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D-5300 Bonn, Federal Republic of Germany 

Introduction 

The qualitative behaviour of the geodesics on a two-dimensional ellipsoid is 
well known since the time of Jacobi (cf. [1] w [6] w 32). Each geodesic ~t(t) on 
a triaxial ellipsoid Q1 c lR3 oscillates between the two lines of intersection of QI 
with an hyperboloid Q2 confocal to Q1 ~ (Fig. 1). 

I:ig. 1 
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If Q1 has the equation ~1 +~2+x5= 1 then the confocal quadrics are given by 
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By a theorem of Chasles [2] all the tangent lines of the curve e(t) are also 
tangent to the hyperboloid Q2. 

The quantitative description of the geodesics on the ellipsoid was obtained 
by Jacobi and Weierstrass. Using the so-called elliptic coordinates Jacobi 
showed in 1839 that the Hamiltonian system that corresponds to the geodesic 
flow on the cotangent space of Q1 is completely integrable. In this way he 
reduced the solution of the geodesic differential equation to an inversion 
problem for hyperelliptic integrals (cf. [8]). This was used by Weierstrass [19] to 
give a parametrization of the geodesics on the ellipsoid by hyperelliptic theta- 
functions. 

The theorem of Chasles mentioned above and its generalization to higher 
dimensions show that the set T of all common tangent lines of n confocal 
quadrics Q,, ..., Q. plays an important role in the study of the geodesics on any 
of these quadrics (cf. [10] w 6). In this paper we will study this set T by 
methods of algebraic geometry. 

We briefly sketch the basic idea: Given n confocal quadrics in projective (n 
+ 1)-space 

{ a 2 } 
Q ~ : =  x ~ P , + l ( l e , )  ~1 + . . . 4  x .+~  x~  2 . . . .  , 

a n +  l - -  ~'1 

Q,.'= xaP,+,(IR) 1 +. . . - t  x"+l x 2 
a n  + 1 - -  '~n 

we consider the intersection V of two quadrics in P2,+ a(IR) 

2 V: x Z + " ' + x " + l - Y l - " ' - Y  2=0  
2 - 2 1 y ~  2 alx21+...+an+lX,,+l --...--2,y,=x~ 

and the projection g': P2,+ 1(~) -{(x ;  y)ePz,+l(lR)[x=O}--~P,+l(N), (x; y)~-~x. If 
l c P2, + 1(IR) is an ( n -  1)-dimensional linear subspace of V then re' ( l)c P, + 1(111) is 
a two-codimensional linear subspace that is tangent to the quadrics 

Q~:={xeP,+a(IR)l(al-kl)x~+...+(a,+l-21) x,+2 1 =X2o} . . . .  , 

Q, .-{xeP.+l(lR)[(a a - 2 , ) x2  + ... + ( a , + , - 2 , )  x,+ = , = x  g} 

(cf. Theorem 3.2). P.+ I(IR) can be identified with its dual projective space in such 
a way that the quadrics dual to Q*, ..., Q* are just Q~, ..., Q,. The dual space to 
rc'(l) is then a line in P.+ l(lR) tangent to Q1 . . . . .  Q, (see (1.4)). In this manner we 
construct a map rc*:F~(V)--,T from the set Fz(V) of all (n-1)-dimensional 
linear subspaces in the intersection V of two projective quadrics to the set T of 
all common tangent lines of the confocal quadrics Q a, ..., Q,. It turns out that 
~* maps each connected component of F~(V) isomorphically to T. 

Using the results of M. Reid and R. Donagi on linear subspaces of complex 
intersections of two quadrics we show that Fz(V) carries the structure of an 
abelian group and that it can be identified with the set Aa of real points 
in the Jacobian A of the hyperelliptic curve C: y2=(x-aO.. . . .(x-a.+O 
(x - 2 1 ) . . . . - ( x -  2,). (Theorem 2.3, Proposition 2.8). It follows from the theorem of 
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Chasles that the geodesic flow for any of the quadrics Qk induces a flow on T, 
hence also a flow on each component of Fr~(V) and on A ~ the connected 
component of zero in A~. In w we prove an elementary geometric result about 
geodesics on real quadrics (cf. Corollary 4.9) which implies that these flows on 
the torus A ~ are linear. The directions of tlie integral curves of these flows are 
determined in w Finally we show in w how the results of this paper can be 
used to obtain parametrizations of geodesics on real quadrics by hyperelliptic 
theta-functions. 

Mos t  of the properties of confocal quadrics and geodesics on quadrics 
derived in this paper have been proved before with different methods (see [10, 
11]; the only result I could not find in the literature is Corollary 4.9). The main 
object of this paper is to show the relation between the geodesics on quadrics 
and the geometry of the set F(V) of maximal linear subspaces in an intersection 
of two quadrics. Since F(V) can be identified with the moduli space of line 
bundles of a fixed degree on the hyperelliptic curve C (cf. [3]), the flow on F(V) 
constructed in this paper can be interpreted as rule for deforming line bundles 
on this hyperelliptic curve. Recently Krichever has used such deformations of 
line bundles on hyperelliptic curves to construct solutions of the Korteweg-De 
Vries-equation (cf. [13], p. 145). So it might be possible that one could use the 
results of this paper to study the connections between the geodesics on the 
ellipsoid and the Korteweg-De Vries-equation that were discovered by Moser in 
[103. 

The idea that one should look for a connection between the problem of geodesics on an ellipsoid 
and the results of  Reid and Donagi  about intersections of two quadrics was suggested to me by Prof. 
Moser. I would like to thank him for his cont inuous support  and encouragement  during the work on 
this paper. I also want to thank A. T h i mm who explained to me many of the classical results about  
geodesics on the ellipsoid. 

w 1. Duality 

When studying a system of confocal projective quadrics it is useful to consider 
also the system of dual quadrics, because this is a linear system. In this chapter 
we will briefly describe the duality in projective spaces and use it to prove a 
generalization of the orthogonality property of confocal quadrics in ~"+  1 

Let K be the field of real or complex numbers and P.+I(K) the (n+ l ) -  
dimensional projective space over K. For  a point ~=(~o,- - . ,  ~n+l)eP,+ 1(K) we 
denote by 3" the hyperplane given by (~,X):=~oXo+...+~n+lX,+x=O. The 
correspondence r identifies Pn+l(K) with its dual projective space, which 
consists of all hyperplanes in Pn+I(K). For a linear subspace lcPn+l(K ) we put 
l* :=  0 4*- l* is again a linear subspace of P, + 1 (K), d i m / +  dim l*=  n, and l**= I. 

If Q is a nonsingular quadric in Pn+I(K) we define Q* as the set of all points in 
x 2 

P,+ I(K) that are dual to a tangent hyperplane of Q. If Q has the equation ~1+ ... 
...j_ X2+ 2 a l  

1= x 2 then Q* is given by a I x 2 + . . .  + a,+ ix ,+  1= x 2. By cg we denote the 
an+ 1 

system of quadrics confocal to Q; by definition it consists of the quadrics 
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x 2  2 
(1.1) Q~: ~1 +.. . .~ x ,+l  =Xo 2 (2+a  1 . . . .  ,a ,+ 0 

a 1 - 2  an+x-2  

and the hyperplanes {x~Pn+l(K)lxi=O } (i=0, .... n + l )  which we denote by Q,, 
(for i4:0) respectively Q~ (for i=0). By abuse of notation we set 

( 1 . 2 )  Q*:={xeP.+l(K)l(al-2)xZl+. . .  +(a,+x-2)x,+l-Xo}Z _ z 

for all 2~K and Q*,={x6P, .a(K)tx~+. . .+xZ+l=O}.  The quadrics Q* thus 
form a pencil of quadrics in P,+ I(K), which we denote by ~*. 

We are interested in the set T of common tangent lines of n confocal 
quadrics QI :=  Qx,, .... Q.: = Q~6qr (2sr ..., a,+ 1}). We first note 

Lemma 1.3. Let Q = P, + I ( K) be a nonsingular quadric, ~ 6 Q and I = P. + I ( K )  a 
linear subspace that is tangent to Q in the point ~. Then l* is tangent to Q* in the 
point (TcQ)* which is dual to the tangent hyperplane T~Q of Q in 4. 

Proof ~* is the tangent hyperplane of Q* in (Tr Since r we have 
(Tr =4*. This proves the lemma. 

Corollary 1.4. The duality I~,1 * induces an isomorphism d: T* ~ T between the set 
T* of all ( n -  l)-dimensional linear subspaces of P,+ I(K) which are tangent to the 

�9 _ _  :g * quadrics Q~ = Q~,, .... Q, _ Q~ erg and the set T of all common tangent lines of 
0_~ . . . . .  Q . .  

We are mainly interested in systems of confocal quadrics in euclidean space 
R "+1. As an application of duality in P.+ I(IR) we prove the following orthogo- 
nality property of confocal quadrics in IR "+ ~. 

Theorem 1.5 (cf. [16], art. 176). Let Q1 +-Q2 be two confocal quadrics in IR "+ 1, and 
let g c R  "+1 be a line that is tangent to Q1 in a point ~1 and to Q2 in a point ~2. 
Then the normal vectors of Q 1 in 41 and Q2 in ~2 are perpendicular. 

Proof Without toss of generality we may assume that Q~ is given by the 
equation 

X 2 
x___~: + . . .  -t " + ~  = 1 (j = 1, 2). 

a 1 - 2~ a.+ 1 - 2~ 

Let d = ( ~ ,  s ..., v,+ 1) be a normal vector of Qi in ~s" We now form the projective 
closure of R "+1 and denote by gcP,+l(1R ) resp. (2jcP.§ the projective 
closures of g resp. Qj. The tangent hyperplane H s of Qs in r is given by an 
equation of the form 

v~ xl + . . .  + v'~+,,~.+l + ~Xo =0 

with vJoeR. Thus * -  j Hj -(Vo, ...,v2.+O. Since g ~ H l n H 2 ,  the line span (H~,H*) 
joining H* and H~ is contained in g*. By Lemma 1.3 span (H~', H*) touches the 
quadric Q* in the point H*. If q* is a symmetric bilinear form defining Q j, we 
thus have * * * -  �9 qj (H~, H 2 ) -  0, in other words 

1 2 1 2 VoVo+(al_A1)vlvl +. . .+(a ,+l_Aa )vn +1 lv.+2 1=0 
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and 
VloV~+(al_22) 1 2 2 vlvl  + . . . + ( a . + l - 2 2 )  v.+X 1 v.+ 1 =0. 

Subtracting these two equations gives 

(22_21) 1 2 1 2 _ (Vx V~ + ... + v,+ l v,+ O-O. q.e.d. 

123 

w 2. Intersections of Two Quadrics 

M. Reid proved in 1972 that the set of all ( n -  1)-dimensional linear subspaces of 
a nonsingular intersection of two quadrics VcP2,+I(C)  is isomorphic to the 
Jacobian variety of a certain hyperelliptic curve. R. Donagi [4] has shown how 
one can define an addition law on this set in a geometric way (for the case n = 2 
see also [5] oh. 6.3). We are going to describe this addition law; and for special 
intersections of two quadrics which are defined over the reals we will prove that 
the set of all real (n-1)-dimensional  linear subspaces of V also has a group 
structure. 

Let V c P z . + l ( ~  ) be a nonsingular (2n-1)-dimensional  intersection of two 
quadrics. By a theorem of Weierstrass (cf. [9]) V can be described by two 
equations of the form 

zg+...+z~,+l=0, 
bozZ+...+b2,+lz2n+12 =0  

where b0, . . . ,bzn+1 are mutually different complex numbers. The pencil A ~ of 
quadrics passing through V consists of the quadrics 

Qz :=  zePz,+,(ll2) ~2 ( 2 " b ~ - 2 ' ) x ~ = 0  (2=(2',)L")ePx(tE)) 
u = 0  

contains 2 n + 2 singular quadrics, namely Qo: = Q~bo, 1), ..., Q2. + a: = Q02.+ 2,1). 
Each of these quadrics Qv has precisely one singular point, namely ev: = (0 . . . .  ,0, 
1, 0, ..., 0). Let R~: P2, + a(r ---* P2, + 1(II~) be the reflection (z o, ..., z2. + 1)~--~ (z o . . . .  , 
zv_ 1, - zv ,  z,+ 1 . . . .  , z2,+a ). The reflections R~ generate a group (~ of projective 
automorphisms of V which is isomorphic to (Z/2Z) 2"+ 1. 

A linear subspace of V has at most dimension n -  1, and we denote by F(V) 
the set of all ( n -  1)-dimensional linear subspaces of V. For  leF(V) we let F,(V) 
be the closure of the set {l 'eF(V)[dim l c~ l '=n-2}  in F(V). M. Reid has shown 
that Ft(V ) is a nonsingular hyperelliptic curve of genus n. More precisely we 
have 

Proposition2.1. ([15] w [18] w For leF(V), I ' eFl (V)-{ l  } we denote by 
P~'(l')e.~ the uniquely defined quadric of .~ that contains the n-dimensional linear 
space span (l, l') that is spanned by I and l'. Then the map P{ can be extended to a 
holomorphic map Pt: Fl(V)~ZP. P~ is a twofold branched covering with branch 
points over Qo, ..., Q2,+ a e-Lp. 
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Proposition 2.1 shows that the curves F~(V) are all isomorphic to the 
Riemann surface of y2= ( x -  b0)... ( x -  b z,+ 1). M. Reid proves in [15] that F(V) 
is isomorphic to the Jacobian of this Riemann surface. 

We now fix an ( n -  D-dimensional subspace o~F(V). Donagi [4] shows that 
there is a unique group structure on F(V) with ~ as origin and such that the 
following property holds: 

(2.2) Let Q~C~, and El, E 2 be two n-dimensional linear subspaces of Q which 
are contained in the same connected component of the set Gen(Q) of all n- 
dimensional linear subspaces of Q. Suppose that VnE~ consists of two ( n -  1)- 
dimensional subspaces lil, li2~F(V ) (i = 1, 2). Then 

I l l  +112=121 +122" 

We put g. '=R0(o ) and C:=F~(V). R 0 is a reflection at the hyperplane H0." 
={z~P2,+l(ll~)lZo=0}. If o is not contained in this hyperplane H o then 
o ~ 2 - - o n H  o and therefore oeC=F~(V), span(eo, 2~) is contained in the singular 
quadric Q0 and contains o; thus we have o=P~-l(Q0). By [4] this remains valid 
i f o c H  0. 

Theorem 2.3. Let j: C=F;(V)--*A:=Jac(C) be the Jacobi map with point o (cf 
[5] p. 228). Then there is an isomorphism of abelian varieties tlb : F(V)-+A such 
that the following diagram commutes: 

A 

f 
F(V) 

Proof For the case that ~ is contained in the hyperplane H o this theorem is 
proved in [4]. We reduce the general case to this special situation. 

We choose an ( n -  1)-dimensional subspace oo~F(V ) that is contained in H o 
(there are 22" such spaces, cf. [5] p. 741). The addition on F(V) that fulfills (2.2) 
and has o o as origin will be denoted by @. Then we have 

(2.4) l ~ l '= l+ l ' -~ ,  o for l,l'~F(V). 

The reflection R 0 fixes o 0 and is compatible with the projection Poo: F,o(V)~LP. 
So R 0 induces the hyperelliptic involution on Foo(V ). It follows from [4] th. 3.1 
that 

(2.5) Ro(l)= 01 for all I~F(V), 

in particular we have ~=R0(o)=  0 0 .  Let Lo: F(V)~F(V)  be the map l~---~100; 
this is an isomorphism between the abelian varieties (F(V), @) and (F(V), +). It 
follows from (2.2) and (2.4) that L,  maps F o(V) isomorphically to C=F~(V). 
Thus L,  induces an isomorphism L~:JacF~o(V)~A=Jac(C) which is com- 
patible with the Jacobian maps with base points oo~F(V) resp. o~ C. The map 
�9 ~: =L~ o r o L~ 1 then has the desired properties. 
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Corollary 2.6. Let W~ cF(V)  be the closure of {leF(V)Jdim l n 3 = n - r } ,  and let 
A,: = {x i +... + x~eA { xiej( C) for i = 1,..., r}. I f  r is odd, ~ ,  maps VV~ isomorphi- 
cally to A,; for r even @ (W,)= ~o(3)+ A r. 

Proof By [4] we have 

Wr--{l l+. . .+l,]l ieC } for r odd and 

W, = {~ - 11 - . . .  - l, [ lle C} for r even. 

Since A, = - A , ,  (2.6) follows from Theorem 2.3. 

Corollary 2.7. Let BveC be the unique point of C with P~(Bv)=Q~(v=O . . . . .  2n 
+ 1). Then 

R~(1)=3+Bv-I 

Proof. By (2.5) we have Ro(l ) = OI = n  0 - l ,  thus R o induces a reflection at a point 
of F(V). Similarly each of the maps Rv induces a reflection at a point of F(V), i.e. 
there are 090, ... ,  eo2,+leF(V ) with R~(1)=w~el. Since ~ov=Rv(v0) is contained 
in span (e~, ,~o)cQ~ we have ~ov=P~ol(Q~). By (2.2) P~ol(Q~)=P21(Q~)+~-~o, 
so we have 

R~(l) = P~o ~ (Q~) @ I = (B~ + 3 ) -  l. 

We are mainly interested in intersections of two quadrics defined over lR whose 
underlying real space V R can be given by two equations of the form 

+ X~)-~- ... -}- X2n+ I =O, 

+box2+_...+b2,+ 1 x2,,+ 1 = 2  0 

with b~eIR, b 1 <b2 < . . .  <b2,+~ < b  0. 
The complex conjugation on P2,+ ~(IE) induces an involution x: F(V)--+F(V) 

whose fixed point set is the set F~(V) of all ( n -  1)-dimensional linear subspaces 
of V defined over the reals. Let us suppose that F~(V)4= 0 and that our base point 
,> for the addition on F(V) lies already in F~(V). Since the reflection R o is 
defined over IR, ~ = Ro(o ) lies in FrdV ). rc thus induces a complex conjugation on 
the curve C leaving the base point o fixed. One can linearly extend this 
conjugation on C'~j(C) to a complex conjugation on A =Jac(C) .  

Proposition 2.8. The isomorphism ~ :F (V) -o  A of Theorem 2.3 is equivariant with 
respect to the complex conjugations. 

Proof By definition ~lc=J:  C-oA is equivariant. It follows from Theorem 2.3 
and [12] p. 50 that each element of F(V) can be written in the form/1  + . . ,  + I, 
with 11, ..., l, eC. So it suffices to show that 

l+l '=l+l '  for all IeF(V), l'eC. 

Since l + l' = l' + 3 -  (~ + $ - l) and oe  C, this is equivalent to proving 

(2.9) l ' + g - l = r + ~ - / -  for all IeF(V), I'eC. 
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b 3 b 4 b2n-1 b2n 
,---,?/ 

b2n+l 

I 
, /  

Bt, B2n_ 1 

['~ . . . .  "'l / 

/ 

i i 

I~. i j /  

Fig. 2 

For reasons of continuity it is sufficient to prove (2.9) for all I~F(V), ]'~C-{*;}. 
We put E 1 ,=span(, ; , / ' ) ;  this is an n-dimensional linear subspace of the quadric 
Q." =P~(/'). Let E 2 be the uniquely determined n-dimensional linear subspace of 
Q which contains l and which lies in the same connected component of Gen (Q) 
as E t (cf. [4] w 2.3). E2nV then consists of two ( n -  1)-dimensional spaces 
l,l"~F(V), and by (2.2) l"=l'+*;-l, ff~l and /~2 are contained in the same 
connected component of Gen ((~), and/~1 n V = $ w l', E 2 c~ V= lu  l". Thus /~' = F 
+ , ; - [  

By A~ we denote the set of all real points in A, i.e. the set of all points in A 
which are fixed by the conjugation. We then have 

C o r o l l a r y  2.10. �9 maps F~(V) isomorphically to A~. 

Finally we want to describe the real structure on the Jacobian A--Jac  (C) of 
the curve C more precisely. We assume that C is as a real hyperelliptic curve 
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isomorphic to the Riemann surface of y2= +(x_bo) . . .  . .(x_b2.+O. (The case 
where C is isomorphic to the Riemann surface of y2=  _(x_bo) . . . . . ( x_b2 ,+  1) 
can be treated similarly.) One gets a topological model for the Riemann surface 
C by cutting lP l ( l l~ )=Cw{~ } along the segments bib z, b3b 4, . . . , b z , _ l b 2 , ,  
b2,+ 1 bo, and glueing together two copies of the space thus obtained. 

As indicated in Fig. 2 we choose closed paths ~1, ... ,  ~,, fll . . . .  , ft, on C that 
represent a basis of Hi(C, Z) and which fulfill 

(i) ~ i o ~ = 0 ,  flioflj=O for i , j= l  . . . .  ,n. 
(ii) o~ioflj=61j for i , j= l  . . . .  ,n. 

(iii) If  ~c.: HI(C, 7Z)~HI(C, 7Z) denotes the linear map  induced by x, then 
N'*(O~i)=O~i' E*(fli) ~- --fli for i - -1  . . . .  , n. 

(Here "o" denotes the intersection form on HI(C,Z). ) Let H~ f2 ~) be the 
vector space of global holomorphic  1-forms on C. Each element ?eHI(C, 7~) 
defines a linear functional on H~ f21) by co~-~I co. In this way one gets an 

inclusion Hi(C, 7I)~--~H~ O1) *. The Jacobian A = Jac (C) of C is by definition 
equal to H~ f21)*/HI(C, Z) (cf. [13]). More explicitly A can be described as 
follows: We choose a basis col . . . . .  co, of holomorphic  differential forms defined 
over IR such that I coj= zt. 6~, and put v j . '= ( I  coj, .. . ,  ~ coj)=(0, ... ,0, n, 0, . . . ,  0), 

Oti ~1 ~tn 

% . ' = ( ~  co~ . . . .  , ~ coj). Using the basis dual to co~, ... ,  co, we identify H~ 01) * 
Pl t~. 

with ff~". Under this identification HI(C, 7l)cH~ f21) * corresponds to the 
lattice F in IE" spanned by v 1 .. . .  ,v,, w l , . . . ,w , ,  and A=C"/F. Since the 
numbers ~ % are purely imaginary the natural conjugation on C" induces a 

p~ 
conjugation on A which coincides with the conjugation mentioned above. Thus 
A~ = {�89 wi, + . . .  + �89 w/. + x [ x e IR"/Z", 0 < i 1 < . . .  < i~ < n} consists of 2" connected 
components.  The component  of zero A ~ is isomorphic to 1R"/Z". The points 
j(B~)eA can be described as follows (cf. Fig. 2) 

(2.11) j(B0) = 0 , 2 .j(B1)=(v a + ... +v,) 
2.j(B2)=wa +vl +...  +v ., 2.j(Ba)=(Wl +V2 +... +v,) 
2"j(B4)=Wz+V2+.. .+v ., 2.j(Bs)=(w2+va+...+Vn) 

2. j(B2, ) = w,, + v,, 2 . j(B2, + 1) = w, 

w Common Tangent Lines of Confocal Quadrics 

{ / :  } Let Qj :=  xeP,§ ) ~1 + . . .+  x , + ~ = x g  ( j = l ,  . . . ,  n) be n different 
at  - 2i a,+ 1 - 2j 

confocal quadrics in P,+ 1(112) which are defined over the reals (i.e. as, 2jeN).  We 
restrict ourselves to the case that the main axes of any of the quadrics Qj are all 
different, i.e. that the numbers  a s are all different. Without loss of generality we 
can then suppose that a 1 < ... < a , +  1 and 21 < ... <2 , .  

By T we denote the set of all common tangent lines of Q 1 . . . . .  Q, and by T~ 
the set of all lines in T which are defined over IR. By (1.4) duality induces an 
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isomorphism between T and the set T* of all (n-1)-dimensional linear sub- 
spaces of P,+ I(~E) that are tangent to the quadrics 

QT= x e e . . 1 ( c )  ~ ( a , - , ~ 0 x ~ = x  . . . .  , 
i = l  

Q . -  xelP. . l(~l  2 (a,-~..)x~=x . 
i = 1  

Under this isomorphism T~ corresponds to the set T~ of all linear subspaces in 
T* that are defined over N. We want to show that T* (and thus also T) is 
birationally equivalent to the quotient of the Jacobian of the hyperelliptic curve 

y~ = ( x  - a 0 "  ..." (x - a , +  1)" (x - ~-0" . . . '  (x - ;t,) 

by a finite group and that T*_-_ T~ is real analytically isomorphic to the 
connected component of zero in the set or real points of this Jacobian. 

For this we consider the nonsingular intersection of two quadrics 
VcP2,+ I(IE) given by the equations 

2 _ 2 1 y ~ _ . . . _ 2 .  y2 xZ=O q(x, y) :=a  I x21 + ... +a ,+  1 x,+ 1 

2 q ' (x ,y ) :=x~+. . .+x ,+l-y~- . . .  2 - y ,  =0  

(here x 0, ..., x,+ 1, Yl . . . .  , y, denote the homogeneous coordinates in P2.+ I(IE)). 
We identify P,+I(tE) with the subspace H of P2,+I(tE) given by Yl . . . .  = y , = 0 .  
H•  {(x, y)eP2, + 1(~2)[ x=0}  is then polar to H with respect to any nonsingular 
quadric that lies in the pencil s of all quadrics containing V. For a quadric 
(~es Qc~H lies in the pencil c6" of quadrics in P,+a(IE) spanned by Q*, ..., Q*. 

As in w we denote by F(V) (resp. FR(V)) the set of all (n-1)-dimensional 
linear subspaces of V (resp. of all real defined (n-1)-dimensional linear sub- 
spaces of V). Let F'(V) be the set of all leF(V) which do not meet H 1. 

Remark 3.1. (i) F~(V)cF'(V); 
(ii) For n = 2  F(V)=F'(V). 

Proof. (i) follows from the fact that Vc~ H • has no real points; 
(ii) is trivial since for n = 2  Vc~H • is empty. 

Let n': P2.+x(IE)-H• be the projection (x, y)~--*x. Then 

Theorem 3.2. (i) For leF'(V) the (n-D-dimensional space z((1) is tangent to the 
quadrics Q~ .... , Q*. 

(ii) Let n: F ' (V)~T* be the map lv--~n'(1). Then n maps each connected 
component of FR(V ) isomorphically to T*. 

The rest of this chapter is devoted to the proof of Theorem 3.2. We first 
show 

Lemma 3.3. Let K be the field of real or complex numbers, Q=Pm(K) a 
nonsingular quadric and h cPm(K ) an r-codimensional linear subspace meeting Q 
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transversally. Let h • be the polar of h with respect to Q and it': P ~ ( K ) - h Z ~ h ,  be 
the projection x~--~h~span(x, h a) with center h • Suppose l cPm(K ) is a k-dimen- 
sional linear subspace meeting Q tangentially along a linear subspace g c Q .  Then 
n'(l) is tangent to Qc~h along g~h.  

Proof of Lemma 3.3. Let peg~h .  Then span (p, h • is tangent to Q in p since h • is 
contained in the polar of p. By assumption I is tangent to Q in p. Thus span 
(l ,h• span (p, h• is tangent to Q in p, too. Consequently r((l) 
=span(l ,  h l ) ~ h  is tangent to Qc~h in the point p. 

Proof of 3.2(0. For j =  1, ..., n let ( ~ j ~  be the quadric 

{(x, y)e Pz, + 1 (tI~) [ q(x, y) - 2.i q'(x, y) = 0}. 

Then (~.nH = Q.*j . . . .  Oj is a singular quadric with vertex s~ = (0;0, , O, 1, O, ..., 0); 
and the hyperplane h /={ (x ,  y)EP2,+~(~)]yj=O ) is polar to sj with respect to 
any nonsingular quadric of L~. We factorize the projection 

r~':P2n+I(r over hj:/r' =/r]' �9 n} 
where 

~j: P2, + 1 (~) - H• ~ hj - H • (x; x ~ . . . .  , y,)~-*(x; y 1, ..., Y j -  1, O, yj + ~ . . . .  , Yn) 

and n~':=n']hj_n~. 
For leF'(V) span (sj, l) is contained in Qj, hence n~(l) is contained in the 

nonsingular quadric Qq~hj ~ hj. By Lemma 3.3 n'(1)= ~zj'(nj(1)) is tangent to Q* 
in the points of nj(1)~H. Since nj(l) is (n-1)-dimensional,  nj(1)~H+O. This 
proves 3.2 (i). 

Corollary 3.4. Let I~F'(V) and ~1.  Then n(l) is tangent to the quadric Q* in the 
point n'(~) if and only if ~ is contained in 

{(x, y)eP2,+ 1 ( r  [ y l  = . . .  = y  j _  1 = y j +  1 . . . . .  y ,  = 0}. 

Proof In the proof of 3.2(i) we have shown that for a point ~el of the form 
=(~o . . . .  , ~,+ 1; 0 . . . .  ,0, nj, 0 . . . . .  0) n'(~) is a point of tangency of n(1) to Q*. To 
prove the converse let n(l) be tangent to Q* in the point ~.. = r~'(0. Since n(1) and 
span (~ ,H ' )  are both tangent to Qj in ~, span (n(I ) ,HX)=span( l ,H • 
= span (n~(l), H • is tangent to (~j in the point ~. Because ~j(l) is contained in the 
quadric Qj~hj,  the linear space span (~, n)(l)) is contained in the (2n -1 ) -  
dimensional nonsingular quadric (~jc~hj. This implies dim span(~, n ) ( l ) )=n -1  
([5], ch. 6.1), hence ~en)(1). Therefore ~=lr)( 0 and ~ is contained in 

{(x, y)EP2n + 1(~) I yl . . . . .  Y j -  x =Y j+ 1 . . . .  = y, =0}. 

Next we want to study the fibres of the maps n : F ' ( V ) ~ T *  and 
nlv~(v):F~(V)~T*.  Let R(2j):P2,+I((E)~Pz,+IOE ) be the reflection in the 
hyperplane hi: R(2~): (x; Yl . . . . .  y,)F--~(x; y~ . . . .  , yj_~, - y j ,  yj+~ . . . .  ,y,); and let 
G c P G L ( 2 n +  1, (E) be the group generated by the R(2j)'s ( j= 1 . . . .  , n); it has 
order 2". 
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Lemma 3.7. Let leT* be a subspace of P.+I(IE) such that lc~V is nonsingular. 
Then there are precisely 2" subspaces ~eF'(V) with n(~= l. G operates transitively 
on ~-1 (l). I f  l is defined over ~ ,  then all the spaces ten-1 (l) are also defined over 
F,.. 

Proof Let L c C  "+2 be the vectorspace corresponding to lcP,+l(ff'~ ). Since l is 
tangent to the quadrics Q* = {x e P, + 1 (~) [ q (x, 0) - 2j q'(x, 0) = 0 there are - by a 
theorem of Weierstrass, cf. [9] - complex coordinates z I . . . .  ,z, on L such that 

2 2 qlL~-=21 z 1 + ... + 2,z ,  
(3.6) q'lL =~ z2 + . . .  + z2. 

If leT*, q'lt. is positive definite; and it follows from [9] that there are even real 
coordinates on L such that qlL and q'lL are described by (3.6). 

Vnspan(H • l) is then described by the two equations 

+2.z. (*) 
z 2+ . . .  + z 2 _ y 2 _ . . . _ y 2 = 0 .  

The 2" subspaces of V given by the equations Yl = +z~ . . . .  , y , =  ___z, obviously 
lie in n-l( l) .  G operates transitively on the set of these subspaces; and for le T~ 
all these spaces lie in Frt(V ). Since all elements of r~-~(l) are already contained in 
span (H • l), it remains to prove that the intersection of two quadrics V' given by 
the equations (*) contains only those (n-1)-dimensional  linear subspaces men- 
tioned above. 

This is done by induction on n. For  n = 1 it is trivial. Suppose it is proved for 
n -  I. L e t / ' c  V' be an ( n -  1)-dimensional linear subspace. By induction for each 
je{1, . . . ,n}, l~{(z ,y ) l z j=yj=O} can be described by equations of the form 
above. This implies that l is described by equations of the form Yl = +-Za . . . .  , Y, 
=_+z,.  q.e.d. 

For le T~ the hypothesis of Lemma 3.7 is automatically fulfilled, because we 
have 

Lemma 3.8. For leT~ In V is nonsingular. 

Proof. By (1.4) the line l* dual to l is tangent to the n confocal quadrics 
Q1 . . . .  , Q,. It follows from Theorem 1.5 that the tangent hyperplanes of these 
quadrics in the points of contact with l* are all different and that l* is not 
tangent to any other quadric in the confocal system given by Q1,- . . ,  Q,. 
Consequently the quadrics Q*c~l . . . . .  Q*nl  are all different; and these are the 
only singular quadrics in ' l  that contain InV. By [15] Lemmal .1  l ~ V  is 
nonsingular. 

The Lemmata 3.7 and 3.8 show that 7z induces an isomorphism between 
F~t(V)/G and Tl~. The question whether FIt(V ) is empty or not depends only on 
the distribution of the numbers al ,  . . . , a ,+ l ,  21, . . . , 2 ,  on the real line. To 
formulate this more precisely, we order them according to their size, i.e. we 
choose b 1 . . . .  , b 2 , + l e N  such that b l<b2<. . .<b2 ,+ l  and { b l , . . . , b 2 ,+ l  } 
= {a 1 . . . .  , a,+ 1, 21 . . . .  ,2,}. Additionaly we put b0.'= oo. Then we have 
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Corollary 3.9. Suppose that T~ # O. Then 

b2 j_ l=2 j  or b2j=2 j for all j = l , . . . , n .  

Proof By (1.4) we have T * # 0  and therefore F~(V)~:O. Thus for any 2 e ~  the 
quadric {(x, y)ePE,+l(]R)iq(x, y)-2q'(x,  y)=0} contains at least one (n-1)-  
dimensional linear subspace; hence the signature of the real quadratic form 
q - 2 q '  is equal to (n+2, n), (n+ l, n +  l) or (n, n+2). For 2 < b  1 this signature is 
equal to (n+ l ,  n+ l ) .  If b~_l<2<b~<2'<b~+ 1 the indices of the quadratic 
forms q - 2 ' q  and q - 2 q  differ vy +1, if b~e{21, ..., 2,}, and by - 1 ,  if 
bv~ {a 1 . . . . .  a,+ 1}. Therefore the quadric form q - 2 (  has signature (n + 1, n + 1) 
whenever 2 is contained in an interval of the form (b2j, bzj + 1) (J = 1, . . . ,  n). Thus 
one of the two values, b2~_ 1 or b2~, is contained in {21 . . . .  ,2,}, and the other is 
contained in {al, . . . ,  a,}. Since 21 <22 < ... <2 ,  this proves (3.9). 

Corollary 3.10. Suppose that F~(V)~O. Then G acts effectively and transitively on 
the set of connected components of F~(V). 

Proof As in w we choose a subspace o6F~(V), put ~ :=Ro(o  ) (here 
Ro:P2,+I(C)-~P2,+I(C ) denotes the map (x;y)F-*(-Xo, X 1 . . . .  , x , + l ; y  ) and 
C:-- F;(V). If 2e(b 1, b2) (~: = {(x, y)eP2,+xOU)[q(x, y)-2q'(x,  y)=0} contains no 
n-dimensional linear subspace because the signature of q -  2q' is either (n + 2, n) 
or (n, n+2). Therefore pjl(Q)c~F~(V)=O, and the real hyperelliptic curve C is 
isomorphic to the Riemann surface of y 2 =  +(X_bl) . . . . . (X_bEn+l) .  By (2.10) 
the isomorphisms q~: F(V)-~,A=Jac(C)mapsF~(V) isomorphically to the set 
A R of real points in A. The action of G on A~ can be described explicitly. Let 
R(ai) resp. R(2~) be the projective automorphism 

R(a3: (x o, . . . ,  x.+ 1; Y)~-*(Xo, .. . ,  xi- 1, -x~, xi+ 1, ..., x,+ 1; Y) 
(3.11) 

R(2): (x; Yl, ..., y,)~-~(x; Yx . . . .  , Yi-1, -Yi,  Yi+l, "",  Y,)" 

By (2.7) R(a~)(l)=2+B(a3-I and R(2) (1 )=$+B(2) - I  for all leF(V), where 
B(ai): = P;- 1({( x, Y)~P2,+ x(C) I q(x, y) - a i q'(x, y) = 0}) and B(2).. = PZ 1 ((~i)" The 
group G is generated by the reflections R(2). It follows from (3.9) and tile 
description of the points j(B(2)) given in (2.11) that G operates transitively on 
the set of connected components of A~. Since the order of G is equal to the 
number of components of A~ (namely 2"), Corollary 3.10 is proved. 

The proof of 3.2(ii) is now immediate. We have already noticed that n 
induces an isomorphism between F~(V)/G and T*; and by Corollary 3.10 each 
component of F~(V) is isomorphic to F~(V)/G. 

We close this chapter with some remarks on the complex case. 

Remark 3.12. T* is birationally equivalent to F(V)/G. 

Proof The codimension of F(V)-F ' (V)  in F(V) is greater than one. So rr 
induces a rational G-invariant map F(V)~T* .  For generic leT* lc~V is non- 
singular, by (3.5) n-1 (I) then consists of a G-orbit in F(V). This proves (3.12). 

Let G' c G be the subgroup of index two generated by the translations 
R(2~) o R(2). Then F(V)/G' is again an abelian variety A' and F(V)/G is isomor- 
phic to A'/{+ 1}. For n = 2  F(V)/G is thus a Kummer-surface with 16 ordinary 
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double points. The following remark shows that in this case the birational 
equivalence of (3.12) is an isomorphism. 

Remark 3.13. For n = 2  T* is isomorphic to F(V)/G. 

Proof For 4=(40, 41, 42, ~3)~P,+1(c) there are at most four points ffeV with 
n ' (0 = 4, for the equations 

a14 +a24 +a  43 - -  21 Yl - -  22 Y2 -- 42 = 0 
41z+ r + r  

have at most four solutions (y~, Y2). The points of n'-1 (4)c~ V just form a G-orbit 
in V. Therefore the fibres of the map 7t: F ( V ) = F ' ( V ) ~  T* are either G-orbits or 
void. By (3.11) for generic leT* n-l(l)4=O. Since F(V) compact and T* is 
connected, r~ is surjective. This shows 3.13. 

w 4. The Linearity of the Geodesic Flow 

By (3.2) and (1.4) n*: F ' ( V ) - - ~  T * d - ~  T maps each connected component of 
F~(V) isomorphically to the set T~ of all real common tangent lines of the 
confocal quadrics Q1, ..., Q,. We consider Q1 . . . . .  Q, as the projective closures 
of the affine quadrics 

1 2 

Q f,: + 1. 
a 1 --2j an+ 1 --}~j 

If geT~ there is by the theorem of Chasles ([10] w a unique curve gk(t) in T~ 
passing through g such that the curve ~k(t) formed by the points of contact of 
gk(t) with the quadric Qk is a geodesic on Qk (this means each of its affine pieces 
is a geodesic). We want to show that the corresponding curve in the torus F~(V) ~ 
- the component of zero in Fr~(V) - is linear. For this purpose we first describe 
how the addition law on F~(V) ~ pushes down to T~. Similar results for the case 
n = 2  were obtained by Staude [17] with different methods. 

Lemma 4.1. Let l, I'~F'(V) be such that span (l, 1') is an n-dimensional space 
contained in the quadric Q= {(x, Y)~P2,+ 1(11~){ q( x, y) -2q ' (x ,  y)=0} (2~112u{~}; 
for 2 = oc we put ~ = {(x, y)[q'(x, y)= 0). For g: = re*(1), g': = re* (l') we have 

(i) g and g' meet in a point 4 of the quadric Qa of  the confocal system cg 
defined by Q1, ..., Q,. 

(ii) Suppose that g, g' r Qj. Let Tj resp. Tf be the tangent hyperplane of Qj in 
the point of contact with g resp. g'. I f  Tj~ Tj' then Ts~T j is tangent to Q~ in 4. 

Proof Suppose first that 2e{ao,=Oc, al, ..., a,}. Then l '=R(ai) . l  and g' 
=R(ai).  g for some i e {0 . . . .  , n + 1}*. The assertion of the lemma is trivial in this 
case. 

For the other values of 2 ( ~ n H =  Q~ is a nonsingular quadric in P,+ I(IE). We 
put E-'=span (l, l'). If E n H  • is not empty then rc(/)=n(/'), g = g '  and everything 
is trivial. 
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So we can suppose that E n H •  By Lemma 3.3 n'(E) is tangent to Q~ 
= Q n H  in a point p of EnH.  This point is unique since W(E) is a hyperplane in 
P,+I(~). g=rt(l)* and g'=rt(l')* meet in ~:=W(E)* because W(E) 
= span (n(l), rc(l')). This shows (i); and we see that p* is the tangent hyperplane of 
Q~ in r 

Let (j = (4j, q j) and (j = (~, q)) be points In the intersection of l resp. l' with 
{(x, Y)~P2,+ I(~)IYi = 0  for i+j}. By (3.4) n(l) resp. n(l') are tangent to Q* in the 
points ~j=rc'((j) resp. ~=rc'(()). If the hypothesis of 4.1(ii) is fulfilled then 4j 
= T~*, ~ =  Tj*, and these two points in P,+ 1(~) are different. It follows that 
span ((~, (~) contains a point of EnH,  and this implies that pespan (4j, ~)). 

r~lt) 

rtlt') 
Fig. 3 

By duality 3.2(ii) follows. 

Corollary 4.2. Let g~T~, 4~g and ).EIR such that ~ is contained in the quadric 
Qz6~. Suppose that 2 c ( - ~ , b l ) u ( b 2 ,  b3)u...u(b2, , b2,+1 ). Then there is a 
unique line g' e T~, different from g, such that 

(i) g and g' meet in 
(ii) I f  Tj resp. Tf is the tangent hyperplane of Qj in a point of contact with g 

resp. g' and Tj+ Tj, then T inT / i s  tangent to Qa in the point 4. 
Moreover there are l,l'eFg(V) such that n*(l)=g,~z*(l')=g' and such that 

span(l, l') is an n-dimensional space contained in 

(~ = {(x, y) ~ Pz, +a (tr) I q (x, y) - 2 q' (x, y) = 0}. 

Proof Let leFt(V) be a subspace with n*(l)=g. The two n-dimensional linear 
subspaces El, E~ of Q that contain l are defined over IR because the quadratic 
form q - 2 q '  has signature (n+ 1, n +  1) (cf. cor. 3.9). 7r'(E~)* and ~t'(E2)* are the 
points of gc~Qx (by (1.5) gCQz); without loss of generality we may assume that 
~=r~'(E~)*. Etc~ V consists of two (n-1)-dimensional spaces l, I'eF~(V), and by 
Lemma 4.1 g'..= n*(l') has all desired properties. (By Theorem 1.5 neither g nor g' 
are contained in any of the quadrics Qi)" 

Condition (ii) implies that '* * T i eQ~ lies on the line joining Tp and p: 
=(TeQa)*~Q*. Since Ti--Tj if and only if ~Q~,  the points Tj* are uniquely 
determined by g and 4. This shows the uniqueness of g'. 

2 For the definition of R(al) see (3.11) 



134 H. Kn/Srrer 

We want to study the geodesic lines on the affine quadrics Q]ff. These curves 
can be characterized projectively in the following way: 

Remark 4.3. Let ct(t) (te(0, 1)) be a differentiable curve on the affine quadric Q~,f~ 
such that a ( t ) # 0  for all te(0, 1). Suppose that the projective closures of its 
tangent lines l(t)=span(o~(t), ~(t))cP,+ I(IE) are lying in T~ for all re(0, 1). By ilj(t) 
we denote the point of contact of l(t) with the quadric Q j, and by Ti(t ) the 
tangent hyperptane of Qj in il~(t). Then we have: 

~t(t) is a geodesic line on Q~fr if and only if ~(t)e ~ T~(t) for all te(0, 1) 3. 
j * k  

Proof Let v( t )eR "+1 be a normal vector of Qk in ~(t). By Theorem 1.5 
R"+lc~ (-] Tj(t) is the plane through ~(t) spanned by the directions 0~(t) and v(t). 

j:~k 
By definition ct(t) is a geodesic if and only if ~/(t) is contained in the vectorspace 
spanned by 0~(t) and v(t). 

For the convenience of notation we make the following definitions: 

Definition 4.4. Let g(t) be an analytic curve in T( teO:= {ze~l lz l  < 1}). We say 
that g(t) lies over a geodesic of the quadric Qk if the following conditions are 
satisfied. 

(at) for no teD g(t) is contained in Qk. 
(il) if ilk(t) is a point of contact of g(t) with .Qi and Tj(t) is the tan.gent 

hyperplane of Qj in ilj(t) then g(t)=span(ilk(t),ilk(t)), and span(ilk(t), ilk(t), 
L(t)) C (~ T~(t) for all teD. 

j*k 

Similarly we will say that a curve l(t) in F'(V) lies over a geodesic of Qk if the 
curve 7t*(l(t)) does. 

A generic line ge T is not contained in any quadrics Q j; and if Tj denotes the 
tangent space of Qj in its point of contact with g then 0 Tj is two-dimensional. 

j * k  
Hence through each ge T, g r Qk there is a unique maximal curve g(t) lying over 
a geodesic of Qk. 

Theorem 4.5. Let ll(t ) (teD) be an analytic curve in F'(V) and xeF(V)  such that 
12(t):=ll(t)+xeF'(V ) for all teD. Su[~pose further that neither rc*(ll(t)) nor 
n*(12(t)) is contained in Qk for any teD. Then 12(t ) lies over a geodesic of  Qk if  and 
only if  ll(t ) does. 

The proof of Theorem 4.5 is based on the following 

Lemma 4.6. There is an open dense subset M ~ T x cg with the following property: 
Suppose that g(t) and g'(t) (teD) are analytic curves in T and Qecg with 
(ga(0), Q)em, (g2(0), Q)em and such that 

(i) For all teD g(t) and g'(t) meet in a point ~(t)eQ. 
(ii) I f  Tj(t) resp. Tj(t) is the tangent hyperplane of  Qj in a point of  contact ilj(t) 

resp. fl)(t) with g(t) resp. g'(t) and Tj(t) 4= T] (t) then Tj(t)c~ Tf(t) is tangent to Q in 
~(t). 

3 By "geodesic" we mean a curve ~(t) such that U ct(t) is a geodesic line 
t~(O, 1) 
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Fig. 4 

Suppose further that g'(t)efQk for any teD. Then g'(t) lies over a geodesic of 
Qk if g(t) does. 

Since each element xeF(V) can be written as a sum x = x l + . . .  +x n with 
x~eC, Lemma4.6 and Lemma4.1 imply that there is an open dense subset 
M'~F' (V)xF(V)  such Theorem4.5 is valid for curves l~(t) and elements 
x~F(V) such that (ll(t), x)eM' for all teD. By continuity Theorem 4.5 follows. 
Thus we are left with the 

Proof of Lemma 4.6. We describe the set M explicitely. M is the set of all pairs 
(g, Q)eT x ~r such that 

(ct) g e Q j  for j =  l, ... , n. 

(fl) g meets Q in two points ~1 ~ ~2. 
(~) If flj is the point of contact of Q~ with g and Tj= T~jQ~ the tangent 

hyperplane of Qr in flj then ~ Tjc~ T~i Q is one-dimensional ( i= 1, 2). 
j * k  

(3) Let U be a sufficiently small neighbourhood of geT, ~bi: U-,Q the map 
that attributes to each g'e U the point of intersection of g' with Q lying near ~ (i 
= 1, 2), and d/: U--, Qk the map g ' - ,  g'c~ Qk. Then the maps ~O i and ~ have rank n 
in g. 

Obviously M is the complement of an analytic subset of T x ~. Since M 4: T 
x cg, M is open and dense in T x ft. 

Now let g(t) and g'(t) be analytic curves in T x cg that fulfill the assumption 
of Lemma4.6, and assume that g(t) lies over a geodesic of Qk. Put E(t): 
= ~ Tj(t), E'(t): = N Tj(t) and let T(t) be the tangent hyperplane of Q in ~(t). 

j * k  j~:k 
We first show 
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(4.7) For sufficiently small t E (t) ~ T(t) = E'(t) c~ T(t) = E (t) n E' (t) is the tangent 
line h(t) of curve ~(t). 

Proof It is clear from (ii) that E(t)n  E'(t)= N Ti(t)c~ Tf(t)~ T(t) is at least one- 
j*k  

dimensional. (y) then implies that for small t E( t )n  T(t)= E'(t)n T(t)=E(t)c~E'(t) 
is a line through ~(t). There is an analytic function f ( t )  such that r 
+ f ( t )  Ilk(t), so ~(t)=flk(t)(1 + f( t ))+ f ( t ) .  fJk(t). Thus span(~(t), ~(t))cspan(flk(t), 
ilk(t), fl'k(t)) c E(t). Trivially we have span (~(t), ~(t)) c T(t), therefore span (4 (t), 
~(t)) c E ( t ) n  T(t). This proves (4.7). 

Next we show 

(4.8) For sufficiently small t o g'(to) is the tangent line of the curve ilk(t) in ilk(to). 

Proof Let toeD be sufficiently small. By (5) it suffices to prove for some analytic 
curve a(t) with 0t(0)=flk(to) and initial direction span(0t(0), ~(0))=g'(to) that the 
following is true: If ~(t) denotes the point of intersection of span(a(t), ~(t)) with 
the quadric Q near to ~(to) then the tangent direction of the curve ((t) in 4(0) 
= r is equal to h(to). But for the geodesic through fl'k(to) with initial direction 
g'(to) this is true by (4.7). Thus we have proved (4.8). 

By (4.7) and (4.8) ffk(t)6span(h(t),ffk(t))=E'(t). Therefore span(fik(t), /~k(t), 
ilk(t)) ~E'(t);  and g'(t) lies over a geodesic of QR. So Lemma 4.5 and Theorem 4.4 
are proved. 

Given one geodesic on the quadric Qk o n e  can use Lemma 4.6 to construct 
other geodesics by methods of elementary geometry. Therefore we give a more 
precise formulation of this lemma for the real affine case. 

Corollary 4.9. Let a(t) (t~(0, 1)) be a geodesic on the affine quadric Q~ff such that 
its tangent lines g(t) are tangent to the n confocal quadrics Q]ff, . . . ,  Qaff f o r  all 
t6(0, 1). Let 

Q:= X6~[?~."+l/ X2 "4- Xn+l 

l  m7_ . . . + - - = l  an+ 1 --2 

be a quadric confocal to Q]ff, . . . ,  Qaff with 2 6 ( - ~ ,  bl)U ... u ( b 2 ,  , b2n+l) 4. Then 
g(t) meets the quadric Q in two points r ~2(t) that depend analytically on t. 
Through each of  the points ~i(t) there is a unique line g'i(t), different of  g(t), such 
that 

(i) g'i(t) is tangent to Q]ff, ..., Q]ff (possibly in one of its infinite points) 
(ii) I f  T~(t) resp. T/~(t) is the tangent hyperplane of  Q}ff in the point of  

intersection of  g(t)resp, g'i(t) then T~(t)~ Tji(t ) is tangent to Q in r (i= 1, 2). 

g'i(t) meets the quadric Qk in a unique point ei(t), and the affine pieces of the 
curve ei(t) are geodesics on Q~ff. 

Proof It follows from Theorem 1.5 that g(t) is not tangent to the quadric Q; 
therefore g(t) meets Q in precisely two points. Lemma 4.2 implies that there is 
exactly one line g'~(t) through ~i(t) fulfilling (i) and (ii). (4.2) also implies that 
there are curves l(t), li(t ) in F~(V) such that g(t)=rc*(l(t)), gi(t)=n*(li(t)) and 

4 For the definition of b v see (3.9) ! 
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span (l(t), l' i(t)) = Q = {(x, y) ~ P, + 1 (~) ] q (x, y ) -  2q'(x, y) = 0}. Corollary 4.9 now fol- 
lows from (2.2) and Theorem 4.5. 

w 5. The Direction of the Geodesic Flow 

In this chapter we want to study the direction of the curves in the abelian 
variety F(V) lying over geodesics of one of the quadrics Qk. The varieties T, T* 
and F(V)  are subvarieties of certain GraBmannians. To describe the derivatives 
of curves in Gral3mannians we will use the Pliicker embedding PI: Gr(m,n 

m 

+ 2 ) ~ P ( A r  "§ which maps each (m-1)-dimensional linear subspace 

span(v 1 . . . .  , v,,) in P,+ I(tE) to the class of v 1 A ... A v,, in P ( ~  ~n+2). 
Proposition 5.1. Let g(t) (teD) be an analytic curve in T lying over a geodesic of  
the quadric Qk. Suppose that g(0)+0 and g(0 ) r  any je{1 . . . .  ,n}. Let l(t)." 
=g(t)*eT*, let ~j be the point of contact of the quadric Q* with the space I(O) 
=g(0)*, and let Xk:=span(~ 1 . . . . .  (k-1, r162  Then for all ~EX k the 

n + l  

derivative of the curve CA Pl(l(t)) in P( A IF."+2) vanishes in O; we write: 

d P1 (l(t))) 0 dt(~/x =0  for all r 

Proof We choose representatives of the points r . . . .  , ~,eP,+~(C) in ~ ,+z  and 
denote them again by ~1, ..., ~,. Let ~(t)e~2 "+z be a representative for the point 
of contact of the line g(t) with the quadric Qk. Since ~* is the tangent hyperplane 
of Qi in the point of contact with g(O), span(~(O), ~(0), ~(0)) is by definition 
contained in X~' = ('] 3*. Thus if s(t) is an analytic curve in P.+ 1(C) with 

j * k  

d (r s(t)) o s(t)eg(t)=span(~(t),d(t))  for all teD then ~ =0  for all ~eX k. This 

implies that there exist analytic functions f~, . . . , f , :  D-- , r  "+2 such that 

l(t) = g(t)* = span ( ~  + &f~ (t), ..., ~k- 1 + t~fk- x (t), r + tfk(t), 

r +tzfk+l(t  ) . . . . .  r  for all teD. 

This proves (5.1). 

Corollary 5.2. Let g be a nonsingular point of T such that g eg Q j for j = 1,. . . ,  n. 
Let g~(t) be an analytic curve in T lying over a geodesic of  Qi and such that g~(0) 
=g,  gj(0)~:0. Put l: =g*, lj(t)'. =gj(t)*. Then the tangent vectors of the curves li(t ) 
in the point le T* form a basis of  the tangent space of  T* in I. 

Proof Proposition 5.1 shows that the images of these vectors under the Pliicker 
embedding are linearly independent. Since dim T*=n ,  these vectors form al- 
ready a basis of the tangent space of T* in I. 

If g(t) is a curve in T lying over a geodesic of Qk and l(t):=g(t)* denotes the 
corresponding curve in T* then by proposition 5.1 the first order approximation 
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of the curve l(t) in any of its points l(to) is a rotation about an (n-2)-  
dimensional linear subspace of l(to). This fact will be used to determine the 
direction of the curves in F'(V) lying over geodesics of Qk. 

To describe this direction we use the isomorphism ~ :  F(V)-- .A between 
F(V) and the Jacobian A = Jac (C) of the curve C = Fo(V) of w 3. (Here ~EF(V) is 
an arbitrarily chosen base point and 2~=R0(o)). Let u: 7t ,=H~ fII)*--*A 
= H~ ~ ) * / H  1(C, Z) be the universal covering of A. Then for each point a eA 
/i can be canonically identified with the tangent space of A in a. Let ~ ' c  ~ be 

the set of all aeA that are mapped to F'(V) by , 4 - L ~ A  ~;'  ,F(V). By 

p*: A ' ~  T* we denote the composition of the maps 

" " - -  ,F'(V) ~T* a-~T; 

and let A~cA'  be the set of all aeA'  such that p*(a)dgQ k. 
Further let Vk~/]=H~ f21) * be the vector space Vk:={a~HO(C, Y21)*/ 

(a, (o)=O for all holomorphic differential forms co on C that vanish at the 
Weierstrass point B(3tk)e C}. By Riemann-Roch dim V k = 1. The direction of the 
curves in A~ that lie over geodesics of QR is determined by this vector space. 
This follows from 

Theorem5.3. Let UkeVk--{0 } and aeA' k. Put a( t ) :=a+t~ k and let D o l e  be a 
neighbourhood of OetE such that a(t)eA' k for all teD. Then the curve p*(a(t)) in T 
lies over a geodesic of the quadric Qk. 

Proof. Without loss of generality we may suppose that the base point o of F(V) 
lies in the hyperplane Ho={(x,y)eP2.+l(IF~)lxo=O}. Namely given any other 
point o 'eF(V) the  translation x--- ,x-o '  induces an isomorphism ~: C---~F~,(V). 
This isomorphism can then be lifted to an isomorphism ~ba:A=Jac(C) 
--*Jac(F~,(V)) such that the following diagram commutes: 

C - -  J , A = Jac(C) 

F~(V)-- /, , Jac (F~,(V)) 

(here j:  C-oA and j ':  F~,(V)--.Jac(F,,(V)) denote the Jacobi-maps with base 
point P~- x (Qo) resp. p~7 l(Qo) ). 

With this choice of the base point o we have 2~=~; and the point B(2k) 
=R(2k). o is also contained in H o, By [15] w Th. 1 

B(2k) c~ H • = B(Ak) ~ R(2~ 1) . .... R(~,,). B(~k) = r 

hence B(2k)eF'(V ). Similarly B(2k) meets each of the sets 

((X, y)EP2n + l ( t ~ ) l y l  . . . . .  Y j -  1 = Y  j+ 1 . . . . .  Yn ~ '0}  
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in only one point. By (3.4) n(B(2k) ) meets each of the quadrics Qj in only one 
point and therefore rc*(B(2k) ) is not contained in any of the quadrics Q*. 

If one identifies A with the tangent space of A in the point j(B(2k)), VkcA 
corresponds to the tangent space of the curve j ( C ) c A  in the point j(B(2k) ). 
Because of the linearity of the geodesic flow orl F'(V) (Theorem 4.5) it suffices to 
prove that the curves in F'(V) that lie over geodesics of Qk and that pass through 
the point B(2k), are tangent to the curve C in this point B(2k). Since the map 
~: F ' (V)~  T* is of maximal rank in B(2k) this follows from (5.1), (5.2) and the 
following 

Lemma 5.4. Let l(t) be an analytic curve in C with l(O)=B(2k) , /'(0):~0. Let l'(t)." 
=n(l(t)), ~j be the point of contact of 1'(0) with Q*, and put XR'. 

d l'(t)) o =span(~l ,  "' ,~k-1, ~k+l, "",~,)" Then ~(~/x  =O for all ~eX k. 

Proof. For a subspace le C - { ~ }  we denote by Y(/) the (n-2)-dimensional space 
oc~l. Since o = R o v ,  Y(l)=Y(Ro(l)) for all l e C - { o } ;  i.e. the map l~-*Y(l) is 
invariant under the hyperelliptic involution on C. Hence its derivative in B(2k) 
vanishes. 

We put Y(t): = Y(l(t). Since B(2k)=R(Ak).O, 

r(0) - B(2k) n {(x, y)~ P:, + ~(q~) I Yk---- 0}. 

(3.4) implies that Xk=TZ'(Y(0)). Because the derivative of the map t-,n'(Y(t)) 
vanishes, we have 

d ( ~  ^ eln'(Y(t))) o=0 for all ~ X  k. 

Since n'(Y(t))c n(l(t))= l'(t), this proves Lemma 5.4 and thus also Theorem 5.3. 

w 6. Hypereiliptic Theta Functions 

We will indicate how one can explicitely describe the map Pk: ~' Ak -* Qk that sends 
each a~,4~, to the (unique) point of contact of the line p*(a)sT with the quadric 
Qk. Using Theorem 5.3 one can apply this to get a parametrization of geodesics 
on Qk. The following lemmata serve to describe the divisors of zero of the 
component functions of the meromorphic map Pk: A --' Qk. We put 

Oik" = {lsF'(V)l ~*(l) meets Qk in a point of the 

hyperplane {x~P,+ l(~)lx~ =0}}. 

Lemma 6.1. Oik is equal to the set of all l~F'(V) that meet the n-codimensional 
space Lik: : {(X, Y)~P2, + I(~)1 xi =0, Yl . . . .  : Y k -  1 =Yk+ 1 --"" = y ,  = 0}. 

Proof. By (3.4) l meets Lik if and only if ~(l) is tangent to Q* in a point of the 
hyperplane {xsP~+l(~)lx~=O}. By (1.3) this is the case if and only if ~*(/) is 
tangent to Qk in a point of this hyperplane. 
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We assume from now on that the base point ,~ of F(V)  lies already in F~(V). 
Then we have: 

Lemma 6.2. For k-- 1, ..., n there are constants dR~Fa(V ) such that 

Oik  = {I~F'(V)[I  + IEB(ai) + d k -F S} 

where S ~ F (V) denotes the set S: = {ll + . . .  + l,_ 11 l ~  C for v = 1 , . . . ,  n - 1 }. 

Proof. It follows from Lemma 6.1 that 

Oik = { l ~ F ' ( V ) l l ~  pt  #O} 

with p: = R(ai). R(21) . . . . .  R(2 k_ 1)" R('~k+ ~) '" '"  R(2.). (2.7) implies that 

,,, ~ l+B(a i )+d '  k for n even 
( 6 . 3 )  P t t ) = ] 2 - 1 + B ( a i ) + d ' k  for n odd 

where d~,:=B(21)+ . . .+B(2k_l )+B() ,k+0+. . .  +B(2,) is a two-division point in 
F~(V). 

For l~F(V)  let W(l) be the closure of the set {l '~F(V)[l(~l '  consists of one 
point}. For generic I~Oik l n p l  consists of one point; since O~k is closed and 
connected in F'(V)  we have 

Oik = { l~F'(V)  Ipl~ W(/)} 

by (2.6) and (2.7) we have 

W(l) = [2~ - l + S for n even 
( l + S for n odd. 

This together with (6.3) implies 

0~, = { l eF ' (g )  ll + B(a~) + d'keg -- 1 + S}. 

d,: = 2 - d ~  then has the desired properties. 
As at the end of w 2 we identify A .with IF'IF where F is the lattice in q;" 

spanned by the integrals v 1 , . . . ,  v,, w l , . . . ,  w, of certain holomorphic differential 
forms over certains cycles in Hi(C,  71). The differential forms were chosen such 
that v~= ~. e, (where ei denotes the i-th standard basis vector of IE"). We denote 
by W the n x n-matrix formed by the column-vectors w 1 . . . .  , w,. For i=0,  ..., n 
+ 1 let % s'~ be vectors in 71" such that 

1 , 1 , 1 . . .+�89 . in A B(ai)=-~eil Vl +~.. +~e, invn + ~ i i W t  + 

(cf. [14-] I., Def. 6); and let 9~ be the first order theta function with characteristic 

~ ' )  and theta matrix W: 6', 
/ 

(6.4) /~,(z): = ~  [::] (z): = ~ ,  exp 7 r - 1 / ~  t(v + �89 W.  (v + �89 _(v+-~'z + ~ / I "  

(cf .  [ 1 4 ]  p .  4) .  ~o is the classical Riemann theta function. 
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Lemma 6.5. For k= 1, ..., n there are constants Co, k . . . .  , c,+ X,kSC and Ck~A with 
U( Ck)6A ~ such that the meromorphic mapping 

Pk: "4=r ~Qk  c P.+ l(IF') 

is given by Z~-~(Co,k~o(Z + CR) , ..., C.+ I,k~.+ I(Z + Ck) ). 

Proof ~ :  F ( V ) ~ A  maps S isomorphically to 

A,_ 1' = {xl + ' "  + x ,_  lZAlxiz j (C)} .  

If PR: f l~QkCP,-l(f f?')  is described by the n + 2  meromorphic functions 
f0 . . . .  , f ,+ l  (i.e. Pk(Z)=(fo(Z), . . . ,f,+l(Z)) then by (5.3) the divisor of zeros of the 
function f~ is equal to 

O'i ." = {zr  I 2 z ~ u -  IU(B(aj) ) +j(dk) + A,._ 1)}. 

Choose CkE,zi such that U(Ck)=S:--j(dk), where xCA denotes the Riemann 
constant for the point Bo~ C (cf. [14] V, Th. 3). Then O'i is also the divisor of 
zeros of the function z -~Oi (2z -C , ) ,  hence there is a nowhere vanishing holo- 
morphic function gi on A such that f .(z)=gi(z)Oi(2z+Ck). Without loss of 
generality we may assume that the function go is constant. Now all the functions 
8~ are transformed in the same way by translations by vectors of the lattice 2. F 
([-14] I, Th. 3). Since Pk: f t-- .Q, is invariant under F we have 

gi(z)=gi(z+v) for all v ~ 2 . F , i = O , . . . , n + l .  

Hence gi(z) is a constant ci, k. This proves the lemma. 
The constants Co, k . . . . .  c.+ 1,k can be - modulo their sign - determined by the 

condition that 

c~kO~(z) 2 c,+l,~O,+dz) 2 
a l - 2  k b...-t =Co,kOo(Z) 2 

a n  + l - -  ~.k 

for all z~A. We do this for certain geodesics on the ellipsoid: 

6.6. Example. O=2~ <a~ < 2 2 < a 2 < . . . < 2 . < a . < a . + ~ ;  and k = l .  To make the 

notation shorter we write c i instead of cil; and for e,e'e7Z" we denote by ~ [e [  
L J ~r 

the "Theta-Nullwert" ~ [ e ] e, (0). By (2.11) we have 

,9o(Z)=O[~ 0 0... 
0 0  

[001o...01] 0 0  
O2(z)=~ 1 1.. ( z ) ' ""O"+l(z )='9  0 . . . 0  (z). 

By [-14] I, Th. 5 and Th. 2 we have 

~i(j(B(at)))=O for l# i ,  n + l  
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O i ( j ( B  (ai))) = exp ( - �88 ~ 1 , / -  1. ta t �9 W .  at) .  ,9 0 (0) 

fo.+,(o) for i=o ["+e"l- 
O"+ '(J(B(ai)))=].l/-S-l e x p ( - � 8 8  rc V / - 1 . ' e ,  . W.  e,). O t. ~, J 

Hence 

and 

2 2 
Cn+ l On+ l(0) =C200(0)2 

an+ 1 

c~Oo(O)~ c~.+~O t ~ J 

ai an+ 1 
=0 for i =  1 , . . . ,n .  

L e t # t : = l / ~ . ~ [ e i L e " ] f o r i = l , . . . , n a n d t z o : = O [ O " ] . T h e n t h e r e i s a c o n s t a n t  
L ~i J 

K ~ C  such tha t  c~= _ K .  Yr. 
N o w  let  o e ~ "  be a bas is  vec to r  o f  the  vec to r  space  V1 of  T h e o r e m  5.3, a n d  

zeIR" be  a n  a r b i t r a r y  po in t .  By T h e o r e m  5.3 the  curve  

(6.7) tt-,(#o,.ao(Z + t,~) . . . .  , ~,+ 10,,+ x (z + to)) 

is then a geodesic on the ellipsoid Q1cP.+~(R). For n - 2  (6.7) coincides with 
the parametrization of geodesics on the ellipsoid given by Weierstrass in [19]. 
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