaza) by a cocycle

aa6 a z1( IlL, pn(T.-n)) ; each element aa,,(z.) is a polynomial

in the variable zP of degree at most n , and the cocycle con-

dition is that

(30) acey,(zy) _
%

(zy)n aap(fP7(zy)) + apy(zy)



of the closure of the interior of yp ; and suppose that yp is

selected sufficiently near zp(p) that the function fa(za) is

analytic on an open neighborhood of the closure of the interior

of ya = fap(yp) C za(Ua) , where za = f(z) is the coordinate

transition function.

za(Ua n up) zp(Ua n up)

4
za= fav(zp)

Applying the Cauchy integral formula,

do+lfa(z )

+1) fa(5a)
a

n
f

dzn 1 2 .

to ya (to - za)n+2

Now make the changes of variables za = fap(zp),
tca = fap(sp) ,

where
fap

is the projective transformation represented by the

unimodular matrix (25). Note that

a00 P + bapta- za
cap p +

dap
aapzp + bap 5p zp

capzp + dap cap p + ap capzp

_ (gyp - zPA2

and that

dta = (capsp + da43)-2dtp =
tap

xap(5p)-2dt ;

and recalling (27), it follows that



do+lf z

a( (X) _ (n+1) 2n-2 n+2 f
P

(
0

)

dznn+l 2'rri f
Y

E04 %ap(z0)
- z )n+2

d
P

P P 6 5

do+lfP(z

-2n-2 n+2_ aP(zP)
dzn+l

P

Thus these derivatives represent the same element of in (,-2n-20+2),

so that the mapping do+1 is well defined.

The kernel of the homomorphism do+l is the subeheaf con-

sisting of those germs of analytic functions fa(za) such that

do+1fa(za)/dza
1 = 0 , hence is just the subsheaf

1? n(' n) C ® (,-n) of polynomials of degree at most n . This

shows the exactness of the sequence (28) at the first two places,

where i is the inclusion mapping. To complete the proof of

exactness for any element f e ((
-2n-2,n+2)p

select a represent-

ative analytic function fa(za) ; choosing any complex analytic

function ga(z(,) in an open neighborhood of p such that

do+lga(za)/dza 1 = fa(za) , the function ga(za) represents an

element g e (P ().-n) for which dh1 g = f , in view of the first

part of the proof. Thus the mapping
do+l

in (28) is onto, and

the proof is thereby concluded.

Theorem 22. Let M be a compact Riemann surface of

genus g > 1 with a fixed projective structure, and let

x E H'(M, (9 ) be a complex line bundle of Chern class c(T.) =g-l;

thus there is a, flat line bundle n such that 0 = IK , where K

is the canonical bundle of the surface M . There is then for any

integer n > 0 an exact sequence ogcomplex vector spaces of the



whenever ua n U0 n Uy # 0 , where f,, c PL(2,C) is the coor-

dinate transition function. Note that (30) is a formal identity

among various polynomials, and does not involve the point set

Ua n U0 n U7 explicitly. A cocycle aa43 is a coboundary if

there are polynomials Ta(za) of degree at most n such that

(31) aao(z0) = T0(z0) - xap(zp)n Ta(fap(zP))

whenever Ua n U and the cohomology group is the quotient

of the group of cocycles by the group of coboundaries.

It is perhaps of some interest to see the explicit forms

of the homomorphisms in the exact sequence (29). First, in terms

of a projective coordinate covering = (Ua,za) , a section

f e r(M, (D(Kn+lT n)) is given by analytic functions

fa(za) a r(za(Ua), dl) such that fa(za) = K
(ZO)n+l%00(10)-nf0(Z0

in Ua n tr . The mapping 8 is the coboundary operator derived

in the familiar manner from the exact sequence of sheaves (28).

Thus in each set za(TJaa) C C select a complex analytic function

Fa(za) such that d-Fa(za)/dza l = fa(za) ; any (n+l)-fold

indefinite integral of the function fa(za) will do. The coho-

mology class b
*
f s 111(M, 'p n(X-n)) is represented by the cocycle

(32) aa43 (z0) = FP(z0) -
XCO(2 )n Fa(za)

.

The functions aa3(zP) are necessarily polynomials of degree < n

then; and replacing the functions Fa(za) by Fa(za) + Ta(za)

for polynomials Ta(za) of degree < n , the most general possible

choice for these functions Fa(za) , replaces the cocycle (32) by



a cohomologous cocycle, in view of (31). Next consider a coho-

mology class a e H'(M, ?n(x-n)) , represented by a cocycle

aC43 e Z 1(1l(, 'n(C-n)) ; the element V*a is a linear functional

on the space r(M, ( (gnKtt+l% n) , described explicitly as in the

discussion of the Serre duality theorem. Namely, select any zero

cochain g = (ga) a Co( IX , G- (Tn)) such that bg = a ; that is,

select C" functions ga (z(,) in za(Ua) such that

aa,(z.) = g,(z,) - Xbo (zo)nga(fQP(z,)) in zP(Ua fl u.) . Note

that (ag) a z°(V , F O,1(, n)) = r(M,
10'1(X-n))

. For any

element f = (fa) e r(M, tj (,nKn+lX n)) = r(M, (ul'0(,In Knx-n))

the form aga ,. fadza E r(M,
e1,1(1,nKnX-2n))

= r(M, l'1) ; and

then

(33) (v*a)(f) = ff,, aga A fadza .

For the case n = 0 , the image S
*
f e H1(M,C) of an element

f e r(M, m (K)) = r(M, (Q-1'0) is essentially the set of periods of

the differential form f ; and as above, for any n > 0 the image

b
*
f e H1(M, mn(,:n)) of an element f e

-n))
can be

viewed as a generalized set of periods of the element f , derived

from an (n+l)-fold indefinite integral. For any cohomology class

a e H1(M, T n(%-n)) the vanishing of the image
V*a

, or equiva-

lently the vanishing of the integrals (33) for all elements

f e r(M, CO (,,nKn+1? n)) , is the necessary and sufficient condition

that a be the generalized periods attached to a section in

r(M,
(9 (Kn+l%-n)) .

The Eichler cohomology group can also be described

slightly differently. It follows almost immediately from Lemma 29



that, on a Riemann surface M with a fixed projective structure,

for any integer n > 0 there is an exact sequence of sheaves of

the form

(34) 0
n(,-n) _i_> an+l (g-2n-20+2)

where denotes the sheaf of germs of meromorphic functions.

T h e homomorphism do+l in (34) is not onto, since a general mero-

morphic function does not have single-valued meromorphic indef-

inite integrals of all orders. T h e image
do+l M (? n)

is called

the sheaf of germs of meromorphic sections of the second kind of

the bundle X -n , and will be denoted by 0q-2n-21n+2) . It is

evident that, if za is a local coordinate mapping at a point

p e M such that za(p) = 0 , then f e '
(,_2n-2.n+2)

p

is in the

n+2
subsheaf

O

q-2n-2A
p precisely when the germ f is repre-

sented by a meromorphic function fa(za) with a Laurent expansion

of the form

(35) fa(za) = £ a_vz-v + E avzv
v=n+2 v=o

for these are just the meromorphic functions which can be written

fa(za) = do+lga(za)/dzn 1 for some meromorphic function ga(zes)

The condition that a meromorphic function fa(za) have a Laurent

expansion of the form (35) is not invariant under an arbitrary

non-singular analytic change of coordinates, considering (fa(zes))

(,-In-10+1)
; so the sheafas an element of the sheaf

# 2n-2 n+2
l,! o( T. ) depends upon the choice of the projective

structure on the Riemann surface. (The case n = 0 is excep-

tional here. For the elements (fa(za)) a (g-2%2)p = rM(K)p =

1,0
can be viewed as meromorphic differential forms on M

P



and condition (35) can be rephrased as the condition that the form

have residue zero; this expresses the condition intrinsically, in

terms of the complex structure alone. The terminology "mero-

morphic functions of the second kind" is motivated by the usual

terminology in this special case.)

Theorem 23. Let M be a compact Riemann surface with a

fixed projective structure, and let T. c H1(M, *) be a. complex

line bundle of Chern class c(%) = g-l - Then for any integer

n > 0 , the Eichler cohomology group can be written canonically

(M, P (,n))
ti

I'(M,dn+l 7 (:n)) .

n dn+lr(M, ?y((_:-n))

Proof. Modifying (34+) to yield the exact sequence of

sheaves

0
V,(, -n) (T.n)

dn+l
> do+1 (,,-n) - 0

where
do+l (,-n) _ ry,, o(g-2n-21n+2) C (g-2n-2 n+2r T. ) , the asso-

ciated exact cohomology sequence begins

n+l
0 -k r(M, 11 n(T n)) > r(M,1) (,-n) ) d > r(M,dn+1 M. (,:n)) S .

(36)
-. H1(M, 'fi

n(,:n)) --> R1(M,'h, (,-n) ) -. ... .

*
Selecting any section g E r(M, (Xn)) , the operation of multi-

plication by g defines a sheaf isomorphism ?} (,-n) _ ; there-

fore, by Theorem 12, H1(M, q (,,n)) = H1(M,11'( ) = 0 . The desired

theorem is then an immediate consequence of the exact sequence (36),

and the proof is thereby concluded.



Corollary 1. On any compact Riemann surface M it

follows that

H1(M, c) = r(M, d
"'C

)/dr(M, 11) .

Proof. This is just the special case n = 0 of Theorem 23,

recalling that in this case the sheaf d C '1'0 is defined

intrinsically, independently of a choice of projective structure

on the surface.

Remarks. In the Corollary, the space r(M,d ) is the

space of meromorphic differentials of the second kind on the

Riemann surface M , that is to say, is the space of meromorphic

differentials with zero residue at each point of the surface,

The Theorem itself can be restated somewhat more precisely as the

assertion that, when the genus g > 1 , there is an exact sequence

of the form

(37) o - r(M, (T-n)) dn-----> I'(M,dn+l ( n)) - . H (M, n(x n)) o ;

for as in the proof of Theorem 22 it follows that r(M, r n(N-n)) =0 ,

so that (37) follows directly from (36).

For some purposes interest lies not just in the Eichler

cohomology group itself, but also in the splitting of that group

given by the exact sequence (29). (Compare the discussion of

§8(b).) Thus one is led to consider the form of that splitting

when the Eichler cohomology group is represented as in Theorem 23.

To be explicit, consider a cohomology class o e (M, n(%-"))

which is represented by a section h = (hcl) a r(M,dn+l27
(,,-n))

under the isomorphism given in Theorem 23. It is clearly suffi-

cient to describe the image of c under the homomorphism v



of (29), in terms of the section h ; recall that v v is a

linear functional on the vector space r(M, (1
(nnKn+l%-n))

. For

each set Ua of a suiteble projective coordinate covering

there will be a meromorphic function Ha(za) such thet

do+lHa(za)/dza l = ha(zes) ; these functions can be viewed as an

element (H(X) a Co{Vt , (,-n) For any section

f = (fa) a r(M, the products fa(za)Ha(z(x) form

an element fH = (faHa) a Co( , 1'41(,nKn+l%-2n) ) = Co(Zq (K))

ti Co( 1,0)
i the residue of this meromorphic differential

form is well defined locally by the Cauchy integral formula, and

its total residue on the surface will be denoted by P,._(fH) .

Corollary 2. If M is a compact Riemann surface of

genus g > 1 and a e H1(M, `r n(, n)) is represented by

h = (ha) =
(dn+1lia)

a r(M,dn+l V(,. n)) under the isomorphism of

*
Theorem 23, then under the homomorphism v of Theorem 22 the

image v*(o) is the linear functional whose value on an element

f = (fa) E r(M,
LV (,nKn+l%

n)) is given by

27ri k(m)

Proof. If (aCO) a zl( , P n(T n)) is a cocycle repre-

senting the cohomology class a , then it is readily verified that

the condition that v be represented by the section

(ha) = (dn+ a)
a r(M,do+1

( n))
under the isomorphism given

by Theorem 23 is just that l

(38) vaO(zo) = H,(z.) - Ha(zes)

Suppose that the projective coordinate covering t = (Uaza) is

so chosen that the poles of the functions Ha(za) are each



contained in only a single coordinate neighborhood. Multiplying

the functions Ha(za) by CO* functions which differ from one

only in small neighborhoods of these poles, and which vanish

identically in some neighborhoods of these poles, yields e

functions ga(za) which also satisfy equation (38) in each inter-

section Ua fl U0 . Recalling the explicit description of the

mapping V , as in (33), it follows that

V*(a)-f = 1 M aga . fadza

The latter integral will vanish identically except for those

neighborhoods Ua containing poles of the functions Ha(za)

for outside of these neighborhoods, ga(za) = Ha(za) is holo-

morphic. For such a neighborhood U. , however,

tt aga faaza = t! N(fagadza) = tt d(fagadza)
Ua Ua Ua

= dUa fagadza of
faHadza

= 2Tri 1(fH)

which yields the desired result.

(e) The projective structures and their associated coordinate

cohomology classes can be given a geometrically appealing global

N
formulation as follows. Let M be the universal covering space

ti `
of a surface M , with covering mapping IT: M T M , and let

Trr(M) be the fundamental group of the surface M . As is

familiar, Trl(M) can be viewed as a group of homeomorphisms of



ti

M onto itself, commuting with the covering mapping IT and such

that M/7r1(M) = M . (Identifying the group 7r1(M) as defined in

(b) above with the usual fundamental group, this interpretation

can be found for instance in Seifert-Threlfall, Lehrbuch der

Topologie, chapter 8 (Chelsea, 1947). Alternatively, this result

can be derived directly from the discussion in (b), parodying in

simplicial terms the standard construction.) If M has a pro-

jective structure, it induces a unique projective structure on M

A
by means of the mapping 7r: M -k M . For if (U(X,za) is a

projective coordinate covering of M such that the sets Ua are

connected and simply-connected, then each connected component of

7r l(Ua) C M will be homeomorphic to Ua under the mapping 7r ,

and the functions zaoir can thus be used as coordinate mappings

on each such component; it is evident that this is a projective

ti

coordinate covering of M , and that equivalent projective coor-

dinate coverings of M induce equivalent projective coordinate

coverings of M . Note that the mappings in 7r1(M) are Projec-

tive transformations of M for the given projective structure,

in the sense that they are represented by projective functions in

terms of local coordinates for any projective coordinate covering

belonging to that structure; this is quite obvious, since indeed

the mappings are represented by the identity functions in the

above coordinate covering.

Now since 7r1(M) = 1 , it follows from Lemma 27 that the

ti

coordinate cohomology class of any projective structure on M is

trivial; hence there is a projective coordinate covering (Ua,z a)

ti

of M representing the given projective structure and such that



the coordinate transition functions za = fC413 (z0) are identity

mappings. The various coordinate mappings za then define a

global mapping p: M --k D from M onto a subset D C P P. The

mapping p is a local homeomorphism, so the image D is a con-

nected open subset of the projective line ]P . Note that any

other such coordinate covering representing the same projective

N `
structure will define a mapping pl: M T Dl also, but pl =Rop

for some projective transformation R ; to this extent the mapping

p is determined uniquely by the projective structure. If

T e 7r1(M) is a covering translation mapping, then T will be

represented by a projective transformation in terms of any local

coordinates for the given projective structure of M ; thus for

any point po e M there will be an element T e PL(2,C ) such

that p(Tp) = T(pp) for all points p near po , since p is

defined by the local coordinate mappings. Clearly the element

T e PL(2,C) is independent of the point po e M ; for the corre-

spondence po -k T is locally constant as noted above, and M

is connected. Therefore for any transformation T e 7rl(M) there

is an element T e PL(2,C) such that

(39) p(T p) = Tp(p) for all p E M

It is evident that each T necessarily maps the domain D onto

itself; and that the mapping per: PL(2,C) defined by

p*(T) = T , where T and T are related by (39), is a group

homomorphism. Note that if pi = Rop is another such mapping

representing the same projective structure, then p1() _

= Rp(T p) = RTp(p) = RTR-lpl(p) ; hence pl = RpR 1 . This pair



of mappings

(40) p: M -4 D , p*: Ir1(M) -4 PL(2,C)

related by

(41) p(T p) = for all T E 1T1(M) and p E M

will be called a geometric realization of the given projective

structure on M . Note that the mapping p is a complex analytic

local homeomorphism, and that p is a group homomorphism. Two

geometric realizations (p,p*) and (p1,p1) will be called

equivalent if there is an element R e PL(2,C) such that p1 = Rp

and PI = RpR 1 . The previous observations show that there is

a natural one-to-one correspondence between projective structures

on a Riemann surface M and equivalence classes of geometric

realizations; for it is apparent that any geometrical realization

determines a projective structure on the surface M .

If
(p,p*)

is the geometric realization of a projective

structure on M , the mappings p* belonging to all equivalent

geometric realizations form an element (p*) a Hom(7r1(M),PL(2,C))/

PL(2,C) . It is easy to see that this element is precisely the

image of the coordinate cohomology class of the given projective

structure under the homomorphism of Lemma 27; the verification is

straightforward, and will be left to the reader. This provides

the most convenient way of looking at the coordinate cohomology

classes of projective structures on a Riemann surface.

As an example, consider the analogous construction for

affine structures; thus, let M be a compact Riemann surface of

ti

genus 1 with a fixed affine structure, and let p: M -> D and



P : 7r1(M) --- A be the geometrical realization of that affine

structure, where D is a subdomain of the complex line and A is

the group of affine transformations. Here of course 7rl(M) is a

N N
free abelian group on two generators T1 and T2 ; and recalling

the discussion of equation (17), the homomorphism p* will have

N
one of the following forms, where Ti = p*(Ti) are the indicated

affine transformations:

(42)

I
Tlz = z + b1, T2 z = z + b2

(ii) Tlw = alw, T2w = a2w, ala2 # 0

*
For the quotient space D/p 7r1(M) to be compact, it is clear that

in case (i) it is necessary that b1 and b2 be linearly inde-

pendent over the reals, and D = C ; and in case (ii) it is

necessary that I aiI / 1 for either i = 1 or i = 2 , and

D = C In case (i) it is evident that p: M - D is a homeo-

morphism and p is an isomorphism. Thus we can identify M = C,

rri(M) = (gmap of translations generated by T1 and T2 in (i)),

and M = C/7r1(M) . This is just the familiar representation of a

compact complex torus, as discussed in §1(f), and provides the

simplest affine structure on the torus. Retaining these identifi-

cations, consider the mapping p: M -> C defined by

w = p(z) = eCz for a complex constant c 0 . This is a

covering mapping, exhibiting p as the universal covering space

*
of C . Furthermore,

P(Tiz) = p(z +b
i
) = ec(z+bi) = aip(z) = Tip(z) ,



*
where ai = e

cb i
and Ti are the transformations given in 42(ii).

Thus evidently p and the homomorphism pTi T T. form a

geometric realization of another affine structure on the same

underlying Riemann surface. (Note that the affine structure 42(i)

for the case c = 0 , and these additional affine structures for

all values c # 0 , are easily seen to be distinct, and to be all

the affine structures on that Riemann surface. Thus, as noted in

part (a), the set of all affine structures on a given complex

torus are in one-to-one correspondence with the complex numbers

c e C .) These examples all have the property that p: M -3 D

is not just a local homeomorphism, but a covering mapping. The

group p 7r1(M) does not always act in a discontinuous manner on

*
the domain D = C ; so although there is always a continuous

mapping M = M/'rrl(M) - D/pirl(M) induced by p: M ---> D , it is
not necessarily a homeomorphism, nor even a covering mapping. It

may be observed that the same coordinate cohomology class (or

equivalently the same group p*7r1(M)) can be associated to affine

structures on inequivalent complex tori; thus Theorem 20 definitely

requires consideration of a fixed underlying complex structure.

For some further discussion of this geometric realization,

see R. C. Gunning, Special coordinate coverings of Riemann surfaces,

Math. Annalen, 1966.

(After this had been written there came to my attention

the following paper, which contains some related results: N. S.

Hawley and M. Schiffer, Half-order differentials on Riemann

surfaces, Acta Math. 115 (1966), 199-236.)



§10. Representations of Riemann surfaces.

(a) Perhaps the simplest concrete representation of a Riemann

surface is as a branched covering of the projective line ]P. To

describe the general topological situation, consider two 2-dimen-

sional manifolds M and N . A continuous mapping f: M -> N

is called a local branched covering if each point p e M has an

open neighborhood U C M such that f(U) is open in M , and the

restriction of f exhibits U-p as an m-sheeted covering space

of f(U) - f(p) for some integer m ; the integer m-1 will be

called the branching order of the mapping f at the point p ,

and will be denoted by of(p) . The point p is called a regular

point of f if of(p) = 0 , and a branch point of f if

of(p) > 0 . The expression Ep
E
M of(p) is called the total

branching order of the mapping f . Note that the branch points

form a discrete subset of M ; the mapping f is an open mapping;

and f is a local homeomorphism in a neighborhood of any regular

point. If M and N are Riemann surfaces, then any non-trivial

complex' analytic mapping f: M -> N is a local branched covering;

the branching order at a point p is the order of the zero of the

derivative of f in any local coordinate systems in M and N

that is, of(p) = vp(f') . (For a discussion of the topological

properties of analytic mappings, see for example L. Ahlfors,

Complex Analysis, pp. 130-133, (McGraw-Hill, 1966).) As a con-

verse assertion in some sense, if f: M -k N is a local branched

covering between two topological manifolds and N has a complex

structure, then M has a unique complex structure for which f



is an analytic mapping. The proof is straightforward, and will be

left to the reader.

The global form of this situation is also of interest. A

continuous mapping f: M -> N between two topological surfaces

is called an r-sheeted branched covering if f is a local branched

covering and if for every point q e N ,

Z (of(P)+1)=r
(p a MIf(p) = q)

Fixing q E N , let p1,p2,...,ps e M be the points of f-l(q)

and select open neighborhoods Ui around pi exhibiting the

local branching of f at pi ; the sets Ui can be chosen small'

enough to have the same image under f . The restriction of f

then exhibits Ui(Ui - pi) as an r-sheeted covering space of

f(Ui)- q . It is thus evident that the image under f of the

branch points form a discrete subset (g1,g2.... ) C N ; and that

f: M - Uif 1(qi) --> N - Uigi

is an r-sheeted covering space in the ordinary sense.

Theorem 24+. Let M be a compact Riemann surface of

genus g , and E e H1(M, B *) be a complex line bundle of Chern

class c(E) = r . then to any pair of complex analytic sections

f0f1 a r(M, B'(g)) which have no common zero on M there is

canonically associated a complex analytic mapping

f = (fC,f1): M - IP ,

which is an r-sheeted branched covering with total branching order

2(g+r- 1) .



Proof. Let Vt,= (U.,za) be a complex analytic coordinate

covering of M , and (ga4) a Z'( jf, dl*) be a cocycle repre-

senting the line bundle g . The sections fi are represented by

complex analytic functions fia(za) , such that fia(za(p)) _

= EaO(p)fip(z0(p)) whenever p e Ua fl U0 . The map from Ua to

IP , defined in terms of homogeneous coordinates on P by

P
--> (foci (za(p)),fla(za(p))) e P , is clearly complex analytic;

and the two maps thus defined in Ua fl UP agree, since (f0J3,flP)

and (Etof0p,ltoflp) _ (f0a,fla) represent the same point in P.

This then defines a complex analytic mapping f: M --> IP , which

exhibits M as a local branched covering of IP. Next, for any

points a = (a0,a1) a IP and p e M , observe that f(p) = a

precisely when alf0(p) - a0f1(p) = 0 ; thus the points pi e M

such that f(pi) = a are precisely the zeros of the complex

analytic section h = alf0 - a0f1 a T(M, (¢ (9)) . Furthermore,

if pi a U. and if say al 0 , then in terms of inhomogeneous

local coordinates in P the mapping f has the local description

f0a(za(P)) so ha(za(P))

P - fla za P al + aifla za p

for p near pi ; consequently

o f(Pi) = vpi(foo/fla)' = vpi(ha/alfla) -1 = vpi(ha) - 1

since fla(pi) 0 . From Theorem 11 it then follows that

r = c(g) = Z v pi (h) = L (of(pi)+ 1) ;
i

so that f: M - IP is actually an r-sheeted branched covering.



Finally, introduce the analytic functions

ga(zes) = det
fOct (za) f'0a(za)

f]a(z(X) fia(za)

in the various neighborhoods za(Ua) . Since in terms of inhomo-

geneous local coordinates the mapping f has the local description

p - fOa(za(p))/fla(za(p)) wherever fl(p) / 0 , it follows that

of(p) = vp(f0/fla)t = vp(- 1a) = vp(ga) ; and the same result

holds at those points where f0(p) 0 . The total branching

order is then just the total order of the functions ga Note

that for points p e Ua fl u, ,

V za(p)) = dza 19CO(ZO(p))'fiO(zO(p))3

= p(zp(p)) + 9 (zo(p))'fia(z0(p))),

dz
where K., = dO define the canonical bundle of M ; it readily

follows from this that ga(za(p)) = (p)g,(z,(p)) , so that

(ga) E r(M, (y-(K92)) . Applying Theorem 11 once again, the total

branching order b is

b = Z of(p) = E vp(ga) = c(Kg2) = 2(r+g-1)
P e M p e M

thus completing the proof.

Now suppose that f is a non-constant meromorphic function

on a compact Riemann surface M ; as in §1(e) that function can be

considered as, an analytic mapping f: M --> IP . Note that the

divisor of the function f can be written in the form
r

,,¢ (f)
i=1

where pi # qj , for from Theorem 1.1



the total order of the divisor of f must be zero; the integer r,

the total order of the zeros of f , will be called the degree of

that function.

Corollary 1. If f is a non-constant meromorphic function

of degree r on a compact Riemann surface M of genus g , then

the analytic mapping f: M --> ]P exhibits M as an r-sheeted

branched covering of P with total branching order 2(g + r

Proof. Writing the divisor of the function f in the

form ¢(f) =
r
Z (1-pi- 1-q ) where Pi J qj consider the com-

i=1 1 i 3

plex line bundle 9 = 5
pl

y..5

pr
= ql...5qr , where 5

p
are the

point bundles considered in §7(c). There are analytic sections

fC,fl E r(M, CL(g)) such that ,.9-(fC) 1-pi and ;"(fl) _

r
E 1-qi ; and f = f0/fl . The functions fC and fl have no
i=1

common zeros, and the mapping f: M --- ]P defined by the mero-

morphic function f coincides with the mapping (f0,f1): M T ]P

constructed in Theorem 24 . The desired result thus follows

immediately from that theorem.

Corollary 2. If 9 e H'(M, (Q *) is a complex line bundle

on a compact Riemann surface M , such that c(g) = r and 7(e) > 2,

then to any pair of linearly independent analytic sections

f0,fl e r(M, (9(e)) there is canonically associated a complex

analytic mapping

f = (fO,f1): M -. 1P

which exhibits M as a branched covering of ]P of at most r

sheets.



s

Proof. Let - = E be the divisor of the common
i=1

zeros of the functions f0 and fl , counting multiplicities; and

choose an analytic section g e r(M,c1(9 (Ti)) of the line bundle

n =

such that J-(g) _ 'r0 . Then f0/g and fl/g

are complex analytic sections of the complex line bundle 9-1 , and
T1

these sections have no common zeros; so by Theorem 24+ the mapping

(f0/g, fl/g): M -? P exhibits M as a branched covering of ]P

having c(g 1) = r-s < r sheets. Note that outside of the points

of the divisor A-0 the function g is non-vanishing, so that

(f0/g, fl/g) and (f0,fl) define the same mapping of M to IF

the mapping is thereby canonically determined by the sections f0

and fl alone.

Corollary 3. Any compact Riemann surface M can be

represented as a branched covering f: M ---> IP of the projective

line; the genus g of M , the number r of sheets, and the total

branching order b are related by b = 2(g +r -1) .

Proof. Since every compact Riemann surface admits a non-

constant meromorphic function by the fundamental existence theorem,

Theorem 12, this assertion follows from Corollary 1; it is merely

inserted for the sake of explicitness.

Remarks. It is clear that any finitely-sheeted branched

covering of the projective line ]P is a Riemann surface, with a

unique complex structure for which the covering mapping is an

analytic mapping. Then the genus can be calculated from the

branching order and the number of sheets by applying the formula

in Theorem 24+. The genus can also be calculated directly in a



purely topological manner, without reference to the analytic struc-

ture, as follows. Letting f: M T IP be an r-sheeted branched

covering, triangulate the surface IP in such a manner that the

images under f of the branch points are vertices of the triangu-

lation. The triangulation can then be lifted back to a triangula-

tion of M under the mapping f ; it is only necessary to assume

the triangulation of P fine enough that the interiors of the

one- and two-simplices are homeomorphic to each component of their

inverse images under f letting ni be the number of i-simplices

in the triangulation of IP, it is evident that the induced triangu-

lation of M will have rnC-b zero-simplices, rn1 one-simplices,

and rn2 two-simplices. Thus the Euler characteristics (see

Seifert-Threlfull, Lehrbuch der Topologie, §23, (Chelsea, 1947))

of IP and M are related as follows:

X(M) = (rno-b) - (rnl) + (rn2) = r(no-n1+n2) -b = r-X(IP) - b .

On the other hand, these Euler characteristics are also given by

X(]P) = 2 , X(M) = 2- 29 ,

where g is the genus of M - Hence b = 2(r + g -1) , the desired

formula.

If M is a compact Riemann surface of genus g , it

follows from the Riemann-Roch theorem (recalling in particular

the table in formula 14 of §7) that y(g) > 2 for any line bundle

g for which c(g) = g + 1 ; hence by Corollary 2 of Theorem 24

the surface M can be represented as a branched covering of IP

of at most g+ 1 sheets. This is far from being the best pos-

sible result in general; we shall return to this question again



later, but for the present merely consider some simple results

relating to the Weierstrass points on the surface. For any point

p e M , let r be the least non-gap in the Weierstrass gap

sequence at p ; it then follows from Theorem 14+ that y(ip) = 2

where tp is the point bundle associated to the point p . Thus

M can be represented as a branched covering of F of at most

r sheets. Actually, an even more precise assertion can be made.

There will exist a meromorphic function f on the surface M ,

having as its only singularity a pole at p of order precisely r ,

by Theorem 14+ again. From Corollary 1 of Theorem 24+, the function

f considered as an analytic mapping f: M - ]P will exhibit M

as an r-sheeted branched covering of F ; the point p e M will

be the only point of M covering the point at infinity on IP

and hence will be a branch point of order r-l on the surface.

Conversely, it is clear that whenever f: M ---> JP is an r-sheeted

branched covering such that a point p e M is a branch point of

order r-1 , then r is a non-gap in the Weierstrass gap sequence

at p ; for the image f(p) a ]P can always be taken to the point

at infinity on F by a projective transformation, and the compo-

sition of f with that projective transformation will be a mero-

morphic function whose sole singularity is a pole at p of order r.

For a general point p e M the first non-gap value is

r = g+l ; however when g > 1 there are always Weierstrass points,

and at any such point the first non-gap will satisfy the inequality

2 < r < g . At a normal Weierstrass point the value will be r = g,

and at a hyperelliptic Weierstrass point the value will be r = 2 .



In the latter case considerably more can be asserted, as follows.

Theorem 25. A compact Riemann surface of genus g > 1

is hyperelliptic if either of the following two conditions holds:

(i) the surface has a hyperelliptic Weierstrass point;

(ii) the surface has a complex line bundle I with c(g) = 2

and y(9) = 2 .

The hyperelliptic surfaces are precisely those which can be repre-

sented as two-sheeted branched covering surfaces of the projective

line P , and which are of genus g > 1 ; the branch points are

precisely the Weierstrass points, all are hyperelliptic Weier-

strass points, and there are 2(g+l) of these points.

Proof. Note first that condition (i) implies condition

(ii); for if p is a hyperelliptic Weierstrass point on the

Riemann surface M , then c(e2) = 2 and y(t2) = 2 . Now if

condition (ii) holds,' it follows from Corollary 2 of Theorem 24

that the surface M can be represented as a branched covering of

]P with at most 2 sheets; and since genus g > 1 means that

M # P , there will be exactly 2 sheets. Each branch point

will necessarily have branching order 1 ; and since by Theorem 24+

the total branching order is b = 2(g+l) , there will be alto-

gether 2(g+l) of these branch points. At each branch point the

value r = 2 will be a non-gap, as noted in the above discussion;

hence all these branch points will be hyperelliptic Weierstrass

points. Recalling Theorem 16, it follows immediately that these

are all the Weierstrass branch points, and hence the surface is a

hyperelliptic surface. Since this argument only used the fact

that M could be represented as a two-sheeted covering of P



all the assertions of the theorem have been proved.

If M is a compact Riemann surface of genus g = 1 ,

then for any line bundle t with cQ) = 2 it follows from the

Riemann-Roch theorem that 7(e) = 2 ; so that M can be repre-

sented as a branched two-sheeted covering of IP , having neces-

sarily 2(g+l) = 4 branch points. This again illustrates the

similarities between elliptic and hyperelliptic Riemann surfaces.

If M has genus g = 2 , then necessarily M is hyperelliptic.

To see this, recall that for genus g = 2 the Weierstrass gap

sequence has the form 1 = p1 < p2 < 4 , so that either p2 = 2

(and p is not a Weierstrass point) or p2 = 3 (and p is a

hyperelliptic Weierstrass point); since M has at least one

Weierstrass point by Theorem 15, it follows immediately that M

is hyperelliptic. We shall see later that not all surfaces of

genus g > 2 are hyperelliptic; and also that the surfaces of

genus g can be represented by branched coverings of fewer than

g sheets, if it is not required that all the sheets meet at some

point.

(b) The preceding representation of a compact Riemann surface

as a branched covering of the projective line can be used to pro-

vide a useful description of the global meromorphic functions on

the surface. The set m
m

of all meromorphic functions on any

Riemann surface M is a field, under the operations of pointwise

addition and multiplication of functions. The field "I M con-

tains the subfield C of complex constants; and for any element



f e
M

the field M also contains the subfield C(f) of

rational functions of f . (Recall that for any fields E C F

and for any element x e F , the set of all polynomials in x with

coefficients in E is an integral domain denoted by E[x] ; and

the smallest subfield of F containing both E and x is the

set of all quotients of polynomials in x with coefficients in E,

or in other words the set of all rational functions of x , and is

denoted by E(x) . For the elementary properties of fields which

will be used here, see for instance B. L. van der Waerden, Modern

Algebra vol. I, (Frederick Ungar Co.) N.Y., 191+9).) As a simple

preliminary, note the following result.

Lemma 30. If f is a meromorphic function of degree 1

on the projective line 7P , then MIP = C(f) .

Proof. Let z be the inhomogeneous coordinate on the

projective line P . Note that by Corollary 1 to Theorem 24, the

mapping f: P --> P is an analytic homeomorphism. Then for any

points p # q in I' , the function (f(z)-f(p))/(f(z)- f(q))

is merbmorphic on P and has divisor precisely l-q ; in

case that either p or q is the pole of f , the obvious modi-

fications of this formula will be left to the reader. If g e NP

is any meromorphic function, with divisor $(g) = Ei(pi- qi) , it

is clear that

g (z) = C ]I
f(z) - f(pi)

i fz - fqi)

for some constant C , hence that g e C(f) . This suffices

to prove the assertion of the lemma.



It should be noted that the inhomogeneous coordinate z

on P can be considered as a meromorphic function of degree J.

on P ; and hence by the above Lemma,
P = C(z) . The follow-

ing generalization of this lemma is quite straightforward.

Theorem 26. Let M be a compact Riemann surface, and

f e ChM be a meromorphic function of degree r > 0 on M .

Then for any function g e M
there is a polynomial

P(x,y) a C[x,y] in two variables, of degree at most r in the

second variable y , such that P(f,g) = 0 . (Note that P(f,g)

is a well-defined meromorphic function on the Riemann surface M .)

Proof. By Corollary 1 to Theorem 24+, the function f

considered as a mapping f: M ---> P exhibits M as an r-sheeted

branched covering of the projective line P . The image under f

of the branch points then forms a finite set of points

g1,...)gs e r , and the mapping

f: M - Ui f I(qi) --> ]P - Ui qi

is an r-sheeted covering space in the ordinary sense. For each

point q e P which is not one of the branch points q1' ...,qs

select a contractible open coordinate neighborhood V of q in

P which is regularly covered under the mapping f . Thus

r
f-'(V) = U Ui , where the Ui are disjoint open subsets of M

i=1

homeomorphic to V ; let (pi: V ---> Ui be the analytic homeo-

morphisms such that piof: Ui T Ui is the identity for each i.

For any meromorphic function g on M , introduce the function

r
(1) FV(z,Y) = i 1 (Y-goTi(z)) ,



this function is a polynomial in y of degree r , and its coeffi-

cients are meromorphic in z for z e V . By construction of

course, when p e fl(V) ,

FV(f(p),g(p)) = ii (g(p) - go(Pi.f(p)) = 0 ,

since goCp. f(p) = g(p) if p e Ui - The same construction can

be carried out in any other such coordinate neighborhood W ,

yielding another function FW(z,y) of a similar form. In an

intersection v 11 W the mappings
Ti,V

and cPj,W coincide in

some order; the coefficients of the polynomial (1) are the elemen-

tary symmetric functions of the values goc)i(z) , and hence are

independent of the ordering. Therefore FV(z,y) = FW(z,y) for

z e v n w ; and hence there is a well defined function F(z,y)

a polynomial in y of degree r with coefficients which are mero-

morphic functions on ]P- Ui qi , such that F(f,g) a 0 . If the

function g is analytic at the points f'() , it is clear that

the coefficients of the polynomial F(z,y) are bounded analytic

functions of z in a punctured disc centered at qi ; hence by

Riemann' s removable singularity theorem, the coefficients remain

analytic at the point qi . It is a straightforward matter,

which will be left to the reader to verify, that the coefficients

of F(z,y) are meromorphic at those points qi such that

f1() contains poles of g . Thus these coefficients are

meromorphic on all of , hence are rational functions of the

inhomogeneous coordinate z of F, by Lemma 30; multiplying

F(z,y) by a suitable polynomial in z will therefore yield a

polynomial P(z,y) in two variables, with all the desired

properties.



Corollary. The field of meromorphic functions on a

compact Riemann surface is an algebraic function field in one

variable over the complex numbers, that is, is a finite algebraic

extension of a simple transcendental extension of the field C .

Proof. If f e % is any non-constant meromorphic

function on the Riemann surface M , the field C(f) is a simple

transcendental extension of the field C ; for otherwise f would

be the root of a polynomial with coefficients in C , hence would

necessarily be a constant. If C(f) is not the full field N M

select any meromorphic function g1 e M - C(f) and consider the

field E1 = C(f,g1) ; by Theorem 26, El is an algebraic extension

of C(f) of degree at most r , where r is the degree of the

meromorphic function f . If E1 is not the full field 'h7 M

select another function g2 a
' IM -

E1 and consider the field

E2 = C(f,gl,g2) ; since g2 is algebraic over C(f) of degree

at most r , the field E2 is an algebraic extension of E1 of

degree at most r as well. This process can of course be con-

tinued. However, by the theorem of the primitive element (cf. van

der Waerden, page 126), the extension Em = C(f,gl,...,gm) of

C(f) can be generated by a single element c1g1 + c2g2 +...+ cmgm

for some complex constants cl,...,cm ; so that actually E. must

have degree at most r over C(f) for all m . The process then

necessarily stops after finitely many stages, and the result is

thereby demonstrated.

Now on a compact Riemann surface M select any two mero-

morphic functions f,g which generate the function field of the



surface, that is, which are such that 1
M = C(f,g) ; and let

P(x,y) be the polynomial such that P(f,g) m 0 , noting that

P(x,y) can always be taken to be an irreducible polynomial. It

is clear that this polynomial completely describes the function

field of the Riemann surface, as an abstract field. It is indeed

even true that the polynomial describes the Riemann surface itself,

in a sense. It is more convenient for this purpose to pass from

the polynomial P(x,y) to a naturally associated homogeneous

polynomial. Formally, write x = t1/t0 and y = t2/t0 . Then

if n is the degree of the polynomial P(x,y) , consider the homo-

geneous polynomial of degree n in three variables defined by

P0(t0,tl,t2) = 0(tl/t0,t2/t0)

This will be called the homogeneous form of the polynomial P(x,y);

it is canonically determined by P(x,y) , and the original poly-

nomial can be recovered by noting that P(x,y) = PO(1,x,y) . Con-

sidering (tO,t1,t2) as homogeneous coordinates in two-dimensional

complex projective space IP 2 , although P0(t0) tl,t2) is not a

well-defined function on ]P2 , its zero locus is a well-defined

subset of P 2 ; for if P0(tO,tl,t2) = 0 , then from homogeneity

it follows that PO(tt0,ttl,tt2) = t'P0(t0)tl,t2) = 0 . The sub-

set

loc PO = ((to) tl) t2) e P 2 PO(t0,tl,t2) = 0)

is called an algebraic plane curve of degree n , defined by the

polynomial PO . (It is assumed that the reader is acquainted

with the elementary properties of projective spaces; see for



instance W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry,

volume I, chapter V, (Cambridge University Press, 1953), for a

treatment of this topic.) In the coordinate neighborhood to # 0

in ]P2 , with local coordinate x = tl/t0 and y = t2/t0 , the

curve is given by the equation P0(l,x,y) = P(x,y) = 0 ; so the

algebraic plane curve loc P
0

in projective space is in the

natural sense just the extension of the curve P(x,y) = 0 defined

in the ordinary space ( of the two complex variables x,y .

Note that the intersection of the curve be P
0

with the line at

infinity t0 = 0 in
g,2

consists of a finite number of points;

these are the points with homogeneous coordinates satisfying

P0(O,t1,t2) = 0 , or in terms of the inhomogeneous coordinate

t = t2/t1 on the line at infinity, the points PO(0,1,t) = 0

Removing these finitely many points from loc PO yields the curve

P(x,y) = 0 . In the relative topology as a subset of 1P2 , the

set loc PO is just the compactification of the curve P(x,y)= 0 ,

obtained by adding a finite number of points to that curve.

Lemma 31. To any algebraic plane curve there is canonically

associated a compact Riemann surface.

Proof. Consider first that portion of the curve loc PO

in the coordinate neighborhood to # 0 ; this is just the point

set loc P = ((x,y) a C2IP(x,y) = 0) . View P(x,y) as a poly-

nomial in y with coefficients in C(x) , assuming first that it

is irreducible, and let D(x) be its discriminant; note that

D(x) is a polynomial in x , and let A = (xi,x2,...) be the

finite number of zeros of that polynomial D(x) . For each value



x0 / A the polynomial P(x,y) will have r distinct roots, where

r is the degree of that polynomial in the variable y ; and letting

these values be yl,...,yr , since they are simple roots it follows

that 7P(x0,yi)/ay J 0 . By the implicit function theorem, there

are r complex analytic functions cpl(x), i = 1,.. .,r , defined

in an open neighborhood of x0 and such that

cPi(x0) - yi and P(x,(pi(x)) m 0 .

The points (x,(p i(x)) are thus all the points for which P(x,y)= 0.

It is then clear that under the natural projection v: C2 e
defined by ir(x,y) = x , the curve ((x,y) a eIP(x,y) =0, x J A )

is an r-sheeted covering space of the set C - 0 = (x a CID(x) / 0).

This provides that portion of the curve with a Riemann surface

structure. Then for a point x1 e 0 , the curve P(x,y) = 0 will

locally provide an r-sheeted covering of a punctured disc centered

at the point xl . These coverings are all well known, however;

each connected component can be completed as a branched covering

of the full disc centered at xl , and the Riemann surface struc-

ture extends uniquely to this completion. This associates"a

Riemann surface to that portion loc P C loc PO of the curve in

the given coordinate neighborhood. Note that, except possibly at

these branch points, the underlying point set of the associated

Riemann surface can be identified with the point set loc P ; and

the identification is a topological homeomorphism. Moreover,

again excepting the finitely many branch points, it is evident

from the local parametrizations y = si(x) that the germs of

analytic functions on loc P in terms of its structure as a



Riemann surface are precisely the restrictions to be P of germs

of analytic functions of two complex variables defined in a neigh-

borhood in the projective plane 1P2 . Recalling from lemma 2

that a Riemann surface structure is determined completely by the

sheaf of germs of holomorphic functions on the surface, and

observing from Riemann's removable singularities theorem that a

mapping between two Riemann surfaces which preserves the sheaves

of analytic functions except for a discrete point set is neces-

sarily an analytic equivalence, it follows that the Riemann

surface structure is uniquely determined, independently of the

choices made in the above construction. Now a similar construction

can be carried out in the other coordinate neighborhoods of IP2 ;

by the above uniqueness observation, these complex structures

necessarily match in the intersections of the coordinate neighbor-

hoods, and hence define a unique compact Riemann surface associated

to the algebraic curve loc PO . In case the polynomial P(x,y)

is reducible, each irreducible factor separately determines a

compact Riemann surface.

To illustrate the manner in which the Riemann surface

associated to loc P
0

differs from the point set be PO , con-

sider the trivial case of the polynomial P(x,y) = xy . The

Riemann surface corresponding to that curve consists of two dis-

joint copies of the complex line C ; they are imbedded in

in such a way that they intersect, but that is not reflected in

the Riemann surface structure. The analytic functions on the

Riemann surface are not the restrictions to the curve loc P of



analytic functions of two complex variables at the origin; for the

restrictions would necessarily have the same value at the inter-

section of the two lines, while the functions on the Riemann sur-

face do not. For the case of an algebraic curve with singularities,

such as the curve defined by the equation P(x,y) = y2 - x3 which

has a singularity at the origin, the Riemann surface and the curve

agree as point sets; but still the germs of analytic functions on

the Riemann surface do not consist of the restrictions to the curve

of germs of analytic functions of two variables at the origin.

This leads further into the properties of singularities of algebraic

curves than time permits,for adequate treatment; the reader is

referred to the standard literature on algebraic curves for a more

extensive discussion.

Theorem 27. Let M be a compact Riemann surface, and

f,g a ?1l M be meromorphic functions generating the function field

of M ; and let P(x,y) be the irreducible polynomial such that

P(f,g) 0 . There is then a canonical analytic homeomorphism

from the Riemann surface M onto the Riemann surface associated

to the algebraic plane curve defined by the polynomial P(x,y)

Proof. Let g e H1(M, 6*) be a complex line bundle on

the Riemann surface M with a non-trivial holomorphic cross-

section f0 a r(M, Q (g)) such that the functions f1 = f0f and

f2 = fog are holomorphic; then of course fi a r(M, 1 (¢)) ,

i = 0,1,2 . The line bundle g and section f0 can be so chosen

that the three functions f0,fl,f2 have no common zeros on M

it suffices to select the section f0 such that its divisor is



the least for which f0f and fOg are holomorphic. Letting

PO(tO,tl,t2) be the homogeneous form of the polynomial P(x,y)

note that PO(f0,fl,f2) = f (fl/f0, f2/f0) f-'P(f,g) 0

Thus the mapping from M into 1P2 defined by

p e M -. (f O(p),fl(p),f2(p)) a
g,2

takes the Riemann surface M to the point set loc P
0

C ]P 2 of

the algebraic plane curve defined by the polynomial P . It is

readily verified that this defines a complex analytic mapping from

M to all points in the Riemann surface associated to the curve,

except the branch points; and applying Riemann's removable singu-

larities theorem yields an extension to all of M . The details

will be left to the reader. Thus there is defined a local branched

covering from M to the Riemann surface associated to the curve

P(x,y) ; and since both are compact, it follows easily that this

is an r-sheeted branched covering for some index r . The mero-

morphic functions on M separate points, in the sense that if

p,q e M and p q there is a meromorphic function h e M

such that h(p) h(q) ; for there is always a meromorphic function

with a pole only at the point p . Since f,g generate the mero-

morphic functions, then these two functions generally separate

points as well; thus the index r = 1 , and the mapping from M

to the Riemann surface associated to the curve P(x,y) is one-to-

one, thereby completing the proof.

Corollary. Two Riemann surfaces are analytically equiva-

lent if and only if their fields of meromorphic functions are

isomorphic as abstract fields.



Proof. If M,M' are two Riemann surfaces with isomorphic

function fields, generators of these fields can be chosen such

that they satisfy the same irreducible polynomial equation; the

desired result follows immediately from Theorem 27 then.

The preceding Corollary shows that the investigation of

compact Riemann surfaces can be reduced to the investigation of

algebraic function fields in one variable over the complex numbers,

or of algebraic plane curves. The equivalence concept for func-

tion fields is just isomorphism as abstract fields, but is

slightly more complicated for algebraic curves. If P(x,y) and

Pt(x',y') define algebraic curves, then these should be considered

as equivalent when their underlying function fields are the same.

This means that xt,yt (considered as meromorphic functions on

the curve) must be rational functions of x,y , and conversely;

this equivalence concept is known as birational equivalence. The

algebro-geometric form of the study of compact Riemann surfaces

can be phrased as the problem of studying birationally invariant

properties of algebraic plane curves. This was the original form

in which the subject was studied, and the reader is referred to

the standard works on algebraic geometry for further reading.

The principal interest in these lectures has been the analytic

aspects of the subject, so the algebraic line will be pursued no

further.



(c) Let M be a compact Riemann surface of genus g > 1 ,

and let h1,h2...,hg a r(M, a(K)) be a basis for the space of

Abelian differentials. It was noted earlier (page 119) that these

sections hi have no common zeros on the surface. Thus if za

is a local coordinate flapping in an open set U. C M , and if

hi(z) are the analytic representations of the sections hi in

that coordinate neighborhood, then the values

(hla(za),...,hga(za)) can be viewed as the homogeneous coordi-

nates of points in the projective space IP
g-1

of dimension g-1;

this leads to a complex analytic mapping Ha: Ua -> 'P g-1 .

Note that in Ua fl Up these mappings are related by Ha(za) _

(hla(Za),...,hga(Za)) _ (Ko,(z,,)h1,(z

H,(z.) ; this therefore yields a global analytic mapping

H: M ---> IP g-1 . The mapping H is called the principal mapping,

and the image H(M) C IP
g-1

is called the principal curve associ-

ated to the Riemann surface M . Note that choosing a different

basis for T(M, '.(K)) has the effect of replacing the principal

mapping H by a non-singular linear transform of H , or equiva-

lently, of following the mapping H by a non-singular projective

transformation in IP
g-1

. Thus the principal mapping and the

principal curve are determined uniquely up to a non-singular

projective transformation in IP
g-1

Theorem 28 (a). If M is a compact Riemann surface of

genus g > 1 and M is not hyperelliptic, then the principal

mapping H: M'--> IP
g-1

is a one-torone non-singular complex

analytic mapping, and the principal curve H(M) is a one-dimen-

sional complex analytic submanifold of IP
-1

g



Proof. That the mapping H: M T 7P 9-1 is a complex

analytic mapping is obvious from the definitions. If H were not

one-to-one, there would be two distinct points p,q e M such that

H(p) = H(q) ; and by a non-singular projective transformation in

IP
g-l

that image can be taken to be the point H(p) = H(q) _

(1,0,...,0) 6 ]P
g-1

. Thus hi(p) = hi(q) = 0 for i = 2,...,g.

Let J = CPtq , and let f e T(M, -(g)) be the standard non-

trivial section, with divisor 9(f) = The functions

hi/f for i = 2,...,g , then linearly independent complex

analytic sections of the complex line bundle
Kg-1

, so that

y(Kg-1) > g-1 . By the Riemann-Roch Theorem,

y(e) = y(Kg-1) + c(g) + 1-g > 2 ; but since e(g) = 2 , it would

.follow from Theorem 25 that M is hyperelliptic, a contradiction.

Therefore the mapping H is one-to-one. The Condition that the

mapping H be non-singular is just that at each point of M at

least one of the coordinate functions of the mapping H be non-

singular, that is, have a non-vanishing derivative. If p e Ua

and za is a local coordinate in Ua , the mapping H is given

in homogeneous coordinates by za ---;- (hla(za),...,hga(za)) ; and

if say h1a(p) # 0 , then in terms of the standard inhomogeneous

coordinates around H(p) a ]P g-1 , the mapping H is described

by za T (h2a(za)/hla(za),...,h9a(za)/hia(za)) If the mapping

H were singular at p , then necessarily

h1a(P)hia(P)- hia(P)hia(P)
= 0 for i = 2,...,g

hla
(P)2

Since h1a(P) / 0 , then writing ha(za) = (hia(za)) and



hh''(za) _ (hia(za)) as on page 117, it follows that the matrix

( (p))W(p)) has rank p = 1 . Then from Lemma 17 it further

follows that y(CP) = 2 ; but since c( 2) = 2 j. Theorem 25 implies

that M is again hyperelliptic, a contradiction. The mapping H

is therefore non-singular, and as an immediate consequence of that,

the image curve H(M) C IP g-1 is a one-dimensional complex ana-

lytic submanifold of the projective space, concluding the proof.

A few simple properties of the principal curve of a non-

hyperelliptic Riemann surface are as follows. First, the prin-

cipal curve does not lie in any proper linear subvariety of
Pg-1

.

For letting (tl,...,tg) be homogeneous coordinates in 1P
g-l

,

if the principal curve H(M) were contained in the linear sub-

variety Eiaiti = 0 , then necessarily Eiaihi(p) = 0 for all

p e M ; but this is impossible if not all the constants ai

vahish, since the sections hi a r(M, .(K)) are linearly inde-

pendent. This means that a linear subvariety meets the curve

H(M) in a finite number of points only; indeed, the intersection

consists of precisely 2g - 2 points, counting multiplicity. For

letting cp(t) = Eiaiti , as a complex analytic section of a com-

plex line bundle on IP
g-l

, the restriction of <p(t) to H(M)

has a well-defined total number of zeros, which is the desired

intersection multiplicity; but that restriction is the element

cp(H(p)) = Eiaihi(p) a r(M, 0 (K)) , and since c(K) = 2g -2 , it
follows from Theorem 11 that cp(H(p) ) has altogether 2g - 2 zeros,

counting multiplicities. It is known that any complex analytic

subvariety of
Pg-l

is an algebraic variety; this is Chow's



theorem, (and a proof can be found for instance in R. C. Gunning

and H. Rossi, Analytic Functions of Several complex variables

(Prentice-Hail, 1965), page 170). The principal curve is there-

fore a non-singular algebraic curve in the projective space IPg-l;

since the degree of a curve is its intersection multiplicity with

a general linear hyperplane, it follows from the above remarks

that H(M) is of degree 2g -2 .

In the case of a hyperelliptic Riemenn surface M , the

situation is quite different. To any mapping f: M .- IP which

exhibits M as a two-sheeted branched covering of IP as in

Theorem 25 there is canonically associated an analytic automorphism

0: M -> M of period two. Omitting the branch points, f: M ---> 3P

is an ordinary two-sheeted covering mapping, and a is just the

operation of interchanging the sheets. The operation extends

analytically to the branch points in an obvious manner; for a

local coordinate z can be chosen in an open neighborhood of the

branch point z = 0 in M such that the mapping f has the form

f(z) = z? , and in that neighborhood ez = -z . Such a mapping e

will be called a hyperelliptic automorphism. As noted, 92 is

the identity mapping. The fixed points of 0 are precisely the

2g+ 2 Weierstrass points on the surface M , since by Theorem 25

these are precisely the branch points of the mapping f: M --;h IP.

The mapping f: M -. P can be described as the quotient mapping

M ---> M/ ; for (1,B) is a group of analytic automorphisms on

M , and the mapping f is equivalent to collapsing M into the

quotient space under this group of automorphisms. It is thus



obvious that a compact Riemann surface M is hyperelliptic pre-

cisely when it admits a complex analytic automorphism e: M --k M

of period two such that the quotient space ml(e) = IP; and although

the fixed points of e are unique, it is not yet evident that there

is a unique such mapping e on any hyperelliptic Riemann surface.

Theorem 28 (b). If M is a hyperelliptic Riemann sur-

face, the principal mapping H: M T IP g-1
can be factored as

the composition of the quotient mapping M T M/(e) modulo a

hyperelliptic automorphism, and the canonical non-singular complex

analytic mapping IP -- ]P9_1 defined by

(2) (zo, z1) --> (zo-1, zo-2z1, ..., z0zI-2, z1-1)

in terms of the standard homogeneous coordinates.

Proof. Let f: M --> IF be a two-sheeted branched

covering such that the point with inhomogeneous coordinate W on

P is not the image of a branch point. Then considering f as

a meromorphic function on M , it follows that

j (f) = 1-r1 + 1-r2 - for some points ri, qi e M

Considering df e P(M, !] 110) = T(M, 777 (K)) as a meromorphic dif-

ferential form on M , the zeros of df occur precisely at the

branch points of the mapping f , and df has double poles at the

points qi a M ; therefore

where pi e M are the branch points of f , hence the Weierstrass

points on M . Select a meromorphic function g on M such that

A (g) = 1-pl +'...+ (g+l).q1 - (g+1)-g2 . (To show the

existence of a function of this sort, let qi = f(pi) a IP , and



consider the two-valued meromorphic function y on F defined

by y = (z-a1) ... (z-a2g+2) in terms of the inhomogeneous coor-

dinate z on F. The function y is two-valued and has branch

points at the points ai ; hence y can be viewed as a single-

valued meromorphic function on the two-sheeted covering surface M,

and as such will be the desired function.) It now follows readily

that for i = 1,...,g the differential forms (pi = f1'-ldf/g are

holomorphic on the Riemann surface M ; for

J-((p1) = (i-1) , (f) + A (df) - 4(g) _ (i-1)-rl + (i-1).r2 +

+ (g-l).q2 . Since these differential forms are evi-

dently linearly independent, they determine a basis for r(M, 0.
1,0).

In terms of this basis the principal mapping clearly has the form

(3) H(p) _ (1'f(p)'f2(p),...,f -1(p))

This shows first of all that the mapping H can be factored

through the mapping f ; and rewriting (3) in homogeneous form to

avoid considering meromorphic functions, it is evident that H is

the composition of f and the mapping (2). It is a straight-

forward' matter, verification of which will be left to the reader,

to see that (2) is a one-to-one non-singular complex analytic

mapping of ]P onto IP
g-1

, and the proof is thereby concluded.

Corollary 1. On a hyperelliptic Riemann surface M the

hyperelliptic automorphism e: M M is unique.

Proof. The principal mapping is unique, up to composition

by a non-singular projective transformation in IP
g-1

; and since

e is determined by the principal mapping, as in Theorem 28 (b),



the Corollary follows immediately.

Corollary 2. Let M be a hyperelliptic Riemann surface

of genus g , with the hyperelliptic automorphism e: M - M ;

and let p1,...,pg-1 be any points on the surface M . Then the

canonical bundle of M is given by

K = tpltepl...tpg-ltepg-1

Proof. Let f: M --> F be the standard two-sheeted

branched covering, and let p,ep e M be the points which map into

the point oo a IP in the standard inhomogeneous coordinate cover-

ing; so that p and ep are the poles of f , considering f as

a meromorphic function on M . The differential form df/g con-

structed in the proof of Theorem 28 (b) is holomorphic on M and

has the divisor A (df/g) = (g-1) -p + and therefore

K =
'P-1te1

. This is the particular case of the Corollary in

which p1 = ... = pg-l = p . In general, let ai = f(pi) ,

a = f(p) , be the images of these points in IP . There is a

meromorphic function g* on IP with divisor

9.(g') _ and lifting g* to a meromorphic

function g on the Riemann surface M, by means of the mapping

f: M -. 7P , it is clear that g will have the divisor

(g) _ epi) . It then follows that

g-1 g-1

p ep =

and hence the Corollary follows from the special case just proved.



A representation of Riemann surfaces which is closely

associated to the principal curve is the following. Let

1P1,...,(Pg a r(M, &-Z'0), be a basis for the space of Abelian dif-

ferential forms on the surface; and let po e M be an arbitrary

but fixed base point on the surface. Choosing a basis for

Hl'(M,Z) , the cohomology classes Scpi a H1(M,©) are represented

by vectors (woi) e G26 as on page 141+; and the 2g x g matrix

fl = (wji) is the associated period matrix of the Abelian differ-

entials on M . Recall that the Jacobi variety J(M) of the

Riemann surface M is the compact complex torus N(M) = CgItSt g.

Now for any point p e M , select any path . from p
0

to p in

M ; and introduce the element

(4) O(p) = (IX(Pl,..., j,Ncpg) a /tsdg = N( M)

If T.l is any other path from p
0

to p , then T.l = X+ T where

T is a closed loop from p
0

to po in M ; and in terms of the

dual basis for HI(M,Z) , the homology class of T will be repre-

sented by
a

vector (Tj ) e Z2
g . Thus (f %jcp) _ ( f )'cpi + fT(Pi)

E (fXWi) in ,JA (M) , since
=12g

E a tfleg . The mapping 0: M T N(M) is thus well-
,j=1

defined, being independent of the choice of the path X. . This

mapping is called a Jacobian mapping of the Riemann surface M

Note that the mapping is independent of the choice of bases for

P(M, &"0) and H1(M,C) , in the obvious sense; but 0 does

depend on the choice of the base point p
0

e M , a change in the

base point corresponding to a translation in the Abelian group ti(M).



Theorem 29. If M is a compact Riemann surface of genus

g > 0 , then the Jacobian mapping 0: M --- > J(M) is a one-to-one

nonsingular complex analytic mapping, and the image D(M) C J(M)N

is a one-dimensional complex analytic submanifold of J(M)

Proof. That the mapping 0 is a complex analytic mapping

is obvious, since the integrals in (4+) are complex analytic func-

tions of the limits of integration, at least locally. If the

mapping 0 were not one-to-one, there would exist distinct points

gl,g2 e M such that IP(gl) = !D(q2) ; and in terms of the explicit

form (4+) for that mapping, it would follow that for an are T

from q1 to q2

(1T(Plf ..., Lr(Pg) = 0 E Cg/ts?.eg = J(M) .

Then from Abets Theorem (Theorem 18) it would further follow that

Cl = 1 , a contradiction (recalling the discussion on page 115).
p q

If za is a local coordinate mapping in a coordinate neighborhood

Ua C M , then writing cpi = hia(za)dza , the condition that the

mapping 0 be singular at za is clearly just that

h1a(za) _ ... = hga(za) = 0 ; but this can never happen, as noted

on page 119. Therefore the mapping 0 is nonsingular, and there-

fore the image O(M) is a one-dimensional complex analytic sub-

manifold of J(M) , completing the proof.

Corollary. If M is a compact Riemann surface of genus

g = 1 , then the Jacobian mapping 0: M T J(M) is an analytic

isomorphism of Riemann surfaces.



Proof. Since dim J(M) = g = 1 in this case, the Corol-

lary is an immediate consequence of the preceding Theorem. This

provides a useful standard form for compact Riemann surfaces of

genus 1 .

The next stage of the discussion of Riemann surfaces would

involve a more detailed investigation of these last mappings (the

principal and the Jacobian mappings), leading towards Torelli's

Theorem and the problem of moduli of Riemann surfaces. Time has

run out, however, and this must be postponed to another time.



Appendix: the topology of surfaces.

It has been assumed that the topological properties of two-

dimensional manifolds, from the point of view of Cech cohomology

especially, are familiar to the reader. A few words should perhaps

be added here, in case that is not so. Most books on Riemann sur-

faces begin with a discussion of the topology of surfaces, usually

simplicial or singular homology theory with particular emphasis

on the two-dimensional case; and the reader without this back-

ground can quite well consult one of these books. (See for

example Lars V. Ahlfors and Leo Sario, Riemann Surfaces (Princeton

University Press, 1960); George Springer, Introduction to Riemann

Surfaces, (Addison-Wesley, 1957); and of couse Herman Weyl,

The Concept of a Riemann Surface, (English translation, Addison-

Wesley, 1964).) The topology of surfaces, also from the point of

view of singular homology theory, is covered in H. Seifert and

W. Threlfall, Lehrbuch der Topologie (Teubner, 1934; Chelsea, 1947);

the fundamental group and covering spaces are also treated in de-

tail there.

The 6ech cohomology groups of a compact surface (with co-

efficients in a constant sheaf, such as Z or C) are isomorphic

to the singular or simplicial cohomology groups, and the coho-

mology groups can be viewed as dual to the homology groups; so

the properties of the 6ech cohomology groups needed in these lec-

tures can readily be derived from the discussion of the homology

of surfaces in the books mentioned above. (A more general dis-

cussion can also be found in Samuel Eilenberg and Norman Steenrod,



Foundations of Algebraic Topology, (Princeton Univ. Press, 1951).)

More directly, the surface can be triangulated; and taking open

neighborhoods of the closed two-simplices as an open covering of

the surface, most of the results needed follow from a straight-

forward calculation. Similarly, it follows quite easily that the

fundamental group as defined in §9 (b) is isomorphic to the funda-

mental group as more customarily defined, (as for instance in

Seifert and Threlfall). Referring to the discussion on page 186,

note that for an Abelian group G it follows that

Hom(7r1(M), G)/G = Hom(7r1(M), G) , and hence by Lemma 27,

H1(M,G) = Hom(7r1(M),G) . Indeed, since G is Abelian,

Hom(7r1(M),G) = Hom(H1(M),G) , where H1(M) is the group 7r1(M)

made Abelian, that is, is the quotient of 7r1(M) by its commu-

tator subgroup; but H1(M) is the first homology group of the

surface, so this is just the familiar duality between homology

and cohomology. In particular, H'(M,C) = Hom(Hl(M),C) = Hom(7r1(M),C).

With this observation, the isomorphism S: r(M,(9Vl'°) ---> Hl(M,C)

discussed in §8 (a) can be put into a more traditional form as

follows. Let (UO,U1,...,Un,UO) be a closed chain at p , in

terms of an open covering of the surface M ; and let X be

a closed path in the set U0 U U1 U...U Un from the point p ,

representing the same element of 7r1(M,p) under the obvious iso-

morphism. Thus selecting points pi a Ui , the are X can be

taken as a union of smooth segments Xi , where Xi
is an are in

Ui U Ui+1 from pi to pi+1 . If cp a r(M, &"0) is any

Abelian differential form, select functions fi E r(Ui, 0) so



that dfi= cp in Ui. In Ui fl Ui+1 note that d(fi+1- fi ) = 0
hence fi+l

- fi = ci,i+1
for some constant ci,i+l ; so upon

suitably modifying the functions fi , there is no loss of gener-

ality in supposing that fi = fi+l in
Ui fl Ui+1

for

i = 0,1,...,n-1 . The resulting function. is of course an indefi-

nite integral of p . Now the element of Hom(7r1(M),C) corre-

sponding to 8q' a H1(M,C) assigns to this loop X the constant

n
E

ci i+l ;
but this merely amounts to the constant

i=o '

cn o =
fn - fo , which is evidently the value Therefore

the isomorphism r(M, 0'l 0) -> Hom(7r1(M),C) , derived from the

composition of the isomorphisms r(M, CL" O) -4. H'(M,C) and

H1(M,C) ---> Hom(ir1(M),C) , is that which assigns to an Abelian

differential form p e r(M, 6-1'0) and a loop % e 'rrl(M,p) the

period f%cp . This justifies the period matrix terminology con-

sidered on page 145, and the discussion in the proof of

Corollary 3 of Theorem 18. Of course, r(M, C9 1'0) can be

replaced by the full space of closed differential forms on M ,

in the analogous discussion of deRham's Theorem in terms of the

periods of differential forms.

Finally, a few words should be said about the inter-

section matrix on a surface, in connection with the discussion

in §8 (c). In the usual approach, the explicit form of the

intersection matrix X (recall page,l54) is derived in the proof

of Abel's theorem, or in the related discussion. (See Ahlfors

and Sario, pages 319 ff., for instance.) The argument is

essentially the following. Suppose the surface M is represented



by a polygon with pairs of edges identified, in the normal form,

'(as in Seifert and Threlfall, pages 135 ff.):

bl

1

The elements ai,bi generate Hl(M-)1; and dual generators can be

selected for the cohomology group H (M,C ) . Upon representing

these cohomology classes by closed differential forms

e P(M, E 1) , this condition is that

( ) Iaaj =si; Ibaj=l aBj=o; lbaj=si
i i i i

where 8i is the Kronecker symbol. In terms of this basis, the

intersection matrix X has the entries

Xij = Ilai-a3 Xi, 3+g
= Ilai-pj Xi+

3+g = IlaiJi

for i,J = 1,...,g , where g = genus of M. Upon applying Stokes

theorem a few times, it follows readily from the equations (*)

that X has the desired form. The details can be left to the

reader, (compare Ahifors and Sario, pages 319 ff.).



Abelian differentials, 72
Abelian varieties, 151
Abel's theorem, 160
Algebraic plane curves, 234

Birational equivalence, 240
Branched coverings, 220

Canonical bundle, 78
Cauchy-Riemann equations, 40, 87
Chern class (characteristic class), 98
Cochains, 27
Cocyclea, 27
Cohomology groups, 28, 30
Cohomology sets (non-Abelian coefficients), 175
Connections (affine & projective, 169
Coordinate cohomology class of a structure, 176
Coordinate coverings, 1

-, complex analytic, 3
Coordinate transition functions, 1
Cross sections of line bundles, 53
Cup product, 147

Degree of a meromorphic function, 224
DeRham sequence, 68
DeRham theorem, 69
Direct limit, 30
Distributions, 80, 90
Divisor, 48

- of meromorphic functions, 50
- of sections of line bundles, 56

Divisor class group, 53
Dolbeault sequence, 72
Dolbeault theorem, 72

Dolbeault-Serre sequence, 74

Eichler cohomology group, 207
Elliptic Riemann surface, 127
Exact cohomology sequence, 32
Exact sequence of sheaves, 25

Fundamental group, 186, 189, 252

Genus, 109
Geometric realization of a structure, 217

llyperelliptic automorphism, 244
Hyperelliptic surfaces, 126, 228, 244
Hyperelliptic Weierstrass point, 326

Intersection matrix, 148, 253

Jacobian mapping, 248
Jacobi variety, 145, 153



Lattice subgroup 135
Leray covering, 46
Line bundles, complex, 53

-, flat, 132

Manifold, topological, 1

Normal Riemann surface, 125

Order, of branching, 220
-, of cross-sections of line

-, of distributions, 80
bundles, 56

-, of holomorphic functions, 6

Partition of unity, 35
Period matrix, of Abelian differentials, 145, 253

-, of lattice subgroups, 140, 142
Picard variety, 136, 146, 153
Point bundle, 114
Presheaf, 16

-, complete, 19
Principal curve (mapping), 241 [also called canonical curve]
Projective line, 10
Projective linear group, 174
Pseudogroup property, 4, 164

Refinement of a covering, 28
Refining mapping, 28
Riemann surface, 4
Riemann's equality (inequality), 148
Riemann matrix (pair), 150
Riemann-Roch theorem III,

Schwarzian derivative, 167
Sections of a sheaf, 15
Serre duality theorem, 75, 95
Sheaf, 14

constant, 15
fine, 36

-, of germs of differential forms, 68

-, of germs of distributions, 83, 90
-, of germs of divisors, 48
-, of germs of holomorphic functions, 20

Structure, affine, 167
-, complex analytic, 4
-, differentiable, 4
-, projective, 167
-, subordinate, 4, 167

Support, of a distribution, 85
-, of a function, 80

Symplectic group, 155

Torus, 11, 137, 140

Weierstraas, gap sequence, 120
-, point, 123
-, -, normal, 125
-, -, hyperelliptic, ]2 6

-, theorem, 51
-, weight, 192
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