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Preface.

These are notes for a course of lectures given at
Princeton University during the academic year 1965.66. The
subject of the lectures was compact Riemann surfaces, considered
as complex analytic menifolds. There are already several expo-
sitions of this sublect from basically the seme point of view;
the foremost is undoubtedly Hermenn Weyl's classic "Die Idee der
Riemannschen Fl¥che," and most of the later treatments have
followed Weyl's epproach to a large degree. During recent years
there has been considerable activity in the study of complex
analytic menifolds of several dimensions, and various new tools
and approaches have been developed. The aim of the lectures, in
addition to treating of a beaubiful subject for its own sake, was
to introduce the students to some of these techniques in the case
of one complex variable, where things are simpler and the results

more complete.

The material covered is indicated By the table of con-
tents. No familiarity with menifolds, sheaves, or sheaf coho-
mology was assumed, so those subjects are developed &b initio,
although only so far as necessary for the purposes of the lectures.
On the other hand, no attempt was made to discuss in detail the
topology of surfaces; for that is really another subject, and
there are very good treatments available elsewhere. The basic
analytic tool used was the Serre duality theéorem, rather than the
theory of harmonic integrals or harmonic functions. The detailled

treatment of the analytic properties of compact Riemann surfaces



begins only in §7. Unfortunately, there was not enough time to
get very far in the discussion; so the lectures have the air of
being but an introduction to the subject. This may explain some
of the surprising omissions, also. I hope to have an opportunity

to continue the discussion further sometime.

With the possible exception of parts of §9, there is
nothing really new here. References to the literature are
scattered throughout, with no attempt at completeness. In addition
to these and to the book of Hermenn Weyl, the following general
references should be mentioned here: Paul Appell and Edouard
Goursat, "Théorie des Functions Algébriques," (Geuthier-Villers,
1930); Kurt Hensel and Georg Landsberg, "Theorie der algebraischen
Funktionen einer Varieblen," (Teubner, 1902; Chelsea, 1962); and

Jean-Pierre Serre, "Corps locaux," (Hermann, 1962).

I should like to express my thanks here to Richard
Hamilton, Henry Laufer, snd Richerd Mandelbeum for msny suggestions

and Improvements; and to Elizabeth Epstein for typing the manuscript.

Princeton, New Jersey R. C. Gunning

May, 1966
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§1. Fundemental definitionms.

(a) The field of real mumbers will be denoted by R , and the field

of complex numbers by € ; both are topological fields, with the
femiliar structures. The cartesian product of R with itself n times,
the usual euclideean n-space, will be denoted by Rn 3 note that, as

topologlcal spaces, C and H can be identified with one another.

Definition. An n-dimensional topological menifold is a

Heusdorff space M such that every point p € M has an open neighbor-

hood homeomorphic to an open cell in ]!n .

Iet M be an n-dimensional topologicel manifold. A coordinate
coverlng {Ua, za} of M consists of an open covering {Ua] of M

together with homeomorphisms

za: Ua — Va

from the suvbsets UaC M +to open cells VaC B . The sets U, will

be called coordinate neighborhoods, and the mappings z, will be

called coordinate mappings. By definition, amy topologilcal menifold

admits a coordinate covering. On each non-empty intersection Ua n UB

two different homeomorphisms into m" are defined; the compositions

- -1,
fop = Zg ® zg zB(Ua n UB) — za(Ua n UB)

will be called the coordinate trensition functions of the coordinate

covering. Thus for a point p € Uy n UB , the two coordinate mappings
are related by za(p) = faﬁ(zs(p)) . The following diagrsm should

illustrate these concepts.

-1-
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§1. TFupdamental definitions.

(a) The field of real numbers will be denoted by R , and the field

of complex numbers by € ; both are topological fields, with the
femilisr structures. The cartesian product of R with itself n times,
the ususl euclidean n-space, will be denoted by B ; note that, as

topological spaces, € and ll? can be identified with one another.

Definition. An n-dimensional topological manifold is &

Hausdorff space M such that every point p € M has an open neighbor-

hood homeomorphic to an open cell in B .

Iet M be an n-dimensional topologicel menifold. A coordinate

covering [Ua, za} of M consists of an open covering {U of M

o?

together with homeomorphisms

za: Ua — Va

-

from the subsets UaC M +to open cells VaC B . The sets U, wil

be called coordinate neighborhoods, and the wappings Zg will be

called coordinate mappings. By definition, anmy topological manifold

admits & coordinate covering. On each non-empty intersection U, n UB ’

two different homeomorphisms into ' are defined; the compositions

£f.=2 1,

= %a® z‘; : zB(Ua n Uﬁ) — za(Ua n UB)

will be called the coordinate tramsition functions of the coordinate

covering. Thus for a point p ¢ Ua n UB , the two coordinate mappings
sre relsted by za(P) = faﬁ(za(p)) . The following diagram should

illustrate these concepts.



(UaﬂU

8 shaded)

(za(Ua n Uﬁ) and zﬁ(Ua n UB) shaded)

Note that & description of the sets {Va] and of the meppings

} 1is enough to recomstruct the original menifold M ; for M can

(fop
be obtained from the disjoint wmion of ell the sets {Va} by identi-

fying a point z, € V, @and a point zg € Vg whenever sz, = Otﬁ(za) .
As a convenient abbreviation, the sets Va will sometimes also be

called coordinete neighborhoods for M .

Suppose that {Ua, za} and {U&, z4} are two coordinate
coverings of the manifold M . The union {Ua,za} u [U&,z&} of these
two coordinate coverings is the new coordinate covering consisting of
811 the coordinate neighborhoods and meppings from the two given
coverings. It is important to observe that the set of coordinate
transition funetions for the union {Ua,zva} U {U&, z&} is properly
larger than the union of the sets of coordinate transition-functions
for {Uoz’ za} and for (U&, Z('x] ; for, in addition to the coordinate
transition functions associsted to the intersectlons U, N1 Uy £ 9 end
those associated to the intersections U& N U , there are the coor-

g
dinate tramsition functions assoclated to all the intersections

Uy N UL £P.
For most of the subsequent discussion, the manifolds under

discussion will be of dimension 2; and the coordinate neighborhoods



(V,} will be considered as lying in the complex line € rather then
in B . The coordinate transition functions z, = faﬂ( ZB) are hence
continuous complex-valued functions defined on subsets of the complex

line € . All menifolds will be assumed connected.

(0) Coordinate coverings having particular properties can be used
to impose a great many additional structures on topological manifolds.

A coordinate covering {Ua,za) of a 2-dimensional manifold M will

be called & complex analytic coordinate covering if all the coordinate

trensition functions are holomorphic (that is, complex analytic)
functions. Two complex analytic coordinate coverings will be called
equivalent if their union is also a complex analytic coordinate
covering. It is easy to see that this is indeed a proper equivalence
relation. (Since symmetry smd reflexivity are triviel, it is only
necessary to verify transitivity. Comsider, therefore, complex
analytic coordinate coverings [Ua,za} equivalent to (U},z)} , and
(Wpzy) equivalent to [U’&,z&) . For any point p ¢ U, N U'é there
will be a coordinate neighborhood U; such that p € U; ;3 and in a
suitably small open neighborhood of z'é(p) it is obvious that

fop = Ty © T,g » With the obvious notation. Since £, =z e (z;)'l

ay - ‘o

and :1:‘7[3 = z;, ° (Z'é)-l are holomorphic by hypothesis, end since any

composition of holomorphic functions is again holomorphie, it follows

that fm'3 =2z, (z'é)‘l is holomorphic near z'é(p) . This holds for

all points p € 'Ua n U‘é , and that suffices to prove the desired

transitivity.) An equivalence class of complex asnalytic coordinate



coverings of M will be called & complex analytic structure (or simply

& complex structure) on M . In the traditional terminology, & surface

M with a fixed complex structure ls called s Riemann surface.

It should be noted that the only property of holomorphic
functions needed for the preceding definitions is ‘thst holomorphlc
functions are closed iunder composition, whenever composition is defined;

this will be called the pseudogroup property. Thus, for any cless of

homecmorphisme with the pseundogroup property, it is possible to intro-
duce & corresponding structure on menifolds. (For & gemeral discussion
of pseudogroups and their classification, see for instance V. W.
Guillemin and S. Sternberg, "An algebraic model of transitive differ-
entisl geometry,” Bull. Amer. Math. Soc. 70 (1964), 16-k7, and the
literature mentioned there.) As sn example, the set of homeomorphisms
of ﬂ? vhich possess continuous partial derivatives of all orders has
the pseudogroup Property; the corresponding structure on & mapifold

will be called & diffeventisble structure, (or more precisely, & C

differentisble structure). Since holomorphic functions are also
infinitely differentisble, a complex analytic structure on & manifold
belongs to & unique differentiable structure; the complex analytic
structure will be said to be subordinete to the differentiasble struec-
ture. These differentisble structures do not play a significant role
in the study of Riemann surfeaces, since in faect there is a unique
differentisble structure on any 2-dimensional manifold; (sée J. R.
Munkres, "Obstructions to the smoothing of piecewise-differentisble

homeomorphisms," Amels of Math. 72 (1960), 521-554). This situation

e



is quite different in thehigher-dimensional cases, however.
Some further pseudogroups and related structures, subordinate

to complex analytic structures, will appear later in this discussion.

(c) Iet M be a Riemamn surface, and {Ua, za} be a8 complex
analytic coordinate covering belonging to the given complex analytic
structure on M . A mapping f from an open subset U(C M into the

complex line € will be called a holomorphic function in U 1if for

each intérsection U N Ua;‘- § the mepping

..1.
fozg: za(UﬂUa)—éc

is & holomorphic function in the subset za(U n Ua) Ce. It is essy
to see that the property that a function be holomorphic is independent
of the choice of complex analytic coordinate covering belonging to the
complex structure; the verification will be left to the reader. The
set of all functions holomorphic in U will be called the ring of

holomorphic functions in U , end will be denoted by G’U ; this set

is clearly a ring, under the pointwise addition and multiplication of
functions, and contains the constant-valued functions as a subring
isomorphic to € . In terms of the differentisble structure associated

to the complex analytic structure of M, a differentiable function,

(or more precisely, a c® complex-valued function) is defined corre-
s P [

spondingly as & mapping f£: U — € such that for fo zo is c

in each set 2z,(U NU,) £ § ; the ring of differentisble functions in

U will be denoted by c ; , and the ring of all continuocus complex-

valued functions in U will be denoted by { y - Uote that these



these rings are related as follows: €, C 0U ce ;C OU .

The field of meromorphic functions in an open subset U(C M

can be defined correspondingly as well, and will be denoted by ’”zU .
It should be noted that a meromorphic function is not, properly

speaking, & mapping into € ; thus the field WZU is not reelly com-
parable to the rings C ;
set of meppings will be given later, however; (see part (e) of §1).

or GU . An interpretation of mU as a

Iet T ¢ G'U for en open set U(C M, and consider & point

P € U. The order of the function f &t the point p 1s defined to

be the order of the holomorphic funetion f . z;l

at the point

za(p) € €, for any coordinate neighborhood U, containing #; and
this order will be denoted vp(f) . Recall that the order of a holo-
morphic Punction of a complex variable z at a point 2z = a 1is the
order of the first non-zero coefficient in the Taylor expansion of the
function in terms of the variable z -a ; and note that the order is
independent of the complex analytic coord(j:nate covering belonging to
the complex analytic structure of M . Of course, vp(i') >0 atall
points p e U ; and vp(f) > 0 only at a dlscrete subset of points
of U, if f is not identically zero. Similarly, for a meromorphic
funetion f e ,WIU , the order cen be defined, end will also be denoted
vp(f) ; in this case, Vp(f) can be negstive as well, but again .

/
vp(f) # § except at a discrete subset of points of U .

Iemme 1. If M is a compact connected Riemann surfsce,

then (9;4=c.

Proof. As noted sbove, the ring of constant-valued fu.nctjons



is a subring € C @M « If f e 0M ; then since M 1is compact,

the function |f| must attain its maximm at some point p ¢ M . If

Uy is & coordinete neighborhood containing p , then |f . z'] reaches

its meximum at an interior point za(p) € za(U n Ua) ; hence f o z;

must be constant in an open neighborhood of za(p) , and f must be
constant in an open neighborhood of p . It follows directly from
the identity theorem in function theory that the interior of the set
of points at which f 1s constant is botli open and closed in M ;
since that set is non-empty, and M is connected, £ is actually

constant on M and thus GMC c.

(d) The notion of a holomorphle function on & Riemenn surface can
be generslized &5 follows. Iet M and M' be two Riemann surfaces;
and let {Ua,za} and {U&,z&} be complex anelytic coordinate coverings
belonging to the two given complex structures. A mepping f£: M — M!

is called & holomorphic mepping if, for eny point p ¢ M and for any

coordinate neighborhoods UaC M, UéC M' such that p ¢ U, end

£(p) € Ué , the function z'B o fo z&l is & holomorphic function in
the usual sense in some open neighborhood of the point za(p) e C.

It is easy to see that the property that a mapping be holomorphic is
independent of the choices of complex amalytic coordinate coverings
belonging to the two complex analytic structures; the verification
will be left to the reader. Note that a holomorphic mapping is neces-
sarily continupus; morever, such a mapping is also differentiable (or

more precisely, Cw) in terms of the differentiable structures on the

surfaces. A holomorphic function is the special case of a holomorphie



mapping from M 1o the Riemamn surface €.

These holomorphiec mappings can be characterized very con-
venlently by their effects on holomorphic functions. Iet f: M~ M!
be any continuous mepping between two Riemamn surfaces M,M' , and let
U' C M be any open subset of M' . The map f induces a homomorphism
£ GU, —_— GU , where U= £"2(U') C M, by defining
f*(hU,) = Iy o T ; in particular, f*( @U,) C GU iz a well defined

subring.

Ienma 2. A continuous mapping f£: M —= M' between two
*
Riemann surfaces is a holomorphic mapping‘d.f and only if £ ( GU') C @U

for every open subset Uf C M' , where U = f'l(U') .

Proof. Select any point p € M, and coordinate neighborhoods

u, Cu, Uy CM' such that p e U, end £(p) e Ué . If the mepping

£ satisfies the conditions of the lemms, then considering in par-

ticular the holomorphic function zé € @U' » it follows that
p

* -
P (zé) = zé o T is holomorphic, that is, that zé o fo zal is holo-

morphic; therefore f 1is a holomorphic mspping. Conversely, if the

mepping f is holomorphic and if h' i1s a holomorphle function in

* -
an open neighborhood U? CUé of f(p), then £ (h') » zal =

h! ¢ £o z&l = (n' o (zé)'l) o (zé o fa z&l) is a holomorphic
functlon in a neighborhood of za(p) s since it is the composition of
the holomorphic functions h' o (zé)_l and zé o fo z&l ; hence ¢
satisfies the conditions of the lemma.

Extending the previous discussion, & topological homeomorphism

f: M —> M' between two Riemenn surfaces will be called a \%olmnorphic



isomorphism if both mappings £ and £ are holomorphic mappings;
the Riemann surfaces M and M' will be called isomorphic if there
is a holomorphic isomorphism between them. Clearly, the real interest

lies in the isomorphism classes of Riemann surfaces.

(e) The simplest example of a Riemann surface is the complex line
€ ; of course, since any subdomain of a Riemenn surface is sgain a
Riemann.surface, subdomeins of € are also contenders for the title
of simplest Riemann surface. As for compact manifolds, the 2-sphere
is clearly the simplest case; thus there arises the question whether
the 2-sphere admits a complex structure.

The 2-sphere, considered merely as & topological manifold M ,
can be given & coordinate covering as follows. Iet n, s ¢ M be two
distinct points of M , which can be envisaged as the north and south
poles of the 2-sphere. The open sets U0 = M-s and Ul = M-n cover
M , and are topological cells; so select some homeomorphisms Zy
between these sets and the standard 2-cell, which can be taken to be
the full euclidean plane € . This describes a coordinate covering
[UO,zO], {Ul, zl) of M . There is no loss of generality in supposing

further that zo(n) =0e¢C, and zl(s) = 0 ¢ €; so the coordinate

transition function fol is a homeomorphism
£y (€-0) — (€-0) ,
which tekes the interior of an open topologlcal disc about the origin

in €-0 onto the exterior of another such set. Conversely of course,

any choice of such & homeomorphism f01 can be realized as the coor-

«Qa



dinate tramsition functlon for a coordinate covering of the 2-sphere
M of the above form; the question of the existence of a complex
analytic structure on the 2-sphere thus becomes merely the question
of the existence of & complex analytic homeomorphism zy = fOl(zl) of
this form. In particular, the function sz = £,(z)) = 1/z; will
serve the purpose; and the 2-sphere with this complex structure will

be called the complex projective line, and denoted by P .

Tt should be noted that the complex line P as described
above is actually the one-dimsgsional complex projective space in the
usual sense; (see for instance W. V. D. Hodge snd D. Pedoe, Methods of
Algebraic Geometry, volume I, chepter V, (Cembridge University Press,
1953)). Thus let ¢ - €-0, considered as & multipliecative group;
and let c* act as & transformation group on the space @2- 0=
((tty) # (0,0)) By t2(Ept)) = (t65,88,) for te@® . The
quotient space (02 - _Q)/c'* is the one-dimensionel complex projective
space; each point of the projective space can be represented by a pair

of complex mautbers (Ql, §2) # (0,0) called the homogeneous coordinates

of the point, this representation of course being fer from unique.

The two sets
Uy = [(6g8y) € €2t £ 01/ €, Ul = ((L,t)) e €t £ 0

cover the projective space, and each cah be mapped in a one-one manner

onto the complex line € by & mapping
2o = L/by or oz = b/t -
Then {Uo,zo} and {Ul,zl} form & coordinate covering of the space,

exhibiting 1t as the Riemann surface P descri‘tied above.



One trivial property of the complex projective line deserves
note here. Consider an arbitrary Riemsnn surface M , and & holo-
morphic mapping f: M~ P . In an open neighborhood U of each
point p € M the mapping f can be described in terms of the homo-
geneous coordinates on P by £(p) = (fo(p),fl(p)) s where fa(p)
are holomorphic functions on U in the usuel sense. Then the guotient
fo(p)/fl(P) is a meromorphie function in U ; this function is clearly
independent of the choice of homogeneous representation, emnd so is
defined throughout the Riemann surface M . Conversely, any mero-
morphic function on M cen be represented locally as the quotient of
holomorphic functions, fo(p)/fl(p) ; and then £(p) = (fo(p),fl(p))
is & well-defined holomorphic mepping f£: M ~> P . That is to say,
the meromorphic functions on M are in natural one-to-one corre-

gpondence with the holomorphic mappings f: M —>P.

(£) The next simplest compact 2-mamifold is & surface of genus 1,
& torus; complex analytic structures are also easy to describe in this
case. In the complex line € select any two complex numbers wl’m2

which are linesrly independent over the reals; so w, are non-zero

i

complex. mmbers, and ml/w2 £ B . The numbers w,,w, generate &
subgroup A C €, nemely

A= (o + ngmelnln2 ¢ Z = sdditive group of integers}.

The quotient group G/A is a well-defined topological space, a sur-
face of genus 1. Tt is evident that @/A has a natural structure

inherited from that of € ; &8s coordinate neighborhoods in C/A teake

-1



open subgsets of € which contain no points congruent to one another

modulo A .

In discussing the sphere, a single complex analytic structure
was described; indeed, it will later be shown that there is a unique
complex structure on the sphere. In discussing the torus, there were
two arbitrary paremeters involved in the description of the complex
analytic structure, the two constants wl,w2 . It is natural to ask
whether there are different complex analytic struetures on the torus,
corresponding to verious choices of the perameters wl,m2 ; this is
indeed so, showing thusly that a glven topological surface may carry
a veriety of inequivalent complex analytic structures. Suppose then
that A = {nlwl + n2w2|n1 € Z)} and A' = {nlwi + nzwélni e B} ere
two lattice subgroups of € , with associated Riemann surfaces
M=C/A end M' = C/A' . If the surfaces M and M' are isomorphic,
there is a topologicel homeomorphism f£: M —> M' such that £ and
£ are holomorphic mappings. Now the mepping f£ 1ifts to a mepping
F from the universsl covering surface € of M = @/A to the wni-
versal covering surface € of M' = @/A' ; and in view of the defi-
nition of the complex structures on M and M' , the mapping
F: ¢ —> € must be a complex analytic mapping. Moreover, since F

arises from the homeomorphism £: G/A —> G/A' , it follows that

F(z + ml) Fz) + allwi + a.lzwé s
F(z) + 8y)9] + 805

for some integers 9.1'j ¢ Z , such that 8185, = B8y = +1.

(1)

F(z + w2)

Differentiating the' above eguations, F'(zwl) = F(z) end F'(z+w2) =

F'(z) ; so F'(z) is inveriesnt under A, h‘ince determines & holomorphic



function on M = C/A . Since CG/A is compact, it follows from
Lemma 1 that the function F'(z) must be constent on M , hence
Ft'(z) = c ; end therefore F(z) =cz + d for some constants c,d .
There 1s of course no loss of generality in translating the surfaces
so that d = 0 ; so F(z) = cz , for some complex constant c¢ # O .

Now from equations (1) it follows that

= 1 1 = 1 1 .
(2) €0 = By Bty Gy S By W) * By
The complex numbers w = ml/m2 and W' = wi/wé agsocliated to the

complex analytic structures of M end M' are therefore related by

8 + 8y
(3) TR,

13 such that a.lla22 - 312a21 =+ l . Conversely,

if w and w' are so related, there is a complex constant ¢ # O

for some integers &

such that (2) holds, and the function F(z) = cz then satisfies (1);
end therefore M and M' are isomorphic. Consequently, the Riemsnn
surfaces M = @A and M' = @/A' are isomorphic if end only if
W= ml/m2 and W' = wi/wé are related as above. The set of all
possible complex structures of the above form in & complex torus thus
correspond to all non-real complex numbers W modulo the equivalence
reletion (3) ;‘ﬂ for a more detailed deseription of the latter relation,
see for instance J. Iehner, Discontinuous Groups and Automorphic

Functions, Chepter XI, (Americen Mathematical Society, 1964).
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§2. Sheaves

(a) Sheaves have proved to be & very useful tool in the theory of
functions of several complex variables, snd have occeslonally been
used in one complex variable es well. For the purposes of an eventual
simplicity and of convenience of generalization, they will be used
systematically throughout the present discussion of Riemsnn surfaces.
However, no previous acquaintence with sheaves will be assumed here.
Those readers alreedy familiar with the gemeral properties of sheaves,
and with the cohomology theory of sheaves, can readily skipthis and
the following section.

Definition.l)

A sheaf (of abelian groups) over a topological
space M 1s a topological space ; , together with a mapping
i ,J ~3 M , such that:
(i) T is & local homeomorphism;
s J =1 J
(ii) for each point p € M the set p = T (p) C has the

structure of an sbelian group;

(iii) the group operations ere’ contimous in the topology of j .

The third condition in the above definition is, more explicitly,
the following. In the cartesian product J X J with the product

topology introduce the subset

Jod = lspsy) ¢ dxd frls e (s

IY’J‘.‘h:roughout this and the following section, the discussion will be
limited to sheaves of abelian groups; it is left to the reader to note
the obvious modifications necessery to the consideration of sheaves
of rings or fields, etc.
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with the topology 1t inherits from the imbedding 4 o 4 C I x J .
The mepping o o J —>‘.|2 given by (51;52) € Jo} —> 5,-5, e d
is well-defined; the condition is that it be continuous. In the sheaf
l , the mapping T J —» M 1s called the projection; and the set

,! - r'l(p) is called the stalk over p . Each stalk is an abelian

group, although different stalks may be ‘quite different groups.

As a simple example, let G be any abelian group with the
diserete topology; let J be the space j = G XM with the product
topology, and m: G XM —— M be the natural projection mapping.

Then J is a sheaf over M, called a constant sheaf.

"let M 4 —>M be a sheaf, and UC M be an open subset
of M. A section of the sheaf } over U is & contimuous mapping
£f: U~>J such that Toe f: U~>U is the identity mapping; note
that necessarily f£{p) e ‘?P = F‘l(p) for eny p € U . The set of
811 sections of & over U will be denoted by ru,d ). For sny
point s e J there must be an open neighborhood V of s in Af
such that

TV: V—>1U

is a homeomoyphism between V eand an open subset U (C M ; the inverse
map (1T|V)-l: U ~> ¥V is also a homeomorphism, hence is indeed a
section of J over U . Therefore each point s ¢ J is contalned

in the image of some section; and the images of ell such sections

form a besis for the open neighborhoods of s . As & comseQuence of
this, if f,'g er(U, 4 ) end if f(po) = g(po) for some point p_ €U,

‘then f£(p) = g(p) for all points p of some open set U' with



p, e U CU. Now, if f£,8¢ I(U, d ) again, the mapping
£XgpeU—> (£(p),g(@) ¢ Ixd

is & continmuous mepping from U into the subset dod C Jx} ;
the composition of f X g with the natural mepping jo} -éj B
nemely the mepping
t-g:peU—>2£(p) -g(p) e d,

is therefore also & section. That is to say, the set I'(U, d ) isa
group, under the pointwise addition of sections. The zero section,
the map p € U —~> OP € JP where 0p is the zero element of the
group ,XP , 1s clearly & section. In genmeral, it is rather difficult
to determine whether there are any non-trivial sections, that is, any

sections other than the zero section.

(b) In a sense, the sections of a sheaf determine the sheaf com-
pletely. This observation can be made more precise in the following
menner.

Definition. A presheaf (of sbelian groups) over & topological

space M consists of:
(1) & pasis {U,} for the open sets of the topology of M ;
(ii) & separate abelian group ,J o assoclated to each open set
Ua of the basis;
(iii) a homomorphism Pog’ "!e. — Jor associated to each in-
clusion relation chC UB , such that pwpﬁg = Poy whenever
u, C Us C U, .

To each sheaf j over M end basis {Ua} for the open sets
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of the topology for M there is a naturally associated presheaf,

which will be called the presheaf of sections of the sheaf 1 ; this

is the presheaf which assigns to the set Ua the abelian group

J a= I‘(Ua, J ) , and assigns to the inclusion UaC UB the restriction
mepping pog: I(Ug, of ) —> r(u,, 4 ) of sections over Up ‘to the
subset U, . Conversely, to any presheaf {Ua, P o poﬁ] over M

there is an assoclated sheaf, which is constructed as follows. For

each point p ¢ M consider the colleetion
U (2) = Wylp € Uy ;
this ‘set is partially ordered under inclusion. Form the disjoint

*
wnion J P=UUa€u(P) ja; and for any two elements fae ch’

p 1f there exists & set U, ¢ U (p) such

that U.NU, and = ..
hat U, C U, N Uy Pyofa = Pyp’s
exercise to verify that this is an equivalence relation. The set of

fﬁe}s, vrite £~ f

It is a straightforward

*
equivalence classes in ,J » will be denoted by ,f p" For any set Uoz
there is a natural mapping ppa: / o —_— JIJ , which assigns to an

*
element T, € J a its equivalence class in _J p° Again it is a simple

matter to verify that these mappings p induce on the set J D the

Qo
structure of an abelian group, in such a manner that the mappings ppa

are group homomorphisms. (The group J B constructed from the family
(4 ,) as above is called the direct limit group,

J » = dir. lim. j Qs for a more general discussion of this

Uy ¢ Y (p)
concept, see S. Ellenberg and N. E. Steenrod, Foundations of Algebraic
Topology, Chapter VITTI, (Princeton University Press, 1952)). The

space of the sheaf is defined to be the set
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P P
with the projection mapping T 4 —> M given vy 7( J ) =P Bs
a bagis for the open sets to define the topology of ,J take sets of

the form

gl =4, . v, Poalfe) C 4

for the various elements fa € } o (To see that these sets do form

the basis for a topology, it is necessary to show that for any point
s € [fa] n [fﬁ] C} there 1s an element f7 € 17 so that

B ¢ [fy] C [fa] n [fB] . Now if 5 € [fa] n [fﬁ] , end if p = 7(s) ,
then p e U, n Uﬂ end ppdfa = ppﬁfﬁ 3 by definition of the mapping
b, » there mist be & set U, such thet p e U, CU, NU, and

pmfa = pyﬁfﬁ . Therefore 8 ¢ [fy] C [fa] n [fﬂ] , 88 desired.) With
this topology, it is clear that the mapping J -—> M 1is a local
homeomorphism. Finally, to show that J is a sheaf, it merely remains
to verify that the group operations are continmuous. BSelect any point
(sl,52) ¢ f o and any open neighbérhood [£,] sbout S8, 5
end let p = 1r(sl) = 1r(32) . Further, select elements flﬂl e Jﬁl and
26, © Jﬁg such that Py (£1 ) =& emd ey (g ) =5, « Then

ppa(fa) = ppﬁl(flal) - ppﬁz(fzﬁz) ; 50 by the definition of the mapping
there must be & set U_ such that £.) = £ - f
Now under the mepping J o d —> J it follows that

([p7ﬁl(flﬁl)] X [p752(f262)])ﬂ dod is an open nei@b?rhood of

(51,52) which maps into [fa] , proving the contimuity.
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Sterting with a sheaf J » form the presheaf of sections of .:J
for some basis {Ua] for the topology of M . It is clear from the pre-
ceding construction that the associated sheaf of the presheaf of sections
of 4 is canonically isomorphic to 4 1itself. In this order, the two
constructions introduced above are thus inverse to one another. It is
not true, however, that these constructions are inverse to one another
in the other order; that is, th:“Zheaf of sections of the associated
sheaf to a given presheaf is not always isomorphic to the given preéheaf.
For example, a presheaf in which ‘Xa SZ for all a, and poﬁ is
the zero homomorphism, has the zero sheaf as its associated sheaf; and
the presheaf of sections of the zero sheaf sssociates the zero group

to each Ua . Clearly the problem is to characterize those presheaves

which arise as the presheaf of sections of some sheaf.

Definition. A presheaf [Ua, J o paa] over a topological
space M is called & complete presheaf if, whenever U0 = UB U‘3 for
a subcollection U0 , {Uﬂ} of the basis {Ua} s, the following two

conditions are fulfilled:
(1) ir £ ,g ¢ Jo are such that pg T, = Peoo for a1l U,
then fo =8, 5

(11) 1if f’3 € J p ore elements such that pyﬁlfﬁl = pyﬁzf’32

vhenever U, C Us NU, for any elements U, of the basis,

1 P 7

there is an element fo € Jo such that ..‘.”3 = pBofo for

all .
Up

Iemme 3. A presheaf [Ua, J o poﬁ} over & ‘topological space
M is the presheaf of sections of some sheaf over M if and only if

it is complete.



Proof. It is obvious that the presheaf of sections of any
sheaf is complete; the converse assertion is the one of interest. ILet
J be the associated. sheaf to the given presheaf. There is & canonical
homomorphism D:Ja - I‘(Ua, J ) defined by p(fa) = [fa] =

Up € Uappa(fd) )

for each set U, . Suppose firstly that p(fa) = 0, that is, that

It suffices to prove thet p is an isomorphism,

ppa(fa) =0 for ell pe Uy . Then for each point p € U, there must

exist a set Us such thet p e Uy C U, end paa(fa) =0 ., Since

these sets {Uﬁ} cover U, ,

presheaf that f, = 0 . Next, consider any section f ¢ I‘(Ua, d).

it follows from property (i) of & complete

For each point p € Ua there must exist a set U

B
and an element :E'B € Jﬁ such thet ppﬁ(fﬁ) = £(p) . The sections f

with p eUﬁCUa,

end [fs] coincide at p , hence in & full open neighborhood of p ;
50 by restricting U, further if necessery, pqﬁ(fﬁ) = £(q) for all
points 4q ¢ UB - 'The s&ts~ {UB] cover Ua , and obviously satisfy
condition (ii) of the definition of a complete presheaf; therefore

there is some element £, ¢ J o Such that paa(fa) = f. , hence such

f
g
that £ = [£,] . This suffices to complete the proof.

(e) Iet M be 8 Riemann surface, and {U,} be any basis for the
open sets in the topology of M . To each set Uy, assoclate the ring

@' U of functions holomorphic in Ua ; and to each inclusion relation
a

U, ( U, associate the natural restriction mapping o ..: (ﬁ — @ .

o B8 op UB Ua

Clearly {Ua, & } 1s a presheaf over M ; the associated sheaf

s P
u,’ "o
is called the sheaf of germs of holomorphic funections on M , snd will

be denoted by 0 . (For the purposes &t hand, it is ‘the additive



structure of the rings @Ua which will be considered, to obtain a
sheaf of ebelien groups. Actually, of course, (* is a sheaf of rings
over the space M , using the obvious modifications of the preceding
definitions. The ring structure plays a very important role in the
cese of holomorphic functions of several complex verisbles; for more

in this direction, see R. C. Gunning and H. Rossi, Analytiec Functions

of Several Complex Variebles, Chapter IV, (Prentice-Hsll, 1965).)

To interpret the stalk @-P of the sheaf & at a point

P € M, select & coordinate neighborhood U containing p and a
coordinate mapping z: U—> V( © such that z(p) = 0 . The con-
struction of the stalk @-P being local, it is sufficient to consider
the entire construction within the set VC € . To each open neigh-
borhood of O in V consider the ring of functions holomorphic in
that neighborhood. Two such functions are equivalent if they agree

in some smaller open neighborhood of 0 ; and the equivalence classes,

called the germs of holomorphic funetions at 0 , form the stalk @P .

To each function holomorphic in an open neighborhood of 0 associate
its power series expansion &t the point O ; equivalent functions
clearly determine the same power series, and every convergeht power
series arises from some unique germ. Therefore @P is isomorphic to

the ring @ {2z} of convergent, complex power series in the variable z.

Note that the presheaf [Ua, 6 0@] is obviously complete;

u,’ ®
hence with the natural isomorphism it is possible to identify

MUy, )= 0, . That is, the sections of the sheaf (¥ over any
[+

open set U(C M are identified with the ring GlU of funetions holo-

morphic in U . A similar construction, begimning with the multiplicative



groups @; of nowhere-venishing holomorphic functions on U leads
to the sheaf G-* of germs of nowhere-vanishing holomorphic functions;
again, in the seme manner, it is possible to introduce the sheaf MOf
germs of meromorphic fumctions on M , (a sheaf of fields, actually),
or the multiplicative sheaf m* of germs of meromorphic functions
not identicelly zero on M.

Considering merely the differentiable structure of M , and
the rings G ; or 6 U of infinitely differentiable or continuous
functions on open sets U M, leads in & similar manner to the sheaf
é ® of germs of Cc® functions on M , or the sheaf @ of germs of
continuous functions on M . Note that there are the natural inclusion

relations

8 cCée C ¢.

(a) Various-relations between sheaves over a fixed topologicel
space M are of importence in the applications. First, for a sheaf
d over M, let ECM be an arbitrery subset of M . The
restriction of the sheaf o to E is the subset T (8)C J , -
where T: d —> M 1is the projection mapping; the restriction, which
will be denoted by J |E » 1s clearly a sheaf over the set E . In
particular, for a point peM, d|p = Jp is just the stalk of
J over p . (For example, if M is & Riemsnn surface, then an
open subset UC M is also & Riemsnn surface, and its sheaf of germs
of holomorphic functions is Jjust (9-|U , the restriction of the sheaf

® over M to the subset U. If ECM is not an open subset,

the sheaf (J|E cannot generally be interpreted &s & subsheaf of the



sheaf of germs of conmtinuous functions on the space E itself; the

case in which E is a single point of M illustrates why.)

Agein let d ve & sheaf of abelien groups over M , and let
R CJ veasuset of d . Ten K is ;:alled & subsheaf of 4 if:
(1) R is an open subset of 4 ; and
(11} for each point p € M, KP = gn lp is a subgroup of jp.
Clearly ¥ is itself a sheaf of abelian groups over M , ité projection
mapping being the restriction to K of the projection mapping 7T of j .

4 /R 1is then defined as follows. For each

The quotient sheaf J

point peM let J JP/ KP be the natural quotient group;

b
and let 9 =y o, with the projection mepping T g —_— M

peM "p
givenby m(J ) =p . The natural mapping 4 —>J which
associstes to any element of J p 1its coset in OP = JP/ kp com-
mutes with the projJections 7 in J and :Lng . TIntroduce on J the
natural ‘quotient topology, defining a set U J to be open if and
only if q)'l(U) is open in J . It is an easy matter, which will be

left to the reader, to verify that ) is then & sheaf.

For example let M be a Riemann surface, and # ve the sheaf
of germs of holomorphic functions on M, as usual. Iet P = [pl, ...,pn}
be a finite mumber of distinct points on M , and for each open subset

UC M consider the set
R e @Ulf(pi) =0 whenever p, €U, i=1,...,n)

Note that each R U is & subgroup of (’U ; and that the groups RU}
for all the open subsets of M , with the natural restriction mappings,

form a presheaf over M . The assocliated sheaf is then & subsheaf



R C8 , ond this leads to & quotient sheaf J = @/F . To describe
this quotient sheaf, note that for a point p £ P necessarily
RP = &P , hence DP = 0 . However for a point P, €P, Kplc @P

is the subgroup consigting of those germs of holomorphic functions

1

which vanish at Py s or equivelently, the subgroup of those convergent
power series with zero constent term; thms =@/ kp =c,
LR RS ]
the latter ispmorphism being that whlch essociates to any power series
in @P its constent term. That is to say, the sheaf J will have
1
a trivial stalk (consisting of the zero group alone) at 811 points
p # P, and it will have stalk DP;c at the points peP. A

sheaf of this sort is sometimes called & skyseraper sheaf.

Now suppose that J and J  are two sheaves of abelian groups
over M , with pﬂction meppings o: J —>M and 110 —> M.
A mepping ¢: 4 —> 0 1s called & sheaf mapping if: (i) @ is con-
tinuous; and (ii) T o @ = 0 . The second condition implies that,
for any poinmt p e M, o JP) C DP ; so a sheaf mspping preserves
stalks. Further, for any f ¢ (U, 4 ) for an open subset UC M,
® o £ will be a continuous mepping from U into J such that
Ta (o £) =0 o £ = the identity; that is; Qo £ ¢ I'U, 7 ) .
Therefore the sheaf mspping ¢ yields en induced mapping
o:r(U, 4)~—>IU, 7Y ). Inpsrticular, since (£(U)} , for all
open subsets UC M and all sections £ e I'(U, 4 ) , is a basis for
the topology of 2 , the sheaf mapping is open as well as continuous;
and since the mappings ¢ and 7T are local homeomorphisms, so is ¢.

That is to say, any sheaf mapping is necessarily a local homeomorphism

between the spaces J and ) . The sheaf mspping @ is called a



sheaf homomorphism if it is & homomorphism on each stalk; the induced

*
mepping ¢ is then & homomorphism between the groups of sections,

called the induced homomorphism. A sheaf isomorphism is a sheaf homo-

morphism with an inverse which is also a sheaf homomorphism; the
notation J 2] will be used to indicate that the sheaves J end J
over M are isomorphic.
For exemple, considering again the sheaf (}Lover 8 Riemann

surface M, to each germ fP [ @i associate the germ
e(f,) = exp.(2m1 1) e (9-: . This determines a sheaf homomorphism
e: (SL—;- &* . Similarly of course, considering merely the sheaves
of germs of contimuous rather then holomorphic functions, there is &
sheaf homomorphism e: G — C‘ * .

’ For any sheaf homomorphism ¢: J —>J over & space M,
the kernel of @ 1s the subset of J consisting of those points which
mep into the zero element of any group :71: ; that is, the kernmel is
the subset q)-l(o) CJ where O ¢ I'(M, D ) 1is the zero section of J .
Since the zero section is an open subset of Jd , the kernel is clearly
& subsheaf of J . The image of ¢ is & subsheaf of J es well;
and it follows readily thet image(®p) = J /kernel(@) , where = denotes
isomorphism of sheaves. Given sheaf homomorphisms ¢: K —> . &and

'S J—;-J , the dlagram
will be called an exact sequehce of sheaves if the image of @ is

precisely the kernel of ¥ . Similerly, a longer string of sheaves

and sheaf homomorphisms will be called an exact seqQuence if for any
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two consecutive homomorphisms, the image of the one is precisely the
kernel of the other. In particuler, if O dehotes the trivial sheaf
with stalk the zero group at each point of M , a sequenge

o— 2> 3¥59 o0
is exact if and only if ¢ is an injection, (an isomorphism from K
to a subsheafi ofd ), V¥ is a projection, (a homomorphism with image
all of .7 ), and the kernel of V¥ precisely the image of 9 ; hence,
J 2 J/o(R) . Conversely, if R is a cubsheef of J the

inclusion mapping 1i: ® —> J is a sheaf homomorphism; and the

natural mapping @: 3 —_— J. / & 1is & sheaf homomorphism, such that
0> 1325 f/2 —o0
is an exact sequence of sheaves.
For example, on & Riemsnn surface M the subset ZC (A of
germe of holomorphic functions which take only integer values is a
subsheaf of @ isomorphic to the constant sheaf; and this is precisely
the kernel of the sheaf homomorphism e: d— a * introduced above.

*
This homomorphism e is a projection, since any germ fp € @P has

a holomorphic logarithm neer p . Therefore there arises the exact

sequence of sheaves
*
0—>Z% —> B8-25 @ —o0.

Similerly, comsidering the sheaves of germs of continuwous functions,

there is the exact sequence

0—>Z —> 2> % —>o0.



§3. Cohomology

(a) Iet M be a topological space, and M = {Ua] be an open
covering of M . To this covering of M there is associated a sim-
plicial complex N(?Z ) , called the perve of the covering J7 , and
defined as follows. The vertices of N(7Z) are the sets U, of the
covering. Vertices UO""’Uq spen & q-simplex o = (Uo""’Uq) if
and only if U n... an # ¢ ; the set Uy N .es an = |o| is called
the support of the simplex o . Iet .4 be a sheaf of sbelisn growps
over M. A g-cochain of YL with coefficients in the sheaf .4 is &

function f which assoclates to every q-simplex o € N(7UL) & section
(o) € I(|o|, 4 ) ; the set of all such g-cochains will be denoted by
cHYU,d ). Whenever £, gec X, d) , their sum

e+ge W, d) , vhere (£+g)(0) = £(a) + &lo) ; so cX(, d)

is an sbelisn group. There 1s also an operator

s: (M, d)— Cq+1('lﬂ , 4 ) called the coboundary operator,

) e N(2),

defined as follows. If fe CHM,d) and o= (Ugsveeslyy

then

a+l i
= = (-1) plolf(Uo,...,Ui_l,U1+l,...,U ),

(1) (8f) (Uo, .. .,UqH_) A o+l

where p|°| denotes the restriction of the section

) e I’(U N..nu, , Ny, 0N.. an+l)

It is clear that ©® is a group homomorphism;

f(Uo,...,U1 L ARTITINY .

to ol =UyN.ee N, -
and it is a straightforward calculation to show that &5 = « The
subset ZHUL, &) = (£ e eV, d)|of = 0} 1is a subgroup of
¥ , 4 ) celled the group of g-cocycles; the image

6Cq'l(7/l ,d)YCcH M, ) is called the group of g-coboundaries,



and is a subgroup of the group of cocyecles since &3 = 0 . The guotient
group
2%, 4 )ecH(m, d) zor g0

a(w,d3 )=
2(m, 4) for g =0

is called ‘the g-th cohomology group of UL with coefficients in the

shea.fj .
Iemma 4. EO(2,d)¥r(m d).

Proof. By the sbove definition, HO(W, £) =221, d) .
A zero-cochain f € C( M, ) is a function which assigns to each
set U e Ul a section £(U) e I'(U, 4 ) ; end its coboundary
f ¢ Cl('Ul ’ P ) is & function which assigns to each pair of inter-
secting sets U,U; « M a section
(5f)(Uo,Ul) = pU0 a Ulf(Ul) - on n Ulf(Ul) e r{u, N U, 4). 1f
8f = 0 , the sections £(U,) agree in each non-empty intersection
U0 n Ul ; hence altogether determine & section of . J defined over the
entire space M ; and conversely, the zero-cochain defined by
restricting a global section of ,X over M to the various subsets

Uo£ is a zero-cocycle. This suffices to prove the desired result.

(p) In order to have a cohomology theory asscciated intrinsically
to the space M , it 1s necessary to consider verious possible
coverings of M . A covering 'LP = {Va] is called & refinement of
the covering Y. = {U,} if there is & mapping u: W > M such that
v, C WV, for each Va e ) ; the mapping u is called a refining

mapping. The covering ')f, may of course be & refinement of W(_ by
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various different refining meppings. Notice that the refining mapping

induces a mapping
M Cq(W,J )gcq(T;J),

es follows. If fe CH{M,d ) and o = (Vo,...,vq) e X(UW ) , then
(uf)(vo,...,vq) = plclf(“vo"“’“vq) ; since

:DI n L LN 2 L LN
uv, N n W :)Vb n Vy # ¢, then (uvo, ,uvq) is a
g-simplex of N(V7 ) , and the mepping is thus well-defined. It is
clear thet u© 1s & group homomorphism, and that pd = 8 ; therefore

p determines a homomorphism
BN, d)—s4r,4q).

Temma 5. If W is & refinement of Y, emd if u: W —= UL

and V: ')[' éu are two refining mappings, then u* =v*,

Proof. When q = O , the mappings p': HO(ITZ,J )——>H°(T 54

and v*: Ho(vl ,d ) — Ho('l(' ,4 ) are both the identity mapping, in
view of Temma 4; so it is only necessary to consider the case q > 0 .
In this case, construct an associated 0: ¢3(M , d ) — cq’l(if )
as follows. Tf £ 0, d) and o= (VpeeesV ) e (V) ,
gq-1 3

define (ef)(vo,...,vq_l) = jfo (-1) plolf(pvo,...,uv sWaseees W, o ) .
Now whenever o = (vo,...,vq) e (' ) , observe that
(59f)(vo,...,vq)

q + j‘l i
= j§0 (-1)3 1 p[ifo (-1) pf(uvo,...,uvi_l,pvi+1,...,pvj,vvj,...,vvq)

q
+ T (-l)i+l

PE(HV g e v e s BV W 5 een, WV, WV qseeesVY, )}
12341 0 3P i-1 1 q

= Z‘, (- 1)J+1 pSE(uy ,...,uVj,vV yenesVV ) + vE(g) - pf(o) »
320 J q
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Therefore, if f e 2°(W, § ) so that f = 0, it follows that
vf - uf = 86f , that is, that vf and pf determine the same coho-

mology class. Therefore w* = y¥ ) as desired.

Now for any two coverings W , ¥ of M, write W< P if W
is a Yefinement of UL ; the set of all coverings is partially ordered
under this relation; and by ILemma 5 there 1ls a unique homomorphism
BN, 4 ) —> a2, ) whenever W< M. It 1s clear that
these homomorphisms are transitive; hence it is possible to introduce
the direct limit group

i, ) = air.lim. (M, 4),

which will be called the g-th cohomology group of the space M

with coeffisients in the sheaf 4 . (Recall that to define the direct

limit, introduce the disjoint union Ulll B(m,d) ; and for coho-
mology classes £ e H (U, d ), g e H(UW ,d ), write £~ g if
there 18 a refinement ¥ < W1 and W' < ) , such that £ and g

heve the same image under the natural homomorphisms

B0 ,d ) —ul (W ,d ) ama (Y ,4) -0 ,4).

This relation is an equivalence relation, and the set of equivalence
classes in the direct limit grouwp HY(M, d).) For each covering UL s
there is the natural homomorphism HY (W , d ) — 8, d ). Tt

follows immediately from Iemma 4 that
(2) o, 4 )5y, 3) .

It should be noted that for a constant sheaf such as %,
the cohomology introduced above coincides with the ordinary gech
cohomology with coefficients in the group Z ; (see S. Eilenberg and

N. E. Steenrod, Foundations of Algebraic Topology, Chapter IX,



(Princeton University Press, 1952).)

(e) Consider en exact sequence of sheaves of the following form,

over the space M :
o= gt 5 50.

For any open subset U M, the sheaf homomorphisms ¢,¥ induce
homomorphisms cp*,\lf* between the corresponding groups of sections,
and there results an exact sequence of groups and homomorphisms of

the form
R

o-ér(U,K)—i>r(U,J)—v—;P(U,3)-

Exactness this far is obvious, since @ can be consldered as an
injection of K as & subsheaf of J , and ¥ a&s the pessage to the
quotient sheaf; but in general the mapping V* will not have all oi:
r(U,J ) es its image. (For instance, let M be the anmulus
1< |z] <2 in €, and consider over M the exact sequence
0—>% — 05 §% >0 introduced in §2(d); the function
z e T(M, @*) cennot be written in the form z = exp. 2l £(z) for
eny f(z) e (M, § ) , since necessarily f£(z) = -é-i-'-i- log z and no
branch of log z is & single-valued holomorphic function on M .)
The cohomology theory considered sbove furnlshes a convenient measure
of the extent of the inexactness of the sequence of sections. How-
ever, it is necessary to have further restrictions on the underlying
topological space M .

(Recall that an open covering M = (U} of a topological
space M 1s called locally finite if each point p e M hes an open

neighborhood V which meets at most finitely many of the sets Uy -



A Heusdorff space M 1is called perscompact if every open covering has
a locally finite refinement. Any separsble manifold ie paracompact.

In defining the cohomology groups of a paracompact space, it is suffi-
cient to/consider merely the locally finite coverings UL » rather than
all open coverings, in the direct limit construction introduced sbove.
For further discussion of the topological properties, see for instence

J. L. Kelley, General Topology, (Van Nostrand, 1955).)
Theorem 1. If M is a paracompact Hausdorff space, and if
0—» RE> J¥5 9 50

is an exact sequence of sheaves of abelian groups over M , then
there is an e)ict sequence of cohomology groups of the form

*

o—>H°(M,'R)-i->-H°(M,/))J'LHO(M,9)—Ei-Iil(M,ll)J'i
o, 4 ) Yot 0 ) 2 2, R) —> ...

Proof. Iet UL = {U,} be a locally finite open covering of
the spsce M . For each simplex o e N(2L ) there is an induced
exact sequence 0O —> I‘(ldl, ) —(E-P'F(IUI, 4) —L I‘(|0|, 2);

@nd since the cochain groups are merely direct sums of the groups
r(|o]|, ) , there follow the exact sequences of cochain groups
0o—>c¥ 1, R) 2>y, d)L> X, ). Detining
PN, d)=vweH M, )CcHN,T), these sequences can be
extended to full exact sequences of the form
o—>cl(m,k)T>ch(n,d) LT (!, 0)—=>0. e
homomorphisms ¢ a:gd ¥ clearly commte with the coboundary masppings,

in the sense that @5 = 8¢ and V5 = &y ; there results an extensive

is’al



comutative diagram of the following sort, in which all the rows are

exact sequences of groups.

| J |
o=t n,2) st n,s) @ Yn,0)—o0
8| 8 i
o—> 3N, x)E-scln, 4)X—-st(n, 92)—=o0
al al 51
o—ctm, ) B>, 4) LT, 9) — o0

| ! !

Now it follows immediately from an examination of thils diagram that
for each index q there is an exact sequence of cohomology groups

q o, g v* =g
E(Nn,%)—=—r(n,L)->8(N,T ), vhere by definition
B(n,))=2%(n,0 )yt (,) am
Z N, ) =(eeTHM, D )]s =0} . Mappings

* =q q+1 .

5: H(MN,7 )=—>H (N ,%) are then constructed in this menner.
If fe Eq( M, ) is an element for which Bf = 0 , select an element
g ¢ Cq('IIZ,J ) such that Vg = £ ; then since ydg =BYyg =3f =10,
by exactness there must exlst an element h ¢ Cq+l( Ui, X ) such that

* .

Gh = 8g . Define & [f] = [h] , where [£] e BN U1, ) is the
cohomology class of £ and [h] e Hq+l( M, R ) is the cohomology
class of h .. Of course, it is necessary to observe that Bh = 0,
and that [h] is independent of the choices made in this construction,

namely, the choice of representative f in the cohomology class [f]



and the cholce 0f the element g ; this is straightforwerd, and will
be left to the reeder. Finally, another simple diagram chase, which
will also be left to the reader, shows that the resulting cohomology
sequence / veo —> BN U1, ) -i;l{q(m, 4) —ﬂi'ﬁq(n,o ) L*

¥*
Hq+l(w b 'K ) L Hq+1(m ] J ) —_— e is an exact Sequence-

Next, consider a refinement u: W' —> J1 of the covering VL.
There is & similer exact cohomology sequence for the covering M ; and
it is easy to see that the induced cohomology homomorphism u* com-

*, s* of each cohomology sequence.

mutes with the homomorphisms cp*, '3
(In particwlar, wEN(M,H )CHENAW ,D ).) Upon passing to the
direct limit, there then follows an exact cohomology sequence for the

space M,
* \lf* 5 +1
eo. —> 1M, R ) o uiy, L) X T 0) =M ) — ...

Up to this point, the regularity properties of the space M
have not been required; but the cohomology groups Ha(M, D ) remain
to be investigated. It will next be demonstrated that, for a para-
compact Hausdorff space M, ﬁq(M, D)= Hq(M, 9 ), which will
suffice to complete the proof. It clearly suffices merely to show
the following: given a cochain f € CHU , 7 ) , there exist
refinement u: ¥ —> J{ and & cochain g e ¢ ¥, d) , such that
uf = ¥g . Since M is paracompact Hausdorff, and hence normal, there
are open sets W, such that wotCUa and the W, cover M ; and
the covering VL cen be sssumed to be locally finite. For each point
P € M, select an open neighborhood VP of p sufficiently small

that:
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(1) vpC W, for at least one set W, ;
(ﬁ)if%ﬂ%#¢tM1%C%;md

(111) if o = (Uo,...,Uq) eN(J1) and pe o], (s0

necessarily VPC lo]) , then Py £(o) 1is the image

wmder ¥ of a seetion of J over VP .

For ea t t a set = 3
r each set V, selec se u(VP) UP ¢ U1 such that VPCWPC UP ;

this is always possible by (1), and then exhibits the set W' = (v}

as a refinement of Ul . For any g-simplex o = (VP ,...,VP YeW ),

o q
note that $ £ lol =v. N...nv. CW. N.ee NW_ ; since
P, S Py
V. OW_ # @, 1t follows from (i1i) that v. CU. for each i,
P, Py P, Py
hence that |o| C V. CU_ N ... NU_ = |uo| . Therefore
i Sl Py

pf(a) = py 42V ceoe,uV ) =py_1p, £(U_ ,...,U ) . However it

o E0Tp, e rhTp ) = PPy £y rucesy

[¢]

follows from (iii) that the restriction to vp of the section f(uo)
[¢]

elready lles in the immge of V , and this suffices to conclude the

proof.

(&) let Jd be a sheaf of abelisn groups over the topological
space M, end let I = [Ua} be & loeally finite open covering of

M . A partition of unity for the sheaf l subordinate to the covering

VL is a family of sheaf homomorphisms 1, 4 —> 4 such thet:

(1) na(,.lp)=o for all peM =~ U, ;

(11) Zana(s)=s for any s e J .

Note that since JJ{ is locally finite, it follows from (1) that the

sum in (i) is a finite sum, hence is well defined. A sheaf 4 is



called fine if it has a partition of unity subordinate to any locally
finite open covering-of M.

For exeaple, on any Riememn surface M , the sheaves ( and
(" ere fine sheaves. To see this, recsll that for emy locally

finite open covering ML of M there sre C° functions r. on M

o
such that ra(p) =0 for peM-U, and zd"cx(P) = 1 ; for a proof,
see for instance L. Auslander and R. E. MacKenzie, Introduction to
Differentisble Menifolds, (MacGraw- s 1963). The operation of

miltiplication by the ¢” function r clearly defines a homomorphism

o
Mo in the sheaf of germs of c¢® or of continuous functions, and

these homomorphisn}i are a partition of unity for the sheaf.

Theorem 2, If U= (U} 1s a locally finite open covering
of a topologicel space M , and 1 1s a fine sheaf on M , then
BEYVl,d4 )=0 for sl g>0. Hence, for any fine sheaf .d over

a peracompact Hausdorff space M, HY(M, d ) =0 for all q> 0.

Proof. let (n,} be & partition of wnity for the shear .J
subordinate to the covering Jl , end comsider an arbitrary cocycle
fez{m,S ), for >0 . For any fixed index Q and eny
(q-1) simplex o = (UO,... ’Uq-l) , the induced homomorphism n; on
sections yields a section T‘;f(ua’UO""’Uq-l) e r(u, n lo], 4 ) s
since 'rgf vanishes identically over |o| - U, 0 |o| , this section

can be extended by values O to determine a section
#*
ga(d) = Elclﬂaf(Ua,Uo,---,Uq_l) € F(Idl, } ) .

These sections then define a (g-1) cochain g, € CT™ (M, d ) . Note

that, for a g-simplex o = (UO""’Uq) ,

~L



q
i
izo("l) plclga(ci) ’ where Ui = (Uo,n.-,Ui_l,Ui+1,.uo,Uq) ’

8g,(0)

4 i *
ii‘-o(-l) plulElciI"af(Ua’Uo’""Ui-1Ui+1’""Uq)

n:f(c) - Elclﬁn:f - n;f(c) ,

recelling that f 1s a cocycle. This holds for 81l indices « ,
and ga(c) venishes identically outside the set U, . The cochain
g = 5,8, 1s well-defined, since U is locally finite, and

Bg = Zuq:f = £ , in view of the properties of a partition of unity.
Thus, axiy cocycle is cchomologous to zero, and Hq(?}l ;4 )=0 as

desired. This suffices to prove the theorem.

By applying this theorem, the cohomology groups can be
deseribed in the fellowing frequently useful mexnmer. A fine
resolution of a sheaf J of abelian groups over & topological space
M 1is an exact seduence of sheaves of abelisn groups of the form

' %

% 4
(3) 0= J = J,=— J;, =>4, — ...,

where the sheaves ,3 4 are all fine sheaves. For each of the sheaf
homomorphisms di ; there is the induced homomorphism of the groups

of sections over an open subset UC M,

ay: T, &) —>r, 4,00

but the corresponding segquence of these groups and group homomorphisms

is not generally exact.

Theorem 3. If (3) is a fine resolution of the sheaf 4 over

a peracompact Hausdorff space M , then
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10, d ) 2 (xernel d:)/(ima.ge d:_l) , for 9>0.

Proof. Iet X " C Ji be the kernel of the sheaf homo-
morphism di ; then the exact sequence (3) can be rewritten as the

following collection of shqrt exact seqQuences:

a
o= Jd = J, =X, —>o0,

d
o-->xi-—> Ji—-i—> 7<1+140, iz21.

A portion of the exact cohomology sequence associated to the first

of the above short exact sequences is as follows:
oo —> 710y, J;)) — 181y, X, —> 5w, 4 ) — 53y, L) — ...,

Since J o 1is & fine sheaf and q >0, it follows from Theorem 2 that
Hq(M, d 0) =0, If q=1, the formula of the present theorem follows
immediately from this exact sequence gince

Hq'l(M, ‘J(l) = HO(M, Kl) = (kernel dl) 5 vhile 1f q > 1, then
B, J) =0 and B, J ) TEVM, X)) . The exsct cohamology
sequence associated to the second short exact sequence above, for the

case i =1, contains the terms
e i I DI 732y, K,) > 5, X, = B4, 4> ...

Since "11 is fine and q>1, HY(M, Jl) =0, If q=2, the
desired result follows immediately, while if q > 2 , then
52 (u, A)) =0 8swell, so 592 (1, Ko) = 244, ¥ D M, L) .

Continuing this process, the desired result follows eventually.
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In many ceses arising in practice, a fine resolution of a
given sheaf appears naturally at hand, and the preceding theorem
provides & very useful approach to the problem of calculating the
cohomology groups; an illustration of this will be taken up next.

But before turning to the example, it may be noted that a fine
resolution can be constructed for any sheaf j , 80 that the results
of the preceding theorem can be applied theoretically to an arbitrary
sheaf. For sny sheaf J , and any open subset U(C M, let j; be
the set of all mappings f: U—>_§ such that 7o £: U —> U is
the identity on U ; for emphasis, note that the mappings f are not
required to be continuous. The collection of these groups ,X; s
together with the natural restriction msppings, form a complete pre-
shea.f:‘ over M ; the associated sheaf ,.8* will be called the sheaf
of discontinuous sections of J « It is clear that 1* is a fine
sheaf., TFor given any locally finite open covering U= (U} of M,
select some subsets K, C U, so that X, N Kg = § for a# B and
UKy =M ; and define a mepping 7, J* — ,X* by putting na(s) =8
if seXy, na(s) =0 if s ¢ K, + ‘It is easy to see that these
maps 1, &are sheaf homomorphisms, and they form a partition of unity
for J *, Furthermore, there is a natural injection mapping

* *
J — J7 . Nov, to construct the fine resolution, put J 0= 4 ;

*
put jl=(JO/J) ; and so on.
(e) For an example which will be of some use later in the present

discussion, consider a commected open subset M of the complex line

€ . Introduce on the space ¢ ;2 the first-order linear partisl
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" @ifferent ial operators

2 L2 .42 H2v1g) .
I 9z T 2'0x oy’ "‘ “Smtiy -
Note that the Cauchy-Riemann equations for a complex-valued function
f can be written 0Of/dz = 0 ; that is to say, given a function
-]
feGM, then f € &M
£ —> 3£/37 is a homomorphism from the ring ( , to itself; and

if =nd only if Of/dz = O . The mspping

hence this mapping induces & sheaf homomorphism
3 " — 4"

The Cauchy-Riemenn cpndition can then be interpreted as the assertion
that the kernel of tiis homomorphism is precisely the sheaf (3 of
germe of holomorphic functions on M ; thus there is an exact seQuence
of sheaves

0—> 0 — 2° 25 6% .
The sheaf @ * is & fine sheaf over M » 88 noted earlier; so this
provides part of a fine resolution of the gheaf @', and raises the

question of whether this can be extended further as a fine resolution

of @.

Temma 6. Iet g € G; , and let D be & comnected open
subset of the complex line © such that D is compact and DC M.
Then there exists a function £ e c; such that 0f(z)/oz = g(z)

whenever 2z €D .

Proof. Select a ¢” function r on the complex line @
such that r(z) =1 for zeD, r(z) =0 for 2 eC-M, and

r(z) # O only on a compact subset of € . The function

0=



n(z) = r(z)g(z) for zeM, h(z)=0 for z € €-M,

is then & C function on the entire complex line, coincides with
the given function g on the set D M, and vanishes outside a

compect subset of € . Now put

#(2) = gy [fgnlz+t) L3

here the complex differential form notation is used, writing
at = &t + 1an if L =t + in, so that at ~ df = - 21 d¢ ~ dn , and
thus df ~ df is (-2i) times the ordinary plane mesmsure. Note

that in terms of polar coordinates (r,0) , writing ¢ = reie s it

ie

follows that (dt~df)/t = (-2irdr ~ a6)+/re ® = -21e™1%r ~ a6 , ama

hence £(z) is cleerly & well-defined smd € function in the entire

complex line € . Differentiation yields the formula .

or _]_.__” dh(z+t) a;.\d"g'=__1_” dh(z+) at A daf
S oieT & 4 2m 'C T o <

1 9 /h )
=§-ﬁffc§f-(i§i§-)dc~dt.

Now fix the point 2z € € . Select a @isc A centered at the origin

end darge enough that the funetion h(z+f{) vanishes identically for
t e €C-A; and a disc Ae centered at the origin and of redius €

smsll enough that Ze CA . The boundary of A will be called 7,
and the boundary of Ae will be called 7(—: ; here, 7 sand 7e are

cireles about the origin, with the positive orientation. Then

r:zvm.E = 1im Jf

_B_h(z+§))d ~ aF .
2 es0 OB B'E( 3 ¢ €

and applying Stokes! theorem, and recalling that on the portion 7 of

-



the boundary of A'Ae the integrand vanishes identically, secure
that

oF . h(z+t)
2T = = 1 at .
9z ¢ —l»mo fye 4 :

i
Parsmetrize the circle 7. by writing ¢ = ee 0 y 0<e<ar, so
2T
2mi a--f = m [, o n(z + e1%)1a0
9z €=0
2T

] n(z)ide = 2mi n(z) .
6=0

Therefore £(z) is the desired function, and the lemma is thereby
proved.

As an immediate consequence of this lemms, if g is the
germ of a ¢ function at any poilnt p € €, there exists & germ £
of & C function at the point p such that 3f/dz = g . Conse-
quently the following is an exact sequence of sheaves of abelian

groups
- -] 6 - -]
60— 00— ("2 ("—0 .
Considering the associated groups of sectiomns, it follows immediately
from Theorem 3 that

Y, 8) ¥ oM, 67 /21, ¢ ),
H (M ) = (M 6)/a_z_r(M Y, and

() e
H'(M, 8 ) =0 for ¢>2.

In fact, a slight extension of the above lemma leads to an interesting

and useful result.

Theorem 4. Iet M be & connected open subset of the complex

line, and g € Gu

M . Then there exists & function f € 6; such

2o



that 9f(z)/dz = g(z) for all z e M.

Proof. ©Select a sequence of comnected open subsets Dn Cwu
with the following properties:

(1) D 1is compact, end DnC D13

(11) U;=1 D =M;

(1411) eany function holomorphic in D , can be approximated

1
wniformly well on Bn_2 C D, _, by functions holomorphic
on D .
n
(The last condition is an approximation theorem of the Runge sort;
to see that this construetion is possible, see for instance E. Hille,

Analytic Function Theory, vol. II, pp. 299 ff., (Ginn and Co., 1962).)

Next, by induction on the index n , observe that there is a

sequence of functions fn with the following properties:

(rv) £, isa ¢® function in D j
(v) Bfn(z)/B'i =g forell zeD ;

-1 -
(vi) £ (=) -2 ,(2)| <2 for all z €D, .

To see this, suppose given the functions fl"“’fn-l , for some

index n> 0. By lemma 6, there is & function h e ¢, such that
ahn(z)/a'z' = g(z) whenever z € D, . Incase n=0 or 1, there
is nothing further to show. In case n > 2 , the functions hn and
£

o0 —
- = - =0
el ore both C in D , . and B(hn(z) fn_l(z)/az g(z) - g(z)
for z €D , ; that is, hn(z) - fn_l(z) is holomorphic in D, -
There exists a function h(z) holomorphie in D such that
|hn(z) - f (z) - n(z)] < 2™ por.8ll z €D ., , as & consequence
n-l n-2

of the spproximestion property (iii) above. The function

fn(z) = hn(z) - h(z) then satisfies the desired conditioms.



Now for eny point z e M, the sequence {fn( z)} converges
10" some limiting value f(z) . Indeed, for ell points z e D, 3
[- ]

£(z) = fn+2(z) + m=!z;.+2 (fm_l(z) - £ (2)) .

-m .
Sinee |t .(z) - fm(z)l <2™ for zeD CD m> m2 , by (vi),

2 2
the series is absolutely uniformly convergent in Dn ; and since the
individual terms of the series ere holomorphic in D by (v), the
sum is slso holomorphic. Therefore £(z) is C° in D, ; and
32(2)/3z = afn;ﬁ‘(z)/a; =g(z) in D by (v). This suffices to

conclude the proof.

Oorollary. If M is & connected open subset of the complex

line €, then
E(M, ©) =0 for a>1.

Proof. This result is an immedimte consequence of formula (k)

and the preceding theorem.

(£) The cohomology groups of a space with coefficients in & sheaf
have been defined as direct limits of cchomology groups of coverings
of that space. It is natural to ask when the cohomology of the space
can be read directly from the cohomology of some covering; and the

answer 1s provided by the following result.

Theorem 5. Iet J be a sheaf of abelian grrups over & para-

compact Heusdorff space M, and U

(Ua] be an open covering of M

such that

1 (lo], J) =0 forell ceN(P) eama g>1.



Then
Hq(M;J):Hq('IIl,J) for all ¢ > 0.

Proof. BSelect & fine resolution

d

(5) o—>J—>JO-°—>jlil—->j2i2—>...

of the sheaf J over M . Then for the induced homomorphisms
* .
ay: T, J ) —> 10 4, ), 1t follows from Theorem 3 that
* *
(M, J ) ¥ (kernel dq)/(image dqll) for 811 9> 1 . For suy simplex
o e (¥ ), the cohomology groups H(|o|, d ) are determined simi-
larly by restricting the resolution (5) to |o| ; but since
Hq(lcl, d ) = 0 by hypothesis, it follows that the sequence of

sections
*® *

4

a
0 —>1(fol, § ) — r(lol, &) 2> r([o], £,) =+ ...

corresponding to (5) 1s actually an exset sequence. Since further
the cochain groups are merely direct sums of groups of seetions over
the various simplices of N(W ) , there follows an exact seQuence

of groups of the form
* *

q q . a &y
(6) o—>c(UN,d)—>c(U, JO)-——>c(m, 4)) = ...
The coboundery maps commmtte with the homomorphisms of the exact
sequence (6), so that all of these sequences can be group together

in the following commtative diagram:



(7 0 0 0 0

! b, ! !

%*
a a
0 —s (M, § ) —> (4, 4,) 2 s, 4) 2—sr(y, d,) —

| | | }

d* *
0> M, ) >, JY 2 Am, 4 2s (0, 4) >

J of . sl 9]

4 d
o—>c(M, d)—cim, 4) 2>, 4) 2>cMm, 4,) —
o 0 d* o o
o—>c2(vz,,x)\—>c2<m, A9 25 Fm, 4) 35 F(m, 1) —>
! 1 } !

A1l of the rows except for the first are exact, from the exactness of (6);
and the measure of inexactness of the first row, in the obvious sense,

is the cohomology of M . Since all the sheaves J 4 Gare fine, all of
the colums except the first are also exact seduences, by Theorem 2;

and the measure of inexactness of the first colum is the cohomplogy

of the covering J] . The desired result follows immediately from &

diagram chase through (7); the defails will be left to the reader.

As a terminologicel convenience, a covering )l of the space
M which satisfies the conditions of Theorem 5 wlll be called & leray

covering of M for the sheaf ,X .

Corollary l. If M and 7—;" are leray coverings of a para-
compact Hausdorff space M for a sheaf 1 , 8nd u: V — UL is a
refinement, then the induced mspping

*

weE(M,4) =Y ,4)



is an isomorphism.

Proof. The natural homomorphisms w: H( 71 , 4)— B, 4)
and v: Hq('r s 4) -Q'Hq(M, d ) eare isomorphisms, by Theorem 5;

and since v o u* =1u, it follows that necessarily u* is an iso-
morphism.

Corollary 2. If Yl is an arbitrary open covering of & pera-

compact Hausdorff space M , the natural mapping
w B (W, ) —>1m J)
is sn injection, {i.e., has kernel 0).

Proof. For an arbitrary open covering Ul of M there corre-
sponds a commttative diagram (7); the colums are all exact, except
for the first colum, but without the hypothesis that Ul is a leray
covering, the rows need not be exact beyond the second place. How-
ever, & diasgram chese shows that it is still possible to conclude that
the mepping Ho(M , 4 ) —> E(M, J) 1s en injection; details sgain

will be left to the reader.
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§4. Divisors and line bundles

(a) One of the main approaches to function theory on Riemann
surfaces involves the study of functions from properties of their
zeros and singularities. The sheaf maechinery developed in the pre-
ceding two sections proves quite useful here. On a fixed Riemamn
surface M , consider the sheaves ﬂ* of germs of nowhere-vanishing
holomorphic functions end M of germs of not identically vanishing
meromoyphie functions; in both cases the group structure in the sheaf
is miltiplicative, and (L C M . The quotient shear M = M’/ &*

is called the sheaf of germs of divisors on the Riemann surface. A

section of the sheaf [9‘ over a subset UC M will be called a
divisor on the subset U . Note that a germ of a divisor at a point
p € M, that is, an element of the stalk ﬁ} » 18 an equivalence
class of meromorphic fumctions, where two meromorphic functions are
considered as equivelent when their quotient is holomorphic and no-
where vanishing; thus an equivalence class consists of all the germs
of meromorphic functions having the same order (the seme zero or
pole) at the point p . In this semse, divisors merely furnish a

description of the zeros and singularities of meromorphic fumctions.

In the case of a single complex variable, the sheaf La-ha.s
en alternative and mich simpler description; end this simpllicity is
one of the distinetive differences between the function theory of
one and of several complex variables. Tor any germ f € m; ’ _'bhe
equivalence class of ,f in @p is described wniquely by the order
v,(£) of the fmction f &t the polnt D ; the stalk Lap = 7}7;/ 0:

-L8.



is therefore paturally isomorphic to the additive group of the inte-
gerss (Recall that vp(f'g) = vp(f) + vp(g) , 8o that the multipli-
cative structure in m: corresponds to the additive structure of
the orders vp(f) € %.) To describe the topology of = M/ a* ,
recall that such & Quotient sheaf is alweys topologized by defining
the images of sectioms of m* over a basis of the open sets of M,
as a begis for the open sets of 4 « Now for sny open subset U and
eny meromorphic fumction £ e I(U, W) , the imege set in & is the
divisor of the fumction £ ; and the importent thing to note is that
the order of a meramorphic function £ 3is non-zero only at a discrete
set of points in U . Thus an open set in A w111 consist of an
integer associated to the points of an open subset U(C M, in such
a manner thet non-zero Integers appear only for a discrete set of
points in U . Tt is thus clear that the sheaf &J can be descrived
as follows. To axy open subset U, (M associate the additive group
.@a of all mappings V: U, —> Z such that V(p) # 0 only on &
discrete subset of Ua 3 the group structure is of course the point-
wise addition of the functioms. If UB C U, , the patural restric-
tion of such functions from Ua to U’3 is a group homomorphism

pw: 'ﬁa —9,08 e« This defines a complete presheaf over M, and

the associsted sheaf is just the sheaf [,0. of germs of divisors.

This latter description will genera.]_'l,y; be used henceforth. Note

that, from this description, it is obvious that () is a fine sheaf

over M ; the details of the verification will be left to the reader.

As for notation, divisors will generally be denoted by German

script 4 , nemely, .49' « To describe & divisor 49 e (U, 19) »



it is of course sufficient to give the orders (the integers) at only
those points of the discrete subset of U where the order 1s non-

zero; thus divisors will be written
3= I, v;°pyy vhere V; €% p; €U, and U p; CU is discrete.

*
For & meromorphic fwnction £ e I'(U, M) , the divisor of £ will

be dencted by 3 (f) ; thus

$(e) =2, v, (E)p,
where the sum can be restricted to the discrete subset of U con-
sisting of points &t which vp(:f') £ 0. Note that
S (£g) = 3(2) + J(e) ; end that J (£) is not defined for the
fumetion f =0 . The divisors over U c&n be given z partial order-

ing by defining

3=z, v,°p, 20 provided v; 20.

i
Note then that holomorphic fumetions f over U are characterized
by the condition that 9 (£) > 0 ; and more generslly, 4 (2) > ,49(3)
if and only if £/g is holomorphic. Divisors A such that 8 2 O

will be called positive divisors.

The mepping which asssoclates to a meromorphic function £
3
1ts divisor 4) (£) 4s Just the metural homomorphism 4 : W —> [
*
from the sheaf Y| to ite quotient sheaf; this can be described by

writing the exact seQuence of sheaves

(1) 0—> A% L5 M*Lﬂ—éo,

where 1 is the natural inclusion mepping. (The notation O will

always be used for the trivial sheaf, whether the group structure of



the stalk is considered additive or multiplicative.) Corresponding
to this sheaf sequence over M is the familiar exaet cohomology
sequence, in which sppears the homomorphism
,.5*: (M, 'm*) ~>TIM, ). Anelement A eI(M, £) isa
divisor defined over the entire Riemamn surface M ; while an element
in the image of ,‘9* is the divisor of a meromorphic function
defined over all of M . Thet there exist non-trivial divisors
defined over a1l of M, or eguivalently that I'(M, &) # 0, is
completely obvlous; but thet there exist non-trivial meromorphic
functions defined over all of M, or equivalently that I'(M, 1) # C,
is far from trivial, is indeed one of the basic existence theorems of
the subject. Thus the question of whether or nob the mepping o
is onto 1s one of some interest. In a special case, the answer is
Immediete.

Theorem 6. (Weierstrass' theorem) If M is any connected
open subset of the complex line @, the following is an exact

sequence of groups:
*, 1 % A
0—>IM @) —>rM, M ) —>TM ) —>o0.
Proof. The exact cohomology sequence corresponding to the

exact sheaf sequence (1) begins as follows:
0o—>r, 07) —> r(, M) — r, &) —->5m ) — ... ;
therefore to prove the theorem, it suffices to show that
1'%, @) = 0. Recalling the exect sheaf sequence
0>z — 42 8" = 0, when e(f) = exp. 2wif ,
there is an associated cohomology seduence, which includes the

segment



(M, 8 ) —> 1, 87) —> Pn,z) —> 21, 4 ) .

Now by the collorary to Theorem &, Hl(M, a4) =H2(M,@)=O; s0
that Hl(M, 61*) = HE(M,Z) . But since M is e non-compact two-
dimensional menifold, H-(M,%) = O , and thevefore H-(M, 87) = 0,
as desired. (See the topological eppendix for a discussion of the
assertion that H-(M,Z) = 0 .)

Remarks. The corresponding theorem holds for an arbitrary
non-compact Riemann surface M ; the only result needed is thet
Hl(M, a)= HE(M, ) =0. (For the proof, see for instence
R. C. Guming and H. Rossi, Analytic Functions of Several Complex
Varisbles, p. 270, (Prentice-Hell, 1965).) The theorem implies that
an arbitrery divisor on M 1is the divisor of a global meromorphic
function on M . The Welerstrass factor-theorem gives an explicit
representation for & function with the preseribed divisor; (see for

instence L. Ahlfors, Complex Analysis, pe 157, (McGraw-Hill, 1953) ).

For compact Riemann surfaces the preceding theorem does not
hold et ell; we shall see eventually that H(M, @ ) £0. An
investigetion of the precise extent to which the theorem fails will
be one of the main topics of considerstion. A few trivial obser-
vations and further definitions asre in place here. Recall thet the
sheaf S of germs of divisors on a Riemsnn surfece was noticed
above to be a fine sheaf; hence by Theorem 2, Hl(M, M)=0.
Therefore the exact cohomology sequence essocileted to the exact

sheaf sequence (1) has the form

*
(2) 0 —> r(M, a*)—ir(m,m*)LP(M,ﬂ)—i;

£y, 4% 25 2o, ) 0.



The quotient group
A(M) = 1(n, 8)/ 87r(w, M)

is really the memsure of the extent to which Thecrem 6 fails to hold;

and in terms of that group the exact sequence (2) can be written

(3) 0 —> A(M) — 5(m, 6%) — 5L(u, M) — 0

As o metter of terminology, the group I'(M, &) will be called the

group of divisors on M . Two divisors oJ JE er(M, [0) will be

1)
called linearly equivalent, written ’“01 ~ na-

if their difference

5 s
1s the divisor of & meromorphic function on M , that is, if

.91 - "9'2 = 3(£) for some £ e Iy, ’m*) . This 1s an equivalence
relation, is indeed the equivalence reletlon corresponding to the
homomorphism A in (2); in particuler, the image of 4 ¥ 1s the
group of divisors linearly equivalent to zero. The group '.L‘&‘(M) is

called the divisor eless group on M , and is the group of linear

equivalence clesses of divisors on M . The exact sequence (3) will
leter permit a rather complete description of the group A(M) , and
thus settle the question of the extent to which the Weilerstrass

theorem holds on compact Riemamn surfaces.

() In the further discussion of these questions, one is led in
2 very netural mamner to investigate a special class of sheaves. To
introduce these sheaves, consider the group gt (M, (9—*) , which

appeared notébly in the sgbove discussion. This group will be called

the group of complex line bundles over M ; and a cohomology cless

*
EeH(M @) will be called & complex line bundle over M .




(The terminology arises from sn interesting geometric interpreteation
which cen be given to the elements ¢ e H- (™, () j this geometric
interpretetion is totally irrelevent to the purposes at hand, although
it is not wncommonly injected into the discussion of these topics,
and will be ignored here. The interested reader is referred to
F. Hirzebruch, Neue Topologische Methoden in der Algebraischen Ceo-
metrie, (Springer, 1956).)

For eny complex line bundle ¢ € Hl(M, d’-*) , select a basis
n = {U,} for the open sets of M, and & cocycle (goﬁ) € Zl(lll , d—*)
representing that cohomology class; since bases are cofinsl in the
open coverings of M , there always exists such a representation, The

elements E are holomorphie, nowhere-vanishing functions defined

op
in the open sets Uy n Uﬁ , Bnd the cocycle condition asserts thuat

. = uv,.nNu,NU. . To h
Eop(®) * Eg, () 8 (P) vhenever p e U, NV, NT, each open
set Uy e UL associate the growp o o = [(Uy &) of holomorphic
functions in U, « To each inclusion relation Uﬁ C U, sssociete
the growp Bomomorphism pp: 4y~ 4 o » which sssociates to a
function f € Ja = I(Uy, & ) the function pﬁa(f) € ,Jﬁ =rU, &)

defined by

(paof) () = top(p) = £(p) for p eUaCT, .

Note thet vhenever U, CU;CU, and £edy, then (p,o(0p f))(p) =
= £,5(0) + £ao(P) e £(p) = £,4(0) < £(p) = (P, )(p) for &l peU, ;

that is, Therefore {1 , ch’poqs} is a presheaf

98B0 = Py *
over M , which is readily seen to be & complete presheaf; the associ-

ated sheaf is called the gheaf of germs of holomorphic eross-sections

of the line bundle £ , and will be denmoted by (L(t) . It ise




straightforward exercise, which will be left to the reader, to show
that the sheaf @ (&) 1s defined independently of the choice of co-
cycle representing the cohomology class £ , that is, that the sheaves
constructed in terms of two cocycles representing the same cochomology
elass are isomorphic sheaves.

Since the above presheaf is complete, there is a natural
1dentification I(Uy, @ (t)) = 4= r(U, &) . It is then clear
that an element f € I'(M, & (¢)) corresponds to a collection (£} >

where £ € I‘(Ua, @) end
(%) £ (p) = gaﬁ(P) -:Eﬂ(P) whenever » € Uy N Uy ;

thege sections of & (&) will also be called holomorphic cross-sections

of the line bundle € . Note that the set of all such sections has

the structure of a complex vector space, as well as just that of an
sbelisn growp; snd that (= @(1) , vhere 1 e (M, &) is the
trivial line bundle.

The construction Just deseribed could have been carried
through just as well for the groups J c'z = U,y M) ; the homomor-
phisms Pay are well defined, as ebove, and the collection
(h, d &’puﬁ} 1s again & complete presheaf. The associated sheaf

will be called the sheaf of germs of meromorphic cross-sections of

the line bundle ¢ , and will be denoted by 7Y (t) . The elements

£ er(M M (k) correspond to colleetions {f,} , when the functions

f are now meromorphie Punctions satisfying the relations (4); such

o
sections will also be called meromorphic cross-sections of the line

bundle & . Or, in the same manner, using the groups

45, =Ty, £7) , there arises a sheaf (&) which will be called



the sheaf of germs of ¢” cross-sections of the line bundle § .

The sheaf { “(&) is of course always & fine sheaf, an observation
which will be of use later.

For a cross-section f e I'(M, M‘(g)) » the order of £ st a
point p is & well-defined integer vp(f) 3 for defining
vp(f) = vp(fa) when p e U, , &nd recalling that the meromorphic
functions (f,} satisfy equations (L) where ¢ 8re holomorphic
nowhere-venishing functions, 1t follows that vp(fa) = vp(fﬂ) when-
ever p € Uot n Uﬂ » Note that for any section f which is not
identically zero, the order is non-zero only on a diserete set of
points; hence to the section f there is associated a well-defined
divisor

B2 =2,y v()p,

called the divisor of the cross-section £ € I'(M, WM (8)) . Then

r(s, @(t)) C (M, M(t)) =ppears merely as the subgroup of mero-
morphic cross-sections of the line bundle ¢ having positive divisor,
that is,

r(M, @(e)) = (£ e o, M(ed] A(£) 30} .

One further general remerk of importance is that, for any line

budle € e HY(M, 87), t=1 (the trival line bundle) if and

only if there exists a cross-section f e I'(M, @ (¢)) such that
d(£)=0. For A (f) = 0 means that the fumctions ({f,} are
holomorphic and nowhere-veanishing in U, , sad from equstion (%) they
form & zero-cochatn in (M , l]l*) having ¢ 8s its coboundary,

go that B = 1 ; conversely, 3f £ =1, then I'(M, §(¢)) =M, 0 ),

and this contains the non-zero constant functions. Of course, in a



*
parallel manner, for & cohomology clsss £ € Hl(M, m), £=1 if
and only if there is & cross-section f € I'(M, M(&)) which is not
identically zero. Recalling the exact sequence (3), every element

*
t e Hl(M, M’) can be represented by an element of Hl(M, @-*) 3
*
therefore one cen assert that on snmy Riemssm surface, Hl(M, m)=0

if and only if, for every line bundle ¢ € ui(m, & *) , (M, M(e)#A0.

The vanishing of the cohomology group H-(M, M) is therefore
equivalent to the fundamental existence theorem for Riemsmn surfaces,
namely, the theorem that every line bundle has & non-trivial (not
identivally vanishing) meromorphic cross-section; and this is also
of course equivalent to the sssertion that every line bundle is the
line bundle of a divisor on the surface. '

To eny divisor al € I'(M, & ) +there is associated by the
exact sequence (2) a line bundle 8% 9 < }ll(M, &*) , and hence also
‘the sheaf dl(&*,g- ) of germs of holomorphic cross-sections of that
line bundle; to simplify the notation, set (L (dJ ) = A(5 & ) .
Now the sheaf ( (8 ) hes mnother interpretation of interest as
well. To the divisor A sassociate & subsheaf @m (4 )YCM ae-

fined as follows. For any point p e M let
@M(.Q)p={femp|ei'bher £f=0 or J(£)> 4 near p};
amd put O, (8 )=V, On (&), - It is clear that each

0, (4),C M, is & subgroup, and that (p (4 ) C M 15 an

open subset; hence @m (,J- ) is & well-defined subsheaf of 'n/) .

-

Temma T. The sheaves (@( 4 ) and CVM(,J ) are canonically

isomorphic.



Proof. It is necessary to examine the homomorphism 8* in
the exact sequence (2) a bit more closely. For the given divisor
Jder(M ), it follows from the exactness of the sheaf sequence (1)
that there are open sets {U,} forming e covering Yl of M, end
meromorphic functions 4, defined in the various sets U, , such that
J(a,) = 41Uy . Then in each intersection U, N Uy the function
-E'oqs = da/da is holomorphic and nowhere~venishing; snd the collection
(goﬁ) of all such functions define the line bundle
t =8 ¢ H'.L(M, a *) « (The functions (da) form a zero-cochein in
(n, ’M*) which maps onto the zero-cocycle Af €2°(M , U) ;
and the functions (gaﬁ) form the one-cocycle which is the coboundary
of the cochain (dcx) ; recall the proof of Theorem 1.) To each germ
tel,(d )P C 'h'&’ and to each open set U, containing p asso-
ciate the germ f,=£/d, e W . Stnce d(z) = 4(2) - d(e) =
Ae) - B >0 near p, the germ £ will necessarily be holomorphic
et p; and if p e U, f Up » then £, = f/da = f'gaﬁ/dﬂ=§aﬁnfﬁ. There=-
fore the functions (fcx) define the germ of an element in

6 (&), = @(d ), . This defines & mapping from @ () to 4(J),
which is resdlly seen to be an isomorphiem, and thus completesthe
proof.

Since the sheaf @ (A ) 1s defined in terms of holomorphic
functions, it is the easier to handle smalytically end will pley the
greater role in the present discussions. However, in view of the
isomorphism @ (4 )= ﬂm(,ﬂ ) , any results sbout the sheaf (@ (4 )
carry over to results sbout the sheaf (), (J ) ; =nd this re-inter-

pretation frequently leeds to interesting statements. For exemple,



r(m, @M( & )) is the vector space consisting of those meromorphic
funetions f defined on the entire Riemsnn surface M such that
J (£) > 8 ; =and the dimension of this vector space is a mumber of

some interest.

(e) For a compact Riemenn surface M the spaces Hq(M, o-(t))
are finjite-dimensional complex vector spaces for sll dimensions g >0
end any line bundle & € H(M, 0°) ; in fact H(M, @ (£)) =0 for
g > 2, 88 we shall see in the followlng section, so it suffices to
prove the finite-dimensionality only for ¢ =0 and 1 . In demon-
strating this, it is convenient to topologize the cochain and coho-
mology groups and apply a few simple resulis of the theory of topo-
logicel vector spaces. At this stage there is a choice to mske,
since one can either topologize the full spaces of cochains (as
Frechet spaces), or pass to certain subspaces of cochains which admit
simpler structures as topological vector spaces (namely, as Hilbert
spaces). The latter approach has been selected here, to minimize
prerequisites; but the arguments are basically the same in either
approach, and in higher dimensions as well, following H. Cartan and

J. P. Serre, (C. R. Acad. Sci. Paris, 237(1953), 128-130).

First, let UC € be a comnected open subset of the complex
line, with z = x+ iy eas the complex coordinate function on U , so

that dx A dy is the standard Euelidean plane measure in U. Define
2
Tl @) = (£ € r(u, Q)|Jf|2(2)|"ax & ay < =} ;

thus I'O(U, @) Cr(u, &) is a vector subspace, which will be called

the space of square-integrable analytic functions in U. Tor any two




fumetions f,g € FO(U, @), it follows immediately from the Cauchy-
Schwerz inequality that

(5) (£,8); = [2(2)a(z)ax ~ oy

is a well-defined positive definite Hermitian inner product on the
space I’O(U, @), in terms of which I'O(U, 0 ) is a pre-Hilbert
space, (that is, I’O(U, 8 ) is a Hilbert space in all bub complete-
ness); the norm in this space s given by 2|2 = (£,£); . Tow 1f

£ e Iy(u, @), 25 € U, and A(zo,r) is a disc of radius r centered

at z, and such that A(z,,r) C U, note that

0
(6) |£(zg)] < == Nl
i r
(For writing z = z + peie € A(zo,r), 0<p<r, the Cauchy integral
formla reads
" £(z) . 1 2T 10
f(zo) = 5 flz'zo‘ =p 7z, dz = o f9=0 f(zo+pe Jae ,

hence

2

r = .1 16 .

7 2zy) = [T ot(zg)wede = 52 [0 I3 o £(zy + e Yodoas 5
therefore

|£(z,)] 5# Hagn oyl ax ~ a7

2

s _"—:'E (”A(zo,r) 1dx A GV)E(HA(ZO,I-)If(Z),EdX N i‘}‘)%
<

S Il »

as desired,) Now it follows resdily from this that I.(U, ad) is

complete in the above norm, hence that I‘O(U, € ) 1s a Hilbert space.

~60~



To see this, consider any Cauchy sequence of elements :t‘z1 € I‘O(U, 0’) .
For any compact subset K(C U, select & number r > 0 so0 small that
A(z,r) CU for any point z ¢ K ; then by (6),

1
lg,(2) - £.(2)] < e £, - £, for ell points z e X, so that

the sequence {:t‘n(z)} is wniformly Cauchy on K , hence is uniformly
convergent on K . The limit function £(z) = lim £ (z) dis then
holomorphic in U , and is the limit of the sequence :t‘z1 in norm as
well.

If UCvC e are two connected open subsets of the complex

line, the restriction mepping

oy TolVs 8) — I‘O(U, &)
is & bounded linear operator between these Hilbert spaces. Further,
if U is compact and T V, this restriction mspping is even a
compact operator, (that is, tekes any bounded subset of I‘O(V, a)
to a subset of I (U, &) naving compact closwre). This is actuslly
merely a restatement of Vitali's theorem; for if [fn} is any bounded
sequence in Iy(V, &) , it follows from (6) that the functions
{:t‘n(z)} are uniformly bounded on the compact subset T(C Vv, and
henee by Vitali's theorem there will be a subsequence which is uni-
formly convergent on T .

To apply these considerations to the problem at hand, select
a line bundle ¢ € Hl(M, 61*) over the Riemenn surface M. Iet
m = {Ua }' be & coordinate covering of M in terms of which the
line bundle ¢ 1is representable; that is, let VU be an open covering

of M puch that:



(i) each set U, 1s contained withiu & single coordinate

neighborhood;
(7)

(11) the line bundle ¢ has a representation cocyele
%
(o) € ZCR, A7) .

For any simplex o ¢ N(W ), then, r(|o], O(¢)) = I(]o|, B ) ;

snd |o| ie conteined within a single coordinate neighborhood.
Selecting any fixed coordinate mapping for the set |o| , one can

then introduce the subspace I‘O(lol, (&) Cr(le|, O (k) of squave-
integrsble sections of (4 (t) over |o| ; and the direct sum of these
spaces, over all g-dimensional simplices o ¢ N(U] ), is & subgroup
(M, (&) Ce* (W, @(E)) which will be cslled the grow of

square-integrable cochains of U with coefficients in A(e) .

Since the coboundary operator involves only restrictions and Finite

summations, it is clear that

8: C3( U, A(8)) —> 0T M, A(L) ;5

introducing the kernel zg( n, 0¢E))C cg( W, @ (L)) of the co-
boundary mepping, the corresponding squere-integrable cohomology

groups are defined by
BN, B(8)) =2z3(W, @)/ s (m, 0) .

Notice that the inclusion i: cg(vl L, A) —cm, &)

induces a homomorphism

1 B(W, 0(e) —BYn, 0() .
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Iems 8. Iet W= (U,} end A = (V,} be open coverings
of M, where M is a refinement of W such that I_J"a C Va ; and
suppose that both coverings satisfy condition (7). Then, for
dimensions q =0 and g=1,

B (U, 6(2) XYW, 0() ¥, 608)) -

Proof. First, observe that the homomorphism
*: B(m, @(e)) — 5N, 0 (¢)) is an injection (isomorphism
into) for dimensions q = 0, 1 . Thie is entirely obvious for gq=0,
For the case ¢ = 1 , select & cocycle (fQB) € Zé(m s 0 () , end
suppose that (foﬁ) is cohomologous to zero in mt (n, ace)),
that is, thet fu, = I, - %, for (f,) e cH(W, @ (t)) ; it suffices
to show that each Ty is square-irtegrable over U, + For any point
e BUa , select an open set Ug such that p ¢ Ug 3 thus in

UaﬂU £f =f + £, . However, the functions f and f, are

B’ "o “op p op B
both sQuare-integrable in the intersection of Uoz with some open
neighborhood of p in M ; hence fa is square-integrable there as
well. Since ﬁa is compact, finitely meny of these neighborhoods
cover OU, , and so clearly f, 1s square-integrable in U, , as
desired.

Now, since each simplex o of either covering Ul or ¥ 1lies
within e single coordinate neighborhood, and on |o| there is the
isomorphiem @(¢) = @, it follows from the corollery to Theorem 4
that B(Jo], #(¢)) = 0 for all dimensions g > 1 ; hence, by
Theorem 5, H (N , @ (£)) ¥ YV , @ (¢)) T 5%y, O (¢)) , for a1l

dimensions q > O . Indeed, as in Corollary 1 of Theorem 3, the



#

homomorphism w t EX(Y , O(t)) ~> 2NN, @(¢)) inducea by the
refinement u: [J{—> )' is an isomorphism. Note that for amy
simplex o e N(J1) , its support |o| 1ies within a compact subset

of |u(o)| ; so clearly the mapping u* can be factored as follows:

Q Ko *
(U, O(8)) —= 5(MN, &(6)) == B(!m, d () .

* * 3* *
Since p =1 B is sn Isomorphism, and i is an injection in
*
dimensions q = 0, 1 , it follows that o 1s then an isomorphism,

end that concludes the proof.

Theorem 7« If M is a compact Riemann surface and
t e HJ‘(M, &*) , then the cohomology groups HO(M, ((t)) ere finite-

dimensional complex vector spaces for dimensions gq=0 and q=1.

Proof. Iet Ul= (U,}, U = (v }, and X = (W} , be finite
open coverings of M , where Ul 1is a refinement of ' such that
U,C v, end W is & refinement of M/ such that ¥, CW, ; and
suppose that all three coverings satisfy condition (7). For anmy
simplex ¢ in the nerve of any of these coverings, the space
I’O(Ial, (9(t)) has a Hilbert space structure; thus the square-
integrable cochain groups are Hilbert spaces, since they are finite
sums of Hilbert spaces. The coboundary msp being continuous, the
square~integrable cocycles are also Hilbert spaces; but one cannot
Immedistely say the same thing for the eohomology groups, since the
space ch'l(v'(_ s O (t)) of coboundaries is not yet known to be a
closed subspace.

First consider the case of dimension q@ = 0 . Since

Hg('lf( , () = zg( M, @ () , this cohomology growp is & Hilbert



space. The refinement mepping u: JJ] —> ) induces a bounded linear
operator u*: Hg()P , 0 (8)) — Hg(?ﬂ_ s 0 (8)) « It follows directly
from Lemma 8 that p* is an isomorphism of complex vector spaces,
hence by the open mepping theorem is an isomorphism of Hilbert spaces.
On the other hand, as & consequence of Vitali's theorem as noted
earlier, the mapping u*: I‘(Va, Q) — I’(Ua, A (¢)) is a compact
operator; and since the cochain groups are finite sums of these spaces,
the cohomology homomorphism is also a compact operator. These two
observations taken together show that Hg( M, A(t)) 1is a locally

compact Hilbert spece, hence is necessarily finite-dimensional.

Next, for dimension 4 = 1 , consider the Hilbert space
O 1 . .
ol W, @(8)) +25(YW , @(t)) . Applying the coboundary mepping
to the first factor and the refinement mapping p to the second

factor yields a homomorphism

(8)  (B,u): C(UT, O (6)) + Zg(W , B (&) —> 25U , A (&) .

It follows from Lemme 8 that this mepping is surjective; for since
W H(lj(ll‘ ; Q) — H(I)(Ul » @ (¢)) 1is en isomorphism, amy cocycle
of the covering m must be cohomologous to & cocycle of the covering
1(‘ . On the other hand, as noted above, the refinement mapping u
alone is a compact opertor; so applying the zero mapping to the first

factor and u 1o the second factor ylelds a compact operator

(9)  (o,u): cQ(UL, @ (£)) + Zg(W , @ (£)) — Z5( U, O (8)) .

The difference (8,n) - (O,p) of the two meppings in (8) and (9) is

just the coboundery map &: Cg(w, g () — 23(7}1 » G.(E)) ; the



0
desired result, that the Quotient zé(m , @ (g))/JCo( n, Q) is
8 finite dimensionel vector space, is then an immediate consequence
of the following lemma.

Ietma 9. Iet X and Y be Hilbert spaces, and ¢: X —> Y
and Vv: X —~> Y be bounded lineer operators such that ¢ is sur-
jective and ¥ is compact. Then (@-V¥): X — Y has closed range
of finite codimension in Y .

Proof. (For some of the general properties of linear
operetors required here,' see N, Dunford end J. T. Schwartz, ILinear
Operators, vol. I, (Interscience, 1958).) Iet cp*: Y—~>X,
¥*: Y —> X be the sdjoint msppings to @ and ¥ , respectively;
then cp* is a one-one mapping with closed range, and \y* is a
compact mappinge Note [irst that the kernel K of the map CP* - llf*
.is a finite-dimensional subspace of Y . For suppose that {yn} is
any bounded sequence of elements of K , so that (cp*-v*)(yn) =0,
Since \lf* is compact, then after passing to a subsequence if neces-
sery, the sequence v*(yn) will converge; and therefore
cp*(yn) = \v*(yn) converges. Since cp* is one-one and has closed
range, it is & homeomorphism between Y and its range, hence [yn}
converges. This shows that K is locally compact, hence finite~
dimensional.

Now, factoring out by K , we mey assume that qJ*-W* is a
one-one mspping; asnd we then show that <p*- \V* has closed range.
Consider a sequence {yn] of elemente of Y such that

* *
(p ~-v )(yn) —>x. If [yn} has a bounded subsequence, then &8s
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ebove we may suppose that v*(yh) converges; but then
fP*(yn) - (9 - \V*)(yn) + \V*(.vn) converges, s0 again y, ~converges
to an element y , =nd (w*-v*)(y) =x., If Hyn” —~> o , consider
the elements ¥} = yn"yn”-l ; these elements have norm 1, and
(CP*- \lf*) (yI'l) = ”Yn"-l' (qi*-\lf*)yn —> 0 . Again we may suppose that
v*(yg) converge, so that ¢*(y;) end hence y! converge, say to
an element y' . Now [yl =1, ana (@ -¥)(F") = 0= (@ -v )(0) ;
this contradicts the assumption that ¢*'-w* is one-one, and this
second case camnnot occur,

Tp conclude the proof of the lemms, since ¢*-‘W* has
closed renge, the same is true of @ -V ; so the quotient space
Y' = ¥/(p- ¥)(X) is a Hilbert space. Now @ induces & mapping
@': X — Y' vhich is surjective, and V¥V induces a mepping
¥': X > Y' which is compact; and since clearly @' = ¢' , the

space Y' is locally compact, so finite dimensional, which concludes

‘the proof.
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§5. Differential forms and Serre duality.

(a)  Some familiarity with differential forms, at least the defi-
nitions and most elementary properties, will be assumed here. (As
references for this material, among other books are: L. Auslander
end R. E. MacKenzle, Introduction to Differentiable Manifolds,
(McGraw-Hill, 1963); and 8. Helgason, Differential Geometry and
Symmetric Speces, Chapter I, (Academic Press, 1962).) We shall only
consider the case of two-dimensional menifolds M , and shall adopt
the following notation, The sheaf of germs of complex-valued €~
differential forms of degree r will be dencted by £ ° ; +thus the
vector space of such differential forms over an open subset uCwH
1s just the space TI(U, £¥) . For the case r =0, since a diff-
erential form of degree 0 is a function, £° = £°. Within any
coordinate nelghborhood U , note that £ e £ 0 + &0 , aand
€2 = £ 0 s (considered as sheaves of abelian groups); for if x,y
are local coordinates in the neighborhood U, and p ¢ U is any
point of U, +then any element ¢ ¢ (_“ % can be written uniquely in
the form ¢ =f dx + g dy for some germs f,gef'gaé';, and sny
element V e f'lz) cen be written uniquely in the form ¢ =h dx ~ dy
for some germ hefg=G;. 0f course, [r=0 wheneverr :r>2 .
These are clearly all fine sheaves over M.

The operation of exterior differentistion is a shea.:t: I;m_ngmor-
phism d: f T £ T+ ;5 eand there arises the exact sequence of

sheaves (the de Fham sequence)
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(1) o—>ec—> 085 pl a2 oo,

recalling again thet M is 2-dimensional, Since the sheaves &%

are all fine, it follows immediately from Theorem 3 that
~ * #
Hq(M,C) & ker dq/im dq-l for all 9>0,

*
where d: T(M, £9) —> r(M, £%*) is the homomorphism of sections
induced by exterior differentiation; this is of course de Rham's

Theorem. For the particular case g = 2 , It takes the form

(2) HZ(M’@) -] M

ar(u, 8%)

If M is a compact 2-dimensional manifold, then as is known,
H2(M,c') 2 ¢ ; (see the topological appendix for further remarks).
Using (2), this isomorphism can be described explicitly as follows.
For eny aifferential form @ ¢ F(M, £7) , the integral [fyp is e
well-defined complex number; the mapping ¢ —> [ chp is clearly
a linear mepping from I‘(M,[‘2 ) onto the complex numbers. If ¢ = dy ,
it follows from Stokes' theorem that fchp = fMd\p =0, so that
this mepping yields a well-defined linear homomorphism (M, & Z)/dr(y, £
—> €, which must indeed be an isomorphism since both sides are
one-dimensional complex vector spaces,

Now suppose that M has a complex structure; and select same

coordinate mepping z_ = xa + iy ” in an open neighborhood of a point

o
P eM. Writing dza = d.xa + id.ya and dza = d.xa - idya furnishes
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2 nev basis for the ¢ g-module é ;' s 80 that
1 0 0
o dz az
(3) CoEl g+ )

If zlB = xs + iyB 1s another complex snalytie coordinate mapping
defined in anopen neighborhood of p , then since z, = f (zﬁ)

is a holomorphie function of zﬁ it follows from the Cauchy-~-Riemann

equations that

and so,
[0
P O p aB

It follows that the splitting (3) is intrinsically defined, that is,
is independent of the cholece of local coordinate mapping. Writing

é‘;:o - fg 4z and é‘g’ £° 8%, , the splitting (3) becames
(31) Eom g0 £,

Since é‘pegpd'xa" dy = f dza:\dza,weshallforthesa.ke

F 2 _-ﬁ"‘l,l
P

Thus F T, denotes the sheaf of germs of complexevalued differen-

of uniformity write , end similarly Fg = (,cg’o .
tial forms of total degree r + s involving r basis elements dza
and = basis elements dZa 3 of course here r =0 or 1, but
the situation in the case of several complex variables is quite

parallel.



In terms of the splitting (3'), the exterlor derivative
ds Eo _ Fl = fl’o + 50’1 can be split as a direet sum
a=3+0 where d; £00 5 pL0 g9 3, £00 5 201
For & coordinate mepping z =3x + 1y , and a function £(x,y) =

£(z) , secure

of of of of _—

af = dx = dz — dz
3 Yot oy, Yo T a Mat g Mo
[»4

vhere 3/dz, and Of3Z, ave the linear differential operators intro-
duced in §3(e), (page 40); this is a straight forward verification

which will be left to the reader. It thus follows that

of T, of =
af=5z—d.za ’ af-—_—dza-
o Bza

In a parallel manner, for a differential form w = fadza + gadia of

degree 1 it follows that

of og
o o~ ¢] Y 7
W = S;:- dza ~ dza + EZT; dza A d.Za = a(fadza) + B(gadza) .
o4

The de Rham sequence (1) then splits as follows:

fl’o 3

3\‘50,1/a(

It is interesting to look at the separate pleces of this

Fl’l--—>0.
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splitting of the de Rham sequence more closely. Firat of course

there is an exact sheaf sequence (the Dolbeault segquence)

(1) 0—> G- £00 25 g0 5,

The exactnees follows immediately from Lemma 6, and (L) is really
merely an invariant form of the exact sequence of page 42. Since
all the sheaves [' 738 ape fine, it again follows from Theorem 3
that B(M, 8) = r(M, £971)/or(M, £9°) and that Bi(M, &) =0

for q > 2 ; this is Dolbeault!s Theorem, and is en invariant re-

statement of equation (4) of page 42, Next, there is an exact se-

quence of sheaves of the form
(5) 0 —> 61,0 —_ 51,0 _é__> El,l —>0,

vhere (170 C 8190 1g derined as the kemel of the homomorphism
3 in (5). Introducing a local coordinate mapping z, in the
neighborhood of a point p ¢ M, & germ of a differential form

P = fa(za)dza € 5;’0 belongs to the subsheaf @' if and only

if
o=aq;=(afa/aza)dzanaza,
that is, 1if and only if the function fa(za) is a holomorphic func-

tion near p . The sheaf 0 1,0 is therefore called the sheaf of

germs of holomorphic differential forms of type (1,0) , or also

the sheaf of germs of Abelian differentials; a section of this sheaf




is a holomorphic differential form or an ebelian differential.
Note that for an sbelian differentisl g, dp = dp + dp = O ;
thus every abelisn differential is a closed differential form,
These forms can be introduced in several complex varisbles as well,
but in the higher-dimensionsl cases they are not automatically

closed forms, which makes for further complications.

(b)  Now select a complex line bumdle ¢ € Hl(M, G*) ; and recall
the construction given in §4(b) for the sheaf £ “(¢) of germs of

¢” cross-sections of the complex line bundle ¢ . "It 1s clear that
the parallel construction yields sheaves é‘r’s(g) of germs of c”

differential forms which are cross-sections of the line bundle ¢ -

(To carry out the construction, let Ul = [Ua] be a basis for the
open sets of M such that each Ua is a coordinate neighborhood and
that the line bundle ¢ can bg represented by a one-cocycle

(gaa) € Zl(l/l, @*) . To each open set U associate the additive
group 4 a” I‘(Ua, é.r,s) ;3 eand to each inclusion relation UaC Up
asgoclate the group homomorphism paﬁ’ ;! 8 o J a which takes a
differential forn g € r(u,, £72%) to the aifferential form

Pup 9 € r(Ua,[-‘r’s) defined by
(pap 95)(?) = £a(P) * gg(p) for 2 e UaCUB .

This defines a complete presheaf, whose associated sheaf is the

sheaf £77%(¢) .) These are clearly fine sheaves.



The ordinary exterlor derivative cannot be applied %o these
sheaves to cbtain an analogue of the de Rham sequence, since exter-
lor differentiation does not commubte with multiplication by gaB .
However there does arise an analogue of the Dolbeault sequence. For
if oe Ccr’s(g)P at apoint p ¢M, then ¢ is represenmted in
each coordinate neighborhood Uot containing p by a germ @y of
a differential form of type (r,s8) at p; and if p e U, N Uy
then % = b Py - Now since the functions tp 5T holomorphic,
thet is satisfy Bgaa =0, 1t follows that aq,a = tp Bch ; ‘there-
fore {Sq;a} = dp 1s & well-defined element of & r"“'1(g)13 . This

leads to a seguence of sheaves (the Dolbeault-Serre sequence )

(6) 0 —> f(t) —> [o’o(g) 2 FOrl(e) —> 0.

In a single coordinate neighborhood this sequence reduces to the
Dolbesult sequence, hence (6) is an exact sheaf sequence. The

following generalization of formula (4) of §3(e) then follows trivially.

*
Theorem 8, If M is any Riemenn surface and ¢ ¢ Hl(M, 0y

is a line bundle over M, then

(M, £21())/ 3 vy, €98

0 for g>2.

B (M, 6(t))
ml(m, 0(¢))

Proof. Since the sheaves & *?5(g) are fine, the Dolbeault-
Serre sequence (6) is a' fine resolution of the sheaf é (e) ;3 the

desired result then folloWws immediately from Theorem 3.



There is one result of prime importance, which is the basis
of the further study of compact Riemann surfaces; indeed, the core
of the analytic side of the theory conslsts of this result (and

Theorem 4 or its analogues).

Theorem 9, (Serret!s Duality Theorem), Iet M be a compact

Riemann surfece, and ¢ € Hl(M: 1] *) be any complex line bundle over
M . Then the vector spaces Hl(M, (e)) end HO(M, @l,o(g-l)) aze

canonically dual to one ancther, hence have the same dimension.

The proof of this theorem will be glven in the next section,
following Serre (Un mhordme de Dua:].it;!, Comm. Math. Helv. 29 (1955),
9-26)., 1In fact, the techniques in the proof of the theorem are of
quite a different sort than the applications, and the reader who is
willing to take this theorem on faith can omit the proof entirely
and pass on to the appllications. It is perhaps of interest to indi-
cate briefly here just what the duallty ectually is, though, If
o e (M, fo’l(g)) end ¥ ¢ r(M, fl’o(g'l)) are any two €~ cross-
gsections of their respective line bundles, then note that their ex-
terior product ¢ ~ ¢ e I'(M, £ l’l) . For in any coordinate neighbor-
hood Ua these sections are represented by a differential form 9y
of type (0,1) and a2 differential form ¥, OF type (1,0) ; and

at a point p e Ua A UB these differential forms satisfy cpa(p) =

-1

typ(P) 9p(p) and ¥ (2) = £ 5(p) ¥g(p) . The products g ~ ¥,
are then differential forms of type (1,1), and cpa(p) ~ wa(p) =
cps(p) ~ aya(p) for p e U AUy ; therefore the products q, ~ ¥,
define a global differential form of type (1,1) on the manifold

M. Since M is compact, the ilntegral



(n (99) = [ 0n ¥
is & well-defined complex number; then (7) defines a bilinear mapping
r(m, €%3e)) x r(w, £4%(¢)) —> €.
by 0,0 0,1 b
Now if @ e o (M, £°°(e))C r(M, £777(e)) , so that ¢ = 3f where

£ erm &%), endir yerm 80ty Crm e%:y)

so that Sﬂy =0, then
(9,%) = [fy ¥ A= Iy 3(ey) = Jhy a(2¥) =0
for since M is compact, and since £y e I'(M, E'l’o) C r(y, Fl) .

it follows from Stokes! theorem that [ fM d(fy) = O . Therefore the

pairing (7) leads to a pairing
r, £9°3(e))/ 3 r(m, €97%(e)) x rtm, 007)) — .
By Theorem 8, H'(, 0(¢)) ¥ r(w, £%%(e))/ 3 rw, £%%(e)) 5 ana
as alvays, EO(M, 010(e™h)) 2 r(e, 0%°(e™Y)) . This therefore
deseribes a bllinear pairing
B, 0(e)) x 200y, 010 7h)) —> .
The asgertion of Serrets theorem is that this is a dual or nonsingular

pairing, hence that the two spaces are dual vector spaces, The

spaces are then isomorphic as complex vector spaces; but whereas the



above duality is canonieal, the isomorphism is not. For most of
the applications, what is required is merely that the two vector

spaces have the same dimension.

Tt should be remerked in passing that the Serre duality theorem
holds for higher-dimensional menifolds as well, in the sense that
B3(M, 0(e)) and %M, 0%0(¢"Y)) are ausl on any 2n-dimensional
campact complex menifold M for any integer O <q<n. The greater
strength of the theorem in the case of Riemann surfaces lies in the
fact that all questions can be expressed in terms of the zero-dimen-
sional cohomology groups in that case; in higher dimensions, one
is faced with the problems of handling the cohomology groups
24(m, 0 (¢)) for g =1,25.00[5) 88 vell.

(e) The Serre duality theorem cen be expressed without explicit
mention of differential forms, by observing that the differential
forms involved can be consldered as cross-sections of line bundles
themselves. This introduces a particularly useful line bundle,
defined intrinsically on any Riemann surface as follows. Let

M= (Ua} be a complex analytic coordinate covering of the Riemann

surface, with coordinate mappings za: Ua —> € . 'The coordinate

transition functions f B are complex analytie local homeomorphisms

between open subsets of €, such that za(p) = fOLB(zB(P)) for

all p e Ua n UB . Now introduce the functions KClB defined in

the intersections Ua A UB by



k(®) = [£0(z, (BN 5

t
since the functions faa are holomorphic and nowhere-vanishing,

the same is true of the functions KaB .

PeUynlynl, then Za(P) = faa(fpy(zy(P))) = fa,’(zy(P)) s 8O
that by the chain rule

Furthermore, if

1 -1 ] t -1
Ky () = [, (2 (2))17 = [£,5(%5 (2. (2))) * £, (2 (P))]

= KaB(P) . Kﬁy(P) ;

thus (Kafs) € Zl(v‘l ’ &*) . The element K ¢ Hl(M, l}*) defined by

this cocycle is called the canonicel line bumdle on the surface.

Note that this bundle 1s independent of the choice of covering, since
it can be constructed for a maximal covering of the surface M.

Now consider the sheaf 61,0 of germs of Abelian differen-
tisls ocn M. In temms of a cocrdinate covering {1 = [Ua] s with
coordinate mappings 2 Ua —> €, enelement @ e (9';"0 is
represented by a germ of a differential form q:a = fa s dz 2 in each
coordinate neighborhood Ua containing p. If Dpe Ua AU, , then

£ edz =f -dzB, so that fa=dzB/dza-f thus

a” Ta ™' R R
the coefficients fa can be considered as elements of the sheaf
(9(K) . This then establishes an iscmorphism @1:° = &(K) « In

a completely parallel manner there 1s an isomorphism @1’0(5) 2 0 (ke)
for any line bundle ¢ , where the product ¢ is taken in the

group E-(M, @%) . Considering C® rather than holamorphic sheaves,
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there is the iscmorphism f‘l’o(g) 8 Eo’o(Kg) = 6 (kg) . (The
gheaf Fo’l(g) cen be considered as isomorphic to the sheaf

6"(ke) , whem K denotes the complex conjugate of the canomical

bundle, in the obvious sense.)

In these terms, the Serre duality theorem can be restated

ag follows,

Theorem 9'. Iet M be a compact Riemann surface, and
*
t e Hl(M,(} ) be any complex line bundle over M . Then the vec-

tor spaces Hl(M, O(e)) and 10(m, O(xke™')) ere canonically dual

to one another.
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§6. Proof of Serre's duality theorem.¥

(a) The proof will require some rather simple results about distri-
butions; for the benefit of those not too familiar with distributions,
we begin with a brief but self-contained review of those results which
will be needed. The first part of this discussion will be restricted
to subdomains U of the complex line € , with the coordinates
z=x+1ly . For a function f € (;, the support of f 1s the
point set closure in U of the set {z € U|f(z) # 0} ; the support
is thus & relatively closed subset of U , which will be denoted
supp £ . The subset of @; consisting of those functions having
compact support will be denoted by 06 ; . To simplify notation,
derivatives of functions f € d 3 will be denoted by

V.4V
3l %

ax"lay"a

v D("l"’z)(f)

D'f = , vhere Vv = (vl,vz) .

Definition. A distribution in U 1is a linear mapping

T: ¢ ; —> €, such that for every compact subset X ( U there
are constents M and n with the property that

(1) ()| g M b sup |va(z)| when supp(f) CK .

vlwzgn z €X

If the integer n can be chosen independently of X , the least
possible velue is called the order of the distribution. The set of

all distributions in U is a linear space which will be denoted by }( v

¥
This section can be omitted on Ffirst reading, or omitted altogether
by readers willing to take the Serre duality theorem on faith. -
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As an example, suppose that g is a Lebesgue measurable
function in U which is integrable over any compact subset of U ;

there is an assoclated distribution Tg defined by
T (£) = [ f(z)g(z)ax ndy for Te (o -
19 U oYy

It 1s clear that this is actually a distribution, indeed, a distri-
bution of order zero. In particulaer, the space G ; of infinitely
differentiable funetions is thus naturally imbedded as & subspace
cSCXU . As snother example, to any point a e U there is

agsociated a distribution Ba s the Dirae distribution centered at

a , defined by
-]
Ga(f) =f(a) for f e o ¢ oy

This is also clearly a distribution of order zero; and one sees thus
that the space of distributions is properly larger then the space of

locally integrable functions.

Ir Te?{U and geé’;, the produect gTeKU is the

distribution defined by

(eT)(f) = T(fg) for f ¢ o G; .
It is obvious that this is a distribution, and that it has order at
most that of T if T is a distribution of finite order. Note also

that whenever g,h € G; s then 7T T = h-Tg 3 thus the product

gn” &7n
6 ; X KU -_— XU is compatible with the ordinary product of fune-
tions, on the subset G;;C KU . However, this cennot be extended

to an associative product on the full space K U of distributions.
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If Te )fU » the derivatives of that distribution are defined by

) = - 13)
Lie) = -

It is also obvious that these derivatives are distributions, and that

for feoé;.

OI/dx and OT/dy are distributions of order at most n+l if T is

a distribution of order n ; higher derivatives are defined inductively.
Algo, the linesr partial differential operators 9O/dz sand 9/dz
introduced in §3(e) can be applied to distributions as well as to
functions. It should be observed that this definition is compatible
with the usual notion of differentiation on the subspace ¢ EC 7<U .

on o0
For if feogU and ge(.'U,then

oT
=50 =, F - e R oy

= - égaj—c(g(z)f(z))dx ~dy + {r £(z) igé-?l ax A dy .

Since supp(gf) is a compact subset of U , it follows from Stokes'

theorem that fU (gf)/dx dx A dy = 0 ; and therefore

Taie) = 1 2(e) 20 ax gy =n, 1 (2)
T V)= ) e B &= Tag et

ag desired. The same result holds also for O/dy and for all higher
derivatives as well. This observation can be used to give & meaning
to derivatives of arbitrary locally integrable functions, considered
as distributions; and in fact, =81l distributions arise in this manner.
Note that Leibniz' rule holds for differentiation of the product of a

¢” function and a distribution.



It VCU ere two subdomains of the complex line, then

clearly o é' ;C 0 4’; 3 for every function f e can be

4 [ -]
o~V
extended to a function f € l ; by setting it identically zero in
U-V . Then any linear functional T defined on G; defines &

linear functional p...T on o f; by restrietion. In particular,

vu
if Te K y 1t is obvious that the restriction py,T is & distri-
bution in V . The restriction mepping is thus & homomorphism

Pyut )(U — KV ; and it is elear that PuvPyy = Pyy  Wherever
WCVCU . Thus if J/{ = {U} 1is & besis for the open sets in the
topology of €, then the set (I, %U’DUV] defines a presheaf
over € ; the assoclated sheaf will be denoted by & , and will be

called the gheaf of germs of distributions over ©.

Iemma 10. The presheaf of distributions is a complete
presheaf; hence there is a natursl identification I'(u, X ) = KU
for any open subset U,

Proof. Let U be a fixed open subset of © , and let
(Ua} be an open covering of U . Recalling the definition of a

com;plete presheaf (page 19), there are two assertions to be proved.

First, suppose that §,T € }(U are distributions such that

pUaUS = pUaUT for all Ua ; then it must be shown that S =7 . By

passing to a refinement of the covering if necessary, there is no
loss of gemerality in agsuming that {Ua] is locally finite. Iet
(ra} be a,C” partition of unity subordinate to the covering {Ua) 3
with supp r, compact for each a . For emy f e G:; , write

f= Zdraf ; since supp £ 1s compact, only finitely many terms of



this gseries do not vanish identically. Thus since the sum is finite,
and supp(raf) C U, s it follows that S(f) = S(Zaraf) = Z‘us(raf) =
= ZaT(raf) = ?(5,r,2) = T(£) , vhich suffices for the desired result.

Second, suppose that T € X y ore distributions such that
o

pUanuﬂ’ for all UaﬂUB#}d; then it must be

shown that there 1s a distribution T e X U such that pUaUT = Toz

T =p T
Uaa Ua nUB’UB B

for each @ . Again assume that {Ua) is a locally finite covering,
end select a subordinate partition of umity ({r,} with campact
supports; so that any f e o " ; can be written £ = Zgraf ; where
the sum is a finite sum. Define a linear functional T: €, —> €
by setting

?(£) = 5T, (r %) for fe _ ;; .

On the one hand, note that oy =Ty ; for if fe ¢ ; e such
B

that supp £ C Ug » then since supp(raf) C U, N Uy it follaws that

™(z) = ZaTa(raf) = Z:a(pUa n UB,UaTa)(raf) = Za(pva n Uﬁ,UﬁTﬁ)(raf) =

Z:GTB(raf) = Tﬁ(f) - 'On the other hand, observe that T is actually

]

©

distribution. For given a compact set K(C U and a function

fe €y with swpp £ CK, since the sets K =X N supp 1, C U,

are compact and the Ta are distributions, it follows that

|T(2)]

IA

Z |7 (ryt)

IA

\J
M, z eup D (r £)(2)] ;
vl+v2 < n, 2 € Ka
the set of indices « in the sbove summation is actually finite, and

depends only on the set X , so the above inequality clesrly reduces

to sn inequality of the form (1), when n = max n,

chosen. Then Y is a distribution, and the proof is coneluded.

and M is suitably



The support of a distribution T e }(U 1s defined to be the
set of points in U which haye no open neighborhood to which the
restriction of T is the zero distribution; the support will be de-
noted by supp T , and is clearly a relatively closed subset of U .
Note that for a function g e ¢ 3 » supp g = swpp T, ; and note
further that when T € X, and ge 'y, supp (7) C supp N supp T
Then multiplication of distributions by a c” partition of unity
defines a partition of unlty in the sheaf 7{ ; that is, the sheaf

of germs of distributions is a flne sheaf.

() In a sense, the Cauchy-Riemann conditions hold for distri-
butions as well as for differentiable functions. Before turning to
the proof of this assertion, a few further simple properties of dis-

tributions are required.

lemms 11. Suppose that g(z,t) 1s a C” function in
C X R, and that for any mmber t in an open interval I (C R the
support of g(z,t) as a function of z alone is contained in a
fixed compact set K . Then if T is a distribution in an open
neighborhood U of X , the function Tg(z,t) of t isa C°

function in the interval I .

Proof. For any point t ¢ I and any h # O , note that

(2) %[Tg(z,t+h) - Pe(z,t)] = T[ﬁﬁ“’h)h‘ i(z’tﬂ,

As h—> 0, for a fixed value t , the function [g(z,t+h) - &(z,t)]/}
as well as its partial derivatives of eny order with respect to x
and y , converge uniformly on K ; end their supports are always con-

tained in X . It then follows immediately from the definition of a



distribution that the expression (2) approaches T[dg(z,t)/dt] .
Therefore Tg(z,t) 1s a differentisble function of t , and its

derivative is

2 1g(zt) = T[%gf’;’.:l :

Repeating the argument, the function Tg(z,t) is thus ¢ as a

function of t in the interval I .

Iemma 12. Suppose that G(z,f) is a C° function in €X €,
and that supp GC X X L where X, C C sare compact sets. Then if

T is a distribution in an open nelghborhood U of K,
(3) T[] 6(z,8)a A aT = [ 76(z,{)at  dF .
(H [+

Proof. Note thet [fg G(z,£)al ~ d¥ 1s a C” function of
z With support contasined in K , and that TG(z,{) is a C° fune-
tion of §{ by Lemma 11, and bhas its support within I ; therefore
both sides in (3) are well defined. The Riemenn sums for the integral
Hc 6(z,t)at ~ ¥ are a1l Cc* functions of z with support con-
tained in K ; and these sums, &8 well as their partisl derivatives,
of any order with respect to x and y , converge uniformly on K .
Then (3) follows again ﬁmediately from the definition of a distri-
bution.

With these properties out of the way, the Cauchy-Riemann
conditions for a distribution reed as follows; recall that the holo-
morphic functions can be considered as lmbedded in the space of
distributions, by associating to a holomorphic function h the

distribution Th .



Theorem 10. If T 1s a dlstribution in a subset UC €

such that OT/0z = 0, then T dis a holomorphic function in U .

Proof. For any constant € >0 let U_ C U be the subset
of U conelsting of points whose distance from C€-U is at least

€ ; and select a ¢® function r = r. in € such that
r(z) =1 for |z| < ¢/2, r(z) =0 for |z| > €.

Then to any: function f € ¢ ; with supp £ C U_ associate the

function
h(z) = E:%I f“f: £(z+¢) ?%—) at - at ;

this function 1s clearly C~ everywhere, supp h C U, and

é1_1_ or(z+t) (L) - af(z+t) r(t)
oni — _f‘fz—-éé—ﬂ—(;-dgAdf f&fs—-g?s——(;—dﬁndf-

oz

For a fixed point z e € 1let AE be a disc of redius & centered

at z ; then

oh r(z+t) r(t)
2¢f — = lim ff at ~ dat
- e xfp)

9z 5-0 c-4, d

= 1 J 2 (e(ert) B ag . aD)
580 €-4 ot

ve) 2 (x(t) -
i e 3 ()5

= 2nl £(z) - f{: £(z+t) %(ﬂél) at . 4t ,

8s in the proof of Iemms 6. Note that the fumction



0|3 5 () = edo,

0] for _t, =0 F]
is sctually C~ everywhere, since r({)/{ is holomorphic for
0< |t] <e/2. Then write

1

#(z) = 22) , fafz £(z+8)e (8) af ~ a¥

z

), I g (t-2)e(t) at o T -

Since Or/dz = 0 , it follows that T(dh/dz) = - gg (k) = 0 ; and so,

V4
applying Iemma 12,

Tf = fif: Tg, (¢-z)e(t)at - af .

That is to say, the restriction of T to the set U.E iz the function
Tg (¢-2) , which is & c” function of { by Lemms 11. Since

/¥ =0 and T isa C” function in U, , it follows from the
ordinery Cauchy-Riemsnn conditions thet T is & holomorphic function
in U, . This holds for eny velue €3> O, hence T 1is indeed

holomorphic throughout U , thus concluding the proof.

It is possible to continue in this veln, securing a fine
resolution of the sheaf @- by sheaves of germs of distributions,
parelleling the discussion of §3(e); in particular, for any subset
uCe,

mi(M, @) ¥ r(m, X )/Sa: r(M, X) .
2

We shall not need this s 80 pursue the matter no further here.



(e) In order to extend the discussion of distributions to Riemsnn
surfaces, 1t is first necessary to discuss the transformation pro-
perties of distributions. Suppose that U,V are subdomains of the
complex line €, and that h: U~V 1is a v homeomorphism.

The mapping h induces a linear mapping h é'; — G; , defined
by b'(g) = e@h , the composition of the two functions & and h .
It is clearly of interest to extend the mapping h* to a linear
mepping h*: KV —_— KU , recalling again the natural imbedding
G;C X y Vhich associates to a function g € G; the distribution
Tg € KU . For this purpose, define a linear mepping

*
h: XV—>7(U by

* a1y -1
() (0'z)(e) = TL(en"I; ],
vhere Te X, fe ¢ 5, amd J, is the Jacoblan determinant of

the mepping h . Write z = x+iy for apoint in U end § = E+in
for & point in V , so that the mepping is of the form ¢ = h(z) .

Then for any functions g € 6':',’ and f e € note that

* 1y -1
(n Tg)(f) Tg[(f"h )31

;f s a(t)e(n™(¢)) %é—’g‘-%} dt ~ dn
€

]

I | e(n(z))e(z) ax ~ day

zeU

Th*(s)(f) :

)

*

Therefore the mapping h on X v? when restricted to the subspace
‘ *

¢ :; C XV , coincides with the earlier definition of h on that

subspace. It is a straightforward verification that when g € é;

and Teﬂ(v then



(5) “1"(er) = 1'(g)n"(1)

and that when k: V—> W 4e another ¢~ homeomorphism and
Te 9(w then

(6) (xen)*T = 0" (x™T) .

The details will be left to the reader.

Now let M be a Riemann surface, with a complex analytic

coordinate covering [Ua } and coordinate tramsition functions

2 Zy

Zy = faﬁ(zﬂ) . A distribution T on the coordinste covering
{Ua, za] is defined to be a collection {Ta] of distributions on
the verious subsets Za(Ua) = VaC © such that for each non-

empty intersection U N UB Cw,

*
(7) foe(pza(ua n UB),VaTa) = Pzq(U, N UB),VBTB .

Two distributions T and T' on coordinate coverings [Ua’ za] and
[U&, z&} are called equivalent if they define a distribution on the
union of those coordinate coveringe; that this is an equivalence
relation in the proper semse is a comsequence of {6). An equivalence
class of distributions on coordinate coverings of M 1is defined to

be a distribution on the Riemann surface. The sheaf 7< of germs

of distributions is then a well-defined sheaf of abelian groups on
M , and by Iemma 10 the global secticus of the sheaf X are pre-
cisely the distributions on the Riemann surface. The nabural
imbedding of the C¢” functions in the distributions exhibits

6"’ C X as & subsheaf, in view of the remarks above. Furthermore,
for any line bundie £ e HO(N, @*) , the corresponding sheaf X (§)

of germs of distribution cross-sections of the line bundle £ can




be constructed, paralleling the discussion of §4(b); for thet con-
struction merely requires that the multiplication of local sections

of K_ by C° functions be well defined, and so using (5) there are

no difficulties. Details will be left to the reader. Adopting the
notation of §5(c), we shall write X*70(g) = X (ke), KPM() = X(Re),
and 7(1’1(;) = K(«KKt) , where K € mL(, &f) is the caponical

bundle on the surface.

The description of the sheaf X can be put in a somewhat
more invarient form as follows. Again let {Ua, za} be a coordinete
covering of M, with V, = za(Ua) and with coordinete transition

functions 2 )} ; note that the Jacobian determinant of the

o= ToalZp
mepping :tE’Qﬁ is

2
. 3(x,¥g) R IK |2 ,
Tp  Oxkg¥p) | Az por

where Kk 1is the canonical bundle of M . Suppose thaet
o e r(n, &1L = r(, 4"”(!:42) ,end that T e P(M, X ) . Thus o
corresponds to & family of functions @, € I{Vy, ¢”) such that
* 2

= |« i n ; and T
faa(qJB) | BOII 9, in each intersection U, N Ug #p; en
corresponds to & family of distributions T, e I‘(Va, X ) such that
#
faB(Ta) = Ty 1in each intersection U, N Ug #p . (The precise
meaning of the phrase "in each intersection U, n U(3 " is of course
given by equation (7); the additionsl notation is cumbersome and of

no great necessity, so will be dropped.) If supp ¢ C U, 0 U’3 s then

550 = (gt (o) = 2,013 ;}Ta(f;a(cpe)cr;;)

2 -2
- 1, (Il el 2) = 5,0



so that T(9) is well defined. More generally, let {r,} bes C”
pertition of wnity on the manifold M , and suppose that supp @ is

a compact subset of M ;then define
(8) T(9) = %, T (r,®) -

There are at most finitely many values of « for which Ta(racpa) #0,
so that only a finite sum is involved; and &s sbove, the sum is readily
seen to be independent of the choice of partition of wity. (To see
this, suppose that [sa} is another such partition of tmity. Then
2y Tolro®y) = e Ta(rdquJa) = 2y TB(roFBWB) = Iy TB(quJB) , since
s@p(rof.acpa) C U, N UB .) Therefore the elements of I(M, X' ) can
be envisaged es linear functionsls on the subspace 0I'(M, gLy C
r(M, £ 1, l) consisting of differential forms of compact support.

In particular, if g e I(M, 6'“) and '1‘g is the associated distri-
bution, then Tg(q>) = HM gp . It is thus clear why the distributions
must be considered as linear functionals on the space of differential
forms of degree 2 rather than on the space of functions; for this
integral hss an inveriant meaning only in this ecase. In & precisely
pearallel manner, for eny line bundle £ ¢ Hl(M, a*) the space

(M, 9((;'1)) can be vieved a@s & space of linear functionsls on
0r'(M, é‘l’l(g)) ; the deteils will be left to the reader. The labter
asgertion can of course be rewritten, so that the space

r(M, X l’l(g'l)) can be viewed 8s a space of linear functionals on
ol"(M, @™(t)) ; or yet again, the space I(M, Xl’o(g'l)) can be
viewed 88 & space of linear functionals on OI'(M, £ 0’1(5)) . If

the distributions rather than the functions are required to have

compact support, the corresponding sssertions clearly hold; so that



OI‘(M, X (g'l)) can be viewed as & space of linear functions on
r(m, £'1'1(§)) , and so on. If the Riemann surface M is compact,

then I(M, 87(¢)) = r(M, €7(¢)) ana _I(M, X (&) = I(M, X(£)).

One can, 1n fact, say considerebly more. To simplify this
discussion, suppose that M 1is a compact Riemann surface, and that
[Ua’ za} is a finite coordinate covering of M with the property

that the mapping 2z_ can be extended to be & € homeomorphism of

(o
an open neighborhood of r‘J‘a into €; and put V, = za(ua) Ce as
before. For any integer n > 0 and any element

£ = (2.} € P(4, 67(¢)) put

(9) p(£) =2 = s |DVe,(z)]
n V., <n z_€eV °‘
1l 2 -~ [ (o4

with the notation as in §6(a). It is clear that the functions P
80 defined on I(M, 87(¢)) are norms, in the sense that:

(1) pn(f) > 0, with equality holding only when £ = O ;

(11)  p (£+g) S 2, (£) + p (g) ; emd (111) p (cf) = |e|-p"(2)
for any constant ¢ € @ . Introduce on I'(M, @“(t)) the topology
defined by this family of norms; so (M, £ “(t)) is a topological
vector space, and & basis for the open neighborhoods of the zero
element consists of sets of the form (f ¢ I'(M, c"“(g))llpn(f)l <e
for some n } . (This mekes I(M, £ “(&)) into a Fréchet space;
cf. C. Goffman and G. Pedrick, First Course in Functional Analysis,
Prentice-Hall, Englewood Cliffs, N.J., 1965.) A lineer functional
7 (M, (:”(g)) —> € is continmous in this topology if and only if
there sre an integer n and & constant c¢ such that |T(f)| g ep,(£)

for a1l £ e (M, £ ™(¢)) .



Iemma 13. On & compact Riemenn surface M , the space
riM, X l’l( g'l)) is the space of contimwous linear functionals on
the topological vector space I(M, 6 (t)) +

Proof. If T= (T} e (M, ?(1’1(5)) , then T determines
& linear functional on I'(M, ¢ (t)) by (8), where {ry} 1is amy
suiteble partition of unity. Since Ta are distributions, the con-
tinuity of T follows immediately from & compariscn of the definition
of a distribution, (equation (1)), end the definition of the norms
P, - (equation (9)). Conversely, suppose thet T is & continuous
linear functional on (M, € “(¢)) . Any function f € oé’ ;a cen
be extended to & section f € (M, € (¢)) by putting
fa(za) = f(za) ; and putting fB(zB) o g;é(za)f(fw(za)) for
zg € Zﬁ(Ua n UB) CVB , extended to a function in Vb by setting
it zero on the rest of VB . Setting Ta(f) = 7(f) defines &
lineer functional T.: g’; —> € ; and it again follows readily
from & comparison of (1) anda(9) thet T, is a distribution in Vg -
Note thet if f € 6 ;a bas supp £ C z (U, N UB) , then
(f;aTﬁ)(f) = TB[(f"faB)-IKBalel = ]KWIE-T(g) s where g€ @;
is defined by g(zﬁ) = f(fhﬁ(zﬁ)) . Since ga(za) ™ géé(za)g(fsa(za»==
- L(2,)2(z,) = Eop(2g)Ee{2y) » 1t follows that T(g) = bggl(e) ;
therefore fh Ty = £:3|Ky| Ty , so thet (Tp) € I, X L) .
Now for any f € I'(M, ¢™(¢)) and any partition of unity {r,} it
follows that T(£) = T(Zxr f) = Z‘.a'l‘(rorf‘) = zaTa(rO;) ; this therefore
identifies T with the section (T,} € r(m, %L l(g‘l)) , and serves

to conclude the proof.



(a) With these preparations out of the way, let us now turn to
the proof of the Serre duality theorem. Recall that the statement

of the theorem is as follows.

Theorem 9. Iet M be a compact Riemesn surface, and
.l *
ted (M, @ ) be & complex line bundle over M . Then the vector
spaces Hl(M, 0(t)) =and HO(M, el o(§"1)) are canonically dusl

to one another.
Proof. Introduce the complex vector spaces

A=rM, £O9O%)), B=r(m £%),

and the homomorphism Ot A —> B, as in §5(b). It follows from
Theorem 8 that Hl(M, a(e)) = B/-a-A , and from Theorem 7 that this
quotient space is a finite-dimensional complex veetor space.
Further introduce the norms p =~ given by (9), in both of the spaces
A and B ; this makes these spaces into Frechet spaces, snd it is
obvious that the homomorphism 3 A—NB is a continuous mapping
in terms of this topology. Note further that the image A C B is
a closed subspace of B . (To see this, let K C A Ybe the kernel
of the mepping E) , 8o that X is & closed subspace of A ; thus
A/K is also a Frechet space, and the maspping 3: A/K—>B is a
continuous linear mepping with trivial kernel, let LB be a
finite-dimensionel subspace of B which is complementaxry to
S(A) = O(A/K) . The product (A/K) X L is then a Frechet space,
and the mspping O+i: (A/K) X L —> B given by

(3+1)(ayt) = 3(a) +4
is & continuous mepping. This mapping elso has trivial kernel, and

its imege is all of B ; so by the open mapping theorem, it is an



isomorphism of Frechet spaces. Since (A/K) x0C (A/K) X1 is &
closed subspace, it then follows that (0+1)(A/K X 0) = A is a
closed subspace of B , &8 desired.) The fact that A is elosed
means that B/EA inberits from B a topology as a Frechet space,
which must of course coincide with the usual topology of a finite
dimensionel vector space. The conclusion of interest here is then
that amy lineer functionsl on the quotient space B/AA , which is
necegsarily continuous since B/gA is finite~dimensionsl, leads to
a continuous lineer functiomal on B which venishes on the subspace
A& .

Now, purely formally, let A*, B* be the dual spaces to
the topological vector spaces A end B ; and let O: B —> A
be the dual homomorphism to O . Tt then follows resdily that the
kernel K*C B* of the homomorphism 9 is the dusl space to B/-a-A .
For on the one hand, any linear functional ".E" on B/sA determines
a continuous lineer functional T on B which vanishes on A ,
a8 noted sbove; and thus T ¢ B* s indeed T € K* « Conversely if
Te K* then T defines & contimuous linear functional on B
which vanishes on QA » hence & linear functional on B/§A .

Then, to conelude the proof, we need merely appropriately
* H
identify the spaces A*, B, end the homomorphism o . It follows

imediately from Iemme 13 that
AL T, 3 ¥ K00y ;

and recalling the definition of the derivetives of a distribution,
it is clear that 3* = -3 » where S is the familiar operator as

applied to distributions. Now B/ ¥ Hl(M, @ (t)) 1is therefore



dual to the kernel of the mapping
e, X0y — v, X B Y))

but by Theorem 10 this kernel is precisely I'(M, @l’o(ﬁ-l)) =

= HO(M, @-J" O(E-l)) » and thus the proof is comcluded.

An examination of the proof indicates that the duality is

indeed that describved in §5(b); details will be left to the reader.



§7. Riemann-Roch theorem.

(a) Before turning to the Riemann-Roch theorem itself, it is
necessary to introduce a fundamental invariant associated to any
complex line bundle, its Chern class or characteristic class. This
is ectuelly the first step in the classificastion of complex line
bundles, in the sense of providing & detailed description of the
group HJ‘(M, 0*) over a compact Riemenn surface M . Recall the

exact sequence of sheaves (cf. §2(d))
0—>Z — 02> & o0,

wi1ere the homomorphism e was defined by e(f) = exp 2%xif . The
associated exact cohomology sequence includes the segment

M, E) —> By, &) —> B, &%) — PM,z) — (4, &) .
Since H2(M, 0—) = 0 by Theorem 8, this sequence can be rewritten
(1) 0 —> HY(M, &)/E(M,E) —> H(M, @%) — E(4,2) =0,
The coboundary homomorphism in {1) will be called the characteristic
homomorphism c: Hl(M, -0-*) —> HZ(M,Z) ; for a line bundle

*
tem(M, @), the image c(t) will be called the characteristic

clags or Chern class of the line bundle £ . The sequence (1) goes

a good deel of the way towards describing the group of line bundles
in more detail; there remains the problem of investigating the group
B, @ )/H-(M,Z) , and this will be tackled in a later section +to

complete this point.

In a sense, the Chern class measures the topological proper-

ties of the line bundle £ . To make this precise, consider the

*
sheaf é"w of germs of c” complex-valued, nowhere~-vanishing



functions on M, the group structure being multiplicative. The
* oo¥
sheaf @ is a subsheaf of € , the natural inclusion defining

%
& sheaf homomorphism i: @ —> €77 ; and slso there is an exact

@ ok
sheaf sequence of the form 0 —>Z —» ¢ —> § —>0,
paralleling the above sheaf sequence in the analytic case. Alto-
gether, these two exact sequences cean be written as parts of the

commutative dlagrem of sheaves and sheaf homomorphisms, as follows.

3
0> & —> @ ——> (@ —>0

SR

%
0—>2% - @25 & —o0

The cohomology sequences can then be written together as & commu-

tative disgrem o. groups and homomorphisms of the form

(M, 0 ) —> (M, §7) —> £(MZ) —> 0

I Y

M, %) — B, 7)) -S> 2,z — M, £%)

The homomorphism ¢ 1in the second line is the parallel to the
characteristic homomorphism in the first line; but in the second line
¢ is an isomorphism, since Hl(M, ™) = 1-12(M, €)= 0 because
these sheaves are fine. Now if & ¢ H'(M, @) is e line bundle
such thet c(E) = O , the image i7(E) e H (M, ¢™") will satisfy
ci*(t) = c(t) = 0 by commtativity; but since ¢ is an isomorphism
at that level, 1¥*(¢) = 0 . The converse holds as well, as is
obvious, so that c(t) = 0 if smd only 1f 1*(¢) =0 . mNow 1%(e)
is the topological form of the line bundle ¢ , so that we may say

that the line bundle is topologically trivial precisely when it has



zero Chern class. Selecting a representative cocycle

( gw) € zl( U, (9*) for the line bundle ¢ , the condition tﬁat
1*(g) = 0 is just that there exist mowhere-venishing C* functions
£, defined In the various sets U, end such that fB(p)/fa(p) =
§aﬁ(p) for p € Uy N Uy, , end the condition that ¢ =0 is that
there exist holomorphic nowhere-vanishing such functions fa ; this

observation may help to clarify the sbove discussion.

Since we shall henceforth agsume that M 1is & compact two-
dimensionsl memifold, 1t is known that K- (M%) Y % ; the Chern
class c(t) € Ho(M,%) of & line bundle ¢ can thus be considered
as an Integer, under the above ldentification. This identification
of the Chern cless as an integer can be made more explicit as follows.
The class c(f) can be considered ms en element of the group Hz(M,c‘);
for either apply the cohomology homomorphism H-(M,Z) —> K- (M,T)
derived from the inclusion mepping B € of sheaves, or recall from
the universal coefficient theorem that Hz(ﬁ, c) ¥ HE(M,Z.) ®¢C.

Under the isomorphis.m w(M,6) 2 (v, £2)/ar(M, &) furnished by
de Rham's theorem, the cohomology class c(f) € H2(M,c.‘) will be
represented by & differential form o(t) ¢ I(M, €2) ; and then

/ fM ®(t) € © will be the constant essociated to that cohomology
class under the ldentificstion Ho(M,@) ¥ € introduced in Section 5.
In fact, this will be en integer, and will be called the Chern class
of ¢t and also denoted by c(¢) . A useful explicit form for the

Chern class in this sense is given as follows.
Iemms 4. Iet (goﬁ) € Zl(‘lll , 8 *) represent & line bundle
& , and suppose thet (r,} ere nowhere-vanishing G~ functions

defined in the open sets Uy and satisfying ,(p) = 14(p){tg(0)[®



for peUaﬂUB. Then q>=§%-j—.a-a-lograel‘(M, 6'2) is a well-

defined differential form on M , and
l -
c(E) = .UM 9 == ”M 90 log Ty

Proof. This is a straightforwerd metter of tracing through
the identifications in the preceding psragraph, recalling the explicit
form of the ecboundary homomorphism of sn exact sheaf sequence as
given in the proof of Theorem 1. Firsi, to pass from the line bundle
to its cheracteristic class, condider the exact sheaf sequence
(tgp) € 210 , 87
vill be the image under e of & cochain (syg) € CY(VL, &) ;

*
0> Z—» 02> @ -—>0. The cocycle

indeed, merely teke o E%T log §aB ; for any fixed choice of &

e =
branch of the logarittm in each set Uy N U, # f ; by suitably
refining the covering, sll such Intersections can be taken to be
simply connected, and the logarithms are thereby well-defined. The
characteristic class c(t) ¢ HE(M,Z) is represented by the 2-co-
cycle given by the coboundary of the l-cochain ("aﬁ) , nemely, the
2-cocyele Capy Z2(7JL,Z) where Sopy = %8y = oy * 08 =

= aas + 657 + 67’0 . Now this 2-cocycle can be envisaged as belonging
to the group Zz(?ﬂ. ,€) , and the homomorphisms given in de Rham's
theorém follow from the exact sheaf sequence

o—=st— £0 85 21 35 02 .0, Introducing the subsheaf
8 i C f 1 of elosed differentiml forms, consider the exact sequefxce
0—> € —> fo Y f‘i ~—> 0 . The 2-cocycle (caﬁy) considered
8s an element of Z° (., £ O) will be the coboundary of some
l-cochain (U&B) € Zl(‘U'L , € O) ; the condition is that

1 1
Capy aaﬁ+c's7+a;a. Then (da&ﬂ)eZ(UL, Fc) . In fect,



referring to the first part of the proof, we shall merely take
1

1 = 1 T om— .
005 UQB , 8o that dﬂQﬂ aﬁidlog goﬂ Now from the exact
sequence 0 —> £}: — é’l EEN 32 —» 0, the element (du&B)
considered as an element of Zl(Dl , € l) will be the eoboundary of
some O-cochsin ('ra) € c°( n, & ; the condition is that

o = 1 -
aohg = Tp = Tq ¢ Then @1, 6.1'a ; 80 (dra) define a global dif
ferential form, & l-cocycle of ZO(UL , & 2) . To be explicit,

selecting sny €~ differential forms 7., of degree 1 in the sets

o
Ua such that
1
(2) Ta =gy d 108 ket Ty in U, NU, .

The differential form 9 e I(M, £7) defined by = dr, in U,

is well-defined, and the Chern class (as an integer) is gilven by
c(g) = ffM d¢ .
Now, to finish the proof of the lemms, the functions T,

are novhere-vanishing, hence have well-defined logerithms; and these

logarithms setisfy

log ra(p) = log rﬁ(p) + log §Ba(p) + log Eaa(p) for p e U, N Uﬁ .

Since the functions gﬂa(p) are holomorphie, 0o log E'Ba =4 log & Ao
- 4
and O log Eaq = 0 5 thus the differentiel forms «t, = 5= 9 log Ty
clearly satisfy (2). The differential form ¢ will then be given
i

i \
by ©=adr, =5 dalogra=ﬁgalogra, and

o(t) = gz JJ,, ¥ log 7y ,
as desired.

Remark. There always exist functions (ra(p)} having the

properties required in the preceding lemme, end indeed the functions



can slways be teken to have strictly positive values. For introducing
*
the sheaf R of germs of positive-valued ¢” functions, the col-
*
lection {Igaﬁlg] defines & l-cocycle in Zl(?/[ , R") , end the
desired functions {ra} form & zero-cochain having this l-cocycle
*
as its coboundary; thus it suffices to show that H-(M, R') =0 .
Now the subsheaf K(C € ° of real-valued functions is cleerly fine,
*
and the ordinary exponential mspping exp: K —> & is & sheaf

*
isomorphism; hence Hl(M, R™) = Hl(M, R ) =0, as desired.

*
Theorem 11. For any line bundle ¢ € HJ'(M, ") on a con-
pact Riemann surface M , and any non-trivial cross-section
*
£er(m, M(e)),

§)= z (f ]
C( peMvP )

vhere vP(f) is the order of the cross-section f at the point

p € M, as defined in §4(b).

Proof. Since M is compact there are only finitely many
points p € M &t which vP(f) # 0 ; calling these points D, , the

divisor of f has the form

I‘g'(f) = Z'i vi'Pi 2
and the assertion of the theorem is that c(f) = Z, v, . Iet
"= [Ua] be a coordinate covering of M such that the bundle ¢

*

1s represented by & cocycle (£qq) € (Y, @) ; and suppose that
the covering is so chosen that each point p N has an open neighbor-
hood V, for which V, C Uai for some index @ but V, NV, = 3

for a# @, . The functions f, representing the cross-section

T eI'(M, m*(g)) are meromorphic in U, and satisfy f, = ganB



in Uy NU, . The functions |2, are thus C° and novhere-

. s 2 2 2
venishing in U, - (U;p,) NU, , and setisfy || =]§a5| °|f5| ; and

these functions can be modified arbitrarily within the sets Vi
without changing the functional equations. It is thus evident that
there are C » positive-valued functions gy defined in the verious

sets Uot » such that

2
gy = |topl ey in U, NT,
gy = 157 in Uy - Uy N UV,

By Lemma 1%, the Chern class of the bundle ¢ is given by
et) = e S, 3 log g7F = 5= [f, 3 1o
Zx1 ‘M €8 “3x1 M € &y
2
Sinee g, = |, |° on M- UV, , and
99 log g, = 99(log £, + log foc) = 0 since f, is holomorphic there,
it follows that

c(e) = Etl'I z ffvi 3 log &y
By Stokes! theorem, since o9 log &y = dad log g, » secure that
°(§)‘2 I 1fav 9 log &,

vhere avi is the boundary of V, . Now g, =£, on avi » 80 that
actually
21
e(t) "‘27:'{ z fav O log £, =55 5 fav d log £,

= zivi

by the residue theorem; this completes the proof.

It is an immediate consequence of the preceding that all
meromorphlc cross-sections of the bundle £ have the same total order

on the Riemsnn surface M , where the “total order is by definition



ZP c M vp(f) « This can be taken as the definition of the charac-
teristic class of a line bundle, since as we shall shortly see every
bundle does have a non-trivial meromorphic cross-section. One further

useful trivial consequence of this theorem is the following.

*
Corollary. If t e H'(M, ") is a 1line bundie on the
compect Riemann surface M such that c(£) < O, then there are no
non-trivial cross-sections of the sheaf (J (&) , or equivalently,

r(M, @(e)) =0 .

Proof. If feTI'(M, & (t)) and f is not identically zero,

then Z‘.p M vp(f) > 0 ; thus necessarily c(&) 2 0, by the theorem.

€

(v) Again suppose that M is a compact Riemsnn surface, and

- *
consider a line bundle & ¢ Hl(M, ®") . Introduce the expression

(3) X(£) = aim BO(M, A(£)) - aim BN (M, O(E)) - c(t) ;

the cohomology groups sre finite-dimensional complex vector spaces,
and the dimension is meant in that sense. Note that, applying the
Serre duality theorem, this expression can also be written in the

form

(3'%) X(£) = dim I'(M, O (&) - aim r(M, O (ke™D)) - c(e) ,

where K is the csnonicel bundle of the surface M . The content
of the Riemenn-Roch theorem is that this expression X(§) is inde-
pendent of the choice of the line bundle £ . A first step in the

proof of this assertion is the following.



lemma 15. Iet o} be & divisor on the compact Riemann
* *
surface, and let 1 =5 AF ¢ Hl(M, #") be the line bundle ecorre-
sponding to that divisor, as in §4(b). Then for anmy line bundle
*
tem(u 0%,
X(en) = x(¢) .

Proof. Clearly it is sufficient to prove this assertion in

the case that the divisor is & single point, say A} = 1°q . Perallel-

ing the discussion in §4(b), introduce the subsheaf Oy, (9 ,8) CM(e)

defined by

G (D 58), = (£ e P(e) letther £=0 or JI(£) 24 neer p};

since A} = 1.g> 0 s ectually dm(,S ,8) C @ (&) . The guotient
sheat 4 = 0(¢)/ ain(,& ,t) clearly has the form

3 0 if p#4q
P lg if p=gq

{compare with the example discussed on peges 23 and 24). As in

Iemma T, it follows thet
c”m (Ag‘ ,_F,) = @(gﬂ) .
There thus follows the exect sequence of sheaves

0o— O(n)— 0@ -4 —o0.

Consider then the associated exect cohomology seQuence:

0 — 1y, @ (en)) — B, O (8)) = (4, ) —

()
g, @(en) — 50, 0E) =5 d) — ... .

Since .X is a skyscraper sheaf, having stalk € at e single point,

1t follows readily that BO(M, J )X € and EM, 4 ) = 0. Now in



an exact sequence of complex vector spaces as in (4), the alter-
nating sum of the dimensions of the vector speces is zero; this can

be rewritten as the equality

atm BO(M, @ (¢n)) - aim HY(M, @ (en)) + 1

5)
( = ain BO(M, @ (£)) - aim HY(M, G (E)) .

Note that c(n) = -1 . (This peculiar observation results from the
notational conventions adopted. Recalling ILemme T, and its preceding
discussion, the line bundle of & divisor A3 wes defined to be the
element 5*(/9 ) e Hl(M, @*) in the exact sequence (2) of §4. If
(da) ere local functions defining the divisor, then the functions
1/4, ere & meromorphic cross-section of the sheaf 77?*( d), vy
this convention. The total order of the divisor & is thus the
negetive of the total order of any meromorphic cross-section of its
assocleted 1ine bundle. Hence, for the line bundle 1 associated
to the divisor 1l-q , it follows from Theorem 11 that c(n) = -1 .)
Then, replacing 1 im equstion (5) by -c(n) = c('q'l) , adding c(§)
to both sides of the equation, and recalling that c(&) + c('q'l) =
= c(tnl) , 1t Pollows that X(En™t) = X(&) , which suffices to con-
clude the proof.

Now by using this lemma a.r'xd the Serre duslity theorem, it is

an easy metter to prove the fundemental existence theorems on a

Riemsnn surface. The discussion in §l+(b) should be recalled here.

1 *
Theorem 12. On & compact Riemsnn surface M , H (M, 'h? )=0;
equivalent'ly, every line bundle on M has a non~trivial meromorphic

cross-section, hence every line bundle is the bundle of a divisor.



Proof. The equivalence of the three assertions of the
theorem was noted in §i(b). Noting that a line bundle is the bumdle
of a divisor on M precisely when the bundle admits = non-trivial
meromorphic cross-section, it clearly suffices to show that, given
any complex line bundle § , there exists & line bundle n of 2
divisor such that En hss & non-trivial meromorphic cross-section.
In fact, we shall show more, namely, that gilven a lime bundle ¢ ,
there exists a line bun‘dle n of & divisor such that £n has 2 non-

trivial holomorphie cross-section, that is, such that (M, & (&n))#0.

Suppose, contrarily, thet (M, @ (¢n)) = 0 for every line

bundle 1n of a divisor on the surface M . By lemms 15 the expression
X(en) = aim I(M, @ (&n)) - aim 0(, O (ke n™1)) - c(tn)

is independent of 17 ; end since dim I'(M, & (gn)) = 0 for a1l 1q

by essumption, it follows that
0 -l -1 )
aim (M, O (kt™"077)) + e(en) = ¢

is independent of 7 . There are bundles 1 with arbitrarily given
characteristic classes c(n) ; and by taking c(n) to be large
enough, c(Kg'ln'l) = c(Kg'l) - ¢(n) <0 . Thus, by the Corollary
to Theorem 11, it follows that aim I(M, @ (kt™*q™)) = 0 whenever
e(n) is large; but then c(&q) = ¢(&) + e(n) would also be inde-
pendent of 17 , vwhich is ebsurd. This eontradiction them proves the
theoren.

This existence theorem then shows that the study of divisors
on the surface can indeed be reduced to the study of lime bundles.
In particular, referring to equation (3) of page 53, the divisor

class group A(M) of the surfere M is isomorphic to the group



*
Hl(M, @) of line bundles on the surface.

Corollary. Om & compact Riemann surface M , the charac-
teristic X(8) = aim 5O(M, @(t)) - atm (M, @ () - c(E) is e

constant, independent of the choice of the line bundle E .

Proof. Since every line bundle & on the surface M is
the line bundle of & divisor as a consequence of the theorem, it
follows from Iemma 15 that X(&) = X(1) for any ¢ , which serves

to prove the desired result.

It is of course of some importance to determine the constant
X(¢) for a given surface M . For this purpose set & = 1 , the

trivial bundle, and note (using Serre duslity) that

X(1) = atm P(M, @) - aim I'(M, 810 - c(1)
=1 - dim (8, 09,
The constant
(6) g = am o(y, @),

the dimension of the space of abelian differentials on the surface
M , is caled the genus of the surface M . This constant has a
simple topological interpretation as follows. Considering the exact
sequence of sheaves

o—>C— 03> @Y% o0,

the asgsociated exact cohomology sequence has the form

0 — 1) — Bu, @) — Bw, 010 — F(m,0) —
e, 0 ) — 5, %% s P(me) — o0,

since HQ(M, 0) =0 by Theorem 8. Now HO(M,@) = HO(M, g)=e,



since all the global holomorphic functions on a compact Riemann sur-
face are constent; and H2(M,ﬂ:!) S € as noted earlier. Therefore,
recelling that the alternating sum of the dimensions of the terms in
a finite exasct sequence of vector spaces is zero, it follows that

aim B0, 0 1°) - aim #H(M,€) + aim (M, O )

(1) -ame O +1-0.

By definition, aim HO(M, 0 **°) = g , and by the Serre duality

theorem,
atm B4, 0 ) = d1m 50N, O010) = g, ana
aim B (M, O01°) = aim 20, ) =1 ;
therefore (7) becomes
(8) 2¢ = aim EN(M,€) .

That is to say, Hl(M,(n:) is an even-dimensional complex vector space,
and its dimension is twice the genus of the surface M . The constant
X(¢) = 1-g . As yet another interpretation of the genus, consider

the canonical bundle K ; then
1-g = X(k) = aim 8°(M, @ () - aim 5, @ (k) - c(«) .
By definition, dim HO(M, O («}) = aim HO(M, a l’0) = g ; and by the
Serre duwality theorem, dim Hl(M, 0 (x)) = dim Hl(M, 00 -
= dim HO(M, @0 )=1. Therefore
(9) c(k) = 2(g-1) ,
relating the genus to the characteristicclass of the canonical bundle.
Since cross-sections <'>f the canonical bundle are Just sbelian differ-

entials, it follows from Theorem 11 thet the total order of an sbelien



differential on M is precisely 2(g-1) .
In terms of the genus, the Corollary to Theorem 12 can be

restated as follows.

Theorem 13. (Riemsnn-Roch Theorem) If M is a compact

Riemann surfece of gemus g and £ ¢ (M, B") is & complex line
bundle on M , then

ain 820, @ (8)) - ain E(N, @ (8)) - e(e) = 1-& ;
or equivalently,

atm I(M, 6 (&) - atm 2(M, O(ke™h)) - c(g) =1-¢,
vhere K 1is the canonicel bundle.

In some cases, the Riemamn-Roch Theorem furnishes explicitly
the dimension of the space of holomorphic cross-sections of & complex
line bundle; the following table may prove useful in keeping this in
mind. As & notational convenience, for & line bundle £ € Hl(M, 0%

we shall write

(10) (&) = aim I(M, @(¢)) .
Then:
( (a) e(e) <o ==> 7(t) =0
1 if t=1
(b))  e(e) =0 ==> 7(¢) ={0 i LAl
(11) if ¢t =
ﬁ (C) C(g) =2g-2 ===> 7(§) ={:-l ir ¢ %::
L (a) c(t) >2g-2 === y(t) =c(t) - (g-1) .

To see that (11) holds, recall first that c(t) < 0 implies that

I‘(M, Gl(g)) = 0 , by the Corollary to Theorem 11. Furthermore, by

«117-



that same corollary, if c(¢) = 0 and y(£) > 0 there must exist
et least one non-trivial (i.e., not identicslly vanishing) holo-
morphic cross-section of the lire bundle ¢ , and its divisor must
have total order e¢(¢) = 0 ; that is, that cross-section must be
holomorphic and nowhere-vanishing on M . This means that £ =1
(cf. page 56), and hence 7(E) = 1 . Now when c(E) =2g-2,
recalling that c(k) = 2g-2 =and epplying part (b) of (11) to the
bundle k&, it follows that

-1

if kg " =1

( g-l) !
7K =
0 if Kg_l ;‘ 1

Then by the Riemsun-Roch Theorem, 7(t) = y{kt™1) + c(t) - (g-1) =
= 7(kt™L) + g-1 , from which (c) follows lmmedistely. Finelly, if
e(t) > 2g-2 , then c(xg'l) = ¢(k) - e(e) < 0, so it follows from
part (a) thet 7(kt™L) = 0 ; and part () follows lmmediately from

the Riemann-Roch Theorem again.

For the line bundles between the trivial tundle and the
*
canonical bundle, thet is, for those bundles §£ € El(M; @) such
that 0 < c(t) < 2g-2 , the Riemsrn-Roch Theorem merely provides
the equality
7(8) = y(kt™)) + o(t) - (g-1) ;

and thus the formule merely relates two uvmknown quantities. How-
ever, it is emsy to gbtain some useful inequalities for lime bundles

in this renge. First, since 7(K§'l) > 0, it follows that

(12) 7(8) > o(e) - (g-1) for all & e H(M, &) .



To obtain inequalities in the other direction, select & line bundle

¢ with o(t) =1 anda 7({) > 1 ; for instance, the line bundle
essocisted to the divisor -l-p can be taken as § , since it has
gt least one holomorphic cross-section h . Now multiplying & cross-
section of any line bundle & by the section h yields & cross-
section of the line bundle ¢f ; and thus y(Et) > 7(t) . Repeating

this process, 7(&t™) > 7(8) for eny index r> 0. If
e(t) <2g-2 , take in particuler r =2g-1 - c(&) ; then

c(Et”) = e(E) + ree(t) = 2g-1,
so by (11d) it follows that

7(6t%) =g .

It then follows that 7(8) < g whenever c() <2g-2 . If
0<ec(t) <2g-2 , then c(kg™') <2g-2 so that y(kt™)) < ;
and by the Riememn-Roch Theorem, 7(¢) = 7(K§'J‘) + c(g) - (g-1) <
c(¢) + 1 . Conseguently,

(13) 7(8) < min(g,e(k) +1) for 0 < c(t) <2g-2 .

The following table may help to keep these inequalities in mind:
(1)
e(t): 0 1 2 ...g2 g-1 g g+l ... 2g-3 2g-2 2g-1

max 7(€): L 2 3 ...81 g & 8 -+ B g g
min 7(¢): 0 0 0 ... 0 O 1 2 ... g2 gl ¢g

We shall next see that for a general line bumdle ¢ the value 7(&)

is the minimum given in the table.



(c). At this stege it is possible to extend & bit further the
discuseion begun in §h, concerning relstions between divisors and
line bundles on a compact Riemann surface M . For any point pe M
select a complex line bundle QP e o (M, & )} , such that there is &
section £ e (M, 0-(§P)) for which AH(£) = 1-p ; there always
exists such e bundle, since the line bundle associated to the divisor
-1'p under the exact sequence (2) in §4 will do. In fact, the bundle
gp is determined uniquely by the point p ; for if {' were any
other such bundle, with f£' e I'(M, &(;I")) its corresponding section,
then f£'/f e I'(M, G(%/gp)) is a holomorphic nowhere-venishing
section, hence necessarily LI',/QP =1, Iine bundles of this form
will be called point bundles on the surface M . Note that c(gP) =1
for any point bundle -t'p , by Theorem 11; and that 7(§p) > 1, since

by definition & point bundle has at least one non-trivial section.

lemms 16. If M is a compact Riemann surface of genus

g>0 end t 1is & point bundle on M, then r(t)=1.

Proof. Suppose contrariwise that 7(§P) > 2 ; of course,

then, 7(§P) = 2 Dy the inequalities (14). Select two linearly

independent sections f,, € r(m, @—(Qp)) , and consider the mapping
M —> P* defined by
(15) a4 eM—> (£(a), £,(a)) e B,

in terms of homogeneous coordinates on the projective line. Since
the values of fl(q), fe(q) in two different coordinate neighborhoods
are multiplied by the:same non-zero constsnt when passing from one
neighborhood to the' other, these values determine the same point in

the projective line. If both functions fl’ f2 vanish et & point,



then dividing by their greatest common divisor will yield the same

mapping into projective space, thus extending that mapping to the
common zero of the functions f,, f, . It is thus evident that (15)
is & well-defined complex analytic mapping from M into E’l .

For eny point (al,ae) ¢ P1  consider the section

5.21:1 -8, € r(m, 0—(§p)) . By Theorem 11 again, there is a unique
point q ¢ M for which this section vanishes, that is, for which
(fl(q), fq(q)) = (a58,) € P' . The mapping (15) is therefore one-
to-one, so that the surface M 1s anslytically equivalent to the
surfece 1’1 , and hence the genus :;tust be g=0. This contradicts

the hypothesis, and therefore concludes the proof.

Now if M has genus g > 0 , 1t follows that the point
bundles gp, Qq are equal if and only if the points p, g are
equel. For if CP = Qq for p # q , then the bundle CP = Cq
would have at least two non-triviel sections, one vanishing st p
and one at q ; and thus 7(§P) > 2 , vhich is impossible by the

preceding Lemma. Therefore, if M hes genus g > O , the mapping

p —> ;P is a one-to-one mapping from the surfece M +to the subset

1 *
of H (M, @) consisting of those complex line bundles { for

vhich e({) = 7(¢{) =1 . For the case of genmus O , it follows from
the Riemenn-Roch theorem that c(C) =1 implies y(f) =2 , and

thus as in the preceding Iemma, M = ]Pl . On ]P'l there existe a
meromorphic function with sn erbitrarily prescribed simple zero snd
simple pole; so any two points p,q are linearly eguivalent divisors,
and thus §p = Qq for ell points p,q € o . There is hence a

unique line bundle §{ on P’ with c(f) =1 . That is, if M



hes gemus g =0, then M =P and all the point bundles of M

coincide.

An arbitrary complex line bundle on M can be built up from
these point divisors. First, if t e Hl(M, 0*) is & line bundle
for vhich (&) > 0, select & non-trivial section £ e I'(M, &(t))
and write o (f) = 5_ 1°p, , where r = c(t) and the points
Py € M need not be distinct. It is then clear that ¢ = gpi...;pr H
for if f, e r(m, @-(;pi)) are non-trivial sectiome of the point
bundles, so that fi vanishes precisely at Py s then

1'"§I->1)) is = holomorphic, hovhere-venmishing
1 T
section, so necessarily g;;l...;l',l = 1 . This representation of

1

r
course only holds for bundles ¢ with 7(£) >1; but if c(t) > ¢

2/2)...5, € T, tﬂ-(gg;

it follows from (1h) that y(£) > 1 , and such a representation is
*
possible. Next, for & genersl line bundle ¢ ¢ HX(M, @) , let
r = c(t) and select some point p € M e base point; then
c(g-gg'r) = g , so that as above there is a representstion
g;;‘)‘r = £, ++et, « Tt therefore follows that, having selected a
1 r

*
base poiut p € M, an arbitrary bunmdle ¢ ¢ Hl(M, 87) can ve

represented in the form

(16) ¢t = ;pl...;p ;;'g where r = o(E) ,
g

the points Py € M depending upon the tumdle ¢ .

The representation (16) may not be wnique; if it is not,

there will be points ql""’qg

€M such thet ¢ ...t t* 8=
P, " °P,°P
r-g
thet vl =t ...
¢ qugp » hence such §pl ;pg §q t

s where the

sets {Pl,-«-Pg} # fql:---qg} . This then means that 7(§p ...gp )>2;

1 r



for there is one section with divisar Zil-p g2 and another with divisor

Zil‘qi . Since the converse is clear, it follows that the representation

cesl ) m1.
1 Cpg

To examine this condition further, consider more generally =&

(16) is unique precisely when 7(§P

complex line bundle § = Cp ...;p ; the associated divisor ,19'0 = ).'.Lll-p 1
. 1l r
cen be written A, = 1% v,'q, , where the g, sre the distinct points

i=]1
occurring among the points Di,...,P, - Iet hy, ...,hg e T'(M, &(x)) be
a basis for the space of Abelian differentisl forms on the surface M,

and as an abbreviation let h denote the columm vector

hl

In terms of a coordinate system =z 1 centered &t the point a » the

functions h, are complex analytiec functions of the complex variable

J
zZy in an open neighborhood of the origin. The velues of these func-
tions and of their derivatives at the origin are well-defined, and

will be denoted by hd(qi)’ hi(qi)""’hgv)(qi)"" ; snd the corre-
sponding column vectors will be denoted by E(qi),g' (qi), .. .,E(V)(qi), cee .
In terms of a different coordinate system centered at the point 9y

a different set of values will of course be obtalned; the vector p_(q i)
will be replaced by & nonzero constent multiple of itself, and & vector
_13(") (g4) will be replaced by & sultsble lineer combination of the

vectors E(qi), E'(qi),...,g(w(qi) . Thus the rank

(v -1)

(v;-1)
R CH PP YCI R CID PR S

(27) p=renk(n(g,),b'(q;),.++,h

at least will be inveriently defined; the matrix in (17) has r= Vb4



lemma 17. For & complex line bundle & = { . §p on & com-
P r
pact Riemann surface of genus g,

7(§) =r-p+l,

where p ie the rank of the matrix (17).

Proof. Since, c(¢) = r , it follows from the Riemsnn-Roch
theorem that 7y(§) = r- g+1+7(K§'l) . I £, isa basis for
the vector space I(M, @—(Kg'l)) s where t = y(kg§~ l) , and if

e T(M, (9-(: )) , 80 thst ,\g-(gi) = 1"p, , then clearly the elements
£,8,.--8, € I‘(M, A&k)), 1 <1<t , form s basis for the subspace
of Abelisn differentials consisting of those elements h € I'(M, A(x))

such thet o () > 3 , vhere W, =2 ) 1-p, . Thus

7(ke™) = atmfn € T(M, @ (<)) | J(n) > 3.} -

letting h1""hg

any element h e I'(M, @ (x)) can be written uniguely in the form

Pe a besis for the space of Abelien differentisls,

h = clhl + ... + ¢ch for some complex constants ¢ The condition

g8
that 3 (9) > & o Just means thet

gy

h(q,) = I, thJ(qi) =0,
h'(q,) =L e (qi) =0,
(v, -1) (1)

Bt (e) = ey b () =0,

where q; are the distinet points in the divisor ""o ; end this in
turn means that the row vector (cl,. ..,cg) is annihilated by the
matrix (17). Consequently 7(K§'l) =g-p, where p 1is the rank of
the matrix (17); so that y(¢) =r-g+1 + 7(K§'l) =r-p+l, as

desired.



We 8hall return later to exploit this result more thoroughly,
but for the present shell be content with some simple observations.
When r = g , the matrix appearing in (17) is a g X g square matrix;
the vanishing of its determinant is equivalent to the condition that
p < g, and hence by Lemma 17 is also equivalent to the condition

that 7(t) > 1 . Therefore 7(t) = 7(cp ...cp }>1 4if end only if
. 1 g -

(v,-1) (v_-1)

(18) aet(n(ay),h'(g;),eeesh © (g))5e005m ()00 (a ), eeesh = ()

vhere 5 1.p, = I snd the points g, are all distinct. In

=1 Y19
perticuler, when ell the points p, are distinet, 7(§P ...;p }>1
1

g
if end only if det(g(pl),g(pz),...,E(pg)) = 0 . The functions com-

posing the vector @ are linearly independent, so that it is evident

that this determinsnt does not vanish ldentically; there are thus

alwdys distinct points p, so that 7(§p ...gp ) =1 . Indeed, if
g

1

p, s8re distinet points of M =and U, are coordinate neighborhoods

i
shout them with coordinate mappings % i Ui —<> € , then the function
det(g(zl)g(ze),...g(zg)) is & non-trivial complex snalytic function

of g complex variables in the domain U

of points at which this determinant venishes is & proper snalytic sub-

X ae ngC«Lg ; the set

variety of U, X ... X U_, so that in this sense 7(1;]J el ) =1
1 g 1 Pg
for a general set of g distinct points Pl""’pg . Thus in general

the representstion (16) is unigque; and in the same sense, as the reader

will easily verify, y(&) in general tekes the minimum value in

table (1h4)..

Note in passing that if hl""’hg e I'(M, a (k)) is 4 basis

for the space of Abelian differentials on & compact Riemsnn surface M

of genus g > 0 , then the funectilons hi have no common zeros on the



surface M . For if p is any point of M, 7(§p) =1 by Lemma 16;
then applying Lemms 17 in the particular case r =1 , it follows
that 1 = 7(§p) =2-p, hence that p =1 where p = rank(g(p)) ’
so that h,(p) # O for at least cne function by
(a) of particulaer interest are divisors of the form wsp , or
equivalently line bundles of the form Q; s where p e M is a given
polat on the surface emd v = 1,2,3,... . As noted above, there is
alveys an Abelian differemtisl h, ¢ r(My, A (x)) which is non-zero
&t the point p , so that Vp(hl) =0. Let h,e (M, &(k)) ve
an Abelian differential which vanishes at p , but such that

vp(hg) = py-1 1is the minimum possible velue. Then let

h, ¢ (M, @ (k)) be an Abelian differential which vanishes et p at

3
least to the order p, , but such that Vp(hs) =p3-1 is the mini-
mum possible value. Contimuing in this manner leads to a basis

hl’hg’ . .,hg for the space of Abelian differentiels on the surface

M , such that vp(hi) =p;-1 vhere

(19) L=p)<py< . <p <2 .

(Since the total order of an Abelian differential on the surféce is
2g-2 , as noted sbove in discussing equation (9), it follows that
vp(hg) = Pg- 1< 2g-2, hence that Py <2g .) It is clear that
this sequence of integers p, = pi(P) is vniquely determined by the

point p € M ; it is called the Welerstrass gap sequence at the poinmt

p , and the values Py = pi(p) are called the Weierstrass gaps at
the point p . The significance of this sequence is indicated by

the following result.



Theorem 1k. Consider the Welerstrass gap sequence st a

point p on & compact Riemenn surface.

(2) Then

7(;;) = v+1 - {oumber of gaps < v} ;
so that
0 if v is a gap,

%) - (0N =
7( P 7 Cp 1 otherwise.

(b) There exists & meromorphic function on the surface, whose only
singularity 1s a pole of order precisely v at the point p , if

and only if v 1is not & gep.

Proof. let h denote the column vector comsisting of a
basis for the Abelian differenmtials on the surface, where the beasis
is normelized as sbove so that vP(hi) = p;-1 for the Weierstrass
gap sequence {pi} at p . Then it is evident that the matrix

(n(p),b'(p),1"(p), ++.) hes the form

1 2 ... p2 p2+1 ces p3 p3+1 ane
* - ena ™~ - sag = - LN
0 O ... ® - e ~ -
(20)
- 0 0...0 0 aee ¥ -

ese s eae 2aa L) a8 F]

vhere the headings denote the numbers of the columns, snd * stends
for a non-zero constant. For am integer v > 1 , the matrix con-
slsting of the.first v columms of (20) clearly has rank

p = {pumber of gaps p 3 S v} . Therefore from Iemma 17 it follows that

7(§;) =4v-p+1l=v+1 - {number of gaps Py < v} .



The second part of assertion (a) is an obvious consequence of this formula.

As for assertion (b), let g e I'(M, @-(;P)) be any non-trivial
section, so that &-(g) = 1-p . Then if £ ¢ I(M, (Sl(g;’)) , the quotient
i’/g\l wlll be a meromorphic function on the surface M , whose only
singularity is a pole at p of order at most Vv ; conversely, any such
meromorphic fumction can be so realized. Therefore 7(§;) is the
dimension of the space of meromorphic functions on M, whose only
gingularities are poles et p of orders at most v . If v 18 not a
gap, then 7@;) = 7(§p-l)+1 s 80 there must exist a meromorphic
function on M vwhose only singularity is a pole at p , and such that
thé order is at most Vv but not at most v-1 ; in other words, the
order ig precisely Vv . On the other hend, if v 1s a gap, then
7(§;) = Y(Q;_l) ; 8o for any function meromorphic on M whose only
singulsrity is a pole at p , 1f the order of the pole is at most v,
then it must actually be- at most V-1 . This serves to complete the
proof.

For eny glven.point p € M the Weierstrass gaps at the point
p satisfy the inequalities pi(p) >1 for 1=1212,...,8, 88 &
trivial consequence of (19). The discussions in the preceding pert (c)
might lead one to suspect thet in general the Welerstrass gaps would
actually take on these minimal values; for by Theorem 1% that would
correspond to the dimensions ¥( C;) being least possible. (Since
7(§;’) > 1, the least possible values for these dimensions differ from
the general results given in table (14) in that the zeros of that tsble
are replaced by ones.) Thie is indeed so, and quite precise results

are possible. The Welerstrass weight of a point p e M is defined in

terms of the Welerstrass gaps pi(p) et p by

g
(21) wp) = = (o4(p)-1) .
4-=1



Note that w(p) >0 for all points peM. Apoint peM is

called a Welerstrass point if w(p) > O . The Welerstrass points

on the surface M are thus those points &t which the Welerstrass
gaps do not attain their least possible velues. There are actually
only a finite mumber of Welerstress points on any Riemsnn surface,

as a trivial comsequence of the following result.

Theorem 15. If M 1is & compact Riemsnn surface of genus
g , the Welerstrass weights of the polnts on the surface M satisfy

the equality

£ uw(p) = (g-1) g(g+1) .
PeM

Proof. Let hl""’hg e (M, &(x)) =again be a basis for
the space of Abelian differentiels on M , and let h denote the
column vectar of length g formed from this basis. If {Ua,za] is
a coordinate covering for the Riemann surface M , then on each set
za(Ua) C ¢ this vector is & column of complex analytic functions
E(za) ; and for points in Ua n UB , where the coordinate transition
function is Zy = OB(ZB) , these column vectors satisfy
E(za) = Koﬁ .ll(zg) where KOB(ZB) = dzb/dza . Differentiating this

equation with respect to =z it follows that

o }
a

B (x) = (2ap/23) g5 (Koplag) nlzg)) = Kog(zg) B (z5) + (%) b(z) |

where (%) stands for some holomorphic function. Continuing in this

menner, in genersal

22) 1z - Kgl(zﬁ)g(“)(za) + (*)E(V'l)(za) b+ (90(z,) -

The function

8(7g) = det(n(zy), b (z0), -0 E L (z)))



is then holomorphic in za(Ua) ; and from (22) it is evident that

in UaﬂUa,

ga(za) - KaB(ZB)I—FZ—F. . -+(g-l)

- KO!B(ZB)g(g-l)/Z.gB(ZB) .

'EB(ZB)

That is to say, the functions g = {ga(za)} define a section of the

1line bundle Kg(g—l)/ 2, Then, by Theorem 11 it follows that

(23) 2 () = B o) - (-1elet) -
D e

The order vp(g) is of course unchanged when the functions h, are
gubject to any nomsingular linear transformation; so when considering
s point p e M there is no loss of generality in supposing that
Vp(hi) = pi(p) -1, where [pi(P)} are the Welerstrass gaps at D .
If z 1is @ local coordinate mapping defined in a neighborhood of p
and such that =z(p) = O , then in the power series expansion in terms
of the varieble 2z , the function hi(z) will begin with a term of
order precisely o 1” 1l . The lowest order terms in the power series

expension of the function g(z) +then obviously come from the

expansion
P,-1 P, -2 0. ~g
1
2 L (pl-l)z 1. (pl—l)...(pl-g+l)z \
Ps-8
p.-1 p,-2 2
z 2 (pe-l)z 2 see (02-1)---(92-g+1)2
det
p -1 p_-2 P -g
z & (pg-l)z g eee (pg-l)...(pg-g+l)z g .
p‘i-l
Since the functions =z are linearly independent, this Wronskian

determinant cannot vanish identically; and since each monomial in



the expsnsdon of the determinant has order

(°1+°2+"'+°g) - (12+...4g) = (pg-1) + (02-2)+---+(pg—g) = w(p) ,
that is the order of the full determinent. That is to say,

vp(g) = w(p) ; end upon substituting this into equation (23), the

desired result follows immediately, thus @oncluding the proof.

According to Theorem 15, & surface of genus O or 1 has
no Welerstrass points. This is of course trivial for genus O ;
while for genus 1 , it could have been noted a&s a consequence of
the lest remsrk in part (¢) sbove, since in thet easse the unique
Abelian differential on the surface is nowhere zero. (As a conse-
guence, the canonical bundle of a surface of gemus 1 is necessarily
the trivial bundle.) In general, it is clesr that the minimum pos-
sible welght for a Welerstrass point is w(p) = 1 ; and that this
corresponds to the Welerstrass gep sequence of the form 1,2,...,g-1,8+1,
wvhere g 1is the genus of the surface. A Welerstrass point is called

a normal Welerstrass point if it has this minimal form, that is, 1if

w(p) = 1 ; and the surface M is called a normal Riemsnn surface if

all of its Weierstrass points are normal Weierstrass poinmts. By
Theorem 15, & normal Riemann surface has precisely (g-1)z(g+l)
Weierstrass points. By Theorem 1k, the dimensions 7(§;) csn be
read off immedistely, and depend merely upon whether or not p is
one of the Welerstrass points; and the meromorphic functions having

but & single pole on the surface must have a pole or order at least g.

The consideration of the other extreme behavior of Weier-

strass polnts is a bit more subtle, and depends on the following

observation. For & fixed point p on the surface, suppose that



Vl’v2 are non-gep values; then by Theorem 14 there are meromorphic

funetions fl,f2 on the surfece, such that fi has as its sole

singularity & pole of order precisely vy at the point p . The

product flf2 has a pole of order precisely Vl+v2 at p, and
is regulsr otherwise; so by Theorem 14 again, V1+V2 is also &

non-gep value. Therefore, the set of non-gap values at & point is

closed umder addition, (forms sn additive sub-semigroup of the
poeitive integers). letting r be the leest non-gsp velue at the
point p , it follows that whenever Vv > r 1s a gap value, then
v-r 1is also a gep; consequently, all the gaps occur in finite
arithnetical sequences of the form i, 1+r, 1+2r,...,i+\r, (where
i=1,2,...,r-1 end Ay = 0,1,2,...). 1In particular, & point p

is called & hyperelliptic Weierstrass point if its least non-gap

value is 2 ; at such a point the Weierstrass gap sequence has the
form 1,3,5,¢..528-1 . The weight of a hyperelliptic Weierstrass

point is

wp) = [1+3+ ...+ (2g-1))-[1+2+ ...+ gl

u

[1+2+ . +2g8] -3[1+2+ ou. + gl

Se(g-1) .

A Riemamm surface 1s called a hyperelllptic surface if all of its

Welerstrass points are hyperelliptic Welerstrass points; by Theorem 15,
such & surface will have 2(g+l) Welerstrass points altogether. By
Theorem 14, the dimensions 7(§;) can be read off immedistely, and
depend merely upon whether or not p is one of the Welerstress
points; and for each hyperelliptic Weilerstrass point there exists &

meromorphic function heving a double pole at that point but being



regular otherwise. (A Riemann surface of genus g = 1 is called
an elliptic Riemann surfece. For such & surface, it follows from
the Riemann-Roch theorem that 7(§;) =2 for every point p ; and
therefore, for every point p on 8n elliptic surface there exists
& meromorphiec function heving & double pole at that point but being
regular otherwise. For this remson, elliptic curves are sometimes
considered aes falling within the class of hyperelliptic curves, even
though they have no Welerstrass points st all. However we shall not
adopt.this convention, but shall distinguish between elliptic and
hyperelliptic surfaces; so hyperelliptic surfaces a1l have genus
g>1.)

Now turning to the case of @& general Weilerstrass point, the
following sssertion can be made.

Theorem 16. If p is a Weierstrass point on a compact

Riemann surfece of genus g , its weight satisfies the inequality
1<u(p) <5elg-1) ;

m(p) = 1 precigsely when p 1is & normal Weilerstrass point, end

w(p) = %g(g- 1) precisely when p is & hyperelliptic Weierstrass

point. The totel number N of Welerstrass points on the surface

satisfies the inequality

2(g+1) <nv<(g-1) glg+1) ;

¥ = 2(g+1) precisely when the surface is hyperelliptic, and

¥N=(g-1) glg+1) precisely when the surface is normal.

Proof. Ietting r > 1 %be the least non-gsp value at &
Weierstrass point p , the gap values can be written in the form

i, i+r, 1+2r,...,1+0,r , (L =1,2,...,r-1; A = 0,1,2,...) &

i



The total number of gaps is

‘r-l r-l
(2h) g= X (M+1l)=r-1+ £ A, .
i=1 i=1
The welght of the point p is then
r-l )'i 1
wp) = Z I (1+Jr) - 5g(g+1)
i=1 J=0
r-1 1 1
=z [1(x +1) + 5rr, (A +1)] < 5 (g+1)

1 r-1 1 1
sr(r-1)+ I M (21+xr+7) -58(g+1).

Since (i+ rhi) is a gep value, it follows from the inequality (19)

thet (i+7rA;) <2g-1; so 21+xAh +r <i+(2g-1)+r<

1
(r-1) + (eg-1)+r = 2(g+r-1) . Then from (24),

r-1 1 r-1
Z sx,(eiern,+r) <(g+tr-1) & N = (g+r-1)(g-r+1) .
21 1 - i
i=1 i=1
Therefore

o(p) <5&(e-1) - 5(r-1)(x-2) .

The maximum velue of w(p) is therefore %g(g -1) , snd this is
attained only for r = 2 , which is the hyperelliptic case. The

assertion sbout the minimm velue for w(p) was proved earlier.

Fipally, the results gbout the total number of Weierstrass points
follow immediately from the inequalities on the weights and

Theorem 15, thus concluding the proof.

For emphesis, recall esgain that surfaces of genugs 0 or

1 have no Weierstrass points.



§8. Picard snd Jecobi varieties

(a) The first step in the detailed classification of complex
line bundles over & compact Riemann surfece M wag taken in §7(a),
with the introduction of the Cherm class of a line bundle; from the

exact sequence of sheaves
(1) 0—>z-—> 082> & 50

there followed the exact cohomology sequence
*
(2) 0 —> 1M, 8 )/ut(M,E) — (M, %) sz >0,

where c¢ is the homomorphism associating to & complex line bundle
its Chern class. The subgroup of complex line bundles having Chern
class zero is thus isomorphic to the group Hl(M, @f)/Hl(M,%) , and
the investigation of this group is the next step. To begin, consider

the following exact sequence of sheaves

(3) o—>c— 63> 010 5o,

where d 1s the operation of exterior differentistion. The associated

exact cohomology sequence over the Riemann surface M begins
C c
0 —> I(M,€) —> r(M, & ) —> (4, 010 25 wly,0) —

—> B M, 8 ) —> HL(M, 4®1’°) — Hz(lé,c) > M, @) —> ... .
. )

&
Since M is compaet, I'(M,¢) =TI'(M, () =€ , and also HZ(M,c) =0 .
Furthermore, H2(M, ®) =0 by Theorem 8, and
w2, 010 Yr%M, @) = © by the Serre duelity theorem. Therefore

the sbove exact cohomology sequence leads to the exact seguence



(4) 0 —= (4, 3% 2 iwln,c) — B, &) — 0 .

Since the inclusion Z({ & can be factored through the inclusions
2Ce( @, it follows that the homomorphism Hl(M,Z) —_— Hl(M, o)
in the exact sequence (1) can be factored through the homomorphism

it (M;C) —> Hl(M, (9 ) in the exact sequence (4). Consequently

(5) Hl(Mz 8 ) v Hl(M:c)
m(Mz)  E(MEz) +or(M, @%°)

where & is the coboundary homomorphism arising from the exact

sequence (3). For later purposes, recall that this homomorphism has
the following explicit form. For eny element ¢ ¢ I'(M, 81°) , ana
for any suitsble coordinate covering Ul = [Ua} of M, there will
exist holomorphic functione £, e (U, () such that © = af, 1in

Ua « The constants

(5q))043 = fg - I,

form & one-cocyele (E:':P)oq3 € Zl(?/L ,C) , representing the cohomology
class 59 ¢ Hl(M,c) . TNote further that this homomorphism is actually
an injection; indeed, the following somewhat stronger assertion can

be made.

Iemms 18. Consider the homomorphism B: I(M, all’o) - Hl(M,('.‘)
for & compact Riemsnn surface M . If ¢ e (M, 01’ 0) is an element

such that

89 « T°(M,B) C E-(M,C) ,

then ¢ =0.
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Proof. 1In terms of the above explicit form for the homo-
morphism 8 , it is spparent that 89 ¢ H-(M,R) if and only if,
for a suitable coordinate covering U= {Ua] of the surface M,
there exist holomorphic functions £, € P(Ua’ @-) such that @ = af,
in Uy and such that fB - fa is real. The functions
g, = exp 2mi f, are thus holomorphic in U, , and le,l = |gB| in
Uy NUp - Since M is compact, the globally defined function le,]
must attain its maximum at some point of M ; but then g, is con-
stant in an open neighborhood of that point by the maximum modulus
theorem, and hence all the functions g, &re constant by the identity
theorem for analytic functions. The functions f£. are necessarily

a
constant as well, s0 @ = dfa = 0 , ag asserted.

s

Another, although equivalent, approach to the classification
can be made through a slightly different exact sequence of sheaves.

*
For any germ of function f e¢ & define
_ 1 . 1,0 |
dz(f)—-e-—ﬁdlogfe@- H

this is clearly a sheaf homomorphism df: @* —> (9-1 )0 . The mapping
df is onto; for any germ of holomorphic differential form ¢ e o 0
can be written @ = dg for some function g ¢ 0—, and then

© = df(exp 2mL g) . The kernel of Adf is the subsheaf G*C a* or

constant functions. There is thus the exect sequence of sheaves
* *
o—=>c¢ = 0" %S L0 5o,

The associated exact cohomology sequence over the Riemann surface

M begins
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*
— M, 07) 2> gy, a0 2M,c) — B (M, &*) > e .

Since M is compact, I‘(M,O*) = (M, @-*) = (IL‘* , and also
HE(M,C*) =C . Furthermore, HZ(M, 0—*) = 0 ; for from the exact
cohomology sequence associated to (1) there is the segment

EM, 08 ) —>EM, 0)—> BZ) , vhile (M @) =0 by
Theorem 8, and H3(M,Z) = 0 since dimension (M) =2 . The Serre
auality theorem shows thet H-(M, #20) ¥ oM, @ ) = € ; and the
image of the mapping c* 1is hence the kernel of & homomorphism
c— 1:* , and will be denoted by ; . (Note that ; is the kernel
of a particular homomorphism ©— c* ; as might be expect;ed, we
shall shortly identify 2% with ’i .) As a consequence of these
observations, the above exact cohomology sequence leads to the exact

gequence

* * *
6)  o—>rm, @1% s 6" L gl %) S5z 50,

*
The group Hl(M,c )} will be called the group of flat complex line

*
bundles over M . The homomorphism i  is that induced by the
* *
natural inclusion mepping € —> (L ; so the image of 1 thus
consists of those complex line bundles & which admit representative

cocycles consisting of constant functions.

(8gg)
Hl 1,0
The Serre duality theorem merely asserts that M, 32777)
is canoniecally dual to the group HO(M, ®) = € ; the actual iso-
morphism Bl(M, oL o) T ¢ therefore involves an element of choice,
which will be made in the following mamner. Considering & cohomology

class ; ¢ 5 (M, ®% &5 & linear functionsl on € , associate to
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*

choice, the homomorphism ¢” in the exact sequence (6) can be

described as follows.

*
Iemma 19. For a complex line bundle ¢ ¢ i (M, 8") over
a compact Riemann surface M, c*(g) € C isg the Chern class of

that bundle.

Proof. This is a straightforward matter of tracing through
the verious mappings involved. First, the explicit form of the
duality in Serre's theorem was described in §5(b). For eny coho-
mology class 0O ¢ Hl(M, @1’0) select a representative cocycle
(“aﬁ) c Zl('UZ s (ﬂl’o) in terms of a sultable locally finite coor-
dinate covering U = (U,} of M . There is & zero cochain

Ta = T

('ra) € CO('m R ébl,O) having coboundery (caﬁ) , 80 O© 8 o

Qﬁ=

in U,NU Then STB = 37, , and the differential form

-
(-b_-ra) er(m, £ L1y represents the cohomology class ¢ under the
Dolbeeult isomorphism EL(M, 8%0) ¥ r(m, £&1:1)/ar(m, £971) .
Thus the constant corresponding to the cohomology class o under
our chosen isomorphism Hl(M, @l’o) ¢ is just - ffM(Sra) .

Next, for & complex line bundle £ ¢ . (M, 61*) with & represerkstive
eoeycle (goﬁ) € Zl(UL s @*) , the image o = c*(¢) is represented
by the cocyele Ogg = af(tys) = é-% 4 108 tyg + As in Temma 14
select novhere-vanishing ¢” functions Ty in the verious sets Uy

- 2 i .
s0 that Ty = ralgaﬁl in the U, N Ug 5 then

gaﬁ-_-%aloggaa:%(alogrﬁ-alogra)-

Thus in the explicit form of the Serre duality mepping we can put
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w o ozZnl - uar- e
¢*(8) = - [], 5 (g T,) = = [/ 3 l0g(r)
M 211 o =2 u BTy
However, by Lemme 14 the latter integral is precisely the Chern class
c(t) , concluding the proof.

It follows immedistely from Iemma 19 and the exact sequence

(6) that the complex line bundles arising from flat line bundles are

precisely those complex line bundles of Chern class zero; or equive-

lently, the necessary end sufficient condition that a complex line

1 *
bundle £ e H (M, () admit a representative cocycle (gas) con-

sisting entirely of constant functions is that co(f) = O .

In sumary of the preceding, the group of complex line bundles

of Chern class zero can be described in the following three equive-

lent forms:
i ngm,c)
B (M, z) + sr(y, 839
(7) (¢ GHl(M, a-*)lc(g):o];‘< Hl(M; @)

(M, Z)

T (M)

L s*r(y, &1:9)

Moreover, the isomorphisms (7) leed to isomorphisms between the

three groups on the right-hand side, which are explicitly as follows.
f‘irst, from the exact cohomology sequence associated to the exact
sheaf sequence (k) there arises the homomorphism Hl(M,c‘) _— Hl(M,ﬂ ),

which induces an fsomOrphism

H(4,€) SEE)
7 (M,z) + sr(y, @120) (M, )
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Next, from the exact cohomology sequence associated to the exact

sheal sequence
0—>Z—>C>¢€ —>0

*
there arises the homomorphism Hl(M, C) — it (M,¢") , which induces

an isomorphism

E(4,©) s _E(me)
Hl(M,Z) +8r(M, (91’0) s¥*r(m, 019

The first assertion wes proved above; verification of the second

assertion will be left to the reader.

(v) The expressions (7) permit an additional structure to be
imposed on the group of complex line bundles of Chern class Zzero.

In general, a lattice subgroup of a finite dimensional real wvector

space is defined t0 be sn additive subgroup of the vector space
generated by a set of elements which are linearly independent over
the real numbers; and a lattice subgroup of a finite dimensional
complex vector space is defined to be a lattice subgroup of the
associated real vector space. Thus in anm n dimensional complex
vector space, with its natural associated structure as & 2n dimen-
sional real vector space, & lattice subgroup has at most 2n
generators. Considering the first form given in (7), recall that
Hl(M,c) hag the natural structure of a 2g dimensional complex
vector space, where g 1is the genus of the Riemsmn surface M.
As is known (cf. the topological appendix), Hl(M,Z)C Hl(M,(L'!) is
a lattice subgroup; indeed, any 2g generators of Hl(M,Z) form

a basis for the complex vector space Hl(M, €©) . By lemma 18 the



i it Ve 44Ny AL } = 1 \M,6} 1is injective, hence the
imege is a g dimensional eomplex lineasr subspace; so the quotient
space

v = B(M,¢)/5r (M, @120)

has the structure of a g dimensional complex vector space. Ilet
)xl,...,ng be a set of generators for the lattice subgroup

BJ'(M,Z) C Hl(M,c) ; and let 7\1,..., e be the corresponding
elements 111 the quotient space V . Then ')Tl, ,7;8 generate a
lattice subgroup of V . For if there were real numbers Jr.l,....,x28 R
not all zero, such that I xX =0 s then

1714

Z, %A € B0, 649 C 5Y(M,€) ; but then by Lemma 18 this would

imply that Zi xi}‘i = 0 , contredicting the fact that xl""’}?g

generate a lattice subgroup. As a comseQuence, the quotlent group

(M, €)
7t (M, Z) + 80y, O 0)

has the structure of the gquotiemt siaace of a g dimensional complex
vector space V by a lattice subgroup generated by 2g elements;
this structure will be called the Picard va.riety of the Riemann
surface M , and will be denoted by :g(M) . As remarked above,

v = g (M,e)/er(y, 819) TEH (M, @), so the same structure cen be
described in the form R(M) = K(M, O-)/E (MZ) . The Picard variety
is in particuler an Abelien group, snd its role in the classification

of complex line bundles lies in its occurrence in the exact sequence

-

(8) 0 —> 2(M) —> E{N, &) S>z—>0.

The group of all complex line bundles over M therefore has the

netural structure Hl(M, @*) iy E(M) .
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To consider in more detail this additiomal structure, let
V be amy g dimensiomal complex vector space, and o CV be a
lattice subgroup of V . OFf course, as en abstract group & ~ %'
for some Integer r < 2g , which will be c-a.lled the renk of the
iattice subgroup; the renk clearly can be characterized also as the
dimension of the real vector subspace of V spanned by the elements
of Ef . We shall consider here only the case in which & has the
meximal possible rank. First, ignoring the complex structure, con-
sider V &s & 2g dimensional real vector space. A get of generstors
of X cen be used for a basis for the real vector space V , so that
Ve T g/Z’a €2 (B/Z)23 . The space V/ & cen thus be factored
a8 a Cartesien product of 2g circles, and thereby hes the structure
of a compact manifold of dimension 2g . The vector space V 1is
obviously the universal covering space of this manifold, the covering
mapping being the netural projection V —> V/& ; thus
1rl(V/ X)= #8 . Now returning to the complex structure , V cen
be considered as & complex enalytic menifold, and the covering
mepping V —> V/ & defines a natural complex emslytic structure
on the guotient space v/ X 3 those coordinaste neighborhoods on V
small enough to project homeomorphicelly to V/X can be teken as
coordinate neighborhoods on V/@ . Therefore V/X has the
structure of a compact complex enalytic manifold; a manifold of

this form will be celled a complex analytic torus. It is obvious

that the group operations are complex amalytic, in the sense that

the mapping
V¥ xv/X — /&
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aerined by (p,4) —> p-4 1is a complex enalytic mapping. Thus
V/Q\G is a complex Lie group, indeed an Abelian complex Lie group.

(Lie groups here ere connected.)

As those who are familiar with Lie groups know, any compact
Abelian complex Lie group is of the form V/& . (See for instance,
C. Chevalley, Theory of Lie Groups I, (Princeton, 1946); the dis-
cussion there is for the resl case, bubt goes through in the same
manner in the complex cage.) It is obvious that en isomorphism
V/E& — V'/ &' Detween two compact Abelian complex Lie groups
is equivaelent to a complex linesr isomorphism V —> V' which takes
the lattice X into the lattice X' . Therefore the structure we
are investigating is nothing more nor less than that of a compact
Abelien complex Lie group. Actually, however, the lLie growp espect
need not be considered eny further; for the complex structure itself
essentially carries all the information.

Lemma 20. Iet V,V' be g dimensional complex vector
spaces, and £ CV, €' C V' be lattice subgroups of renk 2g .
The compact complex manifolds V/X , V'/% ' are holomorphically
equivalent if end only if there is & complex linear isomorphism
F: V—> V' puch that F( )= 20 .

Proof. First, a complex linear isomorphism F: V —> V!
is = complex enalytic homeomorphism; end if F(¢ ) = &' it is
evident that F induces a complex anelytic homeomorphism
£f: V/@ —> V'/ &' . Next, assume conversely that there is a
complex analytic homeomorphism f£: V/ ¥ —> V'/& ' . The compo-

sition of the naturel projection V —> V/’ end the mspping f
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yields en snalytic local homeomorphism V —> V!/ &' ; snd since

V and V' sare simply connected, the latter mepping can be factored
through an é.n&ly‘tic local homeomorphism F: V —> V' , That is %o
say, there will exist a complex analytic local homeomorphism

F: V—> V' which induces the given mepping f: V/&X —> V'// &' ;
so that for any element A e there will exist en element A' e X'

such that

(9) Fp+2) = F(p) + M

for all points p € V. In terms of coordinate systems (zl,...,zg)
for V and (wl,...,wg) for V' , the mapping F will be given
by & g-tuple w, = Fi(P) of complex analytic functions of g com-

plex varisbles. Differentiating equation (9), it follows that
(BFi/azi)(p+ A) = (aFi/azj)(p)

for a1l points p ¢ V and all elements A e X . The functions
BFi/Bz j are thus inveriant under & , and so define complex
enalytic functions on V/& ; but since V/& 4is compact, it
follows from the maximum modulus theorem as in Lemms 1 that

aFi/azJ is constent. The mapping F is consequently linesr; end
being a local homeomorphism, F is nonsingulsr. For F to induce
a homeomorphism from V/ & onto V/& ' , it is then necessary

that F( X ) = &' , and the proof is therewith concluded.

Tt is then evident from this lemma that two compact
Abelian complex Lie groups V/® and V'/ ' ere isomorphic pre-
cisely when their underlying complex enalytic manifolds are analyt-
ieally equivalenmt. Therefore in future investigations the group

structure can be ignored, in part. For emphasis, it should be
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repeated that a complex a-.nalytic manifold will only be called a
complex analytic torus whenm it is analytically equivalent to a
manifold of the form V/3f , where V is a g dimensional complex
vector space and X C V is a lattice subgroup of renk 2g ; end
thus a complex snalytic torus carries a unigue further structure of
a compact Abelian complex Lie group.

It is frequently useful to be much more explicit in the
description of a lattice subgroup or complex torus. So choose a .
basis for the vector space V , or equivalently, en isomorphism
VY ¢ ; the elements of € will be written as complex column
vectors of length g . Also choose a set of generators )\l,...,)\gg
for the lattice subgroup & . Each vector A€ £ Ce8 will ve
represented by a columm vector }'.j = (}'iJ)’ 12100058 ; and the
set of all 2g of these vectors form a g X 2g matrix A = (}‘ij)
called a period metrix for the lettice subgroup X C V or complex

torus V/® . Then the 2g X 2g square matrix

)

where A denotes the complex conjugete of the matrix A , will de

called an agsociated full period mstrix.

Iemma 21, A complex metrix A of g rows and 2g columns
is a period matrix for a compact complex torus if and only if its
A
% is nonsingular.
Proof. By definition, the colums of A generate a lattice

associated full period matrix

of maximal rank in @& (equivalently define a complex torus) if
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end only if they are linearly independent over the real numbers;
therefore the comtradiction of this situation is the assertion that
there exists a real column vector x of length 2g , not identically
gero, such that Ax = O . If there exlsts such a vector x , then

% x = 0, so the full period matrix is singular. Conversely suppose
“that the full period matrix is singular; there will then exist a
coeplex column vector 2 = x+1y of length 2g , not identically
zero, such that (%) z = O , or equivalently, such that Az = Az = O.
But then Ax = Ay = 0 , where x,y &re real end mot both ere identi-

cally zero, and that suffices to complete the proof.

Remark., There are of course several equivalent ways of
expressing the copdition that a g X 2g complex metrix A be the
period matrix of a Compact complex torus; the version used in the
preceding lemma is perhaps the simplest to state. The version closest
to the definition is that, for a real column vector x € meg s
Ax = 0 if end only if x = 0 ; this is just the assertion that the
columns of A are linearly independent over the resl numbers, and
the preceding lemms demonstrated that this assertion is equivslent
%o the assertion that the full period matrix be non-singular. Yet
another version is that for a complex column vector z € c B
.\ is a resl vector If and only if 2z = 0 ; here 1"z denotes
the transpose of 2z , hence a row vector. To show that this assertion
is equivalent to the condition of the lemmas, it suffices to show

that there exists a non-zero vector z € ¢® such that tzl\ is real

A
if snd only if (K) is singular. First suppose that 1:zl\ is real,

that 1s, that 1"zA = % s for a pon-zero vector 2z ; then
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(5,9 5] =" - B -0,

hence ( ;:.] is singular. Conversely, suppose that (2) is singuler;
writing A =R + 18 where R,S5 are real matrices, this is equivelent
to the condition that (y) is singular. Since this is & real mstrix,
there must exist a non-zero vector (:) € B% so that

(*a,")(F) = ®ar + "8 = 0 ; but then

(P + 1%a)n) = mm ((Po + 1Pa)(R+18)) = Pam + Bos =0,

which proves the desired assertion.

The period matrix associated to a complex torus is not unique,
since two arbitrary choices were made; so it is Important to examine
the effects of these choices. First, choosing a different basis for
the vector space V amounts t0 applying an isomorphism €& = ¢f ;
representing this isomorphism by a non-singuler g X g complex
matrix M , the period matrix is obviously transformed into the
period metrix MA , since eech vector }‘J is trensformed into the
vector M%.J » Second, a different basis )\.]'_,... ’}‘ég for the lattice
subgroup :t is necessarily of the form }\3 = ).".K )“knk,j » Where
N = (nkj) is a 2g X 2g metrix of integer elements and of deter-
minant +1 ; this chenge elearly replaces the period metrix A by

the matrix AN . Consequently, two period matrices A,A' represent

the same complex torus if and only if

(10) A' = MAN vwhere M e GL(g,C), N ¢ GL(2g,Z) .

(tere GL(n,R) denotes the group of invertible n X n matrices

over the ring R .) This equivalence relation can be used to bring
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a period metrix into a simpler form, a8 follows. Decompose a period
metrix A into two square g X g blocks of the form A = (Al,l\a) .
By multiplying A on the right by a suitable integer metrix

N e cL(2g,Z) , it can be srrenged that the matrix A, be non-
singular; to see this, merely recall that there sre g linearly
independent columns in A , and a suitable matrix W can be found
rearranging the columns to make these the last g columns. Then
the matrix A and the matrix AélA = (AélAl,I) represent the same

complex torus; so any complex torus can be represented by a period

matrix of the form A = (Al,I) , where T denotes the g X g identity

metrix., This is still far from associating a unique period matrix
to a complex torus, however. To proceed further, suppose that
A= (Al,I) and A' = (AJ'_,I) represent the same complex torus, so

that A' = MAN as in (10). Decompose N into the g X g matrix

Cfre)
v (63)

(A},I) = M(A;,T) (2 g)

blocks

then'

(M(A1A+C), M(AlB+D)) .

Hence A B+D 1is mon-singular, and M = (AlB+D)'1 ; and

A = (AlmD)'l(AlAw) . The converse being apperent, it follows that

two period matrices matrices A = (Al, I) snd A =(A‘1,I) represent

the same complex torus if and only if there exists a matrix

N = (g g) ¢ GL(2g, %)

such that AleD iz non-singular and

(11) A = (Almn)‘l(AlAw) .
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NUVE uosu, Oy Lemn# 21, & DALY1X \Al,.L) 18 the period matrix of
a complex torus if and only if Im Al is non-singulsr, where Im

denotes the imaginary part of the matrix.

It is useless to proceed any further in this direction just
at the present point; but the special cese g = 1 provides an
interesting and illustrative example. The period matrix cen be
taken in the form A = (N,1) , vhere A €€ and ImA #0;
and two matrices A = (kl,l) end A' = (k_"_,l) represent the same

complex torus if and only if there is = matrix

N = (: g) e aL(2,%)

such that
B.A.l + ¢

A= ™ ora
rote that bh, + d is alvays nom-zero, since Im A, #0. This is
in fact precisely the eguivalence relation discussed in §l(f), for
the complex tori are the compact Riememn surfaces of genus 1 dis-
cussed there. Note that it is evident that there actuwally are
distinet complex analytic tori, so that the structure introduced

is a non-trivial one.

Finally, to obtain an explicit description of the Picard
variety z(M) of a campact Riemsnn surface M of genus g,
choose a basis for Hl(M,Z) s or equivalently, an isomorphism
Hl(M,x) Y 8 ; the same elements form a basis for HH(M,€) , so
there is & corresponding isomorphism B (M,¢) ¥ €8 . Further,
choose a basis PyrreesPy € rm, 01,0) for the space of Abelian

differentisls on the Riemann surface M ; the associated cohomology

=1k



classes will then be of the form

Scpi= e(‘?s.

Yog 1)

The collection of all such vectors form a 2g X g matrix § = (wji)
called the period matrix of the Abelien differentials on M . Note
that by Iemma 18, if z € € is & vector such that 0z e e » then
pecessarily 2z = O ; hence by Iemms 21 (recalling the remarks fol-
lowing that lemma), the matrix € is the period patrix of & compact
complex torus. (Actually, to parallel the earlier discussion we
should consider the tramsposed matrix tﬂ rather then Q ; but

this merely amounts to considering the rows of Q rather then the
rolunns of tﬂ s & trivial distinction which will be left to the
reader to sort out.) The period matrix of the Abelien differentials
is of course not unique, but depends on the choices of bases for

E(M,Z) and for (M, @%°) ;

it is quite obvious that different
choices have the effect of replacing the matrix £ by a matrix
NOM , vhere N ¢ GL(2g,Z) =nd M ¢ GL(g,&) . Therefore, recalling
equation (lO), all of these choices lead to the same compact complex
torus, which will be called the Jacobi varlety g (M) of the Riemann
surface M.

Now the Picerd variety of M is given by

H-(M, €)
(v, z) + sr(M, @1°)

B(M) =

80 selecting sny linear mapping A: Hl(M,c) —> € having precisely
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OL\M, V- ° )} asg Kerhel, '1;\M) is the compact complex torus

P(u) = /AT (M,2) . In terms of the isomorphism HY(M,C) ¥ ¢°8
chosen above, the mepping A: ¢2 g Ny, is represented by a g X 2g
complex matrix A = (hia) ; since the image of A must be all of

€% , the matrix A must have have rank g . The condition that
MM, 0%0)) = 0 is evidently that AQ = 0, since the columns

of I span the subspace B&I'(M, el 0) C S, The lattice subgroup
Hl(M,z) = £8 C 8 s generated by the 2g colum vectors e, ,

where the entries of e, are zero except for & one in the i~th place;

i
and since A-ei is Just the i-th column of the matrix A , the image
AT (M,2) C €8 1s the lattice genmerated by the 2g colum vectors
of the matrix A . Therefore A itself is a period metrix of the

Picard variety of M.

In summary then, let 0 be a period matrix for the Abelian

differentials on M ; the Jacobi variety J(M) of M is the compact

complex torus defined by the period matrix tﬂ « let A be any

g X 2g matrix of rank g such that A0 = O ; the Picard varieily

E(M) of M is the compact complex torus defined by the period

matrix A .

{c) Not every compact complex torus can be the Jacobi or Picard
variety of a Riemenn surface; in fact, 1t is still an unsolved
problem to describe precisely which tori srise from Riemann surfaces.
A very important partial answer is provided in the form of en addi-
tional structure which the Jacobli end Picard varieties inherit from

the multiplicative structure of the cohomology of a surface.
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Recall thet there is a skew-symmetric bilinear mepping
HN(M,€) X E-(M,C) —> K- (M,C)
oh the cohomology of a surface M , called the cup product. Perhaps

the easiest way to describe this is In terms of differential forms.

Under the deRhem isomorphism ess described in §5(a),

r,c) ¥ (2 I &Y)ap = 0} ;
ar(u, £ °)

go any cohomology class in Hl(M, €) 1s represented by a closed dif-
ferential form. If @,¥ are two such forms, their product @ . ¥
is a closed differential form of degree 2 , hence /represents sn
element of H2(M,c) under the deRham isomorphism. It is clear that
the cohomology cless represented by ¢ . ¥ is unchanged when either
p or V¥ i1s replaced by a differential form representing the same
one-dimensional cohomplogy class; for instance, if f ¢ r(m, (‘ 0) s

then (@+df) ¥ =@ . ¥ + d(f¥) . The mapping
(o¥) =0 A ¥

then defines the cup product cperation in cohomology. To vary the
description slightly, consider the natural identification

H'(M,€) = € as introduced tn §5(a). The cup product can then be
envisaged as a bilipear mapping Hl(M,c) X HJ'(M,c) —~> ; and in

terms of differential forms, this mepping cen be described as

(@¥) —> [fyoav.

Note that the subgroup Hl(M,m) X Hl(M,m) C Hl(M,c) X Hl(M,c‘) is

mapped into the subgroup B (M,B) = B under the cup product, and
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Ve e e memprew ssuw wiis QD ANELUUY

HQ(M,Z) = Z . The cup product of cohomology classes O,B € Hl(M,c)

will be denoted by Q@ U B, considered as en element of €.

Choosing a besis for the group Hl(M,z) , that is, an
isomorphism Hl(M,Z) Y 28 , the cup product KE x 8 57 i

defined by & skew-symmetric 2g X 2g integer matrix X, called

the intersection matrix of the surface . M ; explicitly, if

m,n € 2.2 € are colum vectors representing one-dimensional coho-
mology classes, their cup product is the integer . thu « The same
matrix of course describes the ¢éup product in real or complex
cobomology, in terms of the same basis. A change of basis in
Hl(M,Z) is described by a metfix N e GL(2g,Z ); and this replaces

the intersection matrix X by the intersection matrix t Lyt .

Theorem 17. Iet M be a compact Riemsnn surface of genus
g> 0 ; and let X be the intersection matrix end Q be the period
matrix of the Abelien differentials on M ; in terms of somes basis
for Hl(M,Z) - Then

(1) tﬂXQ =0, (Riemann's equality); and
(11) 1%aXa is positive definite Hermitian, (Riemann's

inequality).

Proof. Iet @,...,@, € F(N, 0°) be a basis for the
Abelian differentials on M , so that the cobomology classes
Bg, = (in) € Hl(M,G) = ®® form the column vectors of the matrix
. Note that the differentisl forms q)i are closed, and that

the mepping ¢, — 89, of (4) coincides with the deRhem mepping;
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the conjugate differentiale 7971 are also closed, and under the
deRham mapping correspond to the conjugate cohomology classes. Thus
the cup products of these cohomology classes can be calculated by
integrating products of the Abelian differentisls and their conju-
gates. Firstly, note that P ~ tpj = 0 , since the product would
be a form of bidegree (2,0) ; therefore the cup product

”M P A cpj = 0. In terms of the intersection matrix X , however,

this cup product is given by
0= % w X 0, =(*x0)
o LYY 13 *
H

that is to say, is the antry in row i, columm J, of the matrix

X0 =0 . Secondly, if @ e I(M, @°) 1s

®ax0 ; and hence
any Abalian differential, then in a coordinate neighborhood Ua
with a coordinate mapping Zy thet differential form can be written

Q= ha(z(p)dza , where ha(za) is a holomorphic function; thus
_ . 2 — 2
19 A $ = i|b (2,)|"dz, ~ a7, = 2in,(z,)|"ax, ~ dy, »

writing Ty =Xyt iya . Since dxa A dya is the locel srea element,

then for the cup product it follows that
1, 9~F20,
with equality occurring only when ¢ = O . In terms of the basic

Abelian differentials, write ¢ = ).“.:lcqu:l for some complex constants

. 3 8O
C-L,

Ogﬁfwal\¢= Zcicjﬁffm tpiA(PJ= Z-ciPich,
1,3 i,d
where

. Pldr-'f:iffMQiAC-PJ.

-149-



AUE WAUWLX P o= \ri ,j) is clearly Hermitian, and the sbove inequelity
shows that it is positive definite as well. In terms of the inter-

sectlon matrix however,

= /1 = wkixkﬂalj = /1 (tnxﬁ)

P
i k2

1y
or in other words, P = itﬂ X% , which serves to conclude the proof.

A matrix Q with 2g rows snd g columms is called a
Riemenn metrix if there exists a skew-symmetric integer matrix X

with 2g rows and columns, such that:

) (1) %exa=o0, ana
(11) 1%0X7T 1s positive definite Hermitian.

The matrix X i1s called a principel mastrix for the Riemann matrix

@ ; the set (0,X) consisting of a Riemsnn matrix 0 and an associ-

ated principel matrix is called a Riemann matrix pair, and it is this

pair which is of primary interest. Theorem 17 is then the assertion
that the set (Q,X) , consisting of the period matrix Q of the
Avelien differentials on & compact Riemann surface and the inter-
section matrix of the surface (in terms of some choice of basis for

Hl(M,z)), is & Riemsnn matrix pair.

Ir (9,X) 1s = Riemsnn matrix pair, and if M e GL{g,C)
and N ¢ GL{2g,Z) are arbitrary matrices, then clearly
(moy, tﬁlm'l) is also & Riemann mitrix pair; this merely amounts
to verifying condition (12), s trivial calculation which will be
left to the reader. Two Riemsnn matrix pairs (Q,X) amd (8',X')
will be called equivelent when Q' = NOM and X' = yhat gor

some matrices M e GL{g,€) and N e GL(2g,Z) . Recalling equation
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(10), it is evident that the period matrices °0 and ‘o' repre-
sent the seme complex torus whemever (Q,X) and (0',X') are
equivalent Riemenn matrix pairs. A complex torus whose perilod matrix
is a Riemann matrix will be called an Abelian varlety; and the pre-
ceding observation shows that all the period matrices representing
an Abelian varlety are necessarily Riemann matrices. Actually of
course, an equivalence class of Riemann matrix pairs determines an
Abellen variety with an sdditional structure; such an equivelence

cless will be called e polarized Abellen varlety, and will be viewed

as an Abellian varlety with the edditionsl structure determined by a
fixed principal matrix for emy period matrix defining the underlying
complex torus. With this terminology, Theorem 17 has the following

immediate consequence.

Corollery. The Jacobi veriety of a compact Riemann surface
of genus g > 0 has & canonlcal structure as & polarized Abelian
variety.

Proof. For eny choice of & basis for Hl(M,Z) and & besis
for I(M, ol 0) s Theorem 17 shows that the pair (Q,X) , consisting
of the period matrix of that basis for the Abelian differentials and
the intersection metrix for the surface, is a Riemann matrix pair.
Another choice of a basis for Hl(M,z) is determined by any matrix
N € GL(2g,Z) ; end snother choice for & basis for (M, @ %) is
determined by any matrix M e GL(g,C) . As noted earlier, the new
period matrix is then NQM , and the new intersection matrix is
b 5 80 this leads to an equivalent Riemsnn matrix pair, suf-

flcing to conclude the proof.
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1ne aiscussion so far hes concerned only the Jacobi veriety
J (M) of the Riemann surface M , and it remains to show how this
structure is reflected in the Picard veriety E(M) . Again choosing
bases for HT (M,%) eand for I(M, als 0) s let X be the intersection
matrix of the surface and {} be the period matrix of the Abelien
differentials on the surface; and let A be any g X 2g matrix of

renk g such that AQ =0 .

Iemms 22. The Riematnn matrix pairs (02,X) end (tA, tx‘l)

are cenonlecelly equivalent.

Proof. That (Q,X) is a Riemesnn matrix pair was proved in
Theorem 17. To show that (tA, tx'l) is an equivalent Riemsnn matrix
pair it is only necessary to find matrices M e GL(g,€) =nd N e GL(2g,Z)

Y- oM ang WXyl ; end selecting the matrices

such that
M,N in a canonical manner will show that the equivalence 1s canonical.
let P be the non-singuler g X g metrix P = 1°0X7, and let Q

be the g Xg matrix Q = Al ; since AR =0, rank A=g, and
renk (02,0) = 2g , 1t is clear that the matrix Q 18 elso non-singulsxr.
The proof will be completed by verifylng that the matrices
M=-1%1% ana N=X satisfy the desired conditions. It is

obvious that ‘Nt = Sxlaxd = Pl For the remaining con-
Iy I Aa q o0
(nlﬁ) = - = ) ;
A AR AQ 0 Q

[l ¥ 1
( 1 ) = (2,0 .
Q A

dition, note that

and therefore
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1

Ybaty = - Mbax - - tMtnx(n,ﬁ)( 5‘1 A)
Q" A

gl i
= tM(o;:'-P)( -1 ’> = tMiPQ—lA =A,
g A
so NWM = 1-'A ; 85 desired.

This lemma shows that the Picard variety P(M) end the

Jacobi veriety J(M) of & compact Riemenn surface are canonically

isomorphic as compact complex tori, hénce as compact complex Lie
groups; and thus that the. Picard veriety aleo has a canonical struc-
ture as a polerlzed Abellan veriety. It is convenient to retain
both of these names, with their connotations Sf different simple
standard representations of the same Abellan variety £(M) = ’;L(M) 3
end 1t is important for later purposes to note the explicit form of
the isomorphism between these two representations. Considering

g(M) as the quotient of the vector space € of column vectors

(2) by the lattlce genersted by the columms of g , and considering
g(M) as the quotient of the vector space € of column vectors (w)

by the lattice generated by the columns of A , write

. & (2) ¢ (w)
W) =g, M) =
The isomorphism is then given by
(13) w=- 1Pz .

)
The verification is straightforward, and will be left to the reader.
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that, for a suiteble choice of basis for Hl(M,z) s the intersection

matrix of the surface has the form
(k) X=J =

vhere I denotes the g X g identity matrix and O the gX g
zero matrix; s basis of this form will be called & canonical basis
for the surface. (The notation J or Jg will be reserved for
matrices of the form (14).) A Riemann matrix pair defining the
(polarized) Jacobi variety of a compact Riemann surfsce can thus
always be taken in the canonical form (Q,J) . Splitting the matrix
1 into g X g matrix blocks of the form Q = (;;1) s the Riemann
conditions take the form

(1) a0 -*a0, -0, m

(15)

t,=
("o 0, -

this is an eagy calculation, which will be left to the reader. Thus

(11) & ﬂlﬁe) 1s positive definite Hermitien;

Q =( %) is a Rlemann matrix with associated principsl matrix J

if and oply if (15) holds. Note thet the matrices o,

were singular, there would

send Q. are
-
both necessarily non-singulesr. For if 02

exist & non-zero constant vector c € C° such that 92c =0 ; but
then tctna = 523 = 0 , hence itc(tneﬁ - tnlﬁe)'c? = 0 , contradicting

the positive definiteness of the matrix (15ii).

As in the earlier discussion of the period matrices of
general compact complex tori, so in the discussion of Riemshn matrix
pairs, it is of some interest to examine simpler representetives of

of an equivelence class. If J 1s the essociated principal matrix
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of one representative of the equivalence class, then we can restrict
consideration to those Riemesnn matrix pairs of the form (Q,J) in
the given edqulivelence class; and since the principal metrix is fixed,
it suffices merely to consider the Riemsnn matrix € alone. The
most genersl Rlemann matrix Q' in the seme (restricted) equivelence
class is then of the form 0! = NQM , where N e GL(2g,Z) ,

Me GL{g,€) , and N1 =7 (or equivalently, J = “WIN) .

The set of all matrices Ne GL(2g,Z) such that °NJN = J form a

group called the symplectic group of rank g , and denoted by

2

noted sbove; hence Q! = m2'1 is an equivalent Riemarnn matrix.

Thus, sh equivalence clagss of Riemenn matrix pairs with principal

Q
sp(g,Z) . Writing 0 ( nl> , the matrix 0, is non-gingular, as
2

matrix J alv}ays containg a Riemann matrix of the form o =( (I"J.) .

In this case, 1t is reedlly seen thet equetiSns (15) take the form

(1) 0, is symmetric, end

(16)
(41) Im 0, dis positive definite.
/7 ﬂl\
Thus = 1/ is & Riemsnn matrix with associsted principal matrix

Q
J if and only if 0, gabisfies (16). Now suppose that = ( I1>
ey
and Q' = ( :l) sre two equivelent such matrices; there must then

exist matrices N € SP(g,Z) and M ¢ GL(g,®) such that Q' = NOM .

And writing N = (‘C\ g) , it follows as in equation (11) that
-1
(16%) o = (,'.ml + 1':1)(cnl + D)™ ;

. Q' '
thus two Riemann matrices ( gl) B ( Il) with associated principal

matrix J are equivalent if and only if there exists a sympletic
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v an - \C D/ sucl tnev \.lo0') holds. Note that, as a coa-

sequence of the obvious observation in the preceding paragraph,

Cnl + D 1is always non-singular. The set of matrices ﬂl setisfying

(15) 1s celled the Slegel generalized upper half space, and denoted

by gg . The symplectic group SP(g,Z) acte as a group of trans-
formations on G g’ and the quotient space (3. g/SP(g, Z) is in one-
to-one correspondence with the equivalence classes of Riemann matrix
pairs (0,J) . This leads to a fascinating area of study, but there
is not enough time to continue further in this direction here. Iet
1t suffice merely to remark that the symplectic group acts discon-

tinuously, and that the quotient space is a complex anslytic space

having the seme dimension es 65 , namely 3(g+1) . Note that it
is clear from this discussion that not all complex tori are Abelien

varieties.

(a) It naturally occurs to one to enquire sbout the relation-
ships between the complex structure of & Riemann surface M , and
the complex structure of the Plcard or Jacobi variety of M. To
poée a precise question, for any two points p,qd € M consider the
associsted point bundles ;p, l;q H 'i'.he complex line bundle

£ = ;Pt:;l has Chern class zero, hence can be considered as an
element of the Picard variety £(M) . There is thus a mapping

M XM —> P(M) , defined by (p,q) —> gpg;l e P(M) ; and the

question 1s whether this is a complex analytic mapping.

lemma 23. On & compact Riemsnn surface M of gerfms

g > 0 consider any two points p,q , and the complex line bundle
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p=d
£ = ;pg,q € P(M) ; and let T be an arbitrary differentisble arc
from the point 4 +to the point p in M . Then representing the
Picard variety in the form

(M, €)

7 (m,2) + sr(m, -0’

B(v) =

the line bundle ¢ e 'g(M) cen be represented by a cohomology class

g€ Hl(M,(‘.') such that
(17) ou (59) = [ 9
for every Abellsn differentisl ¢ e I'(M, ov o) .

Proof. To begin, suppose that the points p,q , and the
arc 7 lie in a contractible coordinate neighborhood U, CM; the
coordinete mepping z, cen be taken to be a homeomorphism of an
open neighborhood of the point set closure ﬁo CM into the complex
line €, mepping '(_lo to a closed disc. Choose an open set ¥, Cu
such that 1 C v, C Tfo C Uy - Purther, choose en open covering
of M consisting of the set U, end some edditional sets (U,} ,
with the properties that: (i) Uy NV, = p for a$0; =nd
(11) the covering U 1is e leray covering for the sheaves (& and
€. (Recalling §3(e) snd §3(f), it is only necessary to require
t‘ha.f the sets U, Ve coordinate neighborhoods, end that these sets
end all their intersections be contractible.) Since c(¢) = 0,
the line bundle ¢ can be represented by & cocycle (gocﬁ) € Zl('Ul , c*)
. formed of constent functions. And since £ = gp;;l » there will be
a meromorphic section (£,) e I 7)2*(5)) with divisor
o (£,) = 1°p'- 1:0 ; the fumctions £, thus satisfy £y = £, £,

in U, N U+ Ineachset U, for @# 0 the function f, is
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holomorphic and novhere vanishing; selecting some branch of the

logarithm, introduce the holomorphic functions

_ 1
oa—-g—ﬁlogfaer(Ua,(ﬂ-).

In the annular region Uo - VO the function log 1’0 will also be
single-valued, since the sum of the residues of the function

d log £, within V, 1is zero; so select & c” function g, in

the set UO which coincides with - E:'Lﬁ log fo in the ennular

1
region UO - VO + (For instence, select & branch of - P log fo
in en open neighborhood of the point set closure ﬁO =V and

mltiply it by & C° function which 1s identicslly one on Uy = Vo

and which venishes ldentically on & sultable subset of Vo .) Then

defining o -0 inUaﬂU

s " % B %op
fo/fa = gC!B ; these functions are therefore constants, so form &

o s it follows that exp 27l
cocycle (caB) € Zl('UL ,€) . Recalling §8(a), this cocycle deter-
mines a cohomology class o € EJ'(M, C) which represents the complex
line bundle ¢ .

To calculate the cup product o u (89) of this cohomology
cless with the cohomology class 59 e Hl(M,@) represented by an
Abelian differentisl o ¢ I'(M, &1'°) , observe that the differential
form (dca) er(4, £ 1) represents the cohomology class o under
the deRham lsomorphism; and obviously, @ represents the cohomology
cless 59 under the deRham isomorphism. Conseguently
gu B = ffM doy ~ @ - Since both ¢ and do, are holemorphic
differentisl forms, hence differentiasl forms of degree (l,@) s
everywhere outside of the set Uo s it follows that dca A9P=0 on

M- U, ; so that o'v &9 = ”U 4oy » ¢ . Select a holomorphic
0
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function h in the set UO 80 that dh = ¢ ; then from Stokes'

theorem,
gy 59 ”Uo o A b = - ”U d(hdco)
0
= ./ hdo, .
w, °
The function co was chosen 80 that it coincided with 2_"1 log f

a.lc;ng the boundary BUO ; 80 epplying the residue theorem, and

remembering the deflnition of the function b,

1
GUB¢=-3'[£ h doy = 5=

0 0

= h(p) - h(q) = [
T

h d log fo

&

&

IQ-
T

This demonstrates the theorem in the special cese that p,q, and t
1lie within & coordinate neighborhood. In general, amy arc T can
be split into segments T 1 from points 9y to U,y 0 such that

B30 9,90 and 1, 1lie in a coordinate neighborhood; there will

i
then be & cohomology class o 1 € Hl(M,tIB) representing the line
bundle ¢ ;'1,sothat ciUSrp=f1.q). The sum
91 Y i
= 2.0, € H1(M,€) represents the line bundle I,¢{ Q‘l =t Q'l
11 ey 2

and

cu8¢=21(ciu8¢)=2ifTiq>=chp,

which completes the proof in general.

Now choose & basis for I-Il (M,2) , thus identifyidg
Hl(M,(‘.') = (‘.Eg, Hl(M,z) = ¥8 ; end choose a basis
PgseeesPy € (M, @—1’0) for the Abelien differentials on M. ILet

X be the intersection matrix of the surfece M in this besis,
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2 Dbe the period metrix of the Abelisn differentisls on M s and A
be any g X 2g matrix of rapk g such that AQ = O ; and introduce

the non-singuler g X g matrices
t
P=1i"0X0, Q=Al.

The Picard-Jacobl variety of the surface M +then has the standard

representations

,{(M) = tﬂﬁg ’ £(M) = —A% 3

which are related as in equation (13). With this notation, end the
convention that all vectors are viewed &8 column vectors,; the fol-

lowing holds.

Theorem 18. (Abel's Theorem) Iet +t be any differentisble
arc from a point g to & point p on the compact Riemexn surface

M, and introduce the vector % e € with coordinates
tigf‘r (Pi, 131,0-0,8-

- *
Then the complex line bundle § = gpgql € Hl(M, ®") , considered
as an element of the Picard-Jacobi variety g(M) = E(M) of the

surface M , 1s given explicitly as

t « 68/ = 3(u) ,

8 =
(e : -1l e B/rm2E - B(M) .

Proof. let ¢ = (si) € HJ'(M,@) =C2%€ pea echomology

class as given in Lemma 23; thus

t1={¢1=au (§¢1)=k22 sk )deli’
’

or in metrix form
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(19) t="0%%s .
=] -
t -1 Q . A
Recalling that = X, and that (Q,0)™ = 1 as in
Q" A
Lemma 22, rewrite (19) in the form
e (TNE LIt .
t=.- 'ax(an) ( 1 s = (0,1P) 1 ) s = 1iPQ"As .
QA QA

Tow by construction, As e (‘.E/Az2 €. P(M) represents the complex

line bundle ¢ ; that is to ssay,
£ = hs = - 1027% e &B/a°€ = p(w) ,

which i the second assertion of egquation (18). The first assertion
of equation (18) then follows immediately from equation (13), =nd

the proof is thereby concluded.

There are a number of almost immediste consequences of
Abel's theorem, as stated here.

Corollary 1. TFor any fixed point g € M, the mepping
M—> £(M) defined by p —> §p§;1 is a complex anslytic mmapping.

Proof. It is more convenient to consider the mapping
M —> J(M) determined by the canomicsl isomorphism J(M) = (M) .

By Theorem 18 this map has the form
peM— (fz rp).) € cg/tnfgz.g(m .
The value of the integral is obviously a complex analytic fumction

of the upper end-point p , and hence the corollary follbws at once.

Corollary 2. TFor any points pl,...,pr,ql,...,qr eM,

choose differentisble arcs T, from g 5 to p 3 on the surface M.

J
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Th oo = veo
en Cpl Cpr §ql Eqr

with coordinstes

if and only if the vector + e €5

T
t,= 2 [ ¢
i j=1 TJ i

belongs to the lattice ' 28 ,
Proof. By Theorem 18 the line bundle gJ = Qp C;l 85 an
Jd

element of the Jacobi variety in given explicitly by the vector
ty e %/%a8P8 = 7(M) heving coordinstes
byy= Sy 9y
J
hence the bundle ¢ = 51 cee Er is given explicitly by the vector
t

r
i= [ by Now £ een b =l .ant

if end only if E=1
Py P 7Y

4

which corresponds to the condition that t=0 in €5/ 0#8 , that
1s, that t ¢ "8 , as desired.

Corollary 3. For any points PyreeesPpslyrreesd, € M,
choose differentisble arecs T j from q‘j to p j on the surface M.

Then Lp ees b =8 ..t if and only if there is a closed
1 Py ql q:t' .

differentisble loop T on the surface M such that

z

r
J=1

f,dcp =/.0

for ell Abelien differentisls o ¢ r(M, @%0) .

Proof. Iet }‘l’ ‘e "”‘gg be closed differentisble loops
on the surface M which generste the homology group Hl(M,z) 3
and choose the dusl basis for the cohomology group T (M,% . Then

for the Abelian differentisls §, ¢ I(M, 6119y | 14 foliows that
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wki=fhkq)i’ for i=1,...,6 end ksl,...,2g .

By Corollery 2, ;pl cen §pr = ;ql §qr {f and only if there is

en integral vector n = (nk) ¢ 2% guch that

r

2g
[ @, == w . o =f_ o ,
P Taie s S

2

3
yhere T = nkkk . Bince 9, form a basis for the Abelien
k=

differentlals, the latter conditlon is equivalent to the condition

that

T
s/ 9=]9
=1 " T

for all Abelian differentlals ¢ , as desired.

vee 21 =1 AF end omly if

%

there is = meromorphic function f on the surfsce M such that

-1
Recalling that .
¢ S AN

() = T :
£)= £ 1p, - I 1lvq, ,
=1 0 =) T

Corollaries 2 and 3 can be restated &8s necessary and sufficlent
conditions for the existence of such meromorphic fumctions; this is

the treditional form in which Abel's Theorem 1s stated.
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§a.

(a) There are interesting structures which are finer than com-
plex analytic structures on menifolds, but which play an important
role in complex analysis. Recall from the diseussion in §1(b) that
the importent property of complex analytic functions, for defining

& complex analytic structure, is the pseudogroup property: the com-

position of two complex analytic local homeomorphisms is again a
complex anelytic local homeomorphism whenever the composition is
defined. If a subget of the set of complex anslytic local homeo-
morphisms has the pseudogroup property, then there is e further
structure on complex menifolds associated to that subset. Perhaps
tl;xe most interesting such subsets are defined by differential
equations; these are the only sueh subsets which will be considered
here.

Suppose that f: U—> V is & complex analytic local
homeomorphism between two open subdomains U,V of the complex
line € ; the condition that £ be & local homeomorphism is of
course just thet f£'(z) # O for all points z ¢ U . Introduce

the differentisl operators 6.,8, , defined as follows:

1’72
(1) 0,8(z) = Zi2)
(2) o,2(s) = 2E(2)E75) - 38" (2)°
Ef'(z)2

Since f' 1s nowhere venishing in U , the functions evf are
holomorphic throughout U . The differentisl operstors Gv are
of perticular importance for their behaviour under the composition

)

of mappings.
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Iemms 24, Iet f: U—>V and g: V—> W be complex
enalytic locel homeomorphisms between subdomains of the complex
iine €, and let h=go £ be the composition of the two.
Writing w = £(z) ,

v
(3) o,n(z) = 6 g(w)-£"(2)" + 6 £(z) for v=1,2 .
Proof. Since h(z) = g(w) and % = £1(z) , it follows

from the chain rule for differentiation that

h'(z) = g'(w)f'(2) ,

" (2) = g" (e (2)° + gt (w)e"(2) ,

B"(z) = g"(w)e'(2)3 + 3g" (w)e' (2)£"(2) + g (w)e"(z) .
Thus

6,h(z) = i{—w)f—;&mm—ﬁwl = 6,g(v)£'(2) + 6,£(z) ;
and

o.n(z) = 28T L€ (e) h3g e g 31" P (en ) ot gt (21 1 (1) (2]
2 2(g")%(2)°

= 6,8(w) £ (2)? + 0,%(z) ,

which completes the proof.

Now let 3 v be the family of all complex analytie local
homeomorphisms f such that Gvf(z) = 0 at all points 2z where f
is defined. It is an obvious consequence of Lemms 24 that the family
3- v has the pseudogroup property; this introduces the new structures
next to be investigated. (Tt naturelly occurs to one to ask why
these two differential operators are selected; the reason 1s that )

they are essentially the only such operators. More precisely,
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one dimension, defined as the set of solutions of a system of
differential equations involving only the first and higher deriv-
atives, and possessing the pseudogroup property, then either

3 = 91 or F= 92 . This is not really difficult to show,
but is too much of a digression to enter into here; it is of course
part of the general problem of classifying peeudogroups. For
further discussion, see for instance mie Cartan, Sur la structure

des groupes infinis de transformations, Ann. Ec. Normele, 21(190k4),

153-206; or the paper of Guillemin and Sternberg referred to earlier
(page 4).)

The families 9v are in fact very famillar, in a more
explicit form. Firstly, if f € 5‘1 , then £"(z) = 0, so that
necessarily f(z) az+b for some constants a,b ; the condition
that £'(z) # 0 is merely thet & 4 0 . Thus, &, consists of

the complex affine meppings. Secondly, it is an easy calculation

to show that

() optte) = 20 Sy oier?
. dz

2
Therefore, if f ¢ 92 1t follows that i;‘ f‘(z)'% = 0, 80 that
dz

£1(z) = (cz+d)'2 for some constants c¢,d ; and integrating agsin,

necessarily

az+b

2(z) = G7a

for some constants a,b,c,d . The condition that £'(z) ¥ 0 smounte
merely to the condition that ed - bc # 0 . Thus, 2 o comaists or

the complex projective trensformations. (These are alsc celled the
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differential operator 62 1s also called the Schwarzian derivative.

Turning next to the associated structures on manifolds, let
M be en arbitrary two.dimensional topological msnifold, and let
(Up 2y} Dbe & coordinate covering of M, with the coordinate

transition functlons =z B) in the intersections U, N U

o = oﬁ(z B
The coordinaste covering {Ua, za] will be called en F v coordinate
covering if all the coordinate transition fumctions belong to the
family 3 v Two 3 v coordinate coverings will be called equi-
velent 1f their union 1s also an av coordinste covering. It is
a consequence of the pseudogroup property of Bv that this is
actually an equivalence relation; recall the discussion of complex
analytic structures on pege 3. An equivalence class of F v coor-
dinate coverings will be called en 32 v structure on the manifold.
The adJectives affine and projective will freguently be used in
place of 3 1 and 9'2 respectively, in view of the explicit

form of these families of mappings; thus an affine structure is

an 3 1 structure, end & projective structure is an 5’2 strue-

ture. Note that an affine coordinate covering 1s also a projective
doordinate covering, since 91 C 32 ; and that two equivalent
affine coordinste coverings are also equivelent when considered as
projective coordinate coverings, for the same reason. Hence an
affin|e structure belongs to & well defined projective structure;
:bhe affine structure is sald to be subordinate to the pro.jective§
structure. In the same mammer, e prolective structure is subor-

dinate to a well defined complex analytic structure. For this
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on & Riemann surface, meaning projective or affine structures sub-

ordinate to the given complex structure. Observe that it remains
t0 be seen whether a complex structure actually has a subordinste
projective or affine structure, and whether that subordinate
structure is unigue.

To investigate these gquestions, consider any complex analytic
coordinate covering Ul = {Ua, za] of the Riemsnn surface M . Recali
from §5(c) that the canonical bundle K € HJ'(M, &*) is defined
by the cocycle (Kaﬁ) € Zl( m, 0*) , Where Koﬁ(p) =
f&ﬁ(za(P))-l for points P € Uy NUg, and £, &re the coordinate
trensition functions. To each intersection Uy, n Uﬁ associate the
complex analytic function 6 vfaﬁ(zﬂ) defined in za(Ua N Uﬁ) ;
and consider the element o, o € I‘(Ua N u,, @-(Kv)) naturally
essociated to that function. Thus in terms of the local coordinste

mapping zE defined in UB 3
(5) 90n(za(P)) = 6,£5(25(p)) ;

end if peU y as well, then in terms of the local coordinate

mapping zy defined in U7 )

I yonlzy (P)) = Km(p)v-cm(za(p)) .

The coordinste transition functions satisfy the condition that

= n .
fa’(z7) focB ° fB)'(z)') for z_ ¢ zy(Uot nu Uy) ; 80 by

Iemms 24,

b4 B

v
OyTay(2y) = O,F0p(2g) gy (7)) + 6,85, (2,)
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Rewriting the latter equation

(6) Oty (Zp(P)) = 000(25(2)) K (B) ™Y + 0,0 (2 (2)) 5

vBy

or equivalently,

(z7(p)) .

cm(zy(p)) = cm(z7(p)) * Oypy

However, this means that the elements (GWB) define a cocycle
(0,08) ez, A(k")) . Thus to eny complex emalytic coordinate

cavering UZ of M there is cenonicelly asssoclsted a cocycle
(Tyop) = O)Fee) € 20T, O(K")),  v=12.

An 3 y Cconnection for the covering M is a zero cochain

h= (ha) e (1, @(Kv)) such that Bh = g, - The comnections
h,h' for two coverings U1, V' will be called equivelent if to-
gether they form part of a connection for the union of the two
coverings. (Note that the cocycle g, associated to the union of
the two coverings consists of the original cocyecles for the two
separate coverings, in view of the fact that it is cenonically
defined., The equivalence condition is just that the two connections
h,h' cen be extended to form a comnection for the union of the

two coverings.) An equivelence class of connections will be

called en v connection for the manifold M . As before, an

5 1 connection will also be called en affine connection, and an

9 2 connection will also be called a proJjective connection.

Explicitly, an Sv connection for If{ consists of sections -

(n,) e I(u, & (kY)) such that

Um(p) = ba(p) - by(p) for p e U, NUg .
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q B the coordinate.neigh-

borhood Ua s the section hcx is realized as a complex anslytic
function ha( za) in za(Ua) ; and the coboundary condition can be

restated as

(7) °v043(zﬂ(P)) = hB(zB(p)) - Kaﬂ(p)' ho(zo(p)) for peU, NU;.

Theorem 19. There is a canonical one-to-one correspondence

between the I v connections on a Riemann surface and the 9

structures on that surface.

v

Proof. let h be an J, connection on e Riemann surface
M , and choose & reprerentative connection (ha) € Go(?f( 5 a(KV))
’for some complex anelytic coordinate covering UL = {Uyp2zo} of M.
Note first that, after passing to a refinement of the covering if

necessary, there will be complex analytic homeomorphisms Wy on

the sets Za(Ua) = VaC € such that ha(za) = evwa(za) . To see
this, it is only necessary to show that in some Open neighborhood

of any point there will exist a solution w

o of the differential

equation W, = by , such that wy #0 . For the case V=1

the differential equation is the linear equation w& - haw& =0,
which has solutions with arbitrarily prescribed values for w& “at
any point. For the case V = 2 , recalling formula (L), the dir-

ferential equation cen be rewritten v’& +2hyyv, =0 where
-2

w!' = v

@ o and the same result holds. Note further that the most

general such homeomorphism is of the form ?;a =Vyoe Wy for some

element Vy € 5’ v® For if ?r'a is any anslytic homeomcrphiem
-1
satisfying ha(za) = ev?l'a(za) s then putting v, = ?r'a o Vg

write TJQ =V, e W, ; but by Lemma 2k,
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By = ev = Oyl e V) = (ev"a)'("c'x)v * vy = (Bv"cz)'("«':z)V *hy
hence 6,7, =0 and vy e 3v

Now for the given open covering [Ua} s the most general
complex analytie coordinate covering is of the form (U Wy @ za}
for some complex analytic homeomorphisms w,: V, —> W, C @; the
associated coordinate tramsition functione are
';O!B = (wa o za).(wB o zB)'l =Wy Lop 0 wél s where £, are the
coord:lnat;.e transition functions for the covering {Ua, za} . Writing

oo Top = oa e Wy and epplying Temma 2l again,
(o) (25" + (0,200) = (O F2)(e8)Y + (84,)

or upon rewriting,

(gv?aﬂ)(wé)v = Oy * By a‘é hB

~
where hy = 6w, . From equation (7) it then follows that 9 f0n=
precisely when ha is a connection for the covering VZ . Thus
each 3 v coordinate covering corresponds to an 9‘ v connection;
end from the observetions in the preceding psragraph, this is a

one-to-one correspondence. It is obvious that equivalences are

preserved, hence the theorem follows ms stated.

Corollary 1. An J y coordinate covering UL = (Uyzy)
on & Riemsnn surface M represents the 3\} structure canonically
essociated to the av connection h i1if and only if h 1is repre-
gented by the zero SV connection (ha) ec®( , 0 («Y)) for the
cov.ering n .

Proof. Since the structure canonically associated to the

connection h is described in terms of sn analytic coordinate
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covering {Ua, za] by & change of coordinates by homeomorphisms Yy

satisfying vaa =by, this is entirely obvious.

Note that if h = (ha) is en ?v connection, then from
equation (7) it follows that the most general F , comnection is
h+g vhere g e I'(M, 6 (x')) 1s en arbitrary section; thus the .
set of av comnections, if non-empty, form a complex linear mani-
fold of dimension (k') . And applying Theorem 19, if a Riemamn
surface M admits any a‘v structure, then the set of all
structures form in a canonical manner a complex linear space of
dimension 7(KV) . For affine structures this dimension is
y(k) = g ; and for projective structures this dimension is

?’(K2 ) = 3g=3 , by the Riemann-Roch theorem.

As for the existence of an 9\; comection, it is clear
from the definition of a connection that the necessary and suffi-
clent condition is that o, = 0 in £ (M, 0 (") , vhere o, is
the cohomology class defined by the cocyele g = 6 Vf i ezl(m, 8{«")).
Recalling the preceding lnvestigations of these cohomology groups,

the following existence theorems arise.

Corollery 2. A compact Riemenn surface of genus g > 1
always admits projective structures.

Proof. By the Serre duality theorem
g, &) T oM, O (kL)) 5 but since o(k™Y) = -c(k) =2-2g ,
it follows that c(x'l) <0 for g> 1, and therefore that
M, & (B)) ¥ r(u, B (kL)) = 0, which suffices to prove the

asgertion.
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Corollary 3. A compact Riemann surface admits affine
structures if and only if c(k) = 0, hence if and only if the

surface has genus one,

Proof. By the Berre duality theorem again, at (M, @(x))
is canonicslly dual to [(M, &) = @ ; hence there is an isomorphism
Hl(M, 0@ (k)) T €. Belect a coordinate covering VL = (Uyr2y) 80
that the cohomology class ¢, € Hl(M, d’(K)) is represented by a

cocycle o, € Zl('Vl_, O(x)) ; recall that

log

il

= - B4 = .3
%08 Blfaﬁ ?é; dzB log faﬁ = . dzB log Kap *

1 1,0
Considering oy,5 € Z (W, 0-7°% , then 9508825 = ~d(log Koﬁ) .
But this is the same form of coeycle considered in the proof of
Lemma 14; s0, applying the arguments there (especially on page 102),
it follows readily that under the chosen explicit form of Serre's

duality, the cohomology class ¢, corresponds to the constant

1
- 2mi c(k) . Hence 0; = 0 if and only if e(k) = 0, which

suffices to prove the agsertion.

It was demonstrated earlier (page 115) that Pl s the
only compact Riemann surface of genus zero, and it obvicusly has a
projJective structure; this case 1s essentlally trivial, and will
henceforth be excluded from consideration. The Rlemann surfaces
of genus 1 are the only compact Riemann surfaces which admit affine
structures, as a consequence of Corollary 3. This can actually be
seen directly as follows. If [Ua’ za} is an affine coordinate

covering, the transition functions are of the form Ty = adeB+de
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for some constants & ’boﬁ € C; and so the canonical bundle is
defined by the functions Kq = (dza/dzs)'l - a;;' . As in §8(a),
line bundles defined by a constant cocycle necessarily have Chern
class zero, hence O = c(k) = 2g-2 snd so g=1 . An affine
structure is itself a projective structure; and we shall later see
that in this case there is & one-to-one correspondence between
affine and projective structures. In general, for Riemann surfaces
of genus g> 1, there‘ are no affine structures at all, by
Corollary 3; but each surface edmits & femily of projective struce

tures, by Corollary 2.

(v) The families F y cen be considered as groups, rather than
merely as pseudogroups. In view of Corollary 3 of Theorem 19, for
the remainder of the discussion here we shall consider explicitly
only the family J, of projective transformations; the resder can
readlly provide corresponding stetements for the femily 3-1 of
affine transformations. Viewing & projective transformation as &
complex snalytic homeomorphism ¢: P —> P (s discussed in

L. Ahlfors, Complex Analysis, (MeGrew-Hill, 1966), for example),

compositions are well-defined for sny two projective transfor-
mations, so the set of all such form a group; this group is called

the projective linear group of rank 2 over the complex numbers,

and will be denoted by PI(2,€) .

The projective structures on a surface can in a sense be
described by & slight modification of the cohomological machinery
which has been used earlier. Iet VL = (U,} Ve an open covering

of the topological surface M , and G be any abstract group,



(not necessarily commutative). A g-cochain of the covering U with
coefficients in G 1is s function ¢ which associates to any
g~simplex (Ua yeensU Y e N(JL) ean element

cpaoma = cp(Ua yeeesU ) € G ; the set of all such g-cochains will
be denoted by C(UL,G) , but this is now viewed merely as a set,
with no specified group structure. A one-cochain (cpaﬂ) € Gl(Ul ,0)
is called a one-cocycle if q:oae = q:o; and CPanB7 = q:oa’ whenever
Uy N UB n U7 # § ; =nd the set of one-cocycles will be denated by
Z'(Y,6) . Two cocycles (95)s (Vo) WiLL De called equivalent
if there is a zero cochain (Ga) e GO(UL ,G) such that

voﬁ = acposeél ; the set of equivalence classes will be denoted by
HY(V,6) , and will be called the one-dimensional cohomology set

of UL with coefficients in G . If U is & refinement of the
covering U , with refining mepping p: Y — I, then as in §3(b)
there ave induced mappings p: CH( UL ,8) — c¥(¥ ,6) . Tt is

essy to see that these lesd to a mepping u*: Iil(Vl. ,G) — nl('}f 5G) ;5
verification will be left to the reader. Further, as an analogue

of lemma 5, 1if u: Y —>m, and ¥: ').r——>m are two refining
meppings, then p* = v* . (For 1f (9,5) = (9(U,,0.)) « ZHW,0),
then define & zero-cochain (ea) e (U ;@) vy

By = 0(Vy) = 9(kV,,W,) . Then “*CP(va’vB) = P(HV,,uVg) =

= OV Vo JP(VV, VW J(v Vg,ui¥,) = Ga'V*W(Va:VB)'G,;l , so that

u*s 1s equivalent to v¥p .) Then put

aL (M, @) = air.lim. BN e,

to define the first cohomology set of M with coefficients in the

group G .
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Iemma 25. There is a canonical mapping from the set of

projective structures on a surface M into the cohomology set

L (4,7L(2,¢)) .

Proof. For eny projective structure select a representative
projective coordinate covering {Ua, za} , with coordinate transition
functions (CPO‘B) « The elements cPoﬁ can be considered in two
vays: either as mappings @q: zB(Ua n UB) — za(Ua n UB) , O 8§
elements q:oaB z PL(E,c') associeted to non-empty intersections
Uy NUgCM . In elther case Gy, = cp; , and 90, = @y vhen-
ever U, N Ug n U7 # ¢ , so that (q:oaﬂ) determine & cocycle in
Zl('))(_ ,PL(2,€)) . If [Ua,'i'a} is an equivalent projective coor-
dinate covering defined in terms of the same open covering WL of
M and having coordinate transition functions ($oﬁ) » then there
ere elements 6, € PL(2,€) such that ?ﬁaﬂ = eaq’aﬁeél ; B0 the co-
cycles (cpaB) and GGB) are equivalent. There 1s thus a well-
defined mepping, from equivalence classes of projective coordinate
coverings of M defined in terms of the open covering Jl, into
the cohomology set }IJ‘('I)[ ,PL(2,8)) . A projective coordinate
covering [Ua’ za] induces a netural projective coordilnate covering
for eny refinement ¥ < U , and this is evidently compatible with
the cohomology meppings Hl('lﬂ. ,PL(2,C)) —» (Y ,pL(2,0)) .
Finally, two projective coordinate coverings (Uyz,) end (Un,%y)
are equivalent if snd only if they induce equivalent projective
coordinate coverings for a common refinement V of N ana ?71..

This serves to conclude the proof.

The element of Hl(M,PL(E ,C)) corresponding to a projective

structure will be called the coordinste (cohomology) cless of that




structure. The mapping which associates to a projective structure
its coordinate cohomology class ¢ H-(M,PL(2,C)) is neither one-
to-one nor onto. However, restricting consideration to the pro-
Jective structures subordinate to a fixed complex structure, the
mapping is one-to-one, in the sense that two projective structures
on a Riemann surface are equivalent when they have the same coor-
dinate cohomology eless. Before turning to the proof of this

assertion, it is convenient to introduce some further terminology.

Again consider an abstract group G , but now suppose that
G acts as a group of homeomorphisms on a topologicel space S .
For any cohomology cless ¢ € Hl(M,G) » select & basie YL = (U)
for the open sets of the topological surface M and a represen-
tative cocycle (tpaB) € Zl(UL +G) for the cohomology class @ .
To each set Uy ¢ UL associate the set ’Ja of continuous
meppings from U, into S ; and to each inclusion UaC UB

associate the function pﬁa: 'Ja -_ 'dB which takes a mepping

z, € ja into the mapping Paoa € ,d 8 defined by

(pﬁaza)(P) = fPBa(Za(p)) for p e U,C Ug -

Bince cPﬁa’ 8 —> S is continuous, this definition mekes sense.
Whenever U, C Ug C U, end z, e Ja s 1t follows readily from
the cocycle condition on (cpae) that PyePpo = Py * Therefore
(W, Ja’paﬂ} is 8 presheaf of sets over M , which is eamsily seen
to be complete; the associated sheaf will be called the gheaf of

germs of continuous sections of @ with values in 8 , and will be

denoted by & (9,8) . A section z = (za).e (M, 6 (¢,8)) corre-

sponds to & family of continuous msppings 2y Uoz —> 8 such that

~1
1+



25(P) = 9pg(z5(p)) whenever p e U, NU . If & hes a complex
structure, and G acts as a group of complex analytic homeomor-
phisms 0f S , then in the same manner we can define the sheaf of

germs of complex enalytic sections of ¢ with values in 8, a

sheaf which will be denoted by @'(CP,S) « If B has an algebraic
structure, and G acte as a group of sutomorphisms of that struc-
ture, then the sheaves &(9,8) and 8~(9,5) can be given the
structures of sheaves of those algebraic structures. The space 8
will be dropped from the notation if there is no danger of confusion.
Two examples will be of particuler interest here. The first is that
in vhich G = GL(n,C) =snd S =€ ; G acts as a group of complex
analytic isomorphisms of the complex vector space cn » A cohow
mology class § e HY(M,GL{n,€)) will be called & flat complex
vector bundle of ramk n over M ; the corresponding shear &(o,c")
of complex analytic sections has the structure of a sheaf of com-
plex vector spaces. The case n =1 ig just the case of flat
complex .line bundlés , @8 considered earlier. Of course, the group
8L(n,C) cen be used in place of GI{n,C) . The second is that in
which G = PL(2,€) and S =P . A cohomology cless @ € Rl(M,PL(E,c))

will be called a flat proJective line bundle over M .

Note, by the way, that 1f ¢ ¢ H-(M,PL(2,€)) 1a the coor-
dinate cohomology class of a projective structure on M, and if
W = (Uy2,) 1s a projective coordinate covering with coordinate

transition functions ) e Zl( U ,PL(2,€)) which represent the

G
cohomology clase ¢ , then actually (za) e I'(M, £(p,P)) . Indeeq,

the sections =z, have the further property that they are local

[0 4
homeomorphisms from M into IP . Conversely if @ ¢ Hl(M,PL(E,@))



has sections (za) e I'(M, €(9,P)) which are local homeomorphisms,
then those sections define a projective coordinate covering of M
upon suiteble refinsment, and ¢ 1s the coordinate cohomology class
of that projective structure. The subset of I'(M, £ (9,P)) con-
sisting of sections which are local homeomorphisms will be called

the set of coordimate sections, and will be demoted by I (M, ¢ (9, ).

Thus a cohomolo'gy class @ ¢ Hl(M,PL(E ,€)) 1s the coordinate class
of a prolJective structure on the topological surface M if and only
1f there exists & coordinate section (z,) e r (M, G(p,P)) ; the
set of all coordinate sections, modulo the obvious equivalence
relation, correspond to all projective structures on M with the
given coordinate cohomology class. And similarly, ¢ is the coor-
dinate class of a projective structure on the Riemann surface M

if and only if there exists & coordinate section ( za) € I‘O(M, Mo, P));
the set of all analytic coordinate sections, modulo the obvious
equivalence, correspond to all projective structures subordinate to
the given complex amalytic structure on M and with the given

coordinate cohomology class.

To any matrix T =( Z‘g e SL(2,@) there corresponds &

projective transformstion @ = @ € PL(2,C) , of the form

(8) g(z) = 2222

cz +d

every transformation ¢ ¢ PL(2,C) can be so represented, and two
matrices. T;T* represent the same projective transformation if and
only if T' = + T . The mapping u: T —> CPT is a group homomor-

phiem, forming pert of the exact sequence of groups
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(9) 0 > (+ I) —> 81(2,8) 2> PL(2,€) — 0,

where O stends for the trivial group. (Since PL(2,€) = 8L(2,€)/(+ 1),
this provides the projective linear group with the structure of a
complex Lie group.) For any covering - [Ua} of M, the homo-
morphism u clearly induces & mepping

u: et M ,8L(2,€)) —> ¢H( V1, PL(2,€)) ; 1t is easy to see that

this mapping takes cocycles into cocycles and preserves equlvalence

classes, hence induces e mspping

(20) u*: EH(M,5L(2,€)) —> H(M,PL(2,0)) .

lemme 26. If M 1is s compact Riemann surfece and
Qe at (M,PL(2,€)) is the coordinate cohomology class of & pro-
Jjective structure on M , then there exists a cohomology cless
T e Hl(M,SL(E,c')) such that @ = u*(T) . Further, if
(z,) e I‘O(M, ®(¢,P)) 1is any coordinate section, then there exist
e flat complex 1ine hundle ¢ € HJ‘(M, c*) and a section

h= (hm'hza) e I'(M, @(gfr,ca)) such that z, = hla/h2a .

Remark. It is clear that whenever ¢ e HJ‘(M, @*) and
T ¢ HY(M,SL(2,€)) , the product &T e H-(M,0L(2,C)) is well
defined.

Proof. If Q¢ Hl(M,PL(E ,€)) 1s the coordinate cohomology
class of a projective structure on M , select a projective coor-
dinate covering Ul = [Ua, za) with coordinate transition functions
(Waﬁ) ¢ Z'( V,PL(2,€ )) which represent the cohomology class @ .
For each element «:paB select s matrix TaB e 81(2,C) such that

Pop = u(TaB) ; 80 the coordinate transitions can be written



1L = £
(11) Za(p) m or peUanUB,

r (w Yoe
of c d
op op

Fote that the canonical bundle K 1is defined by

where

az, -1 >
Kop(P) =<az_ﬁ) = (copza(p) +8g)"  for p e U, NT, .

Select any g-1 distinct points pl’PZ""’Pg-l € M, where g 1is
the genus of M ; and introduce the complex line bundle { =1II 1 %2’1 ’
where ;pi are the point tundles of §7(c). Write ¢ = nk for some
complex line bundle 1 ; since c(f) = 2(g-1) = c(x) , then e(n) =0
50 We can suppose that 1n e Bl(M,C*) « Now there is an analytic
section g = (g,) ¢ (M, B(t)) = (M, @ (nk)) such that

,9-(3) = I, 2+p, ; the condition that g be a section is Just that
2
8y(p) = Nopleggza(p) + d5) ga(p)  for pev, NU,,

where (nw) are constants representing the cohomology class 1 .
Since the divisor of g 18 even, in each coordinste neighborhood
Uy we can select & well-defined bramch of hzcx(P) = 7g,(p) . The

functions h,, are amelytic in U, ; and

for some constents goﬁ . Introduce further the analytic fumctions

byo(p) = z,(p)h,y,(p) . It follows readily from (1), (2), and
these definitions, that
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B1o(P) = Eeplaggh o(p) + boghyg(p))
(13) for peU,NU

Bg(®) = Egg(Cophya(®) + doghy(p)) &

The analytic functions hla’ hza are clearly linearly independent.
So it follows immedistely from (13) that the matrices sOﬁ = §aﬁToﬁ
satisfy the cocycle condition, or in other words, represent an
element & € H-(M,GL(2,€)) ; and it is evident that n*(s) =@ .
Dividing all the matrices by their determinents will then yield a
cohomology class in at (M,SL(2,C)) setisfying the desired condi-
tions. Then, for the second part of the lemms, write the coordi-
nate trensition functions for the coordinate section (z,) in the
form (11), where T = (Taa) € Hl(M,SL(E,ﬂ)) , and repeat the sbove

part of the proof. The constants ) define a flat line bundle,

(tog
since both (Toﬁ) and (gaBTqu) satisfy the cocycle condition;
end by (13) the functions h, = (h1a’haa) determiné a section in
r(M, G-(¢7,6%)) , while by comstruction z.(p) = b (p)/iy(p) -

That concludes the proof.

Theorem 20. On a compact Riemann surface, the projective
structures subordinete to the given complex structure are determined

uniguely by their coordinate cohomology clssses.

Proof. let {Ua,za] and [Ua,wa} be two projective coor-
dinate coverings having the same coordinate cohomology class o ;
there is no loss of generality in assuming that the two coverings
actually have the seme coordinate transition functions
(95g) € z' (N ,PL(2,€)) . Applying Lemms 26, select & cohomology

class T ¢ Hl(M,SL(E,c')) such that p*(T) = ¢ , end suppose that



(TaB) € Zl( M ,8L(2,C)) isirepresentative cocycle. Further, select

flat complex line bundles ¢

() amd 0 = (ny) , together with
(8, 8q) € I(M, B (e7,6)) ana

B = (b uh)-e DM, @ (71, P)) , such thet 2,(p) = 8,,(P)/&g(p)
and wy(p) = by (p)/h, (p) . The matrices

r(5) - ( g14(p) hla(p)>
&ofP)  Byy(p)

complex analytic sections g

are complex analytic functions in each set Ua ; and

Fo(p) = Top-Fa(p)- 0 for pe U, NUg .

Therefore the functions det Fa are complex analytic in each set

Ua, and

det Fa(p) = §Oﬁ-noa-det FB(P) for p € Ua n UB ;

that is to say, (det F)) e r(M, (&(tn)) . Since c(&n) = 0, either
det Fa vanishes identically, or det Fa is nowhere vanishing, by
Theorem 11. From the proof of Lemma 26, recall that the functions
8 and &g for instance both vanish et g-1 points; and there-
fore necesserily det Fy =0 . This condition meens that the
vectors (gla,gaa) and (hla’hga) are everywhere linearly de-
pendent, or equivalently that Zy = Wy everywhere. Therefore the
two projective coordinate coverings coincide, and the desired

result has been demonstrated.

This theorem shows that the mapping which essociates to

the projective structures on = Riemann surface their coordinste
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cohomology clesses is one-to-one; hence the coordinate classes can
be used to describe the set of projective structures on a given
Riemann surface. This result is definitely false for projective
structures on & topological surface; a comstruction of L. Bers

("8imultaneous uniformizetion,” Bull. Amer. Math. Soc. 66(1960),

pp. 94-97) provides coordinate classes with two different projective
structures, such that the underlying complex enalytic structures
can be sny two arbitrary Riemenn surfaces of the same genus. There
now remains the problem of determining the subset of (M, PL(2, €))
consisting of the coordinate cohomology classes of the possible
projective structures on a Riemann surface M . Before approaching
this problem, as a slight digression we shall consider another

description of the cohomology sets i (¥, PL(2,2)) .

The cohomology sete Hl(M,G) for any grcup G can be
described as follows. Again consider aa open covering W= [Ua}
of the space M . A chain of the covering Ul based at U, ¢ U1

is a finite sequence 7 = (Ua WUy 30eesUy ) of elements U, ¢ .,
o o(1 . m i
such that Uao =U, eand U“i N ”Uai #@ for 1=1,...,m ; end

the chain is said to be closed if Ua = Uo also. A simple Jerk
m
on such a chain consists either in replacing a pair ch ’Ua of
i 7ivl

consecutive elements of the chain by a triple Ua y Uny Ua
! b 141

when U, N Us nu, # § , or in performing the inverse operation.
i 1+1

Two chains are called homotopic if it is possible to pass from one
to another by & finite sequence of simple Jerks; this is clearly

an equivalence relation, and the set of equivalence classes will
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be demoted by (UL ) . 1If (U"‘o""’U"‘m) and (U"‘o""’U"‘n) are

closed chainsg, their product is defined to be the closed chain

~ ~
(Uy seresUy sUqy 5ene,Uy )} ; it is clear that this product can be
(o] mn o] n

carried over to the set 'rrl( Ul ) of equivalence classes of closed
chains, and that 1r1( M) is then & group. (The essociativity

property is obvious; the identity is the equlivalence class repre-
sented by the closed chain (Uo) , and the inverse of the equiva-

lence class represented by a chain (Ua ,...,Ua ) is represented
° m

by the chain (Ua WUy seensUy ) « Details will be left to the
m m-1 o

reader.) The tgxz-ov.zp depends of course on the choice of the base
point U, , and the notation wl(Ul. ;U,) will be used when it is
necessary to specify the base point. If ')f is a refinement of w y
with refining mapping u: T - m_ , and if there is a set V° € ')f
such that uvo = Uo , then p induces a hommo}'phiam

w¥s ;(’l{‘ ,vo) — wl(vl »U,) . (For sny closed chain

(Vg sV seeesVy ) based at v, set WV sV seeesVy ) =
[o] m

% m o %

= ('Na Vg e s sV ) ; it is evident that this mepping preserves
o

%4 n
equivalence classes, and defines the desired homomorphism u* )

Moreover, if v: ¥ —> Ul 1 another such mapping, then p* = v*.

(To see this, it is sufficient to observe that for any closed chain

(Vg seeesVy ) based at V, and eny index r =1,2,...,m-1, it is
[o] n

possible to pess from the chain (uva yeoe sy
: o

:Wa ""’WOt )
r-1 r m

to the chain (uVa seeestVy oWy eee, Wy ) Dby the succession
[+] T r-l m

of simple jerks (v, ,¥W_, ) > (u¥, ,uV, ,¥W_ ) and
[0 «Q o [0 [0
T T r-l T T



(WVy s¥V, ¥V, ) —> (¥, ,9, ) .) Now select a fixed point
r T 1 T T+l

p € M, and consider the family consisting of open coverings
M = (Uy} together with & fixed element U e I{ such thet pe U X
This is & directed set, defining (W ,V )< (M ,u) if ¥ s a
refinement of Y with a refining mapping u: ¥ —> M so that
u(Vo) = U, . Then put

™ (M,p) = fov.lim. 1 U) ™ (W,U) .
(Recall thet the inverse limit group is the subgroup of the direct
product n(1r1( n ’Uo)) consisting of those elements

(7 ”"Uo) € II(1r1(1)l ’Uo)) such that g when-

M7y 'Vo) =7,
ever (U ,Vo) < ('UL,UO) .) Tt should be remarked that a change

of the base point has the effect of an immer automorphism on the
fundamental group 1r1(M) .

Now for any abstract growp G, let Hom(1r1(M,p),G) be the
get of homomorphisms from 1r1(M,p) into G . To eny pe‘r of ele-
ments X € Hom(wl(M,p),G) end g e G there is associated amother
group homomorphism & ¢ Hom(m (M,p),G) defined by *E(r) = g~ 1x(m)g
for T e 1r1(M,p) j two elements X,')‘E € Hom(1r1(M,p),G) are called
eQuivalent if ')\f = X& for some g ; and the set of equivalence
clesses will be denoted by

Hom(m, (M,),8)/G .
Actually of course, the mepping X —> X8 expibits G as a growp
of operators on Hom(wl(M,p),G) , and the above set of equivalence
classes is merely the quotient space under this group action.

Iemma 27. For any surface M and any group G , there is
a natural one-to-one correspondence between the cohomology set

EY(M,G) and the set Hom(, (¥,p),6)/@ -



Proof. let Ul = {Uy} be an open covering of M, with
base point U° conteining p . For any cohomology class
(50) € z (1 ,0) ;

and for any chain (Ua WUy seeeslUy ) based at U, define
o] m

Pe Hl('U'[ ;@) select a representative cocycle

(lh') q)(Uao’Uall"')Uam) = cpaodl'walaa.""wa o i

m-1"nm
Since @ 18 a cocycle, this last expression is unchanged under

simple jerks; for if U, NU, NU #¢, then o =
’ B 0%
=Q. .0 . Thus (1) defines e mapping
B A%

xg: wl(m ,Uo) - G,

which is readily seen to be & group homomorphism. If (cpoﬁ) and
(vaﬁ) are equivalent cocycles, then there are elements 6, e G

-1
such that Waﬁ = Ga(poﬂGB ; so for any closed chain,
-1
(15) YUy Uy 5eeesUy ) = 6, (U, ,Ual,...,Ua oy
° m 0 o m o

since Uao = Uam . Hence, considering Xg as an element of
Hom(‘lrl(W, »U) ;8)/G , that element is independent of the choice of
cocycle (cpaB) representing the cohomology class © ; and the map

o — X, thus tekes H(U ,G) imto Hom(m, (U ,Uo),G)/G . We
shall actually show that this mapping is & one-to-one correspondence.
First, suppose that (cpaB) and (vaB) are two cocycles in

zH(W ,6) leading to the seme element in Hom(m (U ,U,),6) ;
recalling (15), it is clear that VUB can be replaced by an

equivalent cocycle such that
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,Ual’ .e -,Uam) = ¢(Ua°;Ual, [N D’Uam)

for every closed chain. Then for any element Ua e UL select &

-1
chain T, = (Uao,udl,...,ua 1Uy) end put 6, = ¥(m; )tp(vra) ,

m-1
vhere T,  indicates the chain T, in the reverse order. The
element 6, is independent of the choice of chain m, ; for if

"f'ra is another such chain, then
vENRCE) = vir v i e el = ¥(r elr,) , since
wawra is a closed chain. Then "aﬂ = W(Ua,UB) =

= = -1 =
= \y(ua,uam_l,...,u ,Ua »Uy ,Ual,...,uam_l,ua,uﬂ) ¥(my W(mg)

-1
- - 9 = .
60Ty )9O = 8,'00g 05" . The cocyeles (7,,) amd (¥y,)
are hence equivalent, so the map ¢ —> an is one-to-one into.
Next, for any element in Hom('n' (M ,U,),0)/6 , select a represen-
tative X ¢ Hom(w (vl. U ),G) Again for any element U, € mn

select & chain T, = (U, ,U_ ,...,U ’Ua) ; end whenever

LN A W1

Uy NUg # 0 define @ = XMV, ,UB,vr;l) , noting that
(MU Ups Ty 1) ie & closed chain, Then vhenever Uy N U NU, o0,
observe that @ 03%7 x( Uy B,'n' )x( B,U ,'rr )
= X(vra, 0‘, ,11' ) = O, » since the chains (m Ty U U B’WB 1TgsUps Uy ,11' )
and (m L a,U7,1T7 ) are homotopic. Thus ((P@B) determines a co-
cycle in Zl('U[ ,G) ; and it is clear that X 1s the element asso-
ciated to the cohomology clags of ¢ under the correspondence
considered here, thus showing that the map ¢ ——> X ' is onto as
wvell.

Thus for any covering Ul with a selected base point Uo e I

there has been defined a natural one-to-one correspondence

(W ,0) <—> Hom(m, ( U1,U,),6)/G . It is evident that these



correspondences behave suitably under refinements of the covering,
end hence in the limit leed to the desired correspondence; details

again will be left to the reader.

Remark. The elements of H- (M,6) can be viewed as fibre
bundles with totally disconnected group, (flat fibre bundles); and
Lemne 27 is just the classification theorem for such bundles in
terms of their characteristic classes. For a discussion from this

point of view, see N. E. Steenrod, The Topology of Fibre Bundles,

§13, (Princeton University Press, 1951).

At this stage it would perhaps be of interest to see some
examples. It should be remarked that the group Wl(M,p) defined
above is actually isomorphic to the fundamental group of the sur-
face, hence will be assumed known to the reader. (See the topo-
logical appendix for some further discussion.) First, as a rather
trivial example, the projective l:Lne!'i:IP hes a trivial fundamental
group, Wl(P)= 1. For any group G it then follows from
Temma 27 thet Hl(M, G) consists of a single element; and consid-
ering in particular the group G = PI(2,&), there is by Theorem 20
a unique projective structure on I, which should not bve very
sm'prising'. Next, for a compact surface of genus 1 the fundamental
group is a free abelian group on two generators: 11'1(M) T2+ .
letting T,T, be two generators, an element X e Hom(’n’l(M) ,0)
is completely determined by the values X, = X.(Wi) s and these are
arbitrary subject only to the condition that )L_LX2 = XQX.L 3 thus
ve can identify Hom(m (M),6) = ((¥,%) € ¢ X GleXE = %K) -
Calling two pairs (K_UXZ) and (XJ'_,XE') equivelent if for some
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element g € G they satisfy X} = g'lxig for 1=1,2 , the get of

these equivalence classes can be identified with Hom('lrl(M) ,8)/6 .

For the special case G = PL(2,C) , recall from the exact
sequence (9) that an element X € G can be represented uniguely up
to sign by a matrix T ¢ SL{(2,€) . Recall also that by an inner
automorphism eny element T e SL(2,C) can be reduced to one of the

following canonical forms:

@ ()5 w2 7)) vsos

o1

a 0
(111) m=< ); af0,+1;
0 1/s -

and except for replacing a by 1/a in (1ii), none of these

(16)

matrices is equivalent to.eny other under an inner automorphism.

Now consider a pair of elements (><1,X2) , X, € PL(2,€) , such that

i

X% = %X ; if T, is & matrix in s1(2,C) representing X,

then T1T2 =+ T2T1 + By an inner automorphism, T, can be reduced

1
to one of the forms (16); thus there ere three cases to comsider.

(L) Iz T 4is the identity, then T, is arbitrary; and by a

1
further inner automorphism, ’1‘2 cen also be reduced to one of the

standard forms (16). (ii) If T. has the form (ii') and

8 b, !
T2 =( ) s then 'I'2 mist satisfy the condition

¢ 4
( atb18, by +b1d2) ( 8 aabl .
®2

If the + gign holde, it is easy to see that e, = 0 and

= dz =+ 1 ; while the -~ sign can clearly never oceur.



The forms of Tl and T2 cannot be further changed by an inner

automorphism. (1ii) If T, has the form (411), then T, mst

satisfy the condition

( B8 b2“1>= N (‘2‘1 LY "1) .

cofay Gl TN\epm  dy/a;

If the + sign holds, it 1s easy to see that b2 =cy = 0, and
8y = l/ci2 ; further inmer automorphisms can only have the effect
of simultaneously replacing 8a,,a, by l/al, l/az . If the -~
sign holds, it follows reedily that 8 = + 1, 8, = dz =0, and
e, = - 1/'b2 ; by en inner automorphism, it is further possible to
make b2 =+1. Now considering all three cases together, and
writing the elements as projective transformations, the elements
of E'(M,PL(2,€)) ¥ Hom(r, (M),PL(2,C))/PL(2,€) cen be represented

by the distinct pairs of transformations on the following list:

(1) T,z = 8yz+b), Tz = ayz+b,,
(17 where a,a, £0, (al'l)bl = (a2-1)b2 =0;
(1) Tz =-z, Tz = - 1/z .

These pairs of transformetions are inequivalent, with the excep-
tions that

= =1 =1
le—alz, ng-azz and le‘a Z, ng—a2 Z
1
are equivalent.

T™wo aspects of this description should be pointed out.
First, the image w"r(M,5L(2,¢)) C B-(M,PL(2,€)) under the map-

ping (10) consists precisely of the elements representable in the
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form (17 (1)); for only in the case (17 (ii)) vas the metrix
equation T1T2 = - TETl solvable. This example thus shows that
the first assertion in Lemma 26 is a non-vacuous one. By that
lemma, the element (17 (11)) can never be the coordinate coho~
mology cless of a projectlive structure. Second, &ll the elements
(27 (1)) are actuslly affine, hence the cohomology classes 8o
represented can be reduced to affine cohomology classes. Thus,
recalling the first comment above and applying Theorem 20, it
follows that any projective structure on & compact Riemann surface
of genus one can be reduced to an affine strueture; in other words,

projective and affine structures coincide in this case.

(e) The main problem here 1s that of determining the pro-
Jjective structures om a compact Riemann surface in a sufficlently
explicit manner; in view of Theorem 20 and the subsequent
discussion, this problem can be rephresed ag that of determining
explicitly which elements of nl(M,PL(z,c)) z Hom(wl(M),G)/G are
the coordinate cohomology classes of proJjective structures on the
Riemann surface M . Although some further discussion of
properties of complex vegtor bundles seems necessary before
directly tackling this problem, there are some interesting pre~
liminary results which sould be mentioned here. The projective
structures on M correspond to projective comnections, es in
Theorem 19; so the guestion arises, how to determine the coor-
dinate cohomology clags of the projective structure corresponding

to a given projective connection on M.
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To begin, select a complex line bundle A € Hl(M, o)

such that 7\2 = K , where K 1s the canonical bundle of the
Riemann surface. Since the Chern class of K 1s even, and the

group of line bundles of Chern cless zero has the simple form
described in §8, 1t is evident that there exists such a line
bundle. There is not a unigue such bundle of course, and for
present purposes any choice will suffice. It should be noted that
these bumdles A can be described very simply in terms of any
projective structure on the Riemann surface M . As in Iemmm 26,
choose a cohomology class T e BJ‘(M,SL(E ,€)) representing thet

’ projective structure; if [Ua’ za} is a projective coordinate
covering for the structure, and (T.,) ¢ Z(UL,8L(2,8)) are
matrices representing the cohomology cless T , then the coor-
dinate functions (z,) satisfy equation (11). It follows readily

that the funetions
(18) Mop(P) = cggza(p) +dgg Pel,NU,,

*
represent & complex line bundle A e Hl(M, @) for which A=k s

es desired.

lemms 28. let M be a compaet Riemann surface,
h = (ha) € C°(Y, O{®)) be a projective comection on the
surface, and A € = (M, (9;* ) be a complex line bundle such that
7\2 = K ig the canonical bundle of the surface. In each coorw-
dinate neighborhood Ua of a coordinate covering of the surface
select two linearly independent anslytic functions flot(za) s

oy za) which are solutions of the differential equation



(19) 280(z,) + holz )E(z,) = 0 ;

2y olZe)

Then to each intersection Ua n Uﬁ there corresponds & vnique

o 30)
and introduce the vector-valued functions ga( za) = ) .

matrix To“3 € GL(2,€) such that

(20) Z{2(P)) = Myg(R) " Togfo(2g(p)) for p e UL N UL .

These matrices form a cocyele T e Zl(m ,0L(2,C)) such that

¥

u(T) ¢ B-(M,PL(2,€)) is the coordinate cohomology class of the
projective structure on M corresponding to the projective

connection h .

Proof. Note that (19) ies a linear differential equation
with complex analytic coefficients, and the coefficlent of the
highest term is nowhere zero. Hence, as is well known, there
exist complex analytic solutions in a small enough nelghborhood
Ua of eny point on the surface; and the set of all these solutions
form s two-dimensionel complex vector spece. If fa(za) i eny
solution in the open set V, = za(ua) Cec, and if Uy 1 Ug o,
then introduce the complex enalytic function gﬁ(zﬁ) in

za(va n UB) C Vg defined by
8a(zg(P)) = Ag(p)2,(2,(p)) ,  for p €U, NV, .
Applying the chain rule for differentiation,
eh(zg) = d—i; [op(zg)20(2,)]

= Nlza)2(7g) + Aoglzg) " 202
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since dza/azfs = aB(zﬁ)'l = "aa(zs)-z . Differentiating again,
. 1" "3 1]
g'é(zﬁ) kaﬁ(zb)fa(za) + }"Clﬁ(zﬂ) £olzy) -
Since fa<za) is by sssumption & solution of the daifferentiel
equation (19), it follows that
2y(zg) = Mip(20)2,(20) = B BolzMhoe(z5) 3e0(2,)
-l
= [N@(zﬁ)

For the coordinate tremsition functions 1z, = faB(zﬂ) it follows

Walzg) - § Bolmaihgglzg) ™ leg(z,)

readily from formule (4) that
"aaﬁ(za) = szoa(zﬁ) = -h)uaa(zﬁ)-l}\.'c'xﬁ(za) ;

and recalling the defining property of a projective connection as

given in formia (7),
By(zg) = M) By(zg) - b Al ig(z) -

Consequently g‘é(is) L %hﬁ(zﬁ)sﬁ(zﬁ) ; that is to say, the
function SB(zﬁ) 1s a solution of the differentisl equation (19)
in the set ZB(Ua n Uﬁ) C Vg o Now if fla(za) and faa(za) are
two linesrly independent solutions of (19) in the set za(Ua) .
the functions glﬁ(zﬁ) = ?\.aﬂfla(za) and gzﬂ(zﬁ) = Aaafza(za)

are linearly independent solutions of (19) in the set

zﬁ(Ua n UB) ; so for any other linearly independent solutions
le(za), fza(zﬁ) of (19) 1in zﬂ(Uﬁ) s the functions giﬁ(zﬂ) are

unique 1:lnesr' combinations of the functions This

1s(zg) -
demonstrates equation (20), and at the same time shows that the

metrices (Taa) form & cocycle T ¢ zl(m ,on(2,¢ )) .
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B . 4o e eeen soed WMWVL PLLLG LULCGLONS
wa( za) = fla(za)/fzd(za) in each coordinate neighborhood

za(Ua) C C . B8ince the functions fia(za) are linearly inde-
pendent solutions of (19), their Wronskisn

1 ] .
fla(za)fza(za) - fla(za)faa(za) is novhere venishing in 1z (U,) ;
but this clearly meens that v&(zq) # 0 8t the regular points of
that function, snd (l/wa(za))' # 0 &t the poles of the function
wa(za) - Thus the mapping z, —> wa(za) is a local homeomorphism

from zq(Ua) into IP , and the composite functions W, e z

o a&re

e complex analytic coordinate mepping on the Riemenn surface M.

Differentiating the function Wy note that

a<.... -2,

8ince the functions £ ere solutions of (19),

i

()13
amnl (2 () nfi -2

therefore

fl
= - D w& .f&.- .
20
Differentiating once again,
2
W bt + 6 v, .
@ fza

Finally, substituting these results into (2), it follows that

8 wa(za) = ha(za) .
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Recalling Theorem 19, this means that the coordinate mappings

Voo Iy ®rea proJective coordinate covering representing the
projective structure corresponding to the connection. The coor-
dinate cohomology class is therefore defined by the coordinate
trensition functions for this coordinate covering; and by (20),

this class s Just p (T) , where p: H-(M,GL(2,€)) -> H(M,PL(2,C))
is the mepping associated to the natural mapping

u: GL(2,€) ~— PL(2,€) . This then completes the proof.

*
. Again let A € Hl(M, (3") Yve sny complex line bundle such

that A2

= K 1is the csnonical bundle on M , and let

x .
(}‘aa) € zl(m, 0") be & representative cocycle. Then consider
the holomorphic non-~singuler matrix valved functions AOLB defined

in intersections Ua n Uﬁ by

a
}\aﬁ<zﬂ) -dz—ﬂ- }\aﬁ(zﬁ)

(21) Aaﬁ(zﬂ)= for =z ezﬁ(UaﬂUﬁ).

-1 B
0 Aaa(zﬁ)

It 1s a straightforward matter to verify that

(22) Aap(2a(0)) g, (2, (2)) = A (2, (P)) 1f » €U, NV NT,
the details will be left to the reader. Also, let
¥ T (M,6L(2,€)) —> H-(M,PL(2,C)) be induced by the natural

homomorphism u: GL(2,€) —> PL(2,C) .

Theorem 21. A cohomology class T ¢ Hl(M, GL(2,8)) on a
compact Riemenn surface of gemus g > 1 has the property that
* -
uTe Hl(M,PL(E,c)) is the coordirfate cohomology class of @

projective structure on the Riemsnn surface if and only if, for a
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SemEmes ey vav wwvauinaue CUVELUE UL = (Vg 2yl OF M and a

representative cocycle (Taﬁ) € Zl( VL ,6L(2,8)) , there exist

holomorphic non-singuler matriv-valued functions Fa in the

various sets U, such that
FolP)hyg(p) = Toefa(p)  for p e, MU, .

*

Proof. If p T is the coordinate cohomology class of &
projective structure on the Riemann surface then by Lemma 28 there
exist holomorphic vector-valued functions fa in the various sets

Ua y such that the entries in fa are linearly independent

solutions of (19) in U, , end that
(23) za(za)haﬁ(zﬁ) = ng_a(zﬁ) in Uy N Ug *

Differentiating the sbove equation with respect to zB and

recalling that dza/dz’3 = xaﬁ(zﬁ)'a , secure that
-1
(L) ;’a(za)haﬁ(zﬂ) + _f;a(za)h&ﬁ(zﬁ) = Taﬁ'-f‘:-'ﬂ(zﬁ) .
Introducing the holomorphic matrix-valued functions
Folzg) = (To{zy)s 22,0 5
equations (23) and (24) cen be written together in the form
Fa<za)Aaﬁ<zﬁ) = TaﬁFﬁ(zﬁ) H

end since the entries of _ga(za) are lipneerly independent solu-
tions of (19) , their Wronskisn det Fa(za) is nowhere vanishing.

These functions Fa(za) sre then of the desired form.



Un tne other nend, sUppoOse TthNat there eX1st holomorphic

matrix-valued functions ch satisfying the conditions of the

theorem, and let fa be the holomorphic vector-valued functions
consisting of the first columm of the mabtrix Fy « The functions
_fa(za) satisfy equation (23) then, so their derivatives neces-
serily satisfy egquation (24); and the holomorphic matrix-valued
functions Ga(za) = (;a(za),_f;'a(za)) also satisfy Ga(zct)AaB(zﬁ)=
Taﬁc'ﬁ(zﬁ) . Therefore det Ga(zoz) = det Tygedet Ga(za) , or in
other words, the functions det Goz are holomorphic cross=-sections

of the complex line bundle ({det Taa) ; and since T _ are con-

op
stent matrices, so that (det Totﬁ) has Chern class zero, either
det Ga(za) =0 or det Ga(za) never venishes. In the second

case, it follows immedistely that the mepping z, —> wa(za) ,
defined vy w(z,) = £, (3,)/£,,(z,) , 1s & local homeomorphism;

and from equation (23), the local coordinate functions Ww,ez
define a projective structure on M. with coordinate ecohomology
class T . Thus to prove the theorem, 1t is only necessary to

show that det Got(zot) #£0. Now if det G (z,) = 0, the entries
in the vector-valued functions _ga(za) would be linearly dependent;
thus these functions could be written in the form £( 25) = fa( 20)C0, »
where fa(za) ere ordinary holomorphic functions emd ¢, are

constant vectors. Note that neither fa(za) nor ¢, can be zero

snywhere, since the original function Fa( za) was by assumptiocn

non~-singular. Equation (21) would now have the form

fa(za)haﬁ(zﬁ)ga =‘ fﬁ(zﬁ)'l‘a‘_f_ﬂ ;

1?
but this would imply that fa(za)haﬁ(zﬁ) = cotﬁfﬁ(zﬁ) for some
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constants t:o‘ﬁ » This latter condition is impossible; for since
the functions f,(z,) are nowhere vanishing, the lize bundles
}‘OLB and caB would necessarily be equivalent, but their Chern
clasges ere g~1 and O vrespectively. This contradiction

completes the proof of the theorem.

Corollary. The functions Fa(za) in Theorem 21 cen be so
chosen that

a
@, Folzg) = Fylzg)

-3 b (z,) )

0

where (ha( za)) is the projective conmectilon corresponding to the

projeetive structure.
Proof. The metrix function Fa(za) can slways be taken
in the form Fa(za) = (ga(za)’:-f&(za)) , Where ga(za) is a
i -—
solution of the differenmtial equation 2_{'a(za) + ha( za)_fa(za) =0,

&3 in Lemma 28. Then

= (£3(z)s2{20)) = (£4z,)s - & Bylzg)Enl2,)

="
5]
!
Q’\
2
Q
s
[

0 2nfz)
= (za(za):za(za)) : : Cl) ]
1

as desired.

Iet /Q 2 be the sheaf of germs of complex analytic
meppings from a Riemsnn surface M into the group GL(2,C) ; note
that this is merely a sheaf of sets, with no group structure de-
fined. As in the discussion on page 174 and the following pages,
it is possible to introduce & non-sbelian cohomology set Hl(M, /be);

the elements of this cohomology set are called complex vector bundles




of rank 2 over the Riemann surface M . The concept is stralght.-
forward, in view of what has been discussed so far, but a more
detailed treatment will be postponed to a later section. The
constant functions form a subshear GL(2,€) C B p » 8nd the
inclusion mepping between these sheaves induces a mapping

i*; Hl(M,GL(E,c)) — Hl(M,}JE) ; thus the flat complex vector
bundles introduced on page 178 determine well-defined complex
vector bundles. In this terminology, Theorem 21 asserts that the
flat vector bundles T e H-(M,0L(2,C)) such thet

u*T € Hl(M,PL(z,c)) is the coordinate cohomology class of &
projective structure on the Riemann surface are precisely those
flat vector bundles such thet i T = A e Hl(M, b2) , where A is
the complex vector bundle defined by the transition functioms (21).
Thae problem is that of determining explicitly the flat forms of
that canonical complex vector bundle.

(a) On & surface endowed with a projective structure, there is
a generalization of the deRhem sequence which is of some interest;
this was introduced by M. Eichler, who used it in studying alge-
braic correspondences on some Riemsmn surfaces arising in number
theory. (See M. Eichler, "Eine Verallgemeinerung der Abelschen
Integrale," Math. Zeitschr. 67(1957), 267-298; and G.Shimura,
Ysur les intégrales sttachées aux formes automorphes," Jour.
Math. Soc. of Japem 11(1959), 291-311.) As yet this structure

has not been studied extensively on general Riemenn surfaces.
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Iet M be a Riemann surface with a fixed projective
structure, end let A ¢ Hl(M, @-*) be a complex line bundle of
Chern class ¢{A) = g-1 . Choose a projective coordinate cover-
ing M= (Upr 2o} ©of the surface M , belonging to the given
projective structure, snd let z, = aﬁ(zﬁ) be the coordinate
transition functions; thus (faﬁ) € zl(vL,PL(z,c)) represents
the coordinate cohomology class of that projective structure. As
in Iemms 26, choose matrices <Taﬁ) € Zl( W ,81(2,€)) which
represent these projective transformetions, that is, such that
“*<Taﬂ) = fmfs . Writing these matrices out explicitly as
(25) Top = :"“3 :“‘3

op op
recall as above that the functions (ccthﬁ + dyp) Tepresent a
complex line bundle of Chern class g-1 ; therefore it is

evident that
(26) haﬁ(p) = gaﬂ(caﬁzﬁ(p) + daa) for peUyN U'3 ,

where ( gaﬁ) are complex constants representing a complex line

*
bundle £ € Hl(M, (*) of zero Chern class.

For any integer n > O consider the sheaf o2 of
germs of holomorphic cross-sections of the complex line bundle

A—n

. If peU, is a point on the surface and f ¢ @—(A’n)p
is a germ of a cross-section at p , then f 1is represented by
an analytic function fa(za) in some neighborhood of p ; and

if pe Ua nu these local representations are related by

B >

- n n n, ( 20p®s* Pop
(27) fﬁ(zﬁ) = "aB<ZB) fa(za) = §a¢3(°aazg+das) f°<———_°aﬁzﬁ+daﬁ



Having written these conditions out so explicitly, there is an
obvious subsheaf of G-(A™) , as follows. Note that if fy(z)

is a polynomial in z, of degree < n , then from (27) it

[
necessarily follows that fﬁ(zﬂ) is a polynomial in zg of
degree < n also. Therefore we can introduce the subsheaf
Pn(h'n) C B(»™™) consisting of those germs of analytic sec-
tions of A"® which are polynomials of degree < n in any local
projective coordinate system of the given projective structure.
For the case n = 0, PO(AO) = €, the subsheaf of constant
functions; and this subsheaf is the kernel of the sheaf homomor-

phism a: (L —> 0-(k) defined by exterior differentiation. As

a generalization:

Iemme 29. On sany Riemann surface M with a fixed

projective structure, there is an exact sequence of sheaves

1
(28) o0 — Pn(h'n) s Q) _E_L O(e727242) 4 ¢

for any n > 0 , where dn+1 is the homomorphism which associsates

toagerm T ¢ @(x'n)p represented by a local analytic function
fa(za) " the germ e ¢ @_(g-an-z}\ma) represented by the local

analytic function dn+lfa( Zg) / dzgﬂ .

Proof. The first thing to prove is that dnﬂ' is a well-
defined sheaf homomorphism. If f ¢ @(k‘n)p is represented by
two local emalytic functions fa(za) ~and fﬁ(zB) when
peUyN U’3 ) those two functions are related by formula (27).
Select a eimple closed curve 7g C zﬁ(Uﬁ) encirecling the point

ZB(P) and such that f[3<za) is apelytic on an open neighborhood



form

(29) 0 r(r, B0E 1) B> gl P, (7)Y ron, @ (R 0,
where I‘(-)* denotes the dusl vector space to I(-) .

Proof. The complex line bundle A can be defined by a
cocyele of the form {26) for some flat line bundle £ , and 17 = §2.

The exact sequence (28) of Iemms 29 can be rewritten

. 1
0 —> ’J’n(x'n) s a0 ﬁ—;- AR >0 .

The corresponding exact cohomology sequence on the surface M +then

begins

*
*
0 —> 1(n, §_() - rn, @) L) rpw, @ () B
— B0, P (A7) VT Y @y T, A (D)) > L.

Since the line bundle A™® has Chern class c(A"?) = -n(g-1) <0,
it follows from the Corollary to Theorem 11 that I(M, & (A7) = 0;
then of course I'(M, ﬂ’n(k'n)) =0 @&s well. From the Serre duality
theorem, EX(M, @(A"%)) T r(n, @ (aR)™ = n(m, @ (FHAR))*
end HL(M, O (I i, @ (R = o, (D)) =
since c(n™™®) = ¢(A™®) <0 . Upon substituting these results

in the exact cohomology sequence, there follows the exact sequence
(29), as desired.

Corollary. If the complex line bundle A in the pre-

2n

ceding theorem is such that A~ = K2 s then

atm 155w, P (™) = 2 aim £(, O(™D))



Proof. The additional hypothesis is essentially just that
T]n =1 ; the Pirpt and last terms in the exact sequence (29) then
have the same dimension, from which result the Corollary follows

immediately.

The groups Hl(M, Tn(k'n)) are called the Eichler coho-
mology groups associasted to the given projective structure on the
Riemann surface M . For the special case n = O , note that
Hl(M, TO(XO)) = Hl(M,c) , the ordinary cohomology of the surface
M . For axny value 7 > O , these cohomology groups are finite-
dimensional complex vector spaces, as & conseque:nce of Theorem 21;
and indeed, these groups can be described explicitly in a purely
algebraic manner, in terms of the coordinate cohomology class of
the given projective structure and the cohomology class of the flat
line bundle 17 . Recalling from part (b) above that the coordinate
cohomology class can be viewed ag an element of
Hom(rl(M),PL(E,@))/PL(E,C) , and that the bundle 17 can be
described as sn element of Hom(‘rrl(M) ,C*) , 1t is evident that the
description involves only the fundamental group of the surface M.
There is at present no need to carry out this description in great
detail, so we ghall consider the matter only rather briefly. An
element o e Hl(M, Wn(?\.'n)) can be represented in terms of a
projective covering Jf{ = {(Uyrzy) by a cocycle
9op € Zl( m, 'Pn(?\.'n)) ; each element Uaﬁ(zﬁ) is a polynomial
in the variable zﬁ of degree at most n , and the cocycle con-

dition is that

(30) Uw(zy) = ?vﬁy(z),)n uaﬁ(fﬁy(zy)) + uﬁy(zy)



of the closure of the interior of 7& ; and suppose that 7{3 is
selected sufficiently neer zﬁ(p) thet the function fa(zoz) is
enalytic on an open neighborhood of the closure of the interior

of 7= faﬁ(yﬁ) C z,(U,) , where =z, = aﬁ(zﬁ) is the coordinete

transition function.

za(Ua n UB) ZB(UQ 0 UB)

Applying the Cauchy integral formula,

1
A" (z,) _ ) 2{80)
azg Mt e vy (b2

Now make the chenges of variables 2z, = faﬁ(zﬁ)’ Qa = faﬁ(;ﬁ) s

where faﬂ iz the projective transformation represented by the

unimodular matrix (25). Note that

(-5 - o’ Pop wszs*b éa‘za ]
@™ Fa Tl dg T Top?s T Sop (Coplp * Cop)\Cop®s * ap)
=1
'Z )gaﬁ (g ) ( ﬁ) )
and that

2ty = (copba* o) 20ty = tap Mealta) Cats 5

and recalling (27), it follows that



n+l

& 1o(2y) _ () [y, yme2 T5(Lg) at
azn+1 2mi . ey op BB (t. -z )n+2 B
@ B~ p B™“B
n+l
— §-2n-2 A (Z )IH'E d fﬁ(zﬁ) .
op oft "B P
z
B
Thus these derivatives represent the same element of (¥ (&2 2pE2) B

s0 that the mepping dn+1 is well defined.

The kernel of the homomorphism dn+l is the subsheaf con-

sisting of those germs of snalytic functions fot( Zot) such that
dn+lfa(za)/dzg+l = 0, hence is just the subsheaf

P n(7\.'1‘) CA8O™ of polynomials of degree at most n . This
shows the exactness of the pequence (28) at the first two places,
where i is the inclusion mapping. To complete the proof of

-2n-2hn+2)p select a represent-

exactness, for any element f e ((¢
stive analytic function fa(za) ; choosing sny complex analytic
function ga( za) in an open neighborhood of p such that
dn+1ga(za)/dz3+1 = fa(za) , the function ga(za) represents an
element g e B(A"®) for which dn+1g = f , in view of the first
part of the proof. Thus the mapping &t iy (28) 1s onto, and

the proof is thereby concluded.

Theorem 22. Iet M be a compact Riemsnn surface of
genus g > 1 with a fixed projective structure, and let
Ae Hl(M, 0-*) be & complex line bundle of Chern class c{A) =g-1;
thus there is a.flat line bundle 1 such that AQ = 1K , where K

is the canonicel bundle of the surface M . There is then for any

integer n Z 0 an exact sequence o{.,complex vector spaces of the



whenever U_NU, NU -
N NT, # 0, where foy € PL(2,€) 1is the coo
dinate transition function. Note that (30) is a formal identity
among verious polynomials, and does not imvolve the point set
Ua n UB NU_  explicitly. A cocycle ¢

4 o8
there are polynomials -ra(za) of degree at most n such that

is a coboundary if

(31) 0ap(za) = Tp(zp) = Ayg(z)™ 1o{£ea(2g))

whenever Uy N Uy # § ; and the cohomology group is the quotient

of the group of cocycles by the group of coboundaries.

Tt is perhaps of some interest to see the explicit forms
of the homomorphisms in the exact sequence (29). First, in terms
of & projective coordinate covering Ul = {Ua,za] , & section
f e (M, O (DY) s given by enalytie functions
£a(zg) € T(zy(Ug), &) such thet £,(z,) = k(2™ hog(zg) ™, (20)
in Ua n Ua « The mapping 5* is the coboundary operator derived
in the familiar menner from the exact sequence of sheaves (28).
Thus in each set za(Ua) C ¢ select a complex snalytic function
Fa(za) _such that dm]'E‘a(za)/dzg+l = fa(za) ; any (n+1)-fold
indefinite integral of the function fa(za) will do. The coho-

mology class 5'f e Hl(M, 'Pn(k'n)) is represented by the cocycle
n
(32) 9oalzp) = Fglzg) = Aplzg)” Folzy) -

The functions Uaﬁ<z¢3) are necessarlly polymomisls of degree < n
then; and replacing the functions Fa( za) by Fa( za) + ‘ra( za)
for polynomisls -ra(za) of degree < n , the most general possible

choice for these functions Fa<za) » replaces the cocycle (32) by

~208.



a cohomologous cocycle, in view of (31). Next comsider a coho-
mology class O ¢ Hl(M, fn(h'n)) , represented by a cocycle

g € Zl(U'l , Tn(k'n)) ; the element v*s is a linear functional
on the space I'(M, Q(7K"™A™) , described explicitly ss in the
discussion of the Serre duality theorem. Namely, select any zero
cochain g = (g,) € C°(UW, &F(A™)) such that Bg = o ; that is,
select C” functions gy (zg) in za(Ua) such that

0op(Za) = Ba(zp) - Noglz) e {foalzg)) in z5(Uy NUL) . Note
that (3gy) € 2°(M, €910™) = r(w, £%™) . For any
element £ = (£,) e r(M, &(a%™ ™) = r(w, @V O(4% ™)
the form Sga ~ fdzy € (M, fl’l(nnlgl}\."zn)) = I'(M, 51’1) ; and
then

(33) (V'o)(2) = Jfyy Sgg » 2otz -

For the case n = 0 , the image 57 ¢ Hl(M,c') of an element
Tel(ME(K)) =1, @-1’0) is essentially the set of periods of
the differentiel form f ; and as above, for any n > O the image
5F ¢ Ho(M, T"n(x‘n)) of an element £ ¢ (M, (™ A™2)) can be
viewed as a generalized set of periods of the element £ , derived
from an (n+l)-fold indefinite integral. For eny cohomology class
g e Hl(M, 'Pn(}\'n)) the vanishing of the image Vo , or equiva-
lently the venishing of the integrals (33) for all elements
f e I(NM, @(nnxnﬂ)\.'n)) , is the necessary and sufficient condition
that o ©be the generalized periods attached to a section in
r(n, @A) .

The Eichler cohomology group cem also be described

slightly differently. It follows slmost immediately from Lemma 29



that, on a Riemsnn surface M with a fixed projective structure,

for any integer n > 0 there is an exact sequence of sheaves of

the form .
(34) 0o — P (™) i m -m) &t M52y |

where 'bl denotes the sheaf of germs of meromorphic functions.

1 (3%) is not onto, since & general mero-

The homomorphism dn+
morphic function does not have single-valued meromorphic indef-
inite integrals of all orders. The image dn+lm(h-n) is called

the sheaf of germs of meromorphic sections of the second kind of

-2n-2hn+2) .

the bundle A™®, end will be denoted by ’hzo(g It is

evident that, if Zy, is a local coordinste mepping at a point
P eM such thet zi(p) = 0, then 2 ey (8727 2N0" ), is in the

subsheaf 'mo(g

sented by a meromorphic function fa(zcx) with a Leurent expansion

-2n-2>\n+2) precisely when the germ f 1s repre-

of the form
r o
=Y v
(35) £(z,)= £ a,z2' '+ I agz ;
oo veniz Y v=o '

for th_ese are just the meromorphic functions which can be written

n+l

n+l .
a ga(za)/dza for some meromorphic function gy (z,) .

fa( za) =
The condition that a meromorphic function fcx( za) have & Laurent
expansion of the form (35) 1. not invariant under an srbitrary

non-singular analytic chenge of coordinates, comsidering (fa(za))

as en element of the sheaf 'm (§.2n.2Kn+2)

; 8o the gheaf
7}] o(g'al’l'ak.ma) depends upon the choice of the projective
structure on the Riemann surface. (The case n = 0 is excep-

. 2.2y _ _
tional here. For the elements (fcx(zcx)) € 'hz(g A )P = ')7?(K)P =

= m;"o can be viewed as meromorphic differential forms on M,



and condition (35) can be rephrased as the condition that the form
have residue zero; thls expresses the condition intrinsically, in
terms of the complex structure alone. The terminoclogy "mero-
morphic functions of the second kind"” is motivated by the usual

terminology in this special case.)

Theorem 23. Iet M be a compact Riemann surface with a
fixed projective structure, snd let M € Hl(M, &*) be a. complex
line bundle of Chern class c(A) = g-1 . Then for any integer

n > 0 , the Eichler cohomology group can be written canonically

nyy o D4, a™ 1 (M)
B, PN T 2 —
a (M, M(ZT))
Proof. Modifying (34) to yield the exact sequence of

sheaves

-n n dn+l nt+l -n
oe?n(x )%'m(h yE—sd 77()» ) =0,

where dn+l'bl (M = 771 o(§-2n-2Kn+2) C M(g'an“ahma) , the asso-

ciated exact cohomology sequence begins

n+l 8*
0 — r(i, P (x™) — r(m,'hz(x‘n)) as r(M,an"lm (%) 2

(36)
—_ Hl(M, 'Pn(x'n)) — Hl(M,'M(k“n)) —_ ...

*
Selecting eny section g ¢ I'(M, 'W( (\')) , the operation of multi-
plication by g defines a sheaf isomorphism 'bl (WM = 'h'( ; there-
fore, by Theorem 12, Hl(M, m(x"n)) ¥ Hl(M,M ) = 0. The desired
theorem is then an immediate consequence of the exact sequence (36),

and the proof 1is thereby concluded.



Corollary l. On any compact Riemann surface M it
follows that

' (,€) ¥ T, M )ar(m, M) .

Proof. This 1s just the special case n = 0 of Theorem 23,
0
recalling that in this case the sheaf abl C 771’ is defined

intrinsically, independently of a choice of projective structure

on the surface.

Remarks. In the Corollary, the space I'(M,a7) ) 18 the
space of meromorphic differentials of the second kind on the
Riemann surface M , that 1s to say, is the space of meromorphic
differentiels with zero residue at each point of the surface.

The Theorem itself can be restated somewhat more precisely as the
assertion that, when the genus g > 1 , there 1ls an exact sequence

of the form
n+l *
(37) 0= T,M ™) S r,a™ (7)) 2> 1w, P ) 0 5

for as in the proof of Theorem 22 it follows that T'(M, 'Fn(;\'n)) =0,

so that (37) follows directly from (36).

For some purposes interest lies not just in the Eichler
cohomology group itself, but also in the splitting of that group
given by the exact sequence (29). (Compare the discussion of
§8(b).) Thus one is led to consider the form of that splitting
when the Eichler cohomology group is represented as in Theorem 23.
To be explicit, consider a cohomology class o e Hl(M, rn()\'n))
which is represented by a section h = (hot) e (M, an”l?yz (M)
under the isomorphism‘ given in Theorem 23. It is clearly suffi-

*
clent to describe the imsge of ¢ under the homomorphism v



of (29), in terms of the section h ; recall that v'¢ is a

linear functional on the vector space I'(M, (4( nnKn+l)\-n)) . TFor
each set ch of & suiteble projective coordinate covering

there will be a meromorphic function Hy( Za) such thet
dn+]'Ha(za)/dzg+l = hcx(za) ; these functions cen be viewed as an
element (Ha) e (N, Wl (A®)) . For any section

f= (fa) e Iy, (9—('r\nKn+l)~.'n)) the products fa(za)Ha(za) form

en element fH = (faHa) e (W, ’n’((nnxnﬂ)\'gn)) = (W, W?(K)):
z Co(m R 7}?1’0) ; the residue of this meromorphic differential
form is well defined locelly by the Ceuchy integral formula, and

its totel residue on the surface will be denoted by R_(fH) .

Corollary 2. If M is a compact Riemann surface of
genus g>1 and o ¢ Hl(M, 'Pn(h'n)) is represented by
h= (hoz) = (dnHHa) € I‘(M,dmlmu‘n)) under the isomorphism of
Theorem 23, then under the homomorphism V* of Theorem 22 the
image V*(cr) is the linear funectional whose value on an element
f= (fa) er(m, 0 (r\nKnJ'l)\'n)) is given by

Vi) £ = omi R(m) .

Proof. If (G{IB) € Zl(m, s ’Pn()»'n)) is a cocycle repre-
senting the cohomology class ¢ , then it is readily verified that
the condition that ¢ be represented by the section
(By) = (dnﬂ'ﬂa) € F(M,dmlm (A"™)) under the isomorphism given
by Theorem 23 is Jjust that

(38) Uaﬁ(zﬁ) = HB(ZB) - )\aB(zB)n Ha(za) .

Suppose that the projective coordinate covering "= {ch’ za] is

8o chosen that the poles of the functions ch( za) are each



contained in only a single coordinate neighborhood. Multiplying
the functions Hy(z,) by C” functions which differ from onme
only in small neighborhoods of these poles, and which vanish
identically in some neighborhoods of these poles, ylelds c”
functions ga(za) which also satisfy equation (38) in each inter-

section Uoz nu Recalling the explicit description of the

B -
*

mepping Vv , as in (33), it follows that

Mo)r =[], g, ~ 2

v (g)f = M ga - adzoz .
The latter integral will venish identically except for those
neighborhoods U, containing poles of the functions Ha(za) ;
for outside of these neighborhoods, ga(za) = Hoz(za) is holo-
morphic. For such a neighborhood Ua s however,

If Sga ~ fodz, = I/ g(fagadza) = I alfg.dz.)
U Uy U

o o

[ foefzy, = | fH.02
éua ¢, 4

em R(m) ,

which yields the desired result.

(e) The projective structures and thelr associated coordinate
cohomology classes cen be given a geometrically appesling global
formulation as follows. Iet ?4‘ be the universal covering space
of a surface M , with covering mepping ﬁ - M, and let
‘n‘I(M) be the fundamental sroup of the surface M . As is

familiar, 'rrl(M) can be viewed as a group of homeomorphisms of



N
M onto itself, commuting with the covering mepping 7 and such

that ﬁ/vrl(M) =M . (ldentifying the growp 7 (M) as defined in
(b) above with the usual fundamental group, this interpretation
can be found for instance in Beifert-Threlfall, Lehrbuch der
Topologle, chapter 8 (Chelsea, 1947). Alternatively, this result
can be derived directly from the discussion in (b), perodying in
simplicial terms the stendard construction.) If M has a pro-
Jective structure, it Induces a unique projective structure on ﬁ
by means of the mapping : M—>M. For ir (Ua, z,} 1is a
projective coordinate covering of M such that the sets ch are
connected and simply-connected, then each connected component of
v'l(Ua) CHM will be homeomorphic to U, under the mepping T ,

and the functions z.o T can thus be used as coordinste mappings

a
on each such component; it 1s evident that this is a projective
coordinate covering of ﬁ ,» and that equivalent projective coor-
dinate coverings of M i1nduce equivalent projective coordinate
coverings of M . Note that the meppings in Trl(M) are projec-
tive trensformations of M for the given projective structure,
in the gense that they are represented by projective functions in
terms of local coordinates for any projective coordinate covering
belonging to that structure; this is quite obvious, since indeed
the mappings are represented by the identity functions in the
above coordinate covering.

Now since 71’1('1\'/1) =1, it follows from Lemma 27 that the
coordinate cohomology class of any projective structure on ’I\V'I is
trivial; hence there is a projective coordinate covering {Ua’ za}

of 'ﬁ representing the given projective structure and such that



the coordinate transition functions sz, = 043(25) are ldentity

mappings. The various coordinate mappings Zq, then define a
global mepping p: M—>D from M onto a subset D CP. The
maspping p 18 a local homeomorphism, so the image D is a con-~
nected open subset of the projective line IP . Note that any
other such coordinate covering representing the same projective
structure will define a mapping Pyt M — Dl also, but P, =Rep
for some projective transformation R ; to this extent the mapping
p 1s determined uniquely by the projective structure. If

T e wl(ﬁ) is a covering tramslation mepping, then T will be
represented by a projective transformation in terms of any local
coordinates for the given projective structure of 'ﬁ 5 thus for
sny point 'f;’o € M there will be an element T e PL(2,€ ) such
that p(?[&‘)') = T(pp) for all points p near 'fa'o , since p is
defined by the local coordinste mappings. Clearly the element

T ¢ PL{2,C) is independent of the point '1‘50 e M ; for the corre-
spondence '50 —> T 1is locally constant as noted sbove, and '1\\/f

is comnected. Therefore for any transformation T € wl('ﬁ) there

is an element T e PL{(2,€) such that

~n

(39) o(T) = To(3) forall eli.

It is evident that each T necessarily msps the domsin D onto
*

itself; and that the mepping p : wl('ﬁ) —> PL(2,€) defined by

* v n

p(T) =T, where T and T are related by (39), is & group

homomorphism. Note that if Py = Rop 18 asnother such mepping

representing the same projective structure, then pl('t\[“'f;) =

- * * _
= Ro(¥3) = RTp(P) = RIR 1pl('1‘3') ; hence p, =Rp R 1. is pair



of mappings

~N * o
(ko) p: M—>D, p: 7rl(M) —> PL(2,0) ,
related by
*» v n ~
(k1) o(FF) = 0 (T)p(F) , for a1l T e vl('b\i) gnd P e M,

will be called a geometric realizastion of the given projective

structure on M . Note that the mapping p is a complex analytic
local homeomorphism, and that p* is a group homomorphism. Two
geometric realizations (p,o") and (pl,p;) will be called
equivalent if there is an element R € PL(2,C€) such that p; = Bp
and pi = Rp*h'l . The previous observations show that there is

a natursl one-to-one correspondence between projective structures
on & Riemann surface M and equivalence classes of geometric

realizations; for it is apparent that any geometrical realization

determines & projective structure on the surface M .

Ir (p,p*) is the geometric realization of a proJective
structure on M , the mappings p* belonging to all equivalent
geometric realizations form an element (p*) e Hom(n‘l(M) ,PL(2,0))/
PL(2,C) . It is easy to see thaet this element is precisely the
image of the coordinate cohomology class of the given projective
structure under the homomorphism of Iemma 27; the verification is
straightforward, and will be left to the reader. This provides
the most convenient way of looking at the coordinate cohomology

classes of projective structures on a Riemann surface.

As an example, consider the analogous construction for
affine structures; thus, let M be a compact Riemenn surface of

Y]
genus 1 with a fixed affine structure, and let p: M —> D and



p*: Trl(M) — A be the geometrical realization of that affine
structure, where D 1is a subdomasin of the complex line and A is
the group of mffine transformations. Here of course Trl(M) is a
free sbelian group on two generators %’l and 'i"a ; and recalling
the discussion of equation (17), the homomorphism p* will have
one of the following forms, where Ti = p*@i) are the indicated

affine transformations:

(1) T,z = z+b,, Tz =2+b,

(42)

* *
(11) T,w = aw, Tyw = 85w, 8,8, £0.

For the quotient space D/p*W'l(M) to be compset, it is elear that
in cese (i) it is necessary that b, and b, be linearly inde-
pendent over the reals, and D = € ; and in case (1i) it 1s
neeegsary that lail £ 1 for either i=1 or 1=2, and
D=¢ . In cese (i) it 1s evident that p: M—>D 1is a homeo-
morphism and p* is an isomorphism. Thus we cen identify ﬁ = @,
Tl'l(M) = {gmup of translations generated by T; and T, in (1)3,
and M= 0/7Tl(M) . This 18 just the familiar representation of a
compact complex torus, as discussed in §1(f), snd provides the
simplest affine structure on the torus. Retaining these ldentifi-
cations, consider the mapping op: 'I\Z —_— (E!* defined by

cz for a complex constant ¢ 74 0. This is a

w=op(z) =e

covering mapping, exhibiting p as the universal covering space
*

of € . Furthermore,

C(Z+bi) =

p(Ty2z) = o(z +by) = & a,0(z) = To(z) ,
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cb
*
where g =e 1 and 'I‘i are the transformations given in 42(ii).

* *
Thus evidently p and the homomorphism p : T, — '.[‘i form a

i
geometric realization of another affine structure on the same
underlying Riemenn surface. (Note that the affine structure ho(i)
for the case ¢ = 0 , and these additional affine structures for
all values ¢ ;‘ 0 , are easily seen to be distinct, and to be all
the affine structures on that Riemann surface. Thus, as noted in
part {a), the set of mll affine structures on a given complex

torus are in one-to-one correspondence with the complex numbers

c e C.) These examples all have the property that p: M—>D

is not just a local homeomorphism, but a covering mapping. The
group p*‘rrl(M) does not always act in a discontinuous manner on
the domain D = c* 3 so although there is always s continuous
mapping M = ﬁ/‘n’l(M) — D/p*'lrl(M) induced by p: M —> D , it 1s
not necessarily a homeomorphism, nor even a covering mapping. It
may be observed that the same coordinate cohomology class (or
equivalently the same group p*‘lrl(M)) can be associated to affine
structures on inequivalent complex tori; thus Theorem 20 definitely

requires consideration of & fixed underlying complex structure.

For some further discussion of this geometric realization,
see R. C. CGunning, Special coordinate coverings of Riemenn surfaces,
Math. Annelen, 1966.

(After this had been written there ceme to my attention
the following paper, which contains some related results: N. S.
Hawley and M. Schiffer, Half-order differentials on Riemann

surfaces, Acta Math. 115 (1966), 199-236.)



§10. Representations of Riemann surfaces.

(a) Perhaps the simplest conecrete representation of a Riemann
surface is as a branched covering of the projective line IP. To
deseribe the general topological situation, congider two 2-dimen-
sional manifolds M and N . A continuous mapping £: M — N

is called a local branched covering if each point p e M has an

open neighborhood U (C M such that £(U) is open in M , and the
restriction of f exhibits U-p as an m-sheeted covering space
of f£(U) - £(p) for some integer m ; the integer m-1 will be

called the branching order of the mapping f at the point p,

and will be denoted by °f(P) . The point p is called a regular
point of £ if of(p) = 0, and & branch point of f if
of(p) > 0 . The expression Zp - of(p) is called the total

branching order of the mapping f . Note that the branch points

form a discrete subset of M ; the mspping f is an open mapping;
and f 1is a local homeomorphism in & neighborhood of any regular
point., If M eand N are Rlemann surfaces, then any non-trivial
complex analytic mapping f: M — N is & local branched covering;
the branching order at a point p is the order of the zero of the
derivative of f in any local coordinste .systems in M and N,
that is, of(p) = Vp(f') . (For a discussion of the topological
properties of esnalytic mappings, see for example L. Ahlfors,
Complex Analysis, pp. 130-133, (MeGraw-Hill, 1966).) As a con-
verse assertion in some sense, if f£: M —> N 1s a local branched
covering between two topological manifolds end N has a complex

structure, then M has a unique complex strueture for which £



is an analytic mapping. The proof is straightforward, and will be

left to the reader.

The global form of this situation is also of interest. A
contimuous mepping f: M —> N between two topological surfaces

is called an r-sheeted branched covering if f 1s a local branched

covering and if for every point q e N,

z (o (p)+1) =r .
{p e M|£(p) = q} £ i

Fixing q ¢ N, let b ,Dye-e,, € M be the points of £ (a) ,

and select open neighborhoods U, saround p N exhibiting the

i

local branching of f at Dy 5 the sets U, can be chosen small

i
enough to have the same image under f . The restriction of f
then exhibits Ui(Ui'Pi) as sn r-sheeted covering space of

f(Ui) ~q . It is thus evident that the imege under f of the

branch points form a discrete subset {ql, qg,...] C N ; end that
£2 M - U;ri(q) — N - U
iy 1 i i®1

is an r-sheeted covering space in the ordinary sense.

Theorem 24, Iet M be a compact Riememn surface of
genus g , snd ¢t ¢ Hl(M, {9*) be a complex line bundle of Chern
class c(§) = r . Then to any palr of complex analytic sections
£, f, € T(M, l9-(§)) which have no common zero on M there is

1
canonically associated a complex analytic mepping

f= (fo,fl): M-,

which is an r-sheeted branched covering with total branching order

2(g+r-1) .



Proof. let UYl= (Uyp 2y} be a complex analytic coordinate
covering of M , and (goﬁ) € Zl( m, 2% tve a cocyele repre-
senting the line bundle £ . The sections fi are represented by
complex analytic functions fw(za) , such that fia(za(p)) =
= gas(P)fiﬁ(za(P)) whenever p & U, N Ug - The map from U, to
IP , defined in terms of homogeneous coordinates on 1P by
p —> (foa(za(p))’fla(za(P))) e P , 1s clearly complex snalytic;
and the two maps thus defined in U, N U’3 agree, since (fOﬁ’le)
snd (gaﬁfoﬁ,gaﬁfw) = (foa,fla) represent the seme point in IP.
This then defines a complex anelytic mapping f: M — P , which
exhibits M as a local branched covering of IP. Next, for any
points a = (ao,al)
precisely when alfo(p) - aofl(p) = 0 ; thus the points p; ¢ M

e end p eM, observe that f(p) = a

such that f(pi) = a are precisely the zeros of the complex
analytic section h = a,f, - a.f, € (M, #(t)) . Furthermore,
if p, €U, and if say & # 0, then in terms of inhomogeneous

locel coordinates in P +the mapping f has the local deseription

R foa(za(p)) 8, . ha(za(p))
P INENE) - TR NER )

for p near pi ; consequently
t oW -1 = -
of(pi) = vPi(foa/fla) Vpi(ha/a.lfla) 1 Vpi(ha) 1,

since f,(p i) # 0 . From Theorem 11 it then follows that

of
r=c(t) = v, B =2 (og(g)+2) 5

so that f: M —> P 18 actuslly an r-sheeted branched covering.

~222 -



Finally, introduce the analytic functions

fool%)  TholZy)

£

(z.) = det
e 10{%)  Figlzg)

in the various neighborhoods za(Ua) . Since in terms of inhomo-
geneous local coordinates the mepping f has the local description
p —> foa(za(p))/fla(za(p)) wherever fl(p) # 0, it follows that
~2
- t = - = H
0p(p) = v (£05/f10)" = V,(-84F15) = V,(8y) 5 and the same result
holds at those points where fo(IJ) ;‘ 0 . The total branching

order is then just the total order of the functions - Note

€a
that for points p € ch n Ug s
Tiaf2aP)) = gi Leag(25(p)) 2 44(z(0))]

= Kaﬁ[gaﬁ(zB(P)).fiﬁ(zﬁ(p)) + géa(za(P))'fia(za(P))]’

dz
where Kaﬂ = -a-z-p- define the canonical bundle of M ; it readily
o
2
follows from this that ga(za(P)) = Koﬁ(p)gaB(P)gﬂ(zﬂ(P)) , so that

(ga) e T(M, al(lcga)) . Applying Theorem 11 once egain, the total

branching order b 1is

b= I ofp)= = v_(g,) = c(kt?) = 2(r+g-1)
per peMpa ’

thus completing the proof.

Now suppose that f 1s a non-constant meromorphic function
on a compact Riemann surface M ; as in §1(e) that function can be
congidered as. an analytic mapping f: M —> IP . Note that the
divisor of the function f can be written in the form

r
de) = Y (1'p, - 1:q,) vhere p, # a; , for from Theorem 11



the total order of the divisor of £ must be zero; the integer r,

the total order of the zeros of f , will be called the degree of
that funection.

Corollary 1. If f i1s & non-constant meromorphic funetion
of degree r on a compact Riemann surface M of genus g , then
the analytic mapping f: M —> P exhibits M &8s an r-sheeted

brenched covering of T with totel brenching order 2(g+r-1) .

Proof. Writing the divisor of the function f 1in the
r
form A (f) = 151 (l'pi- l'qi) where p, # ay consider the com-~

oot

plex line bundle ¢ = §
1T ¢

=t ...t , wvhere £ are the
r 9 9 P

point bundles considered in §7(c). There are analytic sections

for £y € I(M, 0-(t)) such thet ,ﬁL(fo) = i:ﬁl l:p, end J—(fl) =

r
= ifl 1rq, ; end f = fo/fl - The functions f,

common zeros, end the mapping f: M — P defined by the mero-

and fl have no

morphic function f coincides with the mepping (fo, fl): M— I
constructed in Theorem 24 . The desired result thus follows

immediately from that theorem.

Corollary 2. If t ¢ Hl(M, @*) 1s a complex line bundle
on a compact Riemann surface M , such that c(g) =r and 7(£) > 2,
then to any pair of linearly independent anselytic sections

f.,f, ¢ I'(M, B(t)) there is canonically associated a complex

0’7l
analytic mapping

f= (fo,fl): M- TP

which exhibits M as & branched covering of P eof at most =r

sheets.
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Proof. let Wy = I 1-p, be the divisor of the common
i=1
zeros of the functions f., and f. , counting multiplicities; and

0 1

choose an enalytic section g e I'(M, B (n)) of the line bundle

N = gpl...gps such that 1H(g) = »9‘0 . Then fo/g and fl/g

are complex analytic sections of the complex line bumdle g;ll , and
these sections have no common zercs; so by Theorem 24 the mapping
(fO/g, fl/g): M—= P exhibits M as & branched covering of TP
having c(§;ll) = r-s <r sheets. Note that outside of the points
of the divisor S, the function g 18 non-vanishing, so that
(fo/g, fl/g) and (fo,fl) define the same mapping of M to P ;
the mapping is thereby canonically determined by the sections fo

and f., alone.

1
Corollary 3. Any compact Riemann surface M can be

represented as a branched covering f: M — TP of the projective

line; ‘the gerus g of M, the number r of sheets, and the total

brenching order b are related by b = 2(g+r-1) .

Proof. Since every compact Riemenn surface admits a non-
constant meromorphic function by the fundamental existence theorem,
Theorem 12, this assertion follows from Corocllary l; it is merely

inserted for the sake of explicitness.

Remarks. It is clear that any finitely-sheeted branched
covering of the projective 1ine 1P 1is a Riemann surface, with a
unique complex structure for which the covering mepping is an
snalytic mapping. Then the genus can be calculated from the
branching order and the mumber of sheets by epplylng the formulae

in Theorem 24 . The genlus can alsc be calculated direetly in a



purely topological menmner, without reference to the anelytic struc-
ture, as follows, ILetting f: M —> IP be an r-sheeted branched
covering, triangulate the surface IP in such a manner that the
images under f of the branch points are vertices of the triangu-
lation. The triangulation cen then be lifted beck to & triangula-
tion of M wunder the mapping £ ; it is only necessary to assume
the triangulation of P fine enough that the interiors of the
one- and two-simplices are homeomorphic to each component of their

inverse images under f . Ietting n, be the number of i-simplices

i
in the triangulation of IP, 1t is evident that the induced triangu-

0
and x'n2 two-simplices. Thus the Euler characteristics (see

lation of M will have rn_ -b zero-simplices, rny one~-simplices,

Seifert-Threlfull, ILehrbuch der Topologie, §23, (Chelsea, 1947))

of P and M are related as follows:
xX(M) = (rno-b)- (rnl)+ (rn2) = r(no-n1+n2) b =rX(P)-b .

On the other hand, these Buler charscteristics sre also glven by
X(p)=2, X(M) =2-2¢g ,

vhere g 1s the genus of M . Hence b = 2(r+g-1) , the desired
formula.

If M is a compact Riemann surface of genus g , it
follows from the Riemenn-Roch theorem (recalling in particular
the teble in formula 14 of §7) that 7(&¢) > 2 for any line bundle
t for which c(§) > g+1 ; hence by Corollary 2 of Theorem 24
the surface M c&n be represented a&s a branched covering of 1P
of at most g+ 1 sheets. This is far from being the best pos-

‘sible result in general; we shall return to this duestion again



later, but for the present merely consider some simple results
relating to the Welerstrass points on the surface. For any point
peM, let r be the least non-gap in the Weierstrass gap
sequence at p ; it then follows from Theorem 14 that 7( Q; )y =2 ’
where QP is the point bundle associated to the point p . Thus
M can be represented as a branched covering of T of at most

r 8heets. Actually, an even more precise a@ssertion can be made.
There will exist a meromorphic function f on the surface M,
having as its only singulsrity a pole at p of order precisely r,
by Theorem 14 again. From Corollary 1 of Theorem 24, the function
f considered as an analytic mapping f: M — P will exhibit M
as an r-sheeted branched covering of I ; the point p e M will
be the only point of M covering the point at infinity on TP ,
and hence will be a branch point of order r-1 on the surface.
Conversely, it is cleasr that whenever f: M —> P is an r-sheeted
branched covering such that a point p € M 1is & branch point of
order r-l , then r 1s & non-gep In the Weierstrass gap sequence
at p ; for the image f(p) € P can alwsys be taken to the point
at infinity on P by a projective tramnsformation, and the compo-
sition of f with that projective transformation will be a mero-

morphic function whose sole singularity is a pole at p of order r.

For a general point p € M the first non-gap value is
r = g+l ; however vhen g > 1 there are always Welerstrass points,
and at any such point the first non-gap will satisfy the inequalilty
2<r<g. At anormal Weierstrass point the value will be r=g,

and at a hyperelliptic Weierstrass point the value will be r=2 .



In the latter case considersbly more can be asserted, as follows.

Theorem 25. A compact Riemann surface of genus g > 1

is hyperelliptic if either of the following two conditions holds:

(1) the surface has a hyperelliptic Welerstrass point;
(11) the surface has a complex line bundle ¢ with c(§) =2
and 7(¢) =2 .
The hyperelliptic surfaces are precisely those which can be repre-
sented as two-sheeted branched covering surfaces of the projective
line P , and which are of genus g > 1 ; the branch points are
precisely the Welerstrass points, all are hyperelliptic Weler-

strass points, and there are 2(g+l) of these points.

Proof. Note first that condition (i) implies condition
(i1); for 1f p is a hyperelliptic Welerstrass point on the
Riemann surface M , then °(§§) =2 and 7(;§) =2 . Now if
condition (11) holds, it follows from Corollary 2 of Theorem 24
that the surface M can be represented as a branched covering of
P with at most 2 sheets; and since genus g > 1 means that
M #£ P , there will be exactly 2 sheets. Fach branch poin%
will necessarily have branching order 1 ; and since by Theorem 2k
the total branching order is b = 2(g+l) , there will be slto-
gether 2(g+l) of these brench points. At each brench point the
value r = 2 will be a non-gap, 85 noted in the above discussion;
hence all these branch points will be hyperelliptic Weierstrass _
points. Recalling Theorem 16, it follows immediamtely that these
are all the Welerstrass branch points, and hence the surface is a
hyperelliptic surfac‘e. Since this argument only used the fact

that M could be represented as a two-sheeted covering of P ,



all the sssertions of the theorem have been proved.

If M is a compact Riemann surface of genus g =1 ,
then for any line bundle ¢ with c(¢) = 2 it follows from the
Riemann-Roch theorem that 7(£) = 2 ; so that M can be repre-
sented as a branched two-sheeted covering of I , having neces-
sarily 2(g+l) = 4 branch points. This again illustrates the
simllarities between elliptic and hyperelliptic Riemann surfaces.
If M has genus g = 2 , then necessarily M is hyperelliptic.
To see this, recall that for genus g =2 +the Welerstrass gap
sequence has the form 1 = Y < Py < 4, so that either oy = 2
{and p 18 not a Weierstrass point) or Py =3 (and p s a
hyperelliptic Welerstrass point); since M has at least one
Welerstrass point by Theorem 15, it follows immediately that M
is hyperelliptic. We shall see later that not all surfaces of
genus g > 2 are hyperelliptic; and also that the surfaces of
genus g can be represented by branched coverings of fewer than
g sheets, if it ie not required that all the sheets meet at some

point.

(v) The preceding representation of & compact Riemann surface
as a branched covering of the projective line can be used to pro-
vide a useful descriptionn of the globel meromorphic functions on
the surface. The get mM of all meromorphic functions on any
Riemann surface M 1s a field, under the operations of pointwise
addition and mltiplication of functions. The field M , con-

tains the subfield € of complex constants; and for any element



£e M, the field ”ZM also contains the subfield €(£) of

rational functions of f . (Recall that for any fields E( F

and for eny element x € F , the set of all polynomials in x with
coefficients in E is an integral domain denoted by E[x] ; and
the smallest subfield of F containing both E and x 1is the
set of all quotients of polynomials in x with coefficients in E,
or in other words the set of all rational functions of x , and is
denoted by E(x) . For the elementary properties of fields which
will be used here, see for instance B. L. van der Waerden, Modern
Algebra vol. I, (Frederick Ungar Co., N.Y., 1949).) As a simple

preliminery, note the following result.

lemma 30. If £ 1s a meromorphic function of degree 1

on the projective line P , then 'MJP = ¢(£) .

Proof. Iet 2z be the inhomogeneous coordinate on the
projective line P . Note that by Corollary 1 to Theorem 24, the
mepping f: P ~— P is an analytic homeomorphism. Then for any
points p #q in P , the function (£(z)-£(p))/(2(z)- £(a))
is merdtmorphic on P and has divisor precisely 1:p - 1°q ; in
case that either p or g is the pole of f , the obvious modi-
fications of this formula will be left to the reader. If g ¢ ,nl]P
is any meromorphiec function, with divisor /-9"(5) = Ei(pi- qi) , it
is clear that

(2) - £(p,)
g(z) = ¢ n, mai-y
for some constant C , hence that g ¢ o(f) . This suffices

to prove the assertion of the lemma.



It should be noted that the inhomogeneous coordinate gz
on TP can be considered as a meromorphic function of degree 1
on P ; and hence by the above lemma, m.IP = ¢(z) . The follow-

ing generalization of this lemma is quite straightforward.

Theorem 26. Iet M be a compact Riemann surface, and
te MM be & meromorphic function of degree r> 0 on M.
Then for any function g € MM there is a polynomial
P(x,y) ¢ €lx,y] in two veriables, of degree at most r in the
second variable y , such that P(f,g) =0 . (Note that P(f,g)

is a well~defined meromorphic function on the Riemann surface M.)

Proof. By Corollary 1 to Theorem 24, the function f
considered as a mapping f: M—> P exhibits M =as an r-sheeted
branched covering of the projective line TP . The image under f
of the branch points then forms a finite set of points

Qpseees0y € P , and the mepping

. -1
f: M= U, £ (qi)-e-lp_uiqi

i
is an r-gheeted covering space in the ordinary sense. For each
point q € P vwhich is not one of the branch points GyseeesQg s
select a contractible open coordinate neighborhood V of q in
P which is regularly covered under the mapping £ . Thus

T
f'l(v) = 1Ul U, » Where the U, are disjoint open subsets of M

i
homeomorphic to V ; let Pyt V — Ui be the analytic homeo-

morphisms such that cpiof: Ui —> U, is the identity for each 1i.

i
For any meromorphic function g on M , introduce the function

I

r
(1) Fylz,y) = L (v - o9y (2)) ;



this function is a polynomial in y of degree r , and its coeffi-
cients are meromorphic in z for 2z € V. By construction of

course, when p € £ (V) ,
Fy(flp),ele)) = 1, (&lp) - goo,etle)) =0,

since gatpicf(p) = g(p) if pe Ui + The same construction can
be carried out in any other such coordinate neighborhood W ,
yielding another funection Fw(z,y) of & similar form. In an
intersection V NW the meppings cPi,V and cp'j,w coincide in
some order; the coefficients of the polynomial (l) are the elemen-
tary symmetric functions of the values gofpi(z) » and hence are
independent of the ordering, Therefore Fv(z,y) = Fw(z,y) for

z € VN W ; and hence there is a well defined function F(z,y) ,

a8 polynomial in y of degree r with coefficients which are mero-

morphic functions on P- Uy g, , such that F(f,g) =0 . If the

i
function g is analytic at the points f'l(qi) , it is clear that
the coefficients of the polynomial F(z,y) eare bounded analytic
functions of z in & punctured disc centered at 9 hence by
Riemenn's removable singularity theorem, the coefficients remain
analytic at the point qi . It is a straightforwerd matter,
which will be left to the reader to verify, that the coefficients
of F(z,y) are meromorphic at those points q4; such that

f'l( qi) contains poles of g . Thus these coefficients are
meromorphic on all of P, hence are rational functions of the
inhomogeneous coordinate z of 1P, by ILemma 30; multiplying
F(z,y) by a suitable polynomial in 2z will therefore yield a
polynomial P(z,y) in two variables, with all the desired

properties.



Corollary. The field of meromorphic functions on a
compact Riemann surface is an algebraic function field in one
variable over the complex numbers, that is, is a finite algebraic

extension of a simple tranmscendental extension of the field C .

Proof. If f e '»IM is eny non-constant meromorphic
function on the Riemasnn surface M , the field ﬂ(f) is a simple
transcendental extension of the field € ; for otherwise £ would
be the root of a polynomial with coefficients in @ , hence would
necessarily be a constamt. If €(f) -is not the full field MM s
select any meromorphic function g, € ’MM - ©(f) =and consider the
field E

1 1
of c(f) of degree at most r , where r is the degree of the

= C(f,gl) ; by Theorem 26, E, is an algebraic extension

meromorphic function £ . If E, is not the full field 'nq M’

1
select another function g, € h]M - E; &nd consider the field
E, = c(f,gl,ga) ; since g, 1s algebraic over ©(f) of degree

at most r , the field E., is an algebraic extension of El of

2
degree at most r as well. This process can of course be con-

tinued. Howewver, by the theorem of the primitive element (cf. ven
der Waerden, page 126), the extension E = c‘(f,gl, ---;gm) of

€(f) can be generated by a single element CiBy + oy teeut C L&
for some complex constants CysreesCp j 8O that actually Em nust
have degree at most r over C(f) for all m . The process then

necessarily stops after finitely many stages, and the result is

thereby demonstrated.

Now on & compact Riemenn surface M select any two mero-

morphic functions £,g which generate the function field of the



surface, that is, which are such that ’h]M = ¢(f,g) ; and let
P(x,y) be the polynomial such that P(f,g) = 0 , noting that
P(x,y) can always be taken to be an irreducible polynomial. Tt
is clear that this polynomial completely describes the functicn
field of the Riemann surfece, as an sbstract field. It is indeed
even true that the polynomial describes the Riemenn surface itself,
in a sense. It is more convenient for this purpose to pass from
the polynomial P(x,y) to a nsturally associated homogeneous
polynomial. Formally, write x = tl/to and y = t2/t0 . Then

if n is the degree of the polynomial P(x,y) » consider the homo-

geneous polynomial of degree n 1in three variables defined by

t,) = t5p(t ortalts) -

0( O’tl’

This will be called the homogeneous form of the polynomial P{x,y);

it 15 canonically determined by P(x,y) , and the original poly-
nomial can be recovered by noting that P(x,y) = Po(l,x,y) . Con-
sidering (to’tl’tz) as homogeneous coordinates in two-dimensional
complex projective space 38 , 8lthough P (to,t ,tz) is not a
well-defined function on ]P2 » ite zero locus is a well-defined
subset of IP2 ; for if P (t ,t 'ty ) = 0, then from homogeneity
1t follows that P,(tt,,tt,tt,) = t%p o(tgrtystp) = 0« The sub-
set

loc Py = {(t

2
o't ts Ye® Po(to,tl,tz) =0}

is called an algebraic plene curve of degree n , defined by the

polynomial P (Tt is sssumed that the reeder is acquainted

0 *

with the elementary properties of projective spaces; see for



instanee W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry,
volume I, chapter V, (Cambridge University Press, 1953), for a

treatment of this topic.) In the coordinate neighborhood t £0

in P° » with local coordinate x = tl/to and y 1;2/150 s the

curve is given by the equation Po(l,x,y) = P{x,y) = 0 ; s0 the
algebraic plane curve loc Po in projective space is in the
natural sense Jjust the extension of the curve P(x,y) = 0 defined
in the ordinsry space G? of the two complex variables x,y .

Note that the intersection of the curve loec P. with the line at

0
infinity to =0 in ZIP2 consists of a finite number of points;
these are the points with homogeneous coordinates satisfying
?o(o,tl,te) = 0, or in terms of the inhomogeneous coordinate

t = t2/t1 on the line at infinity, the points Po(O,l,t) =0.
Removing these finitely many points from loc Po yields the curve
P(x,y) = 0 . In the relative topology as a subset of P2 , the
set loc Po is just the compactification of the curve P(x,y)= 0,
obtained by aedding a finite number of points to that curve.

Iemma 31. To any algebraic plane curve there is canonieally

associated a compact Riemenn surface.

Proof. Consider first that portion of the curve loe P0
in the coordinate neighborhood t, # 0 ; this is just the point
set loc P = {{x,y) € C?|P(x,y) =0} . View P(x,y) as a poly-
nomial in y with coefficients in €(x) , assuming first that it
is irreducible, and let D(x) be its discriminant; note that
D(x) is & polyﬁomial in x, end let A= (X,%Xy,...} be the

finite number of zeros of that polynmomial D(x) . For each value



%, £ A& the polymomial P(x,y) will have r distinct roots, where
r 1is the degree of that polynomial in the varisble y ; and letting
these values be Yysmees¥y s since they are simple roots it follows
that aP(xo,yi)/ay #0 . By the implicit function theorem, there
are r complex snalytic functions cpl(x), i=1,...,r , defined
in an open neighborhood of Xy and such that

‘Pi(xo) =y, end P(x,tpi(x)) =0.
The points (x,tpi(x)) are thus all the points for which P(x,y)=0.
It is then clear that under the natural projection m: - —> €
defined by w(x,y) = x , the curve ([(x,y) € (?,P(X,y)=0, xfAa}
ig an r-sheeted covering space of the set € - A = {x ¢ ¢|D(x) # 0}.
This provides that portion of the curve with a Riemann surface
structure. Then for & point x €4, the curve P(x,y) = 0 will
locally provide an r-sheeted covering of a punctured disc centered
at the point x . These coverings are all well kmown, however;
each connected component can be completed as a branched covering
of the full disc centered at x5 a.nd. the Riemann surface struc-
ture extends uniquely to this completion. This sssociates' a
Riemann surface to that portion loec P ( loc PO of the curve in
the given coordinate neighborhood. Note that, except possibly at
these branch points, the underlying point set of the associated
Riemenn surface can be identified with the point set loc P ; and
the identification is a topological homeomorphism. Moreover,
again excepting the finitely many branch points, it is evident
from the local parametrizations y = cpi(x) that the germs of

analytic functions on loc P in terms of its structure as a



Riemsnn surface are precisely the restrictions to loc P of germs
of analytic functions of two complex veriables defined in a neigh-
borhood in the projective plane IP2 . Recelling from lemma 2

that a Riemann surface structure is determined completely by the
sheaf of germs of holomorphic functions on the surface, and
observing from Riemann's removable aingularities theorem that a
nepping between two Riemenmn surfaces which preserves the sheaves

of analytic functions except for a discrete point set is neces-
sarily an analytic equivelence, it follows that the Riemann

surface structure is uniguely determined, independently of the
choices made in the sbove construction. Now a similar construction
can be carried out in the other coordinate neighborhoods of IP2 H
by the above uniqueness observation, these complex structures
pecessarlly match in the intersections of the coordinate neighbor-
hoods, and hence define a unique compact Riemann surface associated

to the algebraic curve Iloc P In case the polynomial P(x,y)

o
is reducible, each irreducible factor separately determines a

compact Riemann surface.

To illustrate the memner in which the Riemann surface
assocliated to loe Po differs from the point set loc P0 , con-
sider the trivial case of the polynomial P(x,y) = xy . The
Riemann surface corresponding to that curve consists of two dis-
joint copies of the complex line € ; they are imbedded in c2
in such a way that they interseet, but that is not reflected in
the Riemann surface structure. The analytic functions on the

Riemann surface are not the restrietions to the curve loe P of



analytic functions of two complex variables at the origin; for the
restrictions would necessarily have the same value at the inter=
section of the two lines, while the funetions on the Riemann sur-
face do not. For the case of en algebraic curve with singularities,
such as the curve defined by the equation P(x,y) = yz-x3 which
hes a singularity at the origin, the Riemsnn surface and the curve
agree as point sets; but still the germs of amalytic functions on
the Riemann surface do iot consist of the restrictions to the curve
of germs of enalytic functions of two variasbles at the origin.

This leads further into the propertles of singularities of algebraic
curves than time permits, for adequate treatment; the reader is
referred to the stamdard literature on algebraic curves for a more

extensive discussion.

Theorem 27. Iet M be a compact Riemann surface, and
f£,8 € ”lM be meromorphic functions generating the function field
of M ; and let P(x,y) be the irreducible polynomial such that
P(f,g) = 0 . There is then a canonical analytic homeomorphism
from the Riemenn surface M onto the Riemann surface associated

to the algebraic plane curve defined by the polymomial P(x,y) .

*
Proof. Iet ¢t € Hl(M, @") be a complex line bundle on

the Riemann surface M with a non-trivial bolomorphic cross-

section f, € r(M, (t)) such that the functions £, = £,f and
f, = f,g are holomorphic; then of course £, € M, @ (&),
i=0,1,2 . The line bundle £ and section £, can be so chosen

0
that the three functions fo ,fl, f2 have no common zeros on M ;

it suffices to select the section £, such that its divisor is

0



the least for which fof and fog are holomorphic. ILetting
Po(to’tl’tz) be the homogeneous form of the polynomial P(x,y) ,
note that P (£,£),£,) = fgp(fl/fo, £,/£,) = ng(f,g)

Thus the mapping from M into I|?2 defined by

0.

]

P e M—> (£,(0),2,(p),2,(p) e B2

takes the Riememn surface M to the point set loc 2, C B° of
the algebraic plane curve defined by the polymomial P . It is
readily verified that this defines a complex analytic mapping fronm
M to all points in the Riemenn surface associated to the curve,
except the branch points; and applying Riemsnn's removable singu-
larities theorem yields an extension to all of M . The details
will be left to the reader. Thues there is defined a local branched
covering from M to the Riemann surface associated to the curve
P(x,y) ; and since both are compact, it follows easily tnat this

is an r-sheeted branched covering for some index r . The mero-
morphic functions on M separate points, in the sense that if

p,g €M and p # q there is a meromorvhic function h € M
such that h(p) # b(q) ; for there is always a meromorphic function
with a pole only at the point p . Since f,g generate the mero-~
morphic functions, then these two functions generally separate
points as well; thus the index r = 1 , and the mapping from M

to the Riemann surface associated to the curve P(x,y) is one-to-

one, thereby completing the proof.

Corollary. Two Riemann surfaces are asnalytically equiva-
lent if and only if their fields of meromorphiec functions are

isomorphic as abstract fields.



Proof. If M,M' &re two Riemenn surfaces with isomorphie
function fielde, generators of these fields can be chosen such
that they satisfy the same irreducible polynomial equation; the

desired result follows immediately from Theorem 27 then.

The preceding Corollary shows that the investigation of
compact Riemann surfaces can be reduced to the investigation of
algebraic function fields in one varisble over the complex numbers,
or of algebraic plane curves. The equivalence concept for funec-
tion fields is Just isomorphism as abstract fields, but is
s1ightly more complicated for algebraic curves. If P(x,y) and
P'(x',y') define salgebraic curves, then these should be considered
as equivalent when their underlying function fields are the same.
This means that x',y!' . (considered as meromorphic functions on
the curve) must be rational functions of x,‘y , and conversely;

this equivalence concept is known as birational equivalence. The

algebro-geometric form of the study of compact Riemann surfaces
can be phrased as the problem of studying birationally inveriant
properties of algebraic plane curves. This was the original form
in which the subject was studied, and the reader is 'referred to
the standard works on algebraic geometry for further reading.

The prineipal interest in these lectures has been the analytic
aspects of the subject, s0 the algebraic line will be pursued no

further.

_ohkn



(c) Iet M be a compact Riemann surface of genus g > 1,

and let hl,h2,...,hg e I(M, ®(x)) be a basis for the space of
Abelian differentials. It was noted earlier (page 119) that these
sections hi have no common zeros on the surface. Thus if Zy
is a local coordinate mepping in an open set UaC M, and if
hia(za) ere the analytic represemtations of the sections h; in
that coordinate neighborhood, then the wvalues

(hla(za) N gc‘(za)) can be viewed as the homogeneous coordi-
nates of points in the projective space IPg'l of dimension g-1;
this leads to & complex analytic mepping Hy: Uy, —> pét .

Note that in Uy N U, these mappings are related by Ha( za) =

B
= (hla(za), LI )hsa(za)) = (Kw( Ze)hle(zB)J AL JKaB( ZB)hge( ZB)) =
= HB(ZB) ; this therefore ylelds & global analytic mepping

H M —> ]Pg"l . The mapping H 1s called the principal mapping,

and the image H(M) C P81 is called the prinecipal curve associ-

ated to the Riemenn surface M . Note that choosing & different
basis for I'(M, B (k)) has the effect of replacing the principal
mapping H DYy a non-singular linear treamsform of H , or equiva-
lently, of following the mepping H by & non-singular projective
transformation in ]Pg'l . Thus the principal mapping and the
prinecipal curve are determined uniquely up to = non-singular

projective transformation in P& .

Theorem 28 (). If M is a compact Riemenn surface of

genus g > 1 and M 1is not hyperelliptic, then the prineipal
mapping H: M —> P81 15 a one-torone non-singular complex
analytic mapping, and the principal curve H(M) is a one-dimen-

sional complex shalytic submanifold of ]Pg'l .



Proof. That the mepping H: M —> P51 15 a complex
analytic mepping is obvious from the definitions. If H were not
one-to-one, there would be two distinet points p,q € M such that
H(p) = H(qg) ; and by a non-singular projective tramsformation in
P21 that imege cen be teken to be the point H(p) = H(q) =
= (1,05...50) € P& . Thus n,(p) = hy(a) =0 for 1=2,...,g.
let ¢ = §P§q , and let f e I'(M, ®(E)) be the standard non-
trivial section, with divisor u(f) = 1'p+1+q . The functions
hi/f for 1 =2,...,8 , then linearly independent complex
analytic s‘ections of the complex line bundle K§'1 s 80 that
r(ke™t) 2 &~1 . By the Riemann-Roch Theorem,

7(8) = 7(kt™) + ¢(8) + 1-g2 2 ; but since c(f) = 2 , 1t wowld
follow from Theorem 25 that M is hyperelliptie, a contradiction.
Therefore the mapping H 1s one-to-one. The condition that the
mapping H Dbe non-singular is just that at each point of M at
least one of the coordinate functions of the mapping H be non-
singular, that is, have a non-venishing derivative. If p ¢ Ua

and =z

a is a local coordinate in Ua s the mapping H 1is given

in homogeneous coordinates by zj —> (hla(zoc) yesesh ga(za)) 5 and
if say hloc(P) # 0, then in terms of the standard inhomogeneous
coordinates around H(p) e ]Pg'l , the mepping H is described
by 2y = (hyo(z5)/b,(20)s- . sh ga(za)/hla(za)) . If the mspping

H were singular at p , then necessarily

by (R0} (p) - b o (p)h, ()

b, o(p)?

=0 for 1i=2,...,8.

Since hoo(p) # 0, then writing hy(z,) = (h;(z,)) and



g&(za) = (hia(za)) as on page 117, it follows that the matrix
(ga(p),gé(p)) has renk p =1 . Then from Lemma 17 it further
follows that 7({5) =2 ; but since c(gi) = 2 , Theorem 25 implies
that M 1is again hyperelliptie, a contradiction. The mepping H
is therefore non-singuler, and as an immediate consequence of that,
the image curve H{M) C P81 {5 & one-dimensional complex ana-

lytic submanifold of the projective space, concluding the proof.

A few simple properties of the principal curve of a non-
hyperelliptic Riemann swurface are as follows. First, the prin-
cipal curve does not lie in any proper linear subvariety of JPg'l .
For letting (tl,...,tg) be homogeneous coordinates in pe-l s
if the principal curve H(M) were contained in the linesr sub-
variety I,a;t; = 0, then necessarily Z,a.h,(p) =0 for all
p € M ; but this is impossible if not all the constants ay
venish, since the sections h, e (M, & (k)) are linearly inde-
pendent. This means that a linear subvariety meets the curve
H(M) in a finite number of points only; indeed, the intersection
consists of precisely 2g-2 points, counting multiplieity. For
letting o(t) = ,a,t, , 85 a complex enalytic section of a com-
plex line bundle on P81 , the restriction of ¢(t) to H(M)
has a well-defined totel number of zeros, which is the desired
intersection multiplieity; but that restriction is the element
®(8(p)) = £;a;h,(p) € I(M, @ (k) , end since c(k) = 2g-2 , it
follows from Theorem 11 that @(H(p)) has altogether 2g.2 zeros,
counting multipl.icities. It is known that any complex analytic

subvariety of &1 45 an algebraic variety; this is Chow's



theorem, (and a proof can be found for instance in R. C. Gunning
and H. Rossi, Analytic Functions of Several Complex Variables
(Prentice-Hall, 1965), page 170). The principal curve is there-
fore a non-singular slgebraic curve in the proJjective space ]Ps'l;
since the degree of a curve is its intersection multiplieity with
a general linear hyperplane, it follows from the above remarks

that H(M) is of degree 2g-2 .

In the case of & hyperelliptic Riemenn surface M , the
situation is quite different. To any mapping f: M —= P which
exhibits M as a two-sheeted branched covering of T as in
Theorem 25 there is canonically associated an analytic sutomorphism
0: M~> M of period two. Omitting the branch points, f+ M — P
is an ordinary two-sheeted covering mepping, and 6 1is Just the
operation of interchanging the sheets. The operation extends
analytically to the branch points in an obvious menner; for a
local coordinate 2z can be chosen in an open heighborhood of the
branch point 2z = 0 in M such that the mepping f has the form
£(z) = z.2, , and in that neighborhood 6z = -z . Such a mapping ©

will be called a hyperelliptic sutomorphism. As noted, 6° is

the identity mepping. The fixed points of 6 are precisely the
2g+ 2 Weierstrass points on the surfeace M , since by Theorem 25
these are precisely the bi'anch points of the mepping f£: M — .
The mapping f: M —> P can be described as the gquotient mapping
M — M/(8) ; for (1,8} 1s a group of amalytic automorphisms on
M , and the mapping f is equivalent to collapsing M into the

quotient space under this group of automorphisms. It is thus



obvious that a compact Riemann surface M 1s hyperelliptic pre-
cisely when it admits a complex analytic automorphism 6: M —= M
of pefiod two such that the quotient space M/(8) = P; and although
the fixed points of 6 are unique, it is not yet evident that there

is a unique such mapping & on any hyperelliptic Riemann surface.

Theorem 28 (b). If M 1s a hyperelliptic Riemann sur-
face, the principal mapping H: M —> ]Pg"l can be factored as
the composition of the quotient mepping M —> M/(6) modulo a
hyperelliptic automorphism, asnd the canonical non-singular complex

analytic mapping P —> P& defined by

g-1 -2, e-2 g-l
(2) (zp2,) —> (2577525 250 eszgzy 527 )

in terms of the standard homogeneous coordinates.

Proof. Iet f: M—> IP be a two-sheeted branched
covering such that the point with inhomogeneous coordinate « on
P is not the image of a branch point. Then considering f =as
e meromorphic funetion on M , it follows that

S(r) = 1wy + 11, - 1:q; - 1:q, for some points r,, q; €M .

10)

2
Coneidering df € I'(M, 7?1

riu, m (k)) as a meromorphic dif-
ferentisl form on M , the zeros of df occur precisely at the

branch points of the mapping f , and df has double poles at the
points qi € M ; therefore ﬁg'(df) =1'pl+ - l-p2g+2 -2'ql -2-q2 3
where Py € M are the branch points of f , hence the Weierstrass
points on M . Select a meromorphic funetion g on M such that
A (&) = 1op) +ooor 1opyy - (g41):q) - (g#1)-a, . (To show the

existence of a function of this sort, let q; = f(pi) € P , and



consider the two-valued meromorphic function y on T defined
by y2 = (z-al) (2'523+2) in terms of the inhomogeneous coor-
dingte 2z on . The function y 1is two-valued and has branch
points at the points ai ; hence y can be viewed as a single-
valued meromorphic function on the twou-sheeted covering surface M,
end as such will be the desired function.) It now follows readily
that for 4 =1,...,g the differentisl forns @, = £ 'af/g are
holomorphic on the Riemsnn surface M ; for

M (9;) = (1-1) () + $(as) - A(e) = (1-1)ry + (3-1)m, +

+ (g-l)-ql + (g-l)-q2 . Since these differentisl forms are evi-
dently linearly independent, they determine a basis for TI'(M, ot o).

In terms of this basis the principal mapping clearly has the form

(3) 5(p) = (1,2(p), 2 (0), .., 25 (p)) .

This shows first of all that the mepping H can be factored
through the mapping f ; and rewriting (3) in homogeneous form to
avoid considering meromorphic functions, it is evident that H is
the composition of f and the mspping (2). It is a straight-
forward 'matter, verification of which will be left to the reader,
to see that (2) 1s a one-to-one non-singular complex anslytic

mepping of P onto L , and the proof is thereby concluded.

Corollary 1. On a hyperelliptic Riemann surface M the

hyperelliptic automorphism 6: M — M is unigue.

Proof. The principal mspping is unique, up t0 composition
by & non-singular projective transformstion in pé! ; and since

6 1is determined by the principel mepping, as in Theorem 28 (b),
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the Corollasry follows immediately.

Corollary 2. Iet M be a hyperelliptic Riemann surface
of genus g , with the hyperelliptic automorphism 6: M —> M ;
and let Pyse- "Pg-l be any points on the surface M . Then the

canonical bundle of M 1is given by
K = C C . .c c
R ST P ]

Proof. Iet f: M—> P be the standard two-sheeted
branched covering, and let p,fp € M ‘ be the points which map into
the point ~ € P in the stendard inhomogeneous coordinate cover-
ing; so that p and 6Op are the poles of f , considering f as
a meromorphic function on M . The differential form df/g con-
structed in the proof of Theorem 28 (b) is holomorphiec on M and
has the divisor p9'(d:f/g) = (g-1)'p + (g-1)+6p ; and therefore
K = gp'lgg;l . This is the particulsr case of the Corollary in
vhich p, = ... = Pg.y =P In general, let a, = f(pi) s
a = f(p) , be the images of these points in IP . There is a
meromorphic function g* on IP with divisor
3 (g*) = (g-1)-a-Z,1-a, ; and lifting g* to a meromorphic
function g on the Riemann surface M, by means of the mapping
£f: M—> P , it is clear that g will have the divisor
1«9' (g) = (g-1)+(p+ép) - Zil'(pi+9pi) + It then follows that

(EhEt < ¢

ep Plgepi.. .gpgg®s !

end hence thé Corollary follows from the special case Jjust proved.



A representation of Riemsnn surfaces which is closely
associated to the principal curve is the following. Iet
PyreesOp € Iy, @-l"o). be a basis for the space of Abelian dif-
ferential forms on the surface; and let P, € M be an erbitrary
but fixed base point on the surface. Choosing a basis for
B (M,Z) , the cohomology classes Bp, € Hl(M,tL’:) are represented
by vectors (wji) e & as on page 14l; and the 2g X g matrix
Q= (mJ 4) 1s the associated period matrix of the Abelian differ-
entials on M . Recall that the Jacobi variety J(M) of the
Riemenn surfasce M 1s the compact complex torus J (M) = é/tnz"’ g,
Now for any point » ¢ M, select any path A from P, to p in

M ; and introduce the element
(4) %) = ([0y-es130.) € E/%0&E < g(u)

If 7\’1 is any other path from P, to p, then 7\’1 = AN+ T where

T is a closed loop from P, to P, in M ; and in terms of the

dual besis for Hl(M,Z) » the homology elsss of T will be repre-~

sented by a vector (TJ) ¢ 8, Thus (fhltpi) = (j}\q)i + qu;i) =
2g .

= (th)i + jil ijdi) = (f}\q)i) in :‘I‘(M) » gince

2g

L 1,9, ¢ 0% . The mapping ®: M —> J(M) 1is thus well-

jop 991 &

defined, being independent of the choice of the path A . This

mapping is called a Jacobian mapping of the Riemenn surface M .

Note that the mapping is independent of the cholce of bases for
r(M, 0‘1’0) and Hl(M,c) , in the obvious sense; but ¥ does
depend on the choice of the base point P,y € M , a change in the

base point corresponding to a translation in the Abelian group ,\T)(M).



Theorem 29. If M is 2 compact Riemann surface of genus
g > 0, then the Jacobian mepping &: M —> ;IJ(M) is a one-to-one
nonsingular complex analytic mapping, and the image &(M) C d (M)

is a one-dimensional complex enalytie submanifold of gJ(M) .

Proof. That the mepping ¢ is a complex analytic mapping
is obvious, since the integrals in (4) are complex amslytic fune-
tions of the limits of integration, at least locally. If the
mapping & were not one-to-one, there would exist distinet points
4,9, €M such that @(ql) = Q(qz) ; and in terms of the explicit
form (4) for that mapping, it would follow that for an are T
from» g4y to 9% »

([ @ppeees @) =0 &/ 08 = g(m) .

Then from Abels Theorem (Theorem 18) it would further follow that
gpg;l = 1 , a contrediction (recalling the discussion on page 115).
If z,, is a local coordinate mapping in & coordinate neighborhood
UaC M, then writing @, = hia( za)dza , the condition that the
mapping ¢ be singular at Zo is elearly Just that

hla(zoc) = ... =h ga(za) = 0 ; but this cen never happen, as noted
on page 119. Therefore the mapping ¢ 1is nonsingular, and there-
fore the image ®(M) is a one-dimensional complex analytic sub-

menifold of J (M) , completing the proof.

Corollery. If M is & compact Riemann surface of genus
g =1, then the Jacobian mepping &: M —> ’{(M) is an smalytic

isomorphism of Riemenn surfaces.



Proof. Since dim J(M) = g =1 1in this case, the Corol-
lary is an immediate consequence of the preceding Theorem. This
provides & useful standard form for compact Riemenn surfaces of

genus 1 .

The next stage of the discussion of Riemann surfaces would
involve & more detailed investigation of these last mappings (the
principal and the Jacoblan mappings), leading towards Torelli's
Theorem and the problem of moduli of Riemann surfaces. Time has

run out, however, and this must be postponed to another time.



Appendix: the topology of surfaces.

It has been assumed that the topological properties of two-
dimensional menifolds, from the point of view of éech cohomology
egpecially, sre femiliar to the reader. A few worde should perhspe
be added here, in cese that is not so. Most books on Riemann sur-
faces begin with a discussion of the topology of surfaces, usually
simplicial or singuler homology theory with pasrticular emphasis
on the two-dimensional case; and the reader without this back-
ground cen quite well consult one of these books. (See for
example Lars V. Ahifors end Ieo Sario, Riemann Surfaces (Princeton
University Press, 1960); George Springer, Introduction to Riemann
Surfaces, (Addison-Wesley, 1957); end of couse Hermsnn Weyl,

The Concept of & Riemann Surface, (English translation, Addison-
Wesley, 1964).) The topology of surfaces, also from the point of
view of singular homology theory, is covered in H. Seifert and

W. Threlfall, Lehrbuch der Topologie (Teubner, 193k4; Chelsea, 1947);
the fundemental group end covering spaces are also treated in de-
tail there.

The fech cohomology groups of & compact surface (with co-
efficlents in a constant sheaf, such as Z or G€) are isomorphic
to the singuwlar or simpliciasl cohomology groups, and the coho-
mology groups can be viewed as dual to the homology groups; so
the properties of the Eech cohomology groups needed in these lec-
tures can readily be derived from the discussion of the homology
of surfaces in the books mentioned above. (A more general dis-

cussion can also be found in Ssmuel Eilenberg and Norman Steenrod,



Foundations of Algebraic Topology, (Princeton Univ. Press, 1951).)
More directly, the surface can be triangulated; and tsking open
neighborhoods of the closed two-simplices as an open covering of
the surface, most of the results needed follow from a straight-
forward calcwlation. Similarly, it follows quite easily that the
fundamental group as defined in §9 (b) is isomorphic to the funda~
mentel group as more customarily defined, (as for instance in
Seifert and Threlfall). Referring to the discussion on page 186,
note that for an Abelian growp G 1t follows that

Hom(‘rrl(M),G)/G = Hom(‘rrl(M),G) , and hence by Lemma 27,

£-(4,6) ¥ Hom(m, (M),6) . Indeed, since G 1is Abelian,

Hom(m, (M),6) ¥ Hom(H, (M),6) , where H (M) is the grow (M)
made Abelian, that is, is the quotient of ‘rrl(M) by its commu-
tator subgroup; but Hl(M) is the first homology group of the
surface, so this 18 just the familisr duality between homology
and cohomology. In perticuler, H-(M,€) ¥ Hom(H, (4),c) ¥ Hom(r, (1),€).
With this observation, the isomorphism &: I'(M, @’1 ? O) — Hl(M,c)
discussed in §8 (a) can be put into a more treditional form as
follows, Let (uo,ul,...,un,uo) be a closed chain at p , in
terms of an Open covering M of the surface M ; and let A dbe
e closed path in the set U0 U Ul Ue. U Un from the point p,
representing the same element of 'rrl(M,p) under the obvious iso-
morphism, Thus selecting points P, € Ui , the axc A\ can be
taken as a union of smooth segments }"i » Where hi is an arc in
U UU,, from p, to by - If 9 eI @10 15 any

Abelian differential form, select functions f, e r(ui, ®) so
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that df, =9 in U In U,NU note that d(f

i i 1+1 1+1
hence f - f

141 ;= ci,i+1 for some constant ci,i+l ; 80 upon

sultably modifying the functions fi s there is no loss of gener-

-f,)=0,

ality in supposing that :f'i = fi+l in U

i=01,...y0n-1 . The resulting function 18 of course an indefi-

1 n Ui+l for

nite integral of ¢ . Now the element of Hom(‘rrl(M),c) corre-
sponding to 59 € HN(M,C) assigns to this loop A the constant
n

by €y 441§ but this merely amounts to the constant

i=0 ’

°n,0 = :f'n - £, , which is evidently the value f}\cp . Therefore

the isomorphism I'(M, G‘l’o) — Hom(‘rrl(M),c) , derived from the

LOY s gl(M,c) ana

composition of the ilscmorphisms TI'(M, &
H'(1,C) —> Hon(m, (4),€) , is that which sssigns to an Abelian
differentisl form o e I'(M, @_1,0) and a loop A e ‘rrl(M,p) the
period fhcp » This justifies the perlod matrix terminology con-
sidered on page 145, and the discussion in the proof of
Corollary 3 of Theorem 18. Of course, I'(M, 01’0) can be
replaced by the full space of closed dlfferential forms on M,

in the analogous discussion of deRham's Theorem in terms of the

periods of differential forms.

Finally, a few words should be said sbout the inter-
section matrix on a surface, in connectlon with the discussion
in §8 (c). 1In the usual spproach, the explicit form of the
intersection metrix X (recall page, 154) is derived in the proof
of Abel's theorem, or in the related discussion. (See Ahlfors
and Sario, pages 319 ff., for instance.) The argument is

essentially the following. Suppose the surface M 1s represented



by & polygon with pairs of edges identified, in the normal form,

' (a8 in Seifert and Threlfall, pages 135 f£f.):

The elements &a,,b, generate HZL(M) ; and dusl generators can be
selected for the cohomology group e (M,€ ) . Upon representing
‘these cohomology classes by closed differential forms

o,,B, ¢ (M, €%), this condition is that
e . co. o
(*) fa—ai: f:baj—fs—o: f-biﬂa"ai’

where Bi is the Kronecker symbol. In terms of this basis, the

intersection matrix X has the entries
Xi‘jl = ffail\ .j ’ Xi,.j+s = ffail\ﬂj 2 xi+8,j+5 = ffﬂil\Bj

for 1,j=1,...,8 , where g=genus of M, Upon applying Stokes'
theorem & few times, it follows readily from the equabtions (%)
that X has the desired form. The details can be left to the

reader, (compare Ahlfors end Sario, peges 319 ff.).
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Exact cohomology sedquence, 32
Exact sequence of sheaves, 25

Fundamental group, 186, 189, 252

Genus, 109
Geometric realization of a structure, 217

Hyperelliptic automorphism, 24k
Hyperelliptic surfaces, 126, 228, 244
Hyperelliptic Weierstrass point, 126

Intersection matrix, 148, 253

Jacobian mapping, 248
Jacobl variety, 145, 153



lattice subgroup, 135

leray covering, [L

Line bundles, complex, 53
-y fl&t) 132

Manifold, topological, 1
Normal Riemann surface, 125

Order, of branching, 220
-, of cross-sections of line bundles, 56
-, of distributions, 80
-, of holomorphic functions, 6

Partition of uwnity, 35

Period matrix, of Abelian differentials, 145, 253
-, of lattice subgroups, 140, 142

Picard variety, 136, 146, 153

Point bundle, 114

Presheaf, 16
-, complete, 19

Principal curve (mapping), 241 [also called canonical curvel

Projective line, 10

Projective linear group, 17h

Pseudogroup property, 4, 164

Refinement of a covering, 28
Refining mapping, 28

Riemann surface,

Riemenn's equality (inequelity), 148
Riemann matrix (pair), 150
Riemann-Roch theorem, 111

Schwarzisn derivetive, 167
Sections of a gheaf, 15
Serre duallty theorem, 75, 95
Sheaf, 1k
-, constant, 15
<, fine, 36
-, of germs of differential forms, 68
-, of germs of distributions, 83, 90
-, of germs of divisors, 48
-, of germs of holomorphic functions, 20
Structure, affine, 167
-, complex analytic, L
-, differentiable, L
-, Projective, 167
-, subordinate, 4, 167
Support, of a distribution, 85
-, of a function, 80

Symplectic group, 155
Torus, 11, 137, 140

Weierstrass, gap sequence, 120
-, point, 123
R -, normal, 125
, -, hyperelliptic, 126
, theorem, 51
, welght, 122
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