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Preface

Many different mathematical methods and concepts are used in classical
mechanics: differential equations and phase flows, smooth mappings and
manifolds, Lie groups and Lie algebras, symplectic geometry and ergodic
theory. Many modern mathematical theories arose from problems in
mechanics and only later acquired that axiomatic-abstract form which
makes them so hard to study.

In this book we construct the mathematical apparatus of classical
mechanics from the very beginning; thus, the reader is not assumed to have
any previous knowledge beyond standard courses in analysis (differential
and integral calculus, differential equations), geometry (vector spaces,
vectors) and linear algebra (linear operators, quadratic forms).

With the help of this apparatus, we examine all the basic problems in
dynamics, including the theory of oscillations, the theory of rigid body
motion, and the hamiltonian formalism. The author has tried to show the
geometric, qualitative aspect of phenomena. In this respect the book is
closer to courses in theoretical mechanics for theoretical physicists than to
traditional courses in theoretical mechanics as taught by mathematicians.

A considerable part of the book 1s devoted to variational principles and
analytical dynamics. Characterizing analytical dynamics in his ** Lectures on
the development of mathematics in the nineteenth century,” F. Klein wrote
that **. . . a physicist, for his problems, can extract from these theories only
very little, and an engineer nothing.” The development of the sciences in the
following years decisively disproved this remark. Hamiltonian formalism
lay at the basis of quantum mechanics and has become one of the most often
used tools in the mathematical arsenal of physics. After the significance of
symplectic structures and Huygens® principle for all sorts of optimization
problems was realized, Hamilton's equations began to be used constantty in



Preface

engineering calculations. On the other hand, the contemporary development
of celestial mechanics, connected with the requirements of space ¢xploration,
created new interest in the methods and problems of analytical dynamics.

The connections between classical mechanics and other areas of mathe-
matics and physics are many and varied. The appendices to this book are
devoted to a few of these connections. The apparatus of classical mechanics
ts applied to: the foundations of riemannian geometry, the dynamics of
an ideal fluid, Kolmogorov's theory of perturbations of conditionally
periodic motion, short-wave asymptotics for equations of mathematical
physics, and the classification of caustics in geometrical optics,

These appendices are intended for the interested reader and are not part
of the required general course. Some of them could constitute the basis of
special courses (for example, on asymptotic methods in the theory of non-
linear oscillations or on quasi-classical asymptotics). The appendices also
contain some information of a reference nature (for example, a list of normal
forms of quadratic hamiltonians}. While in the basic chapters of the book the
author has tried to develop all the proofs as explicitly as possible, avoiding
references to other sources, the appendices consist on the whole of summaries
of results, the proofs of which are to be found in the cited literature.

The basis for the book was a year-and-a-half-long required course
in classical mechanics, taught by the author to third- and fourth-year
mathematics students at the mathematics-mechanics faculty of Moscow
State University in 1966-1968.

The author is grateful to [, G. Petrovsky, who insisted that these lectures
be delivered, written up, and published. In preparing these lectures for
publication, the author found very heipful the lecture notes of L. A. Buni-
movich, L, . Vaingortin, V. L. Novikov, and especially, the mimeocgraphed
edition (Moscow State University, 1968) organized by N. N. Kolesnikov. The
author thanks them, and also all the students and colleagues who communi-
cated their remarks on the mimeographed text; many of these remarks were
used in the preparation of the present editton. The author is grateful to
M. A. Leontovich, for suggesting the treatment of connections by means of a
limit process, and also to I. I. Vorovich and V. 1. Yudovich for their detatled
review of the manuscript.

V. ARNOLD

The translators would like to thank Dr. R. Barrar for his help in reading
the proofs, We would also like to thank many readers, especially Ted Courant,
for spotting errors in the first iwo printings.

Berkeley, 1981 K. VOGTMANN
A. WEINSTEIN
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Preface to the second edition

The main part of this book was written twenty years ago. The ideas and
methods of symplectic geometry, developed in this beok, have now found
many applications in mathematical physics and in other domains of applied
mathematics, as well as in pure mathematics itself. Especially, the theory of
short wave asymptotic expansions has reached a very sophisticated level, with
many important applications to optics, wave theory, acoustics, spectroscopy,
and ¢ven chemistry; this development was parallel to the development of the
theories of Lagrange and Legendre singularities, that is, of singularitics of
caustics and of wave fronts, of their topology and their perestroikas {in
Russian mctamorphoses were always called “perestroikas,” as in “Morse
perestroika” for the Engtish “Morse surgery™; now that the word perestroika
has become international, we may preserve the Russian term in translation
and are not obliged to substitute “metamorphoses” for “perestroikas™ when
speaking of wave {ronts, caustics, and so on).

Integrable hamiltonian systems have been discovered unexpectedly in many
classical problems of mathematical physics, and their study has led to new
results in both physics and mathematics, for instance, in aigebraic geometry.

Symplectic topology has become one of the most promising and active
branches of “global analysis.” An important generalization of the Poincaré
“geometric theorem™ (see Appendix 9) was proved by C. Conley and
E. Zehnder in 1983. A sequence of works (by M. Chaperon, A. Weinstein, J.-C.
Sikorav, M. Gromov, Ya. M. Eliashberg, Yu. Chekanov, A. Floer, C. Viterbo,
H. Hofer, and others) marks important progress in this very lively domain.
One may hope that this progress will lead to the proof of many known
conjectures in symplectic and contact topology, and to the discovery of new
results in this new domain of mathematics, cmerging from the problems of
mecchanics and optics.

vii



Preface to the second edition

The present edition includes three new appendices. They represent the
modern development of the theory of ray systems (the theory of singularity
and of perestroikas of caustics and of wave fronts, related to the theory of
Coxeter reflection groups), the theory of integrable systems (the geometric
theory of elliptic coordinates, adapted to the infinite-dimensional Hilbert
space generalization), and the theory of Poisson structures (which is a generai-
ization of the theory of sympiectic structures, including degenerate Poisson
brackets).

A more detailed account of the present state of perturbation theory may be
found in the book, Mathematical Aspects of Classical and Celestial Mechanics
by V. L. Arnold, V. V. Kozlov, and A. 1. Neistadt, Encyclopaedia of Math. Sci.,
Vol. 3 (Springer, 1986); Volume 4 of this scrics (1988) contains a survey
“Symplectic geometry” by V. L. Arnold and A. B. Givental’, an article by
A. A Kirillov on geometric quantization, and a survey of the modern theory
of integrable systems by S. P. Novikov, I. M. Krichever, and B. A. Dubrovin.

For more details on the geometry of ray systems, see the book Singularities
of Differentiable Mappings by V. I. Arnold, 8. M. Gusein-Zade, and A. N.
Varchenko (Vol. 1, Birkhauser, 1985; Vol. 2, Birkhiuser, 1988). Catastrophe
Theory by V. 1. Arnold (Springer, 1986) (second edition) contains a long
annotated bibliography.

Surveys on symplectic and contact geometry and on their applications may
be found in the Bourbaki seminar (B. Bennequin, “Caustiques mystiques”,
February, 1986) and in a series of articles (V. [ Arnold, First steps in symplectic
topology, Russian Math. Surveys, 41 (1986); Singularitics of ray systems,
Russian Math. Surveys, 38 (1983); Singularities in variational calculus,
Modern Problems of Math., VINITI, 22 (1983) (translated in J. Soviet Math.);
and O. P. Shcherbak, Wave fronts and reflection groups, Russian Math.
Surveys, 43 (1988)).

Volumes 22 (1983) and 33 (1988) of the VINITI serics, “Sovremennye
problemy matematiki. Noveishie dostijenia,” contain a dozen articles on the
appiications of symplectic and contact geometry and singularity theory to
mathematics and physics.

Bifurcation theory {beth for hamiltonian and for more generat systems)
is discussed in the textbook Geometrical Methods in the Theory of Ordinary
Differential Equations (Springer, 1988) {this new edition is more complete than
the preceding ong). The survey “Bifurcation theory and its applications in
mathematics and mechanics” (XVIIth International Congress of Theoretical
and Applied Mechanics in Grenoble, August, 1988} also contains new infor-
mation, as does Volume 5 of the Encyclopaedia of Math. Sci. {Springer, 1989),
containing the survey “Bifurcation theory” by ¥. 1. Arnoid, V. S. Afraimovich,
Yu. S. Ilyashenko, and L. P. Shilntkov. Volume 2 of this series, edited by
D. V. Anosov and Ya. G. Sinai, is devoted to the ergodic theory of dynamical
systems including those of mechanics.

The new discoveries in all these theorics have potentially extremely wide
applications, but since these resuits were discovered rather recently, they are

viil



Preface to the second edition

discussed only in the specialized editions, and applications are impeded by
the difficulty of the mathematical exposition for nonmathematicians. I hope
that the present book will help to master these new theories not only to
mathematicians, but aiso to all those readers who use the theory of dynamical
systems, symplectic geometry, and the caleulus of variations—in physics,
mechanics, control theory, and so on. The author would like to thank Dr.
T. Tokieda for his help in correcting errors in previous printings and for
reading the proofs.

December 1988 V. 1. Arold



Translator’s preface to the second edition

This edition contains three new appendices, originally written for inclusion in
a German edition. They describe work by the author and his co-workers on
Poisson structures, elliptic coordinates with applications to integrable sys-
tems, and singularities of ray systems. In addition, numerous corrections to
errors found by the author, the translators, and readers have been incorpo-
rated into the text.
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PART I
NEWTONIAN MECHANICS

Newtonian mechanics studies the motion of a system of point masses
in three-dimensional euclidean space. The basic ideas and theorems of
newtonian mechanics (even when formulated in terms of three-dimensional
cartesian coordinates) are invariant with respect to the six-dimensional’
group of euclidean motions of this space.

A newtonian potential mechanical system is specified by the masses
of the points and by the potential energy. The motions of space which leave
the potential energy invariant correspond fo laws of conservation.

Newton’s equations allow one to solve completely a series of important
problems in mechanics, including the problem of motion in a central force
fieid.

! And also with respect 1o the larger group of galilean transformations of space-time.



Experimental facts

In this chapter we write down the basic experimental facts which lie at the
foundation of mechanics: Galileo’s principle of relativity and Newton’s
differential equation. We ¢xamine constraints on the equation of motion
imposed by the relativity principle, and we mention some simple examples.

1 The principles of relativity and determinacy
In this paragraph we introduce and discuss the notion of an inertial coordinate system. The
mathematical statements of this paragraph are formulated exactly in the next paragraph.

A series of experimental facts is at the basis of classical mechanics.”? We
list some of them.

A Space and time

QOur space is three-dimensional and euclidean, and time is one-dimensional.

B Galileo’s principle of relativity
There exist coordinate systems {called inertial) possessing the following
two properties:

1. All the laws of nature at all moments of time are the same in all inertial
coordinate systems.

2. All coordinate systems in uniform rectilinear motion with respect to an
inertial one are themselves nertial.

* All these " experimental [acts™ are only approximatety true and can be refuted by more exact
experiments. [n order to avoid cumbersome cxpressions, we will not specify this from now on
and we will speak of our mathematical models as if they exactly described physical phenomena.

3



l: Experimental facts

In other words, if a coordinate system attached to the earth is inertial,
then an experimenter on a train which is moving uniformly in a straight line
with respect to the earth cannot detect the motion of the train by experiments
conducted entirely inside his car.

In reality, the coordinate system associated with the earth is only approxi-
mately inertial. Coordinate systems associated with the sun, the stars, etc.
are more nearly inertial,

C Newton’s principle of determinacy

The initial state of a mechanical system (the totality of positions and
velocities of its points at some moment of time) uniquely determines all of
its motion.

It 1s hard to doubt this fact, since we learn it very early. One can imagine
a world in which to determine the future of a system one must alse know the
acceleration at the initial moment, but experience shows us that our world
is not like this.

2 The galilean group and Newton’s equations

In this paragraph we define and investigate the galilean group of space-time transformations.
Then we consider Newton's equation and the simplest constraints imposed on its right-hand side
by the property of invariance with respect to galilean transformations.?

A Notation

We denote the set of all real numbers by R. We denote by R” an n-dimen-
sional real vector space.

a a+h
b
Figure 1| Parallel displacement

Affine n-dimensional space A" is distinguished from R" in that there is
“no fixed origin.” The group R" acts on A" as the group of parallel displace-
ments (Figure 1):

a—sa+bh, ac A" beR" a+ be A"

[Thus the sum of two points of A” is not defined, but their difference is defined
and is a vector in B".]

¥ The reader who has no need for the mathematical formulation of the assertions of Section |
can omit this sectjon.

4



2: The galilican group and Newton's equations

A euclidean structure on the vector space R" is a positive definite symmetric
bilinear form called a scalar product. The scalar product enables one to
define the distance

e y) = llx —yll = V(x —y»x—y)

between points of the corresponding affine space A". An affine space with this
distance function is called a euclidean space and is denoted by E.

B Galilean structure

The galilean space-time structure consists of the following three elements:

1. The universe—a four-dimensional affine* space A* The points of 4%
are called world points or events. The parallel displacements of the universe
A* constitute a vector space R*.

2. Time—a linear mapping t: R* - R from the vector space of parallel
displacements of the universe to the real “time axis.” The time interval
from event a € A* to event b e A* is the number (b — a) (Figure 2). If
t{b — a) = 0, then the events g and b are called simultaneous.

a3

Figure 2 Interval of time ¢

The set of events simultaneous with a given event forms a three-
dimensional affine subspace in A* It is called a space of simultaneous
events A>,

The kernel of the mapping t consists of those parallel displacements of
A* which take some (and therefore every) event into an event simultaneous
with it. This kernel is a three-dimensional linear subspace R? of the vector
space R*.

The galilean structure includes one further element.
3. The distance between simultaneous events
pla,py=lla—bl=Ja—ba-b) abeAd’

is given by a scalar product on the space R®. This distance makes every
space of simultaneous events into a three-dimensional euclidean space E>.

* Formerly, the universe was provided not with an affine, but with a linear structure (the geo-
centric system of the universe).



1: Experimental facts

A space A%, equipped with a galilean space-time structure, is called a
galilean space.

Oue can speak of two events occurring simultaneously in different places,
but the expression “two non-simulianeous events a, be A* occurring at
one and the same place in three-dimensional space™ has no meaning as long
as we have not chosen a coordinate system.

The galilean group is the group of ali transformations of a gafilean space
which preserve its structure. The elements of this group are called galilean
transformations. Thus, galilean transformations are affine transformations
of A% which preserve intervals of time and the distance between simultaneous
cvents.

ExampLE. Consider the direct product® B x R* of the ¢ axis with a three-
dimensional vector space R*; suppose R* has a fixed euclidean structure.
Such a space has a natural galilean structure. We will call this space galilean
coordinate space.

We¢ mention three examples of galilean transformations of this space.
First, uniform motion with velocity v:

gi(t,X) = (i, X + v1) VieR xeR3,
Next, transiation of the origin:
gt X)=( +sx+8) YreR xe R
Fmally, rotation of the coordinate axes:
gt X3 = (¢, Gx), Vie R xe R3,

where G: R* — R? is an orthogonal transformation.

PropLEM. Show that every galilean transformation of the space B x R3
can be written in a unique way as the composition of a rotation, a translation,
and a uniform motion (g = g, = ¢, = g3} (thus the dimension of the galilean
groupisequalto 3 + 4 4+ 3 = 10}

PrOBLEM. Show that all galilean spaces are isomorphic to each other®
and, in particular, isomorphic to the coordinate space R x R,

Let M be a set. A one-to-one correspondence @,: M — R x R? is called
a galilean coordinate system on the set M. A coordinatc system ¢, moves
uniformiy with respect to @, if @, ¢; 'R x R* 5> R x R? is a galilean
transformation. The galilean coordinate systems ¢, and ¢, give M the same
galilean structure,

* Recall that the direct product of two sels A and B 15 the set of ordered pairs (a. b). where
a € 4and b e B The direct product of lwo spaces {vector, affing, euclidean} has the structure ol a
space of the same type.

® Thal is, there is a one-to-one mapping of one to the other preserving the galilean structure.

6



2: The galilean group and Newton's cquations

C Maotion, velocity, acceleration
A motion in RY is a differentiable mapping x: I = R¥, where 1 is an interval

on the real axis.
The derivative

dx

A".‘(fo) = E

1s called the velocity vector at the point 1, € I
The second derivative

— km X(¢g + h) — x(fo)e RN

t=ip h—0 h

d*x

Xto) =g

[=in

is called the acceleration vector at the point ¢,.

We will assume that the functions we encounter are continuously differ-
entiable as many times as necessary. In the future, unless otherwise stated,
mappings, functions, ete. are understood to be differentiable mappings,
functions, etc. The image of a mapping x: I = R is called a trajectory or
curve in RY,

PrROBLEM. Is it possible for the trajectory of a differentiable motion on the
plane to have the shape drawn in Figure 37 s it possible for the acceleration
vector to have the value shown?

ANSWER. Yes, No.

Figure 3 Trajectory of motion of a point

We now define a mechanical system of n points moving in three-dimensional
euclidean space.

Let x: R —» R be a motion in R*, The graph” of this mapping is a curve
in R x R3,

A curve in galilean space which appears in some (and therefore every)
galilean coordinate system as the graph of a motion, is called a world line
(Figure 4).

" The graph of 4 mapping f: 4 —~ B is the subset of the direct product 4 » B consisting of all
pairs {a, fla)}y with g € 4.



1: Experimemal facts

S—

Figure 4 World lines

A moticn of a system of n points gives, in galilean space, n world lines.
In a galilean coordinate system they are described by » mappings x;: R — R?,
i=1...,n

The direct product of n copies of R is called the configuration space
of the system of # points. Our n mappings x;: R — R* define one mapping

xR RY N =13n

of the time axis into the configuration space. Such a mapping is also called
a motion of a system of n points in the galilean coordinate system on R x R,

D Newton’s equations

According to Newton’s principle of determinacy (Section 1C) all motions
of a system are uniquely determined by their initial positions (x(t,) € R")
and initial velocities (X(t,) € R¥).

In particular, the initial positions and velocities determine the acceleration.
In other words, there is a function F: BY x RY x R — RY such that

1) % = F(x, X, t).

Newton used Equation (1) as the basis of mechanics. It is called Newton's
equation.

By the theorem of existence and uniqueness of solutions to ordinary
differential equations, the function F and the initial conditions x(¢,) and
X(ty) uniquely determine a motion.®

For each specific mechanical system the form of the function F is deter-
mined experimentally. From the mathematical point of view the form of F
for each system constitutes the definition of that system.

E Constraints imposed by the principle of relativity

Galileo’s principle of relativity states that in physical space-time there is a
selected galilean structure (“the class of inertial coordinate systems™)
having the following property.

# Under certain smoothness conditions, which we assume to be fulfilled. [n general, a motion
is determined by Equation (1) only on some interval of the time axis. For simplicity we will
assume that this interval is the whole time axis, as is the case in most problems in mechanics.

8



2: The galilean group and Newton's equations

— - [

Figure 5 Galileo's principle of relativity

If we subject the world lines of all the points of any mechanical system”
to one and the same galilean transformation, we obtain world lines of the
same system (with new initial conditions) (Figure 3).

This imposes a series of conditions on the form of the right-hand side of
Newton’s equation writien in an inertial coordinate system: Equation (1)
must be invariant with respect to the group of galilean transformations.

ExaMPLE 1. Among the galilean transformations are the time translations.
Invariance with respect to time transiations means that “the laws of nature
remain constant,” i.e., if X = (¢} is a solution to Equation (1), then for any
seR, x = @t + 5)is also a solution.

From this it follows that the right-hand side of Equation (1) in an inertial
coordinate system does not depend on the time:

X = PO(x, X).

Remark. Differential equations in which the right-hand side does depend
on time arise in the following situation.

Suppose that we are studying part I of the mechanical system I + IL
Then the influence of part II on part I can sometimes be replaced by a time
variation of parameters in the system of equations describing the motion of
part I. For example, the influence of the moon on the earth can be ignored in
investigating the majority of phenomena on the earth. However, in the study of
the tides this influence must be taken into account; one can achieve this by
introducing, instead of the attraction of the moon, periodic changes in the
strength of gravity on earth.

“ In formulating the principle of relativity we must keep in mind that it is relevant only 10
closed physical (in particular, mechanical) systems, Le., that we must include in the system all
bodies whose interactions play a roie in the study of the given phenomena. Strictly speaking, we
should include in the system all bodies in the universe. But we know from experience that one
can disregard the effect of many of them: for example, in studying the motion of planets around
the sun we can disregard the attractions among the stars, ¢ic.

On the other hand, in the study of a body in the vicinity of carth, the system is nol closed
if the earth is not included; in the study of the motion of an airplane the system is not closed il
it does not include the air surrounding the airplane, ete. In the future, the term “mechanical
system” will mean a closed system in most cases, and when there is 2 non-closed system in
question this will be explicitly stated (cf., for example, Section 3).



1. Experimental facts

Equations with variable cocflicients can appear alse as the result of formal
operations in the solution of problems.

ExaMpLk 2. Translations in threc-dimensional space are galilean trans-
formations, Invariance with respect to such translations means that space
is homogeneous, or “has the same properties at all of its points.” That is,

if x; = @) = 1,...,n)is a motion of a system of r points satisfying (1),
then for any r € B? the motion ¢ (1) + r(i = 1,. .., n)also satisfies Equation
(1)

From this it follows that the right-hand side of Equation (1) in the inertial
coordinate sysiem can depend only on the “relative coordinates™ x; — X;.

From invariance under passage to a uniformly moving coordinate system
{which does not change %; or x; — x;, but adds to each X; a fixed vector v) it
follows that the right-hand side of Equation (1) in an inertial system of
coordinates can depend only on the refative velocities

ilzf,({xi— Xk, iJ_ ik})" f,,',k —_ ]“.‘,n.

ExaMpLE 3. Among the galilean transformations are the rotations in three-
dimensional space. Invariance with respect to these rotations means that
space is isotropic; there are no preferred directions.

Thus, if @;: R — R = 1, ..., n) is a motion of a system of points satis-
fying (1), and G: R* > R? is an orthogonal transformation, then the motion
Go;: R - R3(i, ..., n)also satisfies (1). In other words.

F(Gx, G %) = GF(x, x),

where Gx denotes (GX,, ..., GX,), x; € R>.

PrOBLEM. Show that if a mechanical system consists of only one point, then
its acceleration in an inertial coordinate system is equal to zero (" Newtons
first law™).

Hini. By Examples 1 and 2 the acceleration vector does not depend on
X, X, or £, and by Example 3 the vector F is invariant with respect to rotation.

PROBLEM. A mechanical system consisis of two points. At the initial moment
their velocities (in some inertial coordinate system) are equal to zero. Show
that the points will stay on the line which connected them at the initial
moment.

PROBLEM. A mechanical system consists of three points. At the initial moment
their velocities (in some inertial coordinate system) are equal to zero.
Show that the points always remain in the plane which contained them at the
initial moment,

ProBLEM. A mechanical system consists of two points. Show that for any
initial conditions there exists an incrtial coordinate system in which the
two points remain in a fixed plane.

10



3: Examples of mechanical systems

PrOBLEM. Show that mechanics “through the looking glass” is identical
to ours.

Hint. In the galilean group there is a reflection transformation, changing
the orientation of R3,

PrROBLEM. Is the class of inertial systems unique?

ANSWER. No. Other classes can be obtained if one changes the units of length
and time or the direction of time.

3 Examples of mechanical systems

We have already remarked that the form of the function F in Newton's equation (1) is determined
experimentally for each mechanical system. Here are several examples.

In examining concrete systems it is reasonable not to include all the objects of the universe
in a system. For example, in studying the majority of phenomena taking place on the earth we
can ignore the influence of the moon. Furthermore, it is usually possible to disregard the effect
of the processes we are studying on the motion of the earth itsz(f; we may even consider a coordi-
nate system attached to the earth as “fixed.” It is clear that the principle of relativity no longer
imposes the constraints found in Section 2 for equations of moticn written in such a coordinate
system. For example, near the garth there is a distinguished direction, the vertical.

A Example 1: A stone falling to the earth
Experiments show that
) X = —g, whereg = 9.8 m/s? (Galileo)*

where x is the height of a stone above the surface of the earth.
If we introduce the “potential energy™ U/ = gx, then Equation (2} can
be written in the form

_dU
dx’

If U: E¥ - Ris a differentiable function on euclidean space, then we will
denote by dU/dx the gradient of the function U, If EN = f™ x ... x E™
is a direct product of euclidean spaces, then we will denote a point x € EV
by (x,, ..., x,}, and the vector dU/dx by (8U/dx,, ..., dU/dx,). In particular,
if x,,..., xy are cartesian coordinates in £, then the components of the
vector 0U/0x are the partial derivatives dU/dx, ..., 8U/0xy.

Experiments show that the radius vector of the stone with respect to
some point 0 on the earth satisfies the equation

eu
3 = Y h -
3 % g Where U (g, x)

* In this and other sections, the mass of a particle is taken to be 1.

11



1: Experimental facts

The vector in the right-hand side is directed towards the earth. It is called
the gravitational acceleration vector g. (Figure 6.}

g

e 7z Sl

Figure 6 A stone falling to the earth

B Example 2: Falling from great height

Like all experimental facts, the law of motion (2} has a restricted domain of
application. According to a more precise law of falling bodies, discovered
by Newton, acceleration is inversely proportional to the square of the distance
from the center of the earth:

where r = ry + x (Figure 7).

i

o

Figure 7 The earth’s gravitational field

This equation can also be written in the form (3), if we introduce the
potential energy

k
U=-=°
p

k = gré,
inversely proportional to the distance to the center of the earth.

ProBLEM. Determine with what velocity a stone must be thrown in order that
it fly infinitely far from the surface of the earth.'®

ANSWER. > 11.2 km/sec.

'® This is the so-called second cosmic velocity v,. Our equation does not take into account the
attraction of the sun. The attraction of the sun will not let the stone escape rom the solar system
if the velocity of the stone with respect to the earth is less than 16.6 km/sec.

12



3: Examples of mechanical systems

C Example 3: Motion of a weight along a line

under the action of a spring
Experiments show that under small ¢xtensions of the spring the equation
of motion of the weight will be (Figure 8)

¥ = —o’x.

v

I

~

Figure 8 Weight on a spring

This equation can also be written in the form (3) if we introduce the
potential energy

If we replace our one weight by two weights, then it turns out that, under
the same extension of the spring, the acceleration is half as large.

It is experimentally established that for any two bodies the ratio of the
accelerations X, /X, under the same extension of a spring is fixed {does not
depend on the extent of extension of the spring or on its characteristics, but
only on the bodies themselves). The value inverse to this ratio is by definition
the ratio of masses:

X, M

¥, omy

For a unit of mass we take the mass of some fixed body, e.g., one liter of
water. We know by experience that the masses of all bodies are positive. The
product of mass times acceleration m¥ does not depend on the body, and
is a characteristic of the extension of the spring. This value is called the
force of the spring acting on the body.

As a unit of force, we take the “newton.” If one liter of water is suspended
on a spring at the surface of the earth, the spring acts with a force of 9.8
newtons (=1 kg).

D Example 4: Conservative systems

Let E3" = E* x ..+ x E? be the configuration space of a system of n points
in the euclidean space E*. Let U: E* - R be a differentiable function and
let my, ..., m, be positive numbers.

13



1: Experimental facts

Definition. The motion of » points, of masses m,, ..., m,, in the potential
field with potential energy U is given by the system of differential equations
. ey .
(4} mXx; = —7 i=1,....,n
&x,

The equations of motion in Examples 1 to 3 have this form. The equations
of motion of many other mechanical systems can be written in the same form.
For example, the three-body problem of celestial mechanics is problem (4)

in which
myhm, MaMy mym,
Xy — %20 %z — x5l Bxs —

U=

Many different equations of entirely different origin can be reduced to
form (4), for example the equations of electrical oscillations. In the following
chapter we will study mainly systems of differential equations in the form (4).



Investigation of the equations
of motion

In most cases (for example, in the three-body problem)} we can neither solve
the system of differential equations nor completely describe the behavior
of the solutions. In this chapter we consider a few simple but important
probiems for which Newton’s equations can be solved.

4 Systems with one degree of freedom

In this paragraph we study the phase flow of the differential equation (1). A look at the graph of
the potential energy is enough for a qualitative analysis of such an equation. In addition, Equation
{1y 1s integrated by quadratures.

A Definitions

A system with one degree of freedom is a system described by one differential
equation

(1) ¥=fix) xe R
The kinetic energy is the quadratic form*
T = 22,

The potential energy is the function
vt = - | rexe

The sign in this formula is taken so that the potential energy of a stone is
larger if the stone is higher off the ground.

Notice that the potential energy determines f. Therefore, to specify a
systemn of the form (1) it is enough to give the potential energy. Adding a
constant to the potential energy does not change the equation of motion (1).

* see footnote on p. 11
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2: Investigation of the equations of motion

The total energy is the sum
E=T+U.
In general, the total energy is a function, E(x, X), of x and x.

Theorem (The law of conservation of energy). The total energy of points
moving according to the equation (1) is conserved: E{x(t), X(t)) is independent

af t.

PROOF.
]
%(T+U)=:£-5c'+%:&=5c(5c'—f(x))=0‘ O
B Phase flow
Equation (1) is equivalent to the system of two equations:
(2) X=yp = f(x)

We consider the plane with coordinates x and y, which we call the phase plane
of Equation (1). The points of the phase plane are called phase points. The
right-hand side of (2) determines a vector field on the phase plane, called the
phase velocity vector field.

A solution of (2) is a motion @: R — R? of a phase point in the phase
plane, such that the velocity of the moving point at each moment of time is
equal to the phase velocity vector at the location of the phase point at that
moment.!!

The image of ¢ is called the phase curve. Thus the phase curve is given by
the parametric equations

x =gty y=ol)
ProBLEM. Show that through every phase point there is one and only one

phase curve.
Hint. Refer to a textbook on ordinary differential equations.

We notice that a phase curve could consist of only one point. Such a
point is called an equilibrium position. The vector of phase velocity at an
equilibrium position is zero.

The law of conservation of energy allows one to find the phase curves
easily. On each phase curve the value of the total energy is constant. Therefore,
each phase curve lies entirely in one energy level set E(x, y) = h.

C Examples
ExampLe 1. The basic equation of the theory of oscillations is

X¥= —x.

'Y Here we assume (or simplicity that the solution @ is defined on the whole time axis R.

16



4: Systcms with one degree of freedom

Figure ¢ Phase planc of the equation ¥ = —x

In this case (Figure 9) we have:

The energy level sets are the concentric circles and the origin. The phase
velocity vector at the phase point (x, y) has components (y, ~x). It is
perpendicular to the radius vector and equal to it in magnitude. Therefore,
the motion of the phase point in the phase plane is a uniform motion around
0:x = rqcos{py — 1), y = ry sin(eq, — t). Each energy level set is a phase
curve,

ExampLE 2, Suppose that a potential energy is given by the graph in Figure
10. We will draw the energy level sets $y* + U(x) = E. For this, the following
facts are helpful.

1. Any equilibrium position of (2} must lic on the x axis of the phase plane.
The point x = &, y = 0 is an equilibrium position if £ is a critical point
of the potential energy, i.e., if (AU/8x){;=: = 0.

2. Each level set is a smooth curve in a neighborhood of each of its points
which is not an equilibrium position (this follows from the implicit
function theorem). In particular, if the number E is not a critical value of
the potential energy (i.e., is not the value of the potential encrgy at one of
its critical points), then the level set on which the ¢nergy is equal to E
is a smooth curve.

It follows that in order to study the energy level curve, we should turn
our attention to the critical and near-critical values of E. It is convenient
here to imagine a little ball rolling in the potentiat well U.

For example, consider the following argument: “Kinetic energy is
nonnegative. This mcans that potential energy is less than or equal to the
total energy. The smaller the potential energy, the greater the velocity.”
This translates to: “The ball cannot jump out of the potential well, rising

17



2: Investigation of the equations of motion

o\ /

Esl-
o

Ej’—
- X

Figure 10 Potential energy and phase curves

higher than the level determined by its initial energy. As it falls into the well,
the ball gains velocity,” We also notice that the local maximum points of the
potential energy are unstable, but the minimum points are stable equilibrium
positions.

PROBLEM. Prove this.

ProBLEM, How many phase curves make up the separatrix (figure eight)
curve, corresponding to the level E; ?

ANsSwER. Three.
ProBLEM. Determine the duration of motion along the separatrix.
ANsweR. It follows from the uniqueness theorem that the time is infinite.

ProeLem. Show that the time it takes to go from x, to x; (in ene direction)
is equal to

2 dx



4: Systemns with one degree of freedom

(a) (b}

Figure 11 Potential energy

ProBLEM. Draw the phase curves, given the potential energy graphs in
Figure 11.

ANSWER. Figure 12.

M
==

{a) (b}

Figure 12 Phase curves

PrOBLEM. Draw the phase curves for the “equation of an ideal planar
pendulum”™: ¥ = —sin x.

ProOBLEM. Draw the phase curves for the “equation of a pendulum on a
rotating axis”: ¥ = —sin x + M.

Remark. In these two problems x denotes the angle of displacement of the
pendulum. The phase points whose coordinates differ by 2xn correspond to
the same position of the pendulum. Therefore, in addition to the phase plane,
it is natural to look at the phase cylinder {x(mod 2=r), y}.

ProBLEM. Find the tangent lines to the branches of the critical level corre-
sponding to maximal potential energy E = U() (Figure 13).

ANSWER. y = + /= U"(E)(x — &)
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2: Investigation of the equations of motion

4R

Figure 13 Critical energy level lines

ProBLeM. Let S(E) be the area enclosed by the closed phase curve cor-
responding to the energy level E. Show that the period of motion along

this curve is equal to
ds
T=—.
dE

PrOBLEM. Let E, be the value of the potential function at a minimum point
¢. Find the period Ty = limg_ g, T(E) of small oscillations in a neighbor-
hood of the point £.

ANSWER. 2r/./ U"(E).

ProeLEM. Consider a periodic motion along the closed phase curve corre-
sponding to the energy level E. Is it stable in the sense of Liapunov?!?

Answer. No.t?

D Phase flow

Let M be a point in the phase plane. We look at the solution to system (2)
whose initial conditions at ¢ = 0 are represented by the point M. We assume
that any solution of the system can be extended to the whole time axis. The
value of our solution at any value of t depends on M. We denote the resulting
phase point (Figure 14) by
M(@) = g'M.

In this way we have defined a mapping of the phase plane to itself,

g': R? - R2. By theorems in the theory of ordinary differential equations,

12 For a definition. see, e.g.. p. 155 of Ordinary Differential Equations by V. 1. Arnold, MIT Press,
1973,

13 The only exception is the case when the period does not depend on the energy.
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4: Systemns with one degree of freedom

MO + )

Figure 14 Phase flow

the mapping ¢’ is a diffeomorphism (a one-to-one differentiable mapping
with a differentiable inverse). The diffeomorphisms g', ¢ € R, form a group:
g'** = ¢g' = g°. The mapping g° is the identity (g°M = M), and g~' is the
inverse of g. The mapping g: R x R? —» R?, defined by g(t, M) = g'M is
differentiable. All these properties together are expressed by saying that the
transformations g’ form a one-parameter group of diffeomorphisms of the phase
plane. This group is also called the phase flow, given by system {2} (or
Equation (1)).

ExampLE. The phase flow given by the equation X = —x is the group ¢
of rotations of the phase plane through angle ¢ around the origin,

ProOBLEM, Show that the system with potential energy U = —x* does not
define a phase flow.

PrOBLEM. Show that if the potential energy is positive, then there is a phase
flow.

Hint. Use the law of conservation of energy to show that a solution can
be extended without bound.

PROBLEM. Draw the image of the circle x* + (y — 1)® < 3 under the action

of a transformation of the phase flow for the equations (a) of the “inverse
pendulum,” ¥ = x and (b) of the “nonlinear pendulum,” ¥ = —sin x.

ANSWER. Figure 15,

N

{a} {b)
Figure 15  Action of the phase flow on a circle
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2: Investigation of the equations of motion

5 Systems with two degrees of freedom

Analyzing a general potential sysiem with two degrees of freedom is beyond the capability
of modern science. In this paragraph we look at the simplest cxamples.

A Definitions

By a system with two degrees of freedom we will mean a system defined by
the differential equations

(1 x=f(x), xekE?

where f is a vector field on the plane.

A system is said to be conservative if there exists a function U: E? — R
such that f = —dU/x. The equation of motion of a conservative system
then has the form!* X = —dU/dx.

B The law of conservation of energy

Theorem. The total energy of a conservative system is conserved, i.e.,

‘;% =0, where E = i%x* + U{x), ¥* = (%, X).
PrOOE. dE/dt = (%, %) + (BU/@x, %) = (X + (3U/dx), X) = 0 by the equation
of motion. (|

Corollary. If ar the initial moment the total energy is equal to E, then all
trajectories lie in the region where U(X) £ E, i.e, a point remains inside
the potential well U(x,, x;) < E for all time.

Remark. In a system with one degree of freedom it is always possible to
introduce the potential energy

U(x) = — f " f(e.

For a system with two degrees of freedom this is not so.

ProbLEM. Find an example of a system of the form ¥ = f(x), x € E?, which is
not conservative.

C Phase space
The equation of motion (1) can be written as the system:

Xy =y Xy =Y,
(2) . au . au
V= — ¥y = ——
! @xl 2 ax;g
'4 In cartesian coordinates on the plane E% ¥, = - #Uifx, and ¥, = — AU R,

22



5: Systemns with two degrees of freedom

The phase space of a system with two degrees of freedom is the four-
dimensional space with coordinates x,, x;, y,, and y,.

The system (2) defines the phase velocity vector field in four space as well
as'® the phase flow of the system (a one-parameter group of diffeomorphisms
of four-dimensional phase space). The phase curves of (2) are subsets of four-
dimensional phase space. All of phase space is partitioned into phase curves,
Projecting the phase curves from four space to the x,, x, plane gives the
trajectories of our moving point in the x,, x, plane. These trajectories are
also called orbits. Orbits can have points of intersection even when the phase
curves do not intersect one another. The equation of the law of conservation
of energy

.2 2 ,2

E=% + U =212 4 yixy, xy)

2 2
defines a three-dimensional hypersurface in four space: E(x,, x3, y;, ¥3) =
Ey: this surface, 7, , remains invariant under the phase flow: g'n, = .
One could say that the phase flow flows along the energy level hypersurfaces.
The phase velocity vector field is tangent at every point to ng,. Therefore,
g, 1s entirely composed of phase curves (Figure 16).

¥

X,
X,

Figure 16 Energy level surface and phase curves
ExaMPLE 1 (" small oscillations of a spherical pendulum™. Let U = $(x? + x3).

The level sets of the potential energy in the x,, x, plane will be concentric
circles (Figure 17).

The equations of motion, %, = —x,, £; = —x,, are equivalent to the
sys[em
Xy =y X; =y,
V1= —x Y2 = —Xx;.

This system decomposes into two independent ones; in other words,
each of the coordinates x, and x, changes with time in the same way as in
a system with one degree of freedom.

' With the usual limitations.

2]
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2: Investigation of the equations of motion

Xj

Figure 17 Potential energy level curves for a spherical pendulum

A solution has the form
Xy = ¢, COS! + ¢4 8in¢ X; =C3C08 + cysint
¥ = —c,sint + ¢, cost Y3 = —€38int + ¢4 COS L.

It follows from the law of conservation of energy that
E =3y} + y3) + 3x{ + x}) = const,

ie., the level surface n;_ is a sphere in four space.

ProeLEM. Show that the phase curves are great circles of this sphere, (A
great circle is the intersection of a sphere with a two-dimensional plane
passing through its center.)

PROBLEM. Show that the set of phase curves on the surface ng, forms a two-
dimensional sphere. The formula w = {x; + iy,)/(x, + iy,) gives the “Hopf
map” from the three sphere @y, to the two sphere (the complex w-plane
completed by the point at infinity). Our phase curves are the pre-images
of points under the Hopf map.

ProBLEM. Find the projection of the phase curves on the x,, x; plane (ie,
draw the orbits of the motion of & point).

ExaMpLE 2 (“ Lissajous figures™). We look at one more example of a planar
motion (“small oscillations with two degrees of freedom™):
)'C'l = —x1 XZ = —wzxZ.
The potential energy is
U = ixi + 30%x3.

From the law of conservation of energy it follows that, if at the initial
moment of time the total energy is

3G + %) + Ulxy, x,) = E,

then all motions will take place inside the ellipse U(x,, x,} < E.
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5: Systems with two degrees of [reedom

Our system consists of two independent one-dimensional systems. There-
fore, the law of conservation of energy is satisfied for each of them separately,
i.e., the following quantities are preserved

Eo=bii+ it B=iitdoid  (E=E+E)
Consequently, the variable x; is bounded by the region [x(| £ A;, 4, =

/2E,(0), and x, oscillates within the region |x,| < A,. The intersection
of these two regions defines a rectangle which contains the orbits (Figure 18).

o I
. vy

Figure 18 TheregionsU = EL U, = Fand U, £ E
ProBLEM. Show that this rectangle is inscribed in the ellipse U < E.

The general solution of our equations is x; = A4, sin{t + @), x; =
A, sin{fwt + @,); a moving point independently performs an oscillation
with frequency 1 and amplitude 4, along the horizontal and an oscillation
with frequency w and amplitude A, along the vertical.

Consider the following method of describing an orbit in the x,, x, plane.
We look at a cylinder with base 24, and a band of width 24,. We draw on
the band a sine wave with period 2n4,/w and amplitude 4, and wind the
band onto the cylinder {Figure 19). The orthogonal projection of the sinusoid

2

S

i~
f’ CATERV7

Figure 19 Construction of a Lissajous figure
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2: Investigation of the equations of motion

wound around the cylinder onto the x,, x; plane gives the desired orbit,
called a Lissajous figure.

Lissajous figures can conveniently be seen on an oscilloscope which dis-
plays independent harmonic oscillations on the horizontal and vertical axes.

The form of a Lissajous figure very strongly depends on the frequency w,
If o =t (the spherical pendulum of Example 1), then the curve on the
cylinder is an ellipse. The projection of this ellipse onto the x;, x, plane
depends on the difference ¢, — ¢, between the phases. For ¢; = ¢, we get
a segment of the diagonal of the rectangle; for small ¢, — ¢, we get an
ellipse close to the diagonal and inscribed in the rectangle. For ¢, — ¢, = n/2
we get an ellipse with major axes x,, x;; as @, — ¢, increases from n/2
to n the ellipse collapses onto the second diagonal; as ¢, — @, increases
further the whole process is repeated from the beginning (Figure 20).

x

(¥}

X}

Figure 20 Series of Lissajous figures with & = 1

Now let the frequencies be only approximately equal:w = . The segment
of the curve corresponding to 0 < t < 2 is very close to an ellipse. The next
loop also reminds one of an ellipse, but here the phase shift ¢, — @, is
greater than in the original by 2a(w — 1). Therefore, the Lissajous curve
with w = 1 is a distorted ellipse, slowly progressing through all phases
from collapsed onto one diagonal to collapsed onto the other (Figure 21},

If one of the frequencies i1s twice the other (@ = 2), then for some particular
phase shift the Lissajous figure becomes a doubly traversed arc (Figure 22).

X

X

Figure 21 Lissajous figure with w = 1
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5: Systems with two degrees of freedom

ProBLEM. Show that this curve is a parabola. By increasing the phase shift
p, — ¢, we get in turn the curves in Fig. 23.

In general, if one of the frequencies is n times bigger than the other (@ = »n),
then among the graphs of the corresponding Lissajous figures there is the
graph of a polynomial of degree n (Figure 24); this polynomial is called a
Chebyshev polynomial.

-t
lu

N2

Figure 22 Lissajous figure with « = 2

A2 Xz

N/

\ X/

9. A\%
\)

Figure 23 Series of Lissajous figures with @ = 2

Xy

X3 X2 Xz

x, iVl
VLU

Figure 24 Chebyshev polynomials
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2: Investigation of the equations of motion

ProBLEM. Show that if @ = m/n, then the Lissajous figure is a closed algebraic
curve; but if  is irrational, then the Lissajous figure fills the rectangle every-
where densely. What does the corresponding phase trajectory fill out?

6 Conservative force fields

In this section we study the connection between work and potential energy.

A Work of a force field along a path

Recall the definition of the work by a force F on a path 8. The work of the
constant force F (for example, the force with which we lift up a load) on the

Mo

My
Figure 25 Work of the constant force F along the straight path §

path 8§ = M| M, is, by definition, the scalar product {(Figure 25)
A = (F,S) = |F||S| - cos .

Suppose we are given a vector field F and a curve { of finite length. We
approximate the curve / by a polygonal line with components AS; and denote
by F; the value of the force at some particular point of AS;; then the work of
the field F on the path [ is by definition (Figure 26)

A= lim Y (F, AS).

|48;]—0

In analysis courses it is proved that if the field is continuous and the path
rectifiable, then the limit exists. It 15 denoted by j, (F, d8).

Figure 26 Work of the force field F along the path {
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6: Conservative lorce fields

B Conditions for a field to be conservative

Theorem. A vector field F is conservative if and only if its work along any
path M | M , depends only on the endpoints of the path, and not on the shape
of the path.

ProoF. Suppose that the work of a field F does not depend on the path. Then
M

UM)y=—| (F.4S)

Mo
is well defined as a function of the point M. It 1s easy to verify that

au
ox’
ie., the field is conservative and L' is its potential energy. Of course, the
potential cnergy is defined only up to the additive constant U(M,), which
can be chosen arbitrarily.

Conversely, suppose that the ficld F is conservative and that U is its
potential energy. Then it is easily verified that

(F,dS) = —UM) + U(M,),

Mn
i.e., the work does not depend on the shape of the path. |
ProeLEM. Show that the vector field F, = x,, F, = —x, is not conservative

(Figure 27).

Figure 27 A non-potential field

PrOBLEM, Is the field in the plane minus the origin given by F; = x,/(x} + x2),
F, = —x,/(x} + x3) conservative? Show that a field is conservative if and
only if its work along any closed contour is equal to zero.

C Central fields

Definition. A vector ficld in the plane E? is called central with center at 0,
if it is invariant with respect to the group of motions'® of the plane
which fix 0.

' [neluding reflections.
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2: Investigation of the equations of motion

ProBLEM. Show that all vectors of a central field lie on rays through 0, and
that the magnitude of the vector field at a point depends only on the distance
from the point to the center of the field.

It is also useful to look at central fields which are ot defined at the point 0.

ExaMprLi. The newtonian field F = —k(r/|r|?) is central, but the field in
the problem in Section 6B is not.

Theorem. Every central field is conservative, and its potential energy depends
only on the distance to the center of the field, U = U(r).

ProoF. According to the previous problem, we may set F(r) = ®(re,,
where r is the radius vector with respect to 0, r is its length and the unit
vector e, = r/|r| its direction. Then

M M)
J (F, dS) = J ®(r)dr,
M, (M)

and this integral is obviously independent of the path. |

PropLEM. Compute the potential energy of the newtonian field.

Remark. The definitions and theorems of this paragraph can be directly
carried over to a euclidean space E” of any dimension.

7 Angular momentum

We will see tater that the invariance of an equation of a mechanical problem with respect 10 some
group of transformations always implies a conservation law. A central field is invariant with
respect to the group of rotations. The corresponding first integral is called the angular momen-
tum.

Definition. The motion of a material point (with unit mass) in a central field
on a plane is defined by the equation

P = ®rle,,

where r is the radius vector beginning at the center of the field 0, r is
its length, and e, its direction. We will think of our plane as lying in three-
dimensional oriented euclidean space.

Definition. The angular momentum of a material point of unit mass relative
to the point 0 is the vector product
M = [r, ]

The vector M is perpendicular to our plane and is given by one number:
M = Mn, where n = [e,, €,] is the normal vector, e, and e, being an
oriented frame in the plane (Figure 28).
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7. Angular momentum

"4 LS

Figure 28  Angular momentum

Remark. In general, the moment of a vector a “applied at the point 17
relative to the point 0 is [r, a]; for example, in 4 school statics course one
studies the moment of force. [ The literal translation of the Russian term for
angular momentum is “kinetic moment.” (Trans. note)]

A The law of conservation of angular momentum
Lemma. Let a and b be two vectors changing with time in the oriented euclidean
space R, Then
d .
- [,b] = [4,b] + [a,b].

Proor. This follows from the definition of derivative. O

Theorem (The law of conservation of angular momentum). Under motions
in a central field, the angular momentum M relative to the center of the
field 0 does not change with time.

PrOOF. By definition M = [r, ¢]. By the lemma, M = [, ¥] + [r, f]. Since
the field is central it is apparent from the equations of motion that the vectors
¢ and r are collinear. Therefore M = {. 1

B Kepler's law

The law of conservation of angular momentum was first discovered by
Kepler through observation of the motion of Mars. Kepler formulated this
law in a slightly different way.

We introduce polar coordinates r, ¢ on our plane with pole at the center
of the field 0. We consider, at the point r with coordinates {|r| = r, ¢),
two unit vectors: e,, directed along the radius vector so that

r=reg,
and e,, perpendicular to it in the direction of increasing . We express the
velocity vector F in terms of the basis e,, e, (Figure 29).
Lemma. We have the relation

T = fe, + roe,,



2: Investigation of the equations of motion

g

Figure 29 Decomposition of the vector fin terms of the basis €,, ¢,

ProoF. Clearly, the vectors e, and e, rotate with angular velocity ¢, ie.,
€ = ¢e, €, = —@g,.
Differentiating the equality r = re, gives us
F = Fe, + ré, = re, + ree,. O
Consequently, the angular momentum is
M = {r, ¢] = [r, 7e,] + [, r¢e,] = r@[r, e,] = r*¢[e,, e,].

Thus, the quantity M = r’¢ is preserved. This quantity has a simple
geometric meaning.

Figure 30 Sectorial velocity

Kepler called the rate of change of the area $(r) swept out by the radius
vector the sectorial velocity C (Figure 30):
48
C=—.
dt
The law discovered by Kepler through observation of the motion of the
planets says: in equal times the radius vector sweeps out equal areas, so

that the sectorial velocity is constant, dS/dt = const, This is one formulation
of the law of conservation of angular momentum. Since

AS = S(t + At) — S(¢) = 1ripAt + o(Ae),
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8: Investigation of motion in a central field

this means that the sectorial velocity

ds 1.2 1
T oe— ) e M
dr e =3

is half the angular momentum of cur point of mass 1, and therefore constant.

C

ExaMpLE. Some satellites have very elongated orbits. By Kepler’s law such
a satellite spends most of its time in the distant part of its orbit, where the
magnitude of ¢ is small.

8 Investigation of motion in a central field

The law of conservation of angular momentam lets us reduce problems about motioa in a
central field to problems with one degree of freedom. Thanks to this, motion in a central field can
be completely determined.

A Reduction to a one-dimensional problem
We look at the motion of a point (of mass 1) in a central field on the plane:

ou
o’
It is natural to use polar coordinates r, .

By the law of conservation of angular momentum the quantity M =
@(t)r*(¢) is constant (independent of ¢).

U=Un.

Theorem. For the motion of a material point of unit mass in a central field
the distance from the center of the field varies in the same way as r varies
in the one-dimensional problem with potential energy

M2
V(I‘) = U(l') + F

Proor. Differentiating the relation shown in Section 7 (F = fe, + r¢e,),
we find

F=(F— rp2e, + (256 + rde,.
Since the field is central,

w_ow,
or o "

Therefore the equation of motion in polar coordinates takes the form

?
f—r¢==-a—f 2%+ rp =0,
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2: Investigation of the equations of motion

But, by the law of conservation of angular momentum,

, M

(p rz 1
where M is a constant independent of ¢, determined by the initial conditions.
Therefore,

; ol M? . oV M?
r=——=é;-+rr—4 or r=—-§;, whereVzU—i-?.
The quantity V(r) is called the effective potential energy. 0

Remark. The total energy in the derived one-dimensional problem

r:2

is the same as the total energy in the original problem

E= % + Uir),
since
P 2 et P M
3 3T T2t

B fntegration of the equation of motion

The total energy in the derived one-dimensional problem is conserved.
Consequently, the dependence of r on ¢ is defined by the quadrature

, S dr
?’-—~\,-'2(E— V(I‘)) fd[—f\m

Since ¢ = M/r?, do/dr = (M/r?)//2(E — V(r)), and the equation of the

orbit in polar coordinates is found by quadrature,

J‘ Mirt dr
(P =

J2E = V()

C Investigation of the orbit

We fix the value of the angular momentum at M. The variation of r with time
is easy to visualize, if one draws the graph of the effective potential energy
V{r) (Figure 31).

Let E be the value of the total energy. All orbits corresponding to the given
E and M lic in the region V(r) < E. On the boundary of this region, V = E,
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8: Investigation of motion in a central field

’
Finin Fmax

Figure 31 Graph of the effective potential energy

Le., 7 = 0. Therefore, the velocity of the moving point, in general, is not equal
to zero since ¢ # Ofor M # 0.
The inequality V(r) < E gives one or several annular regions in the plane:

0 < Sr < rpn < .

If 0 < i < Faax < 0, then the motion is bounded and takes place inside
the ring between the circles of radius r,;, and r,,,,.

Pericenter

Apocenter

Figure 32 Orbit of a point in a central field

The shape of an orbit is shown in Figure 32. The angle ¢ varies mono-
tonically while r oscillates periodically between r,;, and r,... The points
where r = r,,;, are called pericentral, and where r = r.,,,, apocentral (if the
center is the earth—perigee and apogee; if it is the sun—perihelion and
aphelion; if it is the moon—perilune and apolune).

Each of the rays leading from the center to the apocenter or to the peri-
center is an axis of symmetry of the orbit.

In general, the orbit is not closed: the angle between the successive
pericenters and apocenters is given by the integral

rmex M /r dr
roin S/ 2E — V()

The angle between two successive pericenters is twice as big.

Q:
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2: Investigation of the equations of motion

Figure 33 Orbit dense in an annulus

The orbit is closed if the angle © is commensurable with 2z, ie, il ® =
2a(m/n), where m and n are integers,

It can be shown that if the angle @ is not commensurable with 2x, then the
orbit is everywhere dense in the annulus (Figure 33).

Ifrin = Fmax- 1€, E 15 the value of ¥ at a minimum point, then the annulus
degencrates to a circle, which is also the orbit.

ProeLEM, For which values of o is motion along a circular orbit in the field
with potential energy U = r*, —2 < « < oo, Liapunov stable?

ANSWER. Only for o = 2,

For valugs of E a little larger than the minimum of ¥ the annulus
Foin S F < ro., will be very narrow, and the orbit will be close to a circle.

In the corresponding one-dimensional problem, r will perform small oscilla-
tions close to the minimum pomnt of V.

ProeLeM. Find the angle @ for an orbit close to the circle of radius r.
Hint. CF. Section D below,

We now look at the case r,, = . If lim,, U(r} = lim,. . V() =
U, < oo, then it is possible for orbits to go off to infinity. If the initial energy
E is larger than U, then the point goes to infinity with finite velocity 7, =
 2(E — U,). We notice that if U(r) approaches its limit slower than r 2,
then the effective potential V will be attracting at infinity (here we assume that
the potential U is attracting at infinity).

If, as r = 0, |U(r)| does not grow faster than M2/2r?, then r,,, > 0 and
the orbit never approaches the center. If, however, U(r) + (M%/2r’) » —
as r — 0, then it is possible to “fall into the center of the field,” Falling into
the center of the field is possible even in finite time (for example, in the field
Uuir) = — 1)

ProaLEM. Examine the shape of an orbit in the case when the total energy
is equal to the value of the effective energy V at a local maximum point.
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&: Investigation of motion in a central ficld

D Central fields in which all bounded orbits are
closed

It follows from the following sequence of problems that there are only two
cases in which all the bounded orbits in a central field are closed, namely,

U=ar? az0
and

PrROBLEM |, Show that the angle @ between the pericenter and apocenter
is equal to the semiperiod of an oscillation in the one-dimensional system
with potential energy W{x) = U(M/x) + (x*/2).

Hint. The substitution x = M/r gives

Ximax dx
toin S UE ~ W)

ProBLEM 2. Find the angle & for an orbit close to the circle of radius #.

ANSWER, O = @, = a(M/r*/V" (") = o JUGU + rU").

ProsLeM 3. For which values of U is the magnitude of @, independent of the
radius r?

d):

ANSWER. U(r) = ar* (a0 = —2, e # W and U(r) = blogr.
It follows that @, = n/./a + 2 (the logarithmic case corresponds to
= 0). For example, for « = 2 we have ;. = n/2, and for « = —1 we have

%
b, =

PrROBLEM 4. Let in the situation of problem 3 U(r}— o¢ as r - oc. Find
limg_, ., D(E, M).

ANSWER. 7/2.

Hint. The substitution x = yx,,,, reduces & to the form

1 dy ¥ 1 ( M )
P = . . WHy) =2+ 5 U :
j min 2WH(1) = W(y) M=3 Xmax  \PXmax

As E — oc we have x,,, — oc and y,,;, — 0, and the second term in W* can
be discarded.
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2: Investigation of the equations of moticn

PrOBLEM 5. Let U(r) = —kr ™%, 0 < 8 < 2. Find ®, = lim . _, ®.

ANSWER, O, = L') dx/ /x¥ — x% = 7f(2 — f). Note that @, does not depend
on M.

ProsLeM 6. Find all central fields in which bounded orbits exist and are all
closed.

ANSWER. U = arf or U = —k/r.

Solution. If all bounded orbits are closed, then, in particular, &, =
2a{m/n) = const. According to Problem 3, U = ar'{a = -2}, or U =blInr
{x = 0). In both cases @, = n//a + 2. If x > 0, then according to Problem
4, hmg_  O(E, M}y =n/2, Therefore, @&, =n/2, a=2. H <0, then
according to Problem 5, limg.,__ ®E, M) = n/2 + a). Therefore,
mH2 + a) = n/\/2 + @, o = — 1. In the case x = 0 we find @,;, = 7//2,
which is not commensurable with 2z, Therefore, all bounded orbits can be
closed only in fields where U = ar? or U = —k/r. In the field U = ar?,
a > 0, all the orbits are closed (these are ellipses with center at 0, cf. Example
1, Section 5). In the field U = —&/r all bounded orbits are also <closed and
also efliptical, as we will now show.

E Kepler's problem

This problem concerns motion in a central field with potential U = —k/r
and therefore ¥(r) = —(k/r) + (M?/2r?) (Figure 34).
By the general formula

0= f_&
J2AE - Vir)y

~r

\ "~

Figure 34 Eflective potential of the Kepler problem
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8: Investigation of motion in a central feld

Integrating, we get

M_k
_ . v M
@ = 4r¢ cos =

To this expression we should have added an arbitrary constant. We
will assume it equal to zero: this is equivalent to the choice of an origin of
reference for the angle ¢ at the pericenter. We introduce the following

notation:
M? “2EM?
*-'k—- =p 1 + ‘“'—EE'— = é.
Now we get ¢ = arc cos ((p/r) — l)/e, i.e,

r

p= B
l +ecose

This is the so-called focal equation of a conic section. The motion is bounded
(Figure 35) for E < 0. Then ¢ < 1, i.e., the conic section is an ¢llipse, The
number p is called the parameter of the ellipse, and e the eccentricity. Kepler’s
first law, which he discovered by observing the motion of Mars, consisis
of the fact that the planets describe ellipscs, with the sun at one focus.

N

I—e r
i+e

Figure 35 Keplerian ellipse

If we assume that the planets move in a central field of gravity, then
Kepler’s first law implies Newton’s law of gravity: U = —(k/r) (cf. Section
2D above).

The parameter and eccentricity are related with the semi-axes by the
formulas

P p 2p
2a: + = \
l—e 14+ 1—¢?
LE.,
_ P
=T e

e=cla= \/ET—?/Q, where ¢ = ge is the distance from thc center to
the focus (cf. Figure 33).
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2: Investigation of the equations ol motion

Remark. An ellipse with small eccentricity is very close to a circle.!’
If the distance from the focus to the center is small of first order, then the
difference between the semi-axes is of second order: b =a /1 — e* x
a{l — 1¢?). For example, in the ellipse with major semi-axes of 10 cm and
eccentricity 0.1, the difference of the semi-axes is 0.5 mm, and the distance
between the focus and the center is 1 cm.

The eccentricitics of planets’ orbits are very small. Therefore, Kepler
originaily formulated his first law as follows: the planets move around the
sun in circles, but the sun is not at the center.

Kepler's second law, that the sectorial velocity is constant, is true in any
central ficld.

Kepler's third law says that the period of revolution around an elliptical
orbit depends only on the size of the major semi-axes.

The squares of the revolution periods of two planets on different elliptical
orbits have the same ratio as the cubes of their major semi-axes.*®

Proor. We denote by T the period of revolution and by S the area swept
out by the radius vector in time T. 2§ = MT, since M/2 is the sectorial
velocity. But the area of the ellipse, S, is equal to ngb, so T = 2rab/M. Since

_ Mk
2|E,§:; 2]
(from a = p/(1 — ¢*)), and
p ML M
CmE M VO
then T = 2a(k/(\/21E|)*); but 2| E| = kfa,so T = 2na®%k ™42, 0

We note that the total energy E depends only on the major semi-axis a
of the orbit and is the same for the whole set of elliptical orbits, from a circle
of radius « to a {ine segment of length 2a.

PropLEM. At the entry of a satellite into a circular orbit at a distance 300 km
from the ¢arth the direction of its velocity deviates from the intended direction
by 1° towards the carth. How is the perigee changed?

ANswER. The height of the perigee is tess by approximately 110 km.

1" Let a drop of tea fall into a glass of tea close 1o the center, The waves collect at the symmetric
point. The reason is that, by the focal definition of an ellipse. waves radiating from one focus of
the ellipse collect at the other,

'8 By planels we mean here points in a central field.
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8 Investigation of motion in a central field

'-‘_.

Figure 36 An orbit which is close 10 ¢ircular

Hint. The orbit differs from a circle only to second order, and we can dis-
regard this difference. The radius has the intended value since the mitial
energy has the intended value. Therefore, we get the true orbit (Figure 36)
by twisting the intended orbit through 1°.

ProeiEM. How does the height of the perigee change if the actual velocity
is 1 m/sec less than intended ?

PrOBLEM. The first cosmic velocity is the velocity of motion on a circular
orbit of radius close to the radius of the earth. Find the magnitude of the

first cosmic velocity v, and show that v, = ﬁvl (cf. Section 3B).
ANsSwER. 8.1 km/sec.

ProsLem.'? During his walk in outer space, the cosmonaut A, Leonov threw
the lens cap of his movie camera towards the earth. Describe the motion of
the lens cap with respect to the spaceship, taking the velocity of the throw
as 10 m/sec.

ANsWER. The lens cap will move relative to the cosmonaut approximately
in an ellipse with major axis about 32 km and minor axis about 16 km. The
center of the ellipse will be situated 16 km in front of the cosmonaut in his
orbit, and the period of circulation around the ellipse will be equal to the
period of motion around the orbit.

Hint. We take as our unit of length the radius of the space ship’s circular
orbit, and we choose a unit of time so that the period of revolution around this
orbit is 27. We must study solutions to Newton's equation

close to the circular solution with ry = 1, ¢, = £. We seek those solutions
in the form

r=rot+r @ =@+ @ n<lg <L

'* This problem is taken from V. V. Beletskii's delightful book, “Sketches on the Motion of
Celestial Bodies,” Nauka, 1972,
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2: Investigation ol the equations of motion

By the theorem on the differentiability of a selution with respect to its
initial conditions, the functions r,(t) and ¢ (t) satisfy a system of linear
differential equations (equations of variation) up to small amounts which
are of higher than first order in the initial deviation.

By substituting the expressions for r and ¢ in Newton’s equation, we get,
after simple computation, the variational equations in the form

Fo=3r 420, ¢ = =2

After solving these equations for the given initial conditions (r,(0) =
©,(0) = ¢,(0) = 0, F,{0) = —(1/800}), we get the answer given above.

Disregarding the small quantities of second order gives an effect of under
1/800 of the one obtained (ie., on the order of 10 meters on one loop).
Thus the lens cap describes a 30 km ellipse in an hour-and-a-half, returns
to the space ship on the side opposite the earth, and goes past at the distance
of a few tens of meters.

Of course, in this calculation we have disregarded the deviation of the orbit
from a circle, the effect of forces other than gravity, etc.

9 The motion of a point in three-space

In this paragraph we define the angular momentum relative to an axis and we show that, for
motion in an axially symmelric field, it is conserved.
All the results obtained for motion in a plane can be easily carried over to motions in space.

A Conservative fields

We consider a motion in the conservative field

U
or’

where U = U(r), re E*.
The law of conservation of energy holds:

% =0, where E = }#? + U(r).

B Central fields

For motion in a central field the vector M = [r, i'] does not change: dM/dr =
0.
Every central field is conservative (this is proved as in the two-dimensional

case), and

dM
M _ g =0,
7 [f, £} + [r, ©]
since f = —(0U/2r), and the vector 6U/ér is collinear with r since the field is

central.
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9: The motion of a point in three-space

Corollary. For motion in a central field, every orbit is planar.

PrOOF. (M, r) = ([1, £], r) = 0; therefore r(t) L M, and since M = const.,
all orbits lie in the plane perpendicular to M.2° O

Thus the study of orbits in a central field in space reduces to the planar
problem examined in the previous paragraph.

ProBLEM. Investigate motion in a central field in n-dimensional euclidean
space.

C Axially symmetric fields

Definition. A vector field in E® has axial symmetry if it is invariant with
respect to the group of rotations of space which fix every point of some
axis.

ProeLEM. Show that if a field is axially symmetric and conservative, then its
potential energy has the form U = U(r, z), where r, ¢, and z are cylindrical
coordinates.

In particular, it follows from this that the vectors of the field li¢ in planes
through the z axis.

As an example of such a field we can take the gravitational field created
by a solid of revelution,

N

o

Figure 37 Moment of the vector F with respect to an axis

Let z be the axis, oriented by the vector e, in three-dimensional euclidean
space E>; F a vector in the euclidean linear space R*; 0 a point on the z axis;
r = x — 0 € B the radius vector of the point x € E3 relative to 0 (Figure 37).

Definition. The moment M, relative to the z axis of the vector F applied
at the point r is the projection onte the z axis of the moment of the vector
F relative to some point on this axis:

M, = (e, [r, F]).

29 The case M = Ois left to the reader.



2 Investigation of the equations of motion

The number M, does not depend on the choice of the point 0 on the
z axis. In fact, if we look at a point 0 on the axis, then by properties of the
triple product, M, = (e, [v, F]) = ([e., ], F) = ([e,, r], F} = M,.

Remark. M, depends on the choice of the direction of the z axis: if we change
e, to —e,, then M, changes sign.

Theorem, For a motion in a conservative field with axial symmetry around the
z axis, the moment of velocity relative to the z axis is conserved.

Proor. M, = (e, {r,t]). Since ¥ = F, it follows that r and ¥ lie in a plane
passing through the z axis, and therefore [r, t] is perpendicular to e,.
Therefore,

M. = (e, [}, F]) + (e, [1,§]) = 0. a

Remark. This proof works for any force field in which the force vector F
tes in the plane spanned by rand e,.

10 Motions of a system of # points

In this paragraph we prove the laws of conservation of energy, momentum, und angular momen-
tum for systems of material points in E*.

A Internal and external forces

Newton’s equations for the motion of a system of n material points, with
masses m; and radius vectors r; € E* are the equations

mf;, =F,, i=12,...,n

The vector F; is culled the force acting on the i-th point.

The forces F; are determined experimentally. We often observe in a
system that for two points these forces are equal in magnitude and act
in opposite directions along the straight line joining the points (Figure 38).

F i Ff f

o S s

Figure 38 Forces of interaction

Such forces are called forces of interaction (example : the force of universal
gravitation).

If all forces acting on a point of the system are forces of interaction, then
the system is said to be closed. By definition, the force acting on the i-th
point of a closed system is



10: Motions of a system of r points

The vector F; is the force with which the j-th pomt acts on the i-th.
Since the forces F;; and F; are opposite (F;; = —F ), we can write them
in the form F;; = f;e;;, where f;; = f;; is the magnitude of the force and e;;
is the unit vector in the direction from the i-th point to the j-th point.
If the system is not closed, then it is often possible to represent the forces
acting on it in the form
F; = Z F;+F,

where F; are forces of interaction and Fi(r;) is the so-called external force.

F

Figure 39 Internal and external forces

ExampLE. (Figure 39) We separate a closed system into two parts, I and IL
The force F, applied to the i-th point of system I is determined by forces of
interaction inside system 1 and forces acting on the i-th point from poinis
of system I1, 1.¢,,

FI- = Z FU + F:.
Jef
Ji*i
F is the external force with respect to system I.
B The law of conservation of momentum
Definition. The momentum of a system is the vector

P = iji'".

i=1]

Theorem. The rate of change of momentum of a system is equal to the sum
of all external forces acting on points of the system.

Proor. dP/dt = 37| m;f; = Z,_IF _Z,JFU+Z Fi=Y.F.% F;=
0, since for forces of interaction F;; [

Corollary 1. The momentum of a ciosed system is conserved.

Corollary 2. If the sum of the exterior forces acting on a system is perpendicular
to the x axis, then the projection P, of the momentum onto the x axis is
conserved: P, = const,
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2: Investigation of the equations of motien

Definition. The center of mass ol a system is the point

_
Yomy

ProBLEM. Show that the center of mass 1s well defined, e, does not depend
on the choice of the origin of reference for radius vectors.

r

The momentum of a system is equal to the momentum of a particle lying at
the center of mass of the system and having mass ) m;.

In fact, (3. mr = 3. (mr,), from which it follows that (3. m)i = ¥ m;i;.

We can now formulate the theorem about momentum as a theorem about
the motion of the center of mass.

Theorem. The center of mass of a system moves as if all masses were concen-
trated at it and all forces were applied 1o it.
Proor. (3. m)i = P. Therefore, (3. m)f = dP/dt = 3, F,. O

Corollary. If a system is closed, then its center of mass moves uniformly
and linearly.

C The law of conservation of angular momentum

Definition. The angular momentum of a material point of mass m relative to the
point @, is the moment of the momentum vector relative to 0:

M = [r, mE].

The angular momentum of a system relative te () 18 the sum of the angular
momenta of all the points in the system:

M = i[r,-,m,—i‘,—].

i=1

Theorem. The rate of change of the angular momentum of a system is equal
to the sum of the moments of the external forces®' acting on the points of
the system.

Prooe. dM/de = 37_ [8, mF] + 2 0=, [1;, m;i;]). The first term is equal

to zero, and the second is equal to

S[e.Fl=3 [.- (Z F + F:)] = $Ir. Fl,

i=1 i=1 i) i=1
by Newton's equations.
21 The moment of force is also called the torgue [Trans. note].
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10: Motions of a system of n points

The sum of the moments of two forces of interaction is equal to zero since
Fjy=—Fuso [, F ]+ [r,, F;]=[(r; — 1), F;]=0.

Therefore, the sum of the moments of all forces of interaction is equal
to zero:

T [ri, 5 Fij] 0.

i=1 i#]
Therefore, dM/dt = 3 7_, [r;, F{]. O

Corollary 1 (The law of conservation of angular momentum). If the system
is closed, then M = const.

We denote the sum of the moments of the external forces by N =
n 1
Zs=1 [r;, F{].

Then, by the theorem above, dM/dt = N, from which we have

Corollary 2. If the moment of the external forces relative to the © axis is
equal to zere, then M, is constant.

D The law of conservation of energy
Definition. The kinetic energy of a point of mass m is

mi?

T==

Definition. The kinetic energy of a system of mass points is the sum of the
kinetic energies of the points:

m.'f'iz

T 2

M:

T:

i

where the m; are the masses of the points and ¥, are their velocities.

Theorem. The increase in the kinetic energy of a system is equal to the sum of
the work of all forces acting on the points of the system.

PROOF.
7 L. . T
- = Zmi(ris i) = Z(ris m;F;) = Z(Tn F)).
d 5 i=1 i=1
Therefore,
4 dT H i ) H
T(t) — T(ty) = ar dt = Z (¢, F)dt = ZAs- a
o =1 i i=1
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2: Investigation of the equations of motion

The configuration space of a system of n mass points in E? is the direct
product of n euclidean spaces: E*" = E* x ... x E> It hasitself the structure
of a euclidean space.

Let r = (ry, ..., r,) be the radius vector of a point in the configuration
space,and F = (F, ..., F,) the force vector. We can write the theorem above
in the form

Fliiy)

Tm)—Tm0=f

ritg)

mm:fﬁma

In other words:
The increase in kinetic energy is equal to the work of the “force™ F
on the “path” r(¢) in configuration space.

Definition. A system is called conservative if the forces depend only on the
location of a point in the system {F = F(r)), and if the work of F along
any path depends only on the initial and final points of the path:

(F, dr) = (M, M,).

M
Theorem. For a system to be conservative it is recessary and sufficient that
there exist a potential energy, i.e., a function U(r) such that
ou
or’
Prooy, Cf. Section 6B. dJ

Theorem. The total energy of a conservative system (E = T + U)is preserved
under the motion: E(t,) = E(1,).

ProoF. By what was shown earlier,
LILIY}
T(t,) - Tlto) = j (F, dr) = U(r(t,)) — U(e(1,)) m

ritg)

Let all the forces acting on the points of a system be divided into forces of
interaction and external forces:

F, = ZFU+ K,

i#f

Whel‘c FU = _ij = ﬁjeij‘

Proposition. [f the forces of interaction depend only on distance, f; =
Siflry — v;]), then they are conservative.
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10: Motions of a system of n points

Proov, If a system consists entirely of two points i and j, then, as is easily
seen, the potential energy of the interaction is given by the formula

Uyt = | filordp.

We then have
_anj“ri j_i“ _ __@Ir,- — 1
or; Y ar.:

= f;-‘.euc

Therefore, the potential energy of the interaction of all the points will be

Ulr) = Z Uiflr, — ;) O

i=j

If the external forces are also conservative, i.e, F; = —(8U}/0r;), then
the system is conservative, and its total potential energy is
Ulry= Y Uy + 3, Ui
i= ¥
For such a system the total mechanical energy
P2
E=T+ U=25'+ Y U+ 3 U

i (=] i

1s conserved.
If the system is not conservative, then the total mechanical energy is not
generally conserved.

Definition. A decrease in the mechanical energy E(t,) — E{t,) is called an
increase in the non-mechanical energy E':

E'(t;) — E'(to) = Et0) — E(ty).

Theorem (The law of conservation of energy). The total energy H = E + E
is conserved.

This theorem is an obvious corollary of the definition above. Its value lies
in the fact that in concrete physical systems, expressions for the size of the
non-mechanical energy can be found in terms of other physical quantities
(temperature, €tc.).

E Example: The two-body problem

Suppose that two points with masses m, and m, interact with potential U,
so that the equations of motion have the form
cU . U

_3_1‘1 Mk = _Es U=U(lr; — ;)

mt, =

49



2: Investigation of the equations of motion

Theorem. The time variation of ¥ =r, — 1, in the two-body problem is the
same as that for the motion of a point of mass m = mym,f(m, + m,) in a
field with potential U(|r|).

We denote by r; the radius vector of the center of mass: r, =
(m,r, + m,r;)/(m; + m,). By the theorem on the conservation of momentum,
the point r, moves uniformly and linearly.

We now look at the vector r = r; — r,. Multiplying the first of the
equations of motion by m,, the second by m,, and computing, we find that
mymy ¥ = —(m + my)(3U/0r), where U = U(|r, — r,{) = U(Ir|).

In particular, in the case of a Newtonian attraction, the points describe
conic sections with foci at their common center of mass (Figure 40).

m_a\

=

1y

Figure 40 The two body problem

PROBLEM. Determine the major semi-axis of the cllipse which the center of
the earth describes around the commeon center of mass of the earth and the
moon. Where 1s this center of mass, inside the earth or outside? (The mass
of the moon is 1/81 times the mass of the earth.)

11 The method of similarity

In some cases it is possible to obtain mmportant information from the form of the equations of
motion without solving them. by using the methods of similarity and dimension. The main idea
in these methods is to choose a change of scale {of time, length, mass, etc.) under which the
equations of motion preserve their form.

A Example

Let r(1) satisfy the equation m{d’r/dt?) = —(3U/dr). We set 1, = a2 and
m, = o*m. Then r(r,) satisfies the equation m, - (d’r/dt}} = —(8U/dr). In
other words:

If the mass of a point is decreased by a factor of 4, then the point can travel
the same orbit in the same force field twice as fast.??

2% Here we are assuming that U does not depend on m. In the field of gravity, the potential
energy U is proportional 10 m, and therefore the acceleration does not depend on the mass m
of the moving point.
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11: The method of similarity

B A problem

Suppose that the potential energy of a central field is a homogeneous function
of degree v:

Ular) = 2°U(r) foranya > Q.

Show that if a curve y is the orbit of a motion, then the homothetic
curve ay (s also an orbit (under the appropriate initial conditions). Determine
the ratio of the circulation times along these orbits. Deduce {rom this the
isochronicity of the oscillation of a pendulum (v = 2) and Kepler’s third law

{v=—1)

PROBLEM. If the radius of a planet is « times the radius of the earth and its
mass f§ times that of the earth, find the ratic of the acceleration of the force
of gravity and the first and second cosmic velocities to the corresponding
quantities for the earth.

ANSWER. 7 = a2, 8 = \/ﬂ

For the moon, for example, o = 1/3.7 and # = 1/81. Therefore, the accel-
gration of gravity is about 1/6 that of the earth (y = 1/6), and the cosmic
velocities are about 1/5 those for the earth (& =~ 1/4.7).

ProBLEM.?® A desert animal has to cover great distances between sources of
water. How does the maximal time the animal can run depend on the size
L of the amimal?

ANswer. It is directly proportional 1o L.

Solurion. The store of water is proportional to the velume of the body,
i.e., L3 the evaporation is proportional to the surface area, i.e., L%, Therefore,
the maximal time of a run from one source to another is directly proportional
to L.

We notice that the maximal distance an animal can run alse grows
proporticnally to L (cf. the following problem).

ProBLeM. ** How does the running velocity of an animal on level ground
and uphill depend on the size L of the animal?

ANsweR. On level ground ~ L° uphill ~ L™!.

23§ M. Smith, Mathematical [deas in Biolvgy. Cambridge University Press, 1968.
“* Ihid.
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2: Investigation of the equations of motion

Solution. The power developed by the animal is proportional to L2
(the percentage used by muscle is constant at about 25 %, the other 75% of
the chemical encrgy is converted to heat; the heat output is proportional
to the body surface, i.e., L*, which means that the effective power is pro-
portional to L?).

The force of air resistance is directly proportional to the square of the
velocity and the area of a cross-section; the power spent on overcoming
it is therefore proportional to v?L*y. Therefore, v3L° ~ L% so v ~ L® In
fact, the running velocity on level ground, no smaller for a rabbit than for
a horse, in practice does not specifically depend on the size.

The power necessary to run uphillis mgv ~ L3v; since the generated power
is ~ L? we find that v ~ L™, In fact, a dog easily runs up a hill, while a
horse slows 1ts pace.

ProBLEM. 2** How does the height of an animal’s jump depend on its size?
ANSWER. ~ L°.

Solution. For a jump of height h one needs energy proportional to L/,
and the work accomplished by muscular strength F is proportional to FL.
The force F is proportional to L? (since the strength of bones is proportional
to their section). Therefore, L*h ~ L°L, i.¢., the height of a jump does not
depend on the size of the animal. In fact, a jerboa and a kangaroo can jump
to approximately the same height.

242 thid.
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PART II
LAGRANGIAN MECHANICS

Lagrangian mechanics describes motion in a mechanical system by means of
the configuration space. The configuration space of a mechanical system has
the structure of a differentiable manifold, on which its group of diffeo-
morphisms acts. The basic ideas and theorems of lagrangian mechanics are
invariant under this group,”* even if formulated in terms of local coordinates.

A lagrangian mechanical system is given by a manifold (*configuration
space”) and a function on its tangent bundle (“the lagrangian function™).

Every one-parameter group of diffeomorphisms of configuration space
which fixes the lagrangian function defines a conservation law (ie, a first
integral of the equations of motion).

A newtonian potential system is a particular case of a lagrangian system
(the configuration space in this case is euclidean, and the lagrangian function
is the difference between the kinetic and potential energies).

The lagrangian point of view allows us to solve completely a series of
important mechanical problems, including problems in the theory of small
oscillations and in the dynamics of a rigid body.

% And even under larger groups of transformations, which also affect time.



Variational principles

In this chapter we show that the motions of a newtonian potential system
are extremals of a variational principle, *Hamilton’s principle of least
action.”

This fact has many important consequences, including a quick method
for writing equations of motion in curvilinear coordinate systems, and a
series of qualitative deductions—for example, a theorem on returning to a
neighborhood of the initial point.

In this chapter we will use an n-dimensional coordinate space. A vector
int such a space is a set of numbers X = (x,, ..., x,}. Similarly, éf/0x means
(@f/éx,, ..., dfféx,), and (a,b) = aby + --- + a,b,.

[2 Calculus of variations

For what follows, we will need some facts from the calculus of variations. A more detailled
exposition can be found in “A Course in the Calculus of Variations™ by M. A, Lavrentiev and
L. A. Lusternik, M. L., 1938, or G. E. Shilov. " Elementary Functional Analysis,” MIT Press,
1974,

The calculus of variations is concerned with the extremals of functions
whose domain is an infinite-dimensional space: the space of curves. Such
functions are called functionals.

An example of a functional is the length of a curve in the euclidean plane:
ify = {(t, x): x(t) = x, to <t < t,}, then ®p) = [}! /1 + %2 dt.

In general, a functional is any mapping from the space of curves to the
real numbers.

We consider an “approximation™ ¥ to 3, ¥ = {(t, x): x = x(¢} + h{t}}.
We will call it 4" =y + k. Consider the increment of ¢, O(y + h) — ®(y)
(Figure 41).
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3: Variational principles

Xy

RYY) ¥

!

fy )

Figure 41 Variation of a curve

A Variations

Definition. A functional @ is called differentiable®® if ®(y + h) — ®(y) =
F + R, where F depends linearly on h (ie., for a fixed y, F(h, + h,) =
F(h,) + F(h,) and F(ch) = cF(k)), and R(k, 7) = O(h%) in the sense that,
for |h| < e and |dh/dt| < &, we have |R| < Ce? The linear part of the
increment, F(h), is called the differential.

It can be shown that if & is differentiable, its differential is uniguely
defined. The differential of a functional is also called its variation, and h is
called a variation of the curve.

ExaMpLE. Let 7 = {{t, x): x = x(t),t, < t < t,} beacurve in the (¢, x)-plane;

¥ =dx/dt; L = L{a, b, ¢) a differentiable function of three variables. We
define a functional @ by

o) = [ Lesto), 30, 04
In case L = /1 + B2, we get the length of 7.

Theorem. The functional ®©(y) = |} L(x, X, t)dt is differentiable, and its
derivative is given by the formula

“[3L  d oL oL
F(h)_L [a—aﬂ]hdwr(ﬁ}h)

Dy + h) — B(y) = J.h[L(x +h %+ ht) — Lix, %, )}dt

o

PROOF.

u g
=J' 0Ly %L la + oty = Fy + R
0 LOx ax

6 We should specify the class of curves on which @ is defined and the linear space which con-
tains #. One could assume, for example, that both spaces consist of the infinitely differentiable
lunctions.

56



12: Calculus ol variations

where

Fth) = _f (%%h + g-; E)d: and R = O(h?).

Integrating by parts, we find that

Y1 AT, o d [8L al
J gha= *L"E(E)“”( %)

B Extremals

L

Definition. An extremal of a differentiable functional ®(y) is a curve y such that
Fth) = Ofor all k.
(In exactly the same way that 7 is a stationary point of a function if the
differential is equal to zero af that point.)

Theorem. The curve v:x = x(t) is an extremal of the functional ®(y) =
fit L(x, X, t)dt on the space of curves passing through the points x(to) = X,
and x(t,) = x,, if and only if

d (6L éL
- ((_3;) — o= 0 along the curve x(t).

Lemma. If a continuous function f(t), to <t <t satisfies |;} f()h(t)dt = 0
for any continuous®’ function h(t) with h(ty) = h(t,}) = 0, then (1) = 0.

h

-
-

t—~d

L
i

Y+ d

4

talb'—

Figure 42 Construction of the function k

PROOF OF THE LEMMA. Let f(t*) > 0 for some t*, t;, < t* < 1,. Since f is
continuous, f(t) > ¢ in some neighborhood A of the point *: ty < t* —
d <t < t*+d <t Let h(t) be such that A(t) = Q outside A, A(t) > Oin A,
and h(t) =1 in A2 (ie, for t st. ¢* — 3d <t < t* + 3d). Then, clearly,
1 f(OR(t) = dc > 0 (Figure 42). This contradiction shows that f{t*) = 0
forall t*, 15 < t* < t,. O

PRrROOF OF THE THEOREM. By the preceding theorem,

"|Id (0L L JL
== [ ) -5 ()

27 Or even for any infinitely differentiable function h.

f

for
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3: Variational principles

The term after the integral 1s equal to zero since h(ty) = h(t,) =0.If yis an
extremal, then F(h) = O for all k with h(ty) = h(t,) = 0. Therefore,

_rlf(t)h(r)dr o,

d (oL JdL

f(f)=a(a) T
for all such h. By the lemma, £ (¢} = 0. Conversely, if f(t) = 0, then clearly
Fly=0. ]

where

ExampLE. We verify that the extremals of length are straight lines. We have:

L aL X d b4
— +2 - = e — —_— —— | =
L=yl+# =0 - — dx( __sz) 0

X .
X =0 x=C1E+Cz.

Jre

C The Euler-Lagrange equation

Definition. The equation

dr \ox ax

1s called the Euler-Lagrange equation for the functional

i(aL)_a_L=o

1
d= J Lix, %, t)dt.

Now let x be a vector in the n-dimensional coordinate space R", 7 =
{tt,x):x=x(), s <t <1,} a curve in the (n+ 1)-dimensional space
R x B% and L: R" x R" x B -+ Rafunction of 2n + | variables. As before,
we show:

Theorem. The curve y is an exiremal of the functional ®(y) = |}: L(x, X, t)dt
on the space of curves joining {ty, Xo) and (t,, x,), if and only if the Euler-
Lagrange equation is satisfied along y.

This is a system of n second-order equations, and the solution depends on
2n arbitrary constants. The 2n conditions x(t,) = x,, x{t,) = x, are used
for finding them,

ProsLEM. Cite examples where there are many extremals connecting two
given points, and others where there are none at all.
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13: Lagrange's equations

D dn important remark

The condition for a curve y to be an extremal of a functional does not depend
on the choice of coordinate system.

For example, the same functional —iength of a curve-—is given in cartesian
and polar coordinates by the different formulas

O = J X+ x3de O, = j JF+ gt dr.
to fo

The extremals are the same-—straight lines in the plane. The equations of
lines in cartesian and polar coordinates are given by different functions:
xy = xy{8), x; = x(t), and r = f{t), ¢ = @(0).

However, both these vector functions satisfy the Euler-Lagrange
equation

only, in the first case, when x,,, = x;, x; and L, = ./%} + %3, and in

the second case when x,,, = r, ¢ and L, = /#* + r’¢h.
In this way we can easily describe in any coordinates a differential equa-

tion for the family of all straight lines,

ProBLEM. Find the differential equation for the family of all straight lines
in the plane in polar coordinates.

13 Lagrange’s equations

Here we indicate the variational principle whose extremals are solutions of Newton's equations
of motion in a potential system.
We compare Newlon's equations of dynamics
d au
(1) —{mF) + —— =0
dt " ) ér,

with the Enler-Lagrange equation

d il oL

dt % ix
A Hamilton’s principle of least action

Theorem. Motions of the mechanical system (1) coincide with extremals of
the functional

5]
O(v) = J. Ldt, whereL=T-1U

o

is the difference between the kinetic and potential energy.
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3: Variational principles

PROOF. Since U = U(r) and T = 3 m, 17/2, we have 0L/6t; = OT/0%, = m;;
and éL/or, = —3U/jér,. il

Corollary. Let (g,. ..., 43,) be any coordinates in the configuration space of
a system of n mass points. Then the evolution of q with time is subject to the
Euler- Lagrange equations

d /oL oL
Bt ol I Y} = T-U.
P ( aq) P> , where L=T- U
Proor. By the theorem above, a motion is an extremal of the functional

§ L dt. Therefore, in any system of coordinates the Euler-Lagrange equation
written in that coordinate system 1s satisfied.

Definition. In mechanics we use the following terminology: L(q.4,t)=T- U
is the Lagrange function or lagrangian, g, are the generalized coordinates,
g; are generglized velocities, dL/04, = p, are generalized momenta,
dL/dg; are generalized forces, j:; L(y, q, t)dt is the action, (d(6L/34,)/dt)
—(@Ljdyq;) = O are Lagrange's equations.

The last theorem is called “Hamilton’s form of the principle of least
motion™ because in many cases the action q(r) is not only an ¢xtremal but
is also a minimum value of the action functional [} L dt.

B The simplest examples

Exampir 1. For a free mass point in E3,

in cartesian coordinates g; = r; we find
m . . .
L=30i+4+4)

Here the generalized velocities are the components of the velocity vector,
the generalized momenta p; = mg; are the components of the momentum
vector, and Lagrange's equations coincide with Newton's equations
dp/dt = 0. The extremals are straight lines. It follows from Hamilton’s
principle that straight lines are not only shortest (i.e., extremals of the length

n /@t + ¢% + g3 dt) but also extremals of the action [} (4 + §3 + ¢3)dt.

ProBLEM. Show that this extremum 18 a minimum.

ExaMPLE 2. We consider planar motion in a central field in polar coordinates
4, =r.q, = @. From the relation r = fe, + ¢re, we find the kinetic energy
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14; Legendre transformations

T = imi? = im(#* + r?¢?) and the lagrangian L(q, 4) = T(q, §) — U(q),
where U = Ulg,).
The generalized momenta will be p = 8L/24, ic,,

pi=mé  py=mrig.
The first Lagrange equation p, = dL/dq, takes the form

ou

mi = mrgp? — >
r

We already obtained this equation in Section 8.

Since g, = ¢ does not enter into L, we have 0L/dgq, = 0. Therefore, the
second Lagrange equation will be p, = 0, p, = const. This is the law of
conservation of angular momentum.

In general, when the field is not central (U = U(, ¢)), we find p, =
— dU/éo.

This equation can be rewritten in the form d(M, e)/dt = N, where
N =([r,F],e,)and F = —3U/dr. (The rate of change in angular momentum
relative to the z axis is equal to the moment of the force F relative to the
z axis.)

In fact, we have dU = (QU/or)dr + (éU /Bp)de = —(F, dry= —(F, e )dr —
r(F, e,)do; therefore, —dU/0p = r(F, e,}) = r([e,, F], &) = ([r, F], &,).

This example suggests the following generalization of the law of con-
servation of angular momentum.

Definition. A coordinate g; is called cyclic if it does not enter into the
lagrangian: éL/dg, = .

Theorem. The generalized momentum corresponding to a cyclic coordinate is
conserved: p; = const.

Proor. By Lagrange’s equation dp,/dt = 0L/0g; = 0. O

14 Legendre transformations

The Legendre transformation is a very useful mathematical tool: il transforms functions on a
vector space 10 functions on the dual space. Legendre transformaticns are related to projective
duality and tangential coordinates in algebraic geometry and the construction of dual Banach
spaces in analysis. They are often encountered in physics (for example, in the definition of
thermodynamic quantities).

A Definition

Let y = f(x) be a convex function, f"(x} > 0.

The Legendre transformation of the function f is a new function g of a
new variable p, which is constructed in the following way (Figure 43). We
draw the graph of { in the x, y plane, Let p be a given number. Consider the
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3: Variational principles

f(x)

2(p)

X

x{(p)

Figure 43 Legendre transformation

straight line y = px. We take the point x = x(p) at which the curve is farthest
from the straight line in the vertical direction: for each p the function px —
f(x) = F(p, x) has a maximum with respect to x at the point x(p). Now we
define g(p) = F(p, x(p)).

The point x(p} is defined by the extremal condition dF/dx =0, ie.
f'(x) = p. Since [ is convex, the point x(p) is unique.®

PronLem . Show that the domain of g can be a point, a closed interval, or a ray if f is defined
on the whole x axis. Prove that if £ is defined on a closed interval, then g is defined on the whole p
axis.

B Examples
ExaMpLE 1. Let f(x) = x%. Then F(p, x) = px — x%, x(p) = 4p, g(p) = 4p%.
ExaMPLE 2. Let f(x) = mx2/2. Then g(p) = p%/2m.

ExaMpPLE 3. Let f(x) = x*/x. Then g(p) = p?/B, where (1/x) + (1/8) = 1
(x>1,8>1).

P

Po 2 p -

i
Figure 44 Legendre transformation taking an angle to a line segment

ExAMPLE 4. Let f(x) be a convex polygon. Then g(p}is also a convex polygon,
in which the vertices of f(x) correspond to the edges of g(p), and the edges of
£(x) to the vertices of g(p). For example, the corner depicted in Figure 44 is
transformed to a segment under the Legendre transformation.

28 If it exists.

62



14: Legendre transformations

C Involutivity

Let us consider a function f which is differentiable as many times as necessary,
with f"(x) > 0. It is easy to verify that a Legendre transformation takes
convex functions to convex functions, Therefore, we can apply it twice.

Theorem. The Legendre transformation is involutive, i.e., its square is the
identity: if under the Legendre transformation f is taken to g, then the
Legendre transform of g will again be f.

ProoF. In order to apply the Legendre transform to g, with variable p, we
must by definition look at a new independent variable (which we will call x),
construct the function

G(x, py = xp — g(p),
and find the point p(x)} at which G attains its maximum: 8G/6p = 0, i.e.,
g'(p) = x. Then the Legendre transform of g(p) will be the function of x
equal to G(x, p(x)).
We will show that G(x, p(x)) = f(x). To this end we notice that G(x, p) =
xp — g(p} has a simple geometric interpretation: it is the ordinate of the
point with abscissa x on the line tangent to the graph of f(x) with slope p

fl)

//nﬂm

Figurc 45 Involutivity of the Legendre transformation

(Figure 45). For fixed p, the function G(x, p} is a linear function of x, with
0G/0x = p, and for x = x(p} we have G(x,p) = xp — g(p) = f(x) by the
definition of g(p).

Let us now fix x = x, and vary p. Then the values of G(x, p) will be the
ordmnates of the points of intersection of the line x = x,, with the line tangent
to the graph of f(x) with various slopes p. By the convexity of the graph it
follows that all these tangents lie below the curve, and therefore the maximum
of G(x, p} for a fixed x(p,) is equal to f(x) (and is achieved for p = p(x,) =
S (xo)). U
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3: Variational principles

2(p)

fix)

— W

Figure 46 Legendre transformation of a quadratic form

Corollary.?® Consider a given family of straight lines v = px — g(p). Then
its envelope has the equation y = f(x), where f is the Legendre transform

of g.
D Young's inequality

Definition. Two functions, f and g, which are the Legendre transforms of
one another are called dual in the sense of Young.

By definition of the Legendre transform, F(x,p)= px — f(x) is less
than or equal to g(p) for any x and p. From this we have Young's inequalit y:

px < f(x) + g(p).

ExampLe 1, If f(x) = }x%, then g(p) = 3p” and we obtain the well-known

inequality px < %x? + §p? for all x and p.

Exampii 2, If f(x) = x*/a, then g(p) = p#/B, where (1/2) + (1/8) = 1, and
we obtain Young's inequality px < (x*/z} + (pif) for all x >0, p > 0,
o> 1, 8> 1, and (1/a) + (1/8) = L.

E The case of many variables

Now let f(x) be a convex function of the vector variable X = (xy, ..., x,)
(i.e., the quadratic form ((62f/0x*)dx, dx) is positive definite). Then the
Legendre transform is the function g(p) of the vector variablep = (p,, ..., pn),

defined as above by the equalities g(p) = F(p, x(p)) = max, F(p, x), where
F(p, x) = (p, x) — f(x)and p = 0//0x.

All of the above arguments, including Young's inequality, can be carried
over without change to this case.

PrOBLEM. Let f: R" — R be a convex function. Let R™* dencte the dual vector
space. Show that the formulas above completely define the mapping
g : R"™ — R (under the condition that the linear form df |, ranges over all of
R"* when x ranges over R").

29 (One can casily see that this is the theory of ™ Clairaut’s equation.”
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15: Hamilton's equations

ProBLEM. Let f be the quadratic form f(x) = > fi;x;x;. Show that its
Legendre transform is again a quadratic form g(p) = . g;;p;p;, and that the
values of both forms at corresponding points coincide (Figure 46}

S(x(p) = g(p) and g(p(x)) = f(x).

15 Hamilton’s equations

By means of a Legendre transformation, a lagrangian system of second-order differential
equations is converted into a remarkably symmetrical system of 2 first-order equations called
a hamiltonian system of equations (or canonical equations),

A Equivalence of Lagrange’s and Hamilton’s
equations

We consider the system of Laprange’s equations p = 0L/dq, where p =
0L/64, with a given lagrangian function L : B" x B" x R = R, which we will
assume to be convex>® with respect to the second argument q.

Theorem. The system of Lagrange’s equations is equivalent to the system of
2n first-order equations (Hamilton'’s equations)

where H(p, q, t) = pd — L(q, §, 1} is the Legendre transform of the lagrang-
ian function viewed as a function of 4.

Proor. By definition, the Legendre transform of L{q, §, t) with respect to 4
is the function H{p) = p4 — L(q), in which & is expressed in terms of p
by the formula p = 3L/84, and which depends on the parameters q and t.
This function H is called the hamiltonian.
The total differential of the hamiltonian
oH OH oH

dH=6_pdp+Edq+5dt

is equal to the total differential of p§ — L for p = dL/9§:

dL

oL
dH=l}1dp——dq—Edr.

oq
Both expressions for d H must be the same, Therefore,
dH 6H oL oH 0L

ap oq oq & o

*® In practice this convex function will often be a positive definite quadratic form.
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3: Variational principles

Applying Lagrange’s equations p = JL/0q, we obtain Hamilton’s equa-
tions.

We have seen that, if q(r) satisfies Lagrange’s equations, then (p(z), q(r))
satisfies Hamilton’s equations. The converse is proved in an analogous
manner. Therefore, the systems of Lagrange and Hamilton are equivalent.

O

Remark. The theorem just proved applies to all variational problems, not
just to the lagrangian equations of mechanics.

B Hamiltor’s function and energy

EXAMPLE. Suppose now that the equations are mechanical, so that the
lagrangian has the usual form L = T — U, where the kinetic energy T is a
quadratic form with respect 10 §:

T =43 a;4:q;, wherea;, = a;{q,t)and U = U(q).

Theorem. Under the given assumptions, the hamiltonian H is the total energy
H=T+U.

The proof is based on the following lemma on the Legendre transform of
a quadratic form.

Lemma. The values of a quadratic form f(X) and of its Legendre transform
g(p) coincide at corresponding points: f(x) = g(p).

ExampLE. For the form f(x) = x? this is a well-known property of a tangent
to a parabola. For the form f(x) = mx* we have p = mx and g(p) =
p2m = mx?/2 = f(x).

PrOOF OF THE LEMMA By Euler’s theorem on homogeneous functions
(8f/ox)x = 2f. Therelore, g(p(x)} = px — f{X) = (Bf/ox)x — f = 2f(x) —
f(x} = f(x). O

PROOF OF THE THEOREM. Reasoning as in the lemma, we find that H = pq —
L=2T-(T-U)=T+ U. U

ExaMrPLE. For one-dimensional motion

In this case T=4¢% U = Ulg), p = ¢, H = $p? + Ulg) and Hamilton’s
equations take the form
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15: Hamilton's equations

This example makes it easy to remember which of Hamilton’s equations
has a minus sign.

Several important corollaries follow from the theorem on the equivalence
of the equations of motion to a hamiltonian system. For example, the law of
conservation of energy takes the simple form:

Corollary 1. dH/d: = 0H/ét. In particular, for a system whose hamiltonian
Jfunction does not depend explicitly on time (0H /0t = 0), the law of conserva-
tion of the hamiltonian function holds: H(p(t), q(t)) = const.

Proor. We consider the variation in H along the trajectory H(p(¢), q(t), t).

Then, by Hamilton's equations,
dH _0H ( OH\ OHOH oH _0H O
. dp aq aq op & A

C Cyclic coordinates

When considering central fields, we noticed that a problem could be reduced
to a one-dimensional problem by the introduction of polar coordinates. It
turns out that, given any symmetry of a problem allowing us to choose a
system of coordinates q in such a way that the hamiltonian function is
independent of some of the coordinates, we can find some first integrals and
thereby reduce to a problem in a smaller number of coordinates.

Definition. If a coordinate g, does not enter into the hamiltonian function
Hp,py - . DGy, 4 1), 16, 8H/Bq, = 0, then it is called cyclic
(the term comes from the particular case of the angular coordinate in a
central field).

Clearly, the coordinate g, is cyclic if and only if it does not enter into the
lagrangian function (0L/dg, = 0). It follows from the hamiltonian form of
the equations of motion that:

Corollary 2. Let ¢, be a cyclic coordinate. Then p, is a first integral. In this
case the variation of the remaining coordinates with time is the same as in a
system withthe n — 1 independent coordinates q,, . . ., g, and with hamilton-
fan function

H(ﬁZ»"'&pqua-"SQnsr:C)a

depending on the parameter ¢ = p,.

PROOF. We set p' = (p,,...,p,) and q' = (q,,...,q,). Then Hamilton’s
equations take the form

d ., oH d oH
"W @t
d . 8H d

=" "
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3: Variational principles

The last equation shows that p, = const. Therefore, in the system of equations
for p" and ¢', the value of p; enters only as a parameter in the hamiltonian
function. After this system of 2r — 2 equations 1s solved, the equation for g,
takes the form

d d

— g, = f(t), where f(t} = =— H(p. P{t). q'(1), ¢

7 f@ f@ 3, (P P (). (1), 1)

and is easily integrated. O
Almost all the solved problems in mechanics have been solved by means

of Corollary 2.

Corollary 3. Every closed system with two degrees of freedom (n = 2) which has
a cyclic coordinate is integrable.

Proor. In this case the system for p” and 4" is one-dimensional and is im-
mediately integrated by means of the integral H(p', ¢) = c. O

16 Liouville’s theorem

The phase flow of Hamilton's equations preserves phase volume. [t follows, for example, thata
hamiltonian system cannot be asymptotically stabie.

For simplicity we look at the case in which the hamiltonian function does
not depend explicitly on the time: H = H(p, g).

A The phase flow
Definition. The 2n-dimensional space with coordinates py, ..., 23 Gys - --2 4
is called phase space.

ExampLi. In the case n = 1 thisis the phase plane of the system X = — U /dx,
which we considered in Section 4.

Just as in this simplest example, the right-hand sides of Hamilton's
equations give a vector field: at each point (p, q) of phase space there is a
2n-dimensional vector (—JH/dq, H/dp). We assume that every solution of
Hamilton’s equations can be extended to the whole time axis.*"

Definition. The phase flow is the one-parameter group of transformations
of phase space

g": (p(0), q(0)) — (p(2), q(1)),

where p(t) and q(t) are solutions of Hamilton’s system of equations
{Figure 47).

PrOBLEM. Show that {g'} is a group.

31 For this it is sufficient, for example, that the level sets of H be compact.
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16: Liouville’s theorem

t

q
{pit). gie))

(PO, (0N

Figure 47 Phase flow

B Liouville’s theorem

Theorem 1. The phase flow preserves volume: for any region D we have (Figure

48)
volume of gD = volume of D.

We will prove the following slightly more general proposition also

due to Liouville.
[/
3 N7/ 4

Figure 48 Conservation of volume

Suppose we are given a system of ordinary differential equations
x = f(x), x = (x1, ..., x,), whose solution may be extended to the whole
time axis. Let {g'} be the corresponding group of transformations:
(1) gxy=x +f(x} + O(¢?), (@—-0).
Let D(0) be a region in x-space and v(0) its volume;

v{r) = volume of D(1) D(r) = g'D(0).
Theorem 2, If div £ = 0, then g’ preserves volume: v(t) = v(0).

C Proof
Lemmal. (dv/dt)l,—o = [pioy dividx (dx = dxy - dx,).

Proor. For any ¢, the formula for changing variables in a multiple integral
gives
']

dg'x

W) = det dx,
X

Do)

Calculating dg'x/@x by formula (1), we find
cyg' of
C-f-":E+f—r+O(r2) ast -0

¢X X
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3: Variational principles

We will now use a well-known algebraic fact:

Lemma 2. For any matrix A = (a;;),

det{iE + A) =1+ ttr A + O(¢?), =0,

where tr A = Y 7_| ay is the trace of A (the sum of the diagonal elements).

(The proof of Lemma 2 is obtained by a direct expansion of the deter-
minant: we get 1 and » terms in ¢; the remaining terms involve ¢2, 13, etc.)
Using this, we have

dg'x
det x

a[ 2
=141t +O@)

But tr 8/dx = Y 7., df,/dx; = div f. Therefore,

u(t) = [l + tdivf + O(?))dx,

D0}
which proves Lemma 1. 1
PROOF OF THEOREM 2. Since t = t, is no worse than ¢t = 0, Lemma | can be
written in the form

du(t)
di

= J div f dx,
t=tn Dita)

and if divf = 0, do/dr = 0. O
In particular, for Hamilton’s equations we have
a dH ¢ f¢H
ivf=_—| —— —y— =0
aw 6p( @q) " é’q(@p)
This proves Liouville’s theorem (Theorem 1). a

ProBLEM. Prove Liouville's formula W = Wye'"#® for the Wronskian
determinant of the linear system x = A(t)x.

Liouville’s theorem has many applications.
ProBLEM. Show that in a hamiltonian system it is impossible to have
asymptotically stable equilibrium positions and asymptotically stable limit

cycles in the phase space.

Liouville’s theorem has particularly important applications in statistical
mechanics.
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16: Licuville's theorem

Liouville’s theorem allows one to apply methods of ergodic theory®? to
the study of mechanics. We consider oniy the simplest example:

D Poincaré’s recurrence theorem

Let g be a volume-preserving continuous one-to-one mapping which maps
a bounded region D of euclidean space onto itself: gD = D.

Then in any neighborhood U of any point of D there is a point xe U
which returns to U, t.¢,, g"x € U for some n > 0.

Xy

Figure 49 The way a ball will move in an asymmetrical cup is unknown; however
Poincare’s theorem predicts that it will return to a neighborhood of the original position.

This theorem applies, for example, to the phase flow ¢g' of a two-dimen-
sional system whose potential I/(x,, x,) goes to infinity as (x;, x,) = o6 in
this case the invariant bounded region in phase space is given by the condition
(Figure 49)

D={pqT+ U =< E}

Poincaré’s thecrem can be strengthened, showing that almost every
moving point returns repeatedly to the vicinity of its initial position, This is
one of the few general conclusions which can be drawn about the character
of motion, The details of motion are not known at all, even in the case

oU

i= -
ox’

where x = (x, x,).

The following prediction is a paradoxical conclusion from the theorems
of Poincaré and Liouville: if you open a partition separating a chamber
containing gas and a chamber with a vacuum, then after a while the gas
molecules will again collect in the first chamber (Figure 50).

The resolution of the paradox lies in the fact that “a while ™ may be longer
than the duration of the solar system’s existence.

2 CI for example. the book: Halmos. Lecturey on Ergodic Theory, 1956 (Mathematical Society
of Japan. Publications. No. 3).
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3: Variational principles

Figure 51 Theorem on returning

PROOF OF POINCARE'S THEOREM. We consider the images of the neighborhood
U (Figure 51):

U,gU,g*U,...,g"U,...

All of these have the same volume. If they never intersected, D would have
mfinite volume. Therefore, for some k > Oand ! = 0, with k > |,

g'U ng'U # @
Therefore, g* ‘U U # . H y is in this intersection, then y = g"x, with
xelUin=k—=D.ThenxeUand g"xe Un=5k — ). dJ

E Applications of Poincaré’s theorem

ExaMPLE 1. Let D be a circle and ¢ rotation through an angle a. If « =
2r(m/n), then g" is the identity, and the theorem is obvious. If o is not commen-
surable with 2x, then Poincaré’s theorem gives

¥é>0,3ng"x — x| <8 (Figure 52).

n X
gx gx

Figure 52 Dense set on the circle
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16: Liouville's theorem

It easily follows that

Theerem, If « # 2r{(m/n), then the set of points g*x is dense®® on the circle
=12

ProBLEM. Show that every orbit of motion in a central field with U = r* is
either closed or densely fills the ring between two circles.

ExampPLE 2. Let D be the two-dimensional torus and ¢, and ¢, angular
coordinates on it (longitude and latitude) (Figure 53).

¥a

Wy

Figure 33 Torus

Consider the system of ordinary differential equations on the torus

@ = % Py = %3.
Clearly, div f = 0 and the corresponding motion
g (91, 92) = (91 + 01, @ + 021)
preserves the volume de, do,. From Poincaré’s theorem it is easy to deduce

Theorem. Ifa, /2, is irrational, then the “ winding line™ on the torus, g, @),
is dense in the torus.

ProeLEM. Show that if w is irrational, then the Lissajous figure (x = cos ¢,
y = cos t) is dense in the square {x| < 1, |y| < 1.

ExAMPLE 3. Let D be the n-dimensional torus T", i.e., the direct product®*

of n circles:

D=S'"x8'x.-.-x8t=71"

n

A point on the n-dimensional torus is given by » angular coordinates
© =(9,,...,9,). Leto = (a;,...,2,), and let ¢’ be the volume-preserving
transformation

g.T-T1" @ — 9+ oL

3 A set Aisdense in Bif there is a point of 4 in every neighborhood of every pointof B.

** The direct product of the sets A, B. . . _is the set of points{a. b, . ), withae 4, he B, .. ..
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3: Variational principles

ProsLEM. Under which conditions on & are the fellowing sets dense : (a) the
trajectory {g'p}; (b) the trajectory {g*e} (¢ belongs to the group of real
numbers R, k to the group of integers 7).

The transformations in Examples 1| to 3 are closely connected to
mechanics. But since Poincaré’s theorem is abstract, it also has applications

unconnected with mechanics.

ExampLe 4. Consider the first digits of the numbers 2": 1,2, 4,8, 1, 3,6, 1, 2,
51,2,4,....

ProsrLEM. Does the digit 7 appear in this sequence? Which digit appears
more often, 7 or 87 How many times more often?
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Lagrangian mechanics on manifolds

In this chapter we introduce the concepts of a differentiable manifold and
its tangent bundle. A lagrangian function, given on the tangent bundle,
defines a Jagrangian “holonomic system™ on a manifold. Systems of point
masses with holonomic constraints (e.g., a pendulum or a rigid body) are
special cases.

17 Holonomic constraints

In this paragraph we define the notion of a system of point masses with helonomic constraints,

A Example

Let 7 be a smooth curve in the plane. If there is a very strong force field ina
neighborhood of y, directed towards the curve, then a moving point will
always be close to 7. In the limit case of an infinite force field, the point must
remain on the curve . In this case we say that a constraint is put on the
system (Figure 54).

To formulate this precisely, we mtroduce curvilinear coordinates g, and
¢, on a neighborhood of y; g, is in the direction of y and g, is distance from
the curve,

We consider the system with potential energy

Uy = Ng3 + Uglgy, 42),

depending on the parameter N (which we will let tend to infinity) (Figure 53),
We consider the initial conditions on y:

(0 =¢!  §(0) =47 g0)=0 ¢0)=0
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4: Lagrangian mechanics on manifolds

Figure 54 Constraint as an infinitely strong field

i

Uy

Figure 55 Potential energy Uy

Denote by ¢, = ¢(r, N) the evolution of the coordinate g, under a motion
with these initial conditions in the field Uy,.

Theorem. The following limit exists, as N — w0

lim @(t, N) = ¥(1).

N—roo
The limit q, = (1) satisfies Lagrange’s equation
d (oL,\ 2L,
di\dgq,) 3q,’

where L,(q1,41) = Tlye420 — Uslg=0 (T is the kinetic energy of
motion along 7).

Thus, as N — oo, Lagrange’s equations for ¢; and g, induce Lagrange’s
equation for g, = ¥(r).

We obtain exactly the same result if we replace the plane by the 3n-
dimensional configuration space of n points, consisting of a mechanical
system with metric ds”> = ) 7., m, dr? (the m, are masses), replace the curve y
by a submanifold of the 3n-dimensional space, replace ¢, by some coordinates
q, on 7, and replace ¢, by some coordinates g, in the directions perpendicular
to y. If the potential energy has the form

U = Uelg,, 42) + Nq3,

then as N — oo, a motion on 7 is defined by Lagrange’s equations with the
lagrangian function

L* = quz=az=o - U0|qz=0-
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i§: Differentiable manifolds

B Definition of a system with constraints

We will not prove the theorem above,?® but neither will we use it. We need
it only to justify the following.

Definition. Let 7 be an m-dimensional surface in the In-dimensional con-
figuration space of the points r,...,r, with masses my,...,m,. Let
q=(gy,....4¢w) be some coordinates on v:r; =rf{q). The system
described by the equations

d oL dL

droq — oq

is called a system of n points with 3n — m ideal holonomic constraints.

The surface y is called the configuration space of the system with constraints.

If the surface y 15 given by k = 3n — m functionally independent

equations fi(r) = 0,..., fi(r) = 0, then we say that the system is con-
strained by the relations f, = 0,..., f, = 0.

L=1%Y mil + Ulg

Holonomic constraints also could have been defined as the limiting case
of a system with a large potential energy. The meaning of these constraints in
mechanics lies in the experimentally determined fact that many mechanical
systems belong to this class more or less exactly.

From now on, for convenience, we will call ideal holonomic constraints
simply constraints. Other constraints will not be considered in this book.

18 Differentiable manifolds

The configuration space of a system with constraints is a differentiable manifold. In this para-
graph we give the elementary facts about differentiable manifolds.

A Definition of a differentiable manifold

A set M is given the structure of a differentiable manifold if M is provided
with a finite or countable collection of charts, so that every point is represented
in at least one chart.

A chartis an openset U in the euclidean coordinate spaceq = (g1, . . ., Guh
together with a one-to-one mapping ¢ of U onto some subset of M,
o U—=oolUcM

We assume that if points p and p’ in two charts U/ and U’ have the same
image in M, then p and p’ have neighborhoods V < U and V' < UV with the
same image in M (Figure 56). In this way we get a mapping ¢~ 'ep: V — V".

This is a mapping of the region V of the euclidean space g onto the region
V’ of the euclidean space q', and it is given by » functions of »n variables,

5 The proof is based on the fact that, due to the conservation of energy, a moving point cannot
move further from ¥ than cN~ /%, which approaches zero as ¥ — w0,
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4: Lagrangian mechanics on manifolds

Figure 56 Compatible charts

q = q'(q), (g = q(q")). The charts U/ and U’ are called compatible if these
functions are differentiabie.*®

An atlas is a union of compatible charts. Two atlases are equivalent if
their union is also an atlas.

A differentiable manifold is a class of equivalent atlases. We will consider
only connected manifolds.>” Then the number n will be the same for all
charts; it is called the dimension of the manifold.

A neighborhood of a point on a manifold is the image under a mapping
¢: U — M of a neighborhood of the representation of this point in a chart U.
We will assume that every two different points have non-intersecting
neighborhoods.

B Examples
ExampLE L. Euclidean space B" is a manifold, with an atlas consisting ol one chart.

Exampre 2, The sphere 82 = {(x. y, z}: x? + 3 + 2% = 1} has the structure of a manifoid. with
allas, for cxample, consisting of two charts (U}, ¢, i = |, 2) in stereographic projection {Figure
§7)- An analogous construction applies to the n-sphere

5= Xy X Y X2 = L

Jo RNy

Figure 57 Atlas of a sphere

ExaMpLE 3. Consider a planar pendulum, Its configuration space -the circle S'-—is a manifold.
The usual atlas is furnished by the angular coordinates ¢ R = $'. U, = (-7 7, Uiy = {0, 2m)
{Figure 58).

ExampLE 4. The configuration space of (he “spherical™ mathematical pendulum is the two-
dimensional sphere §2 (Figure 58).

3 By differentiable here we mean r times continuously differemiable: the exact value of »
(1 < r < =Yis immaterial {(we may take r = x, for example).

3 A manifold is connected if it cannot be divided into two disjoint open subsets.
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18: Diflerentiable manifolds

b. ¥z

Figure 58 Planar, spherical and double planar pendulums

Exampre 5. The configuration space of 2~ planar double pendulum ™ is the direct preduct of two
circles, i.c., the twa-torus T? = §' x §' (Figure 58).

Exampre 6. The configuration space of a spherical double pendulum is the direct product of
two spheres, §% x §*.

ExampLE 7. A rigid line segment in the {g,. 4z)-plane has for its configuration space the mani-
fold &% x S', with coordinates ¢,. ¢,. g, (Figure 59). Tt is covered by two charts,
44>

q;

q;

Figure 59 Configuration space of a segment in the plane

ExaMPLE 8 A rigid right triangle O A8 moves around the vertex 0. The position of the triangle
is given by three numbers: the direction 04 € §2 is given by two numbers, and if 04 is given,
one can rolate @8 € §' around the axis G4 (Iigure 60).

Connected with the position of the triangle OAB is an orthogonal right-handed frame,
e =0A4/|0A4]. ey = OB/|OB|, ey = [€,.e,]. The correspondence is one-ta-one: therefore the
position of the triangle is given by an orthogonal three-by-three matrix with determinant 1.

s}

o

Figure 60 Configuration space of a triangle
The set of all three-by-three matrices is the nine-dimensional space E°. Six orthogonality
conditions select oul two three-dimensional connected manifolds of matrices with delerminant

+1and —1. The rotations of three-space (determinant + 1) form a group, which we call SO(3).
Therefore, the configuration space of the triangle OAB is 30{3).

ProsLem. Show that $O(3) is homeomerphic to three-dimensional real projective space.
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4: Lagrangian mechanics on manifolds

Definition. The dimension of the configuration space is called the number of
degrees of freedom.

Exampre 9. Consider a system of k rods in a closed chain with hinged joints.
ProsLiM. How many degrees of freedom does this system have?

Exampre 10 Embedded munifolds. We say that M s an embedded &-dimensional sub-manifold of
cuclidean space " (Figure 61)if in a neighborhood U of every point x € M therc are n — & fune-
tions [ U - K, f: U =R, Jooxt U — Rsuch that the intersection of U with M is given by
the equations f, = 0, .., f,., =0, and the vectors grad f,, ... grad f, , at x are lingarly
independent.

Xp

t

.- Xy
Figure 61 Embedded submanifold
1t is easy to give M the structure of a manifold, i.e. coordinates in a neighborhood of x (how 7).

[t can be shown that every manifold can be embedded in some euchidean space. In Example 8,
SO(3) is a subset of R*.

ProBLEM. Show that SO(3) is embedded in R, and at the same time, that 50(3) is a manifold.

C Tangent space

If M is a k-dimensional manifold embedded in E® then at every point x
we have a k-dimensional tangent space TM, . Namely, T M is the orthogenal
complement to {grad f,,...,grad f,_,} (Figure 62). The vectors of the
tangent space TM, based at x are called tangent vectors to M at x. We can
also define these vectors directly as velocity vectors of curves in M:
X = hm ‘ng),?ﬂ’_@l where ¢(0) = x, @t} € M.
=0

™,

-

/

Figure 62 Tangent space
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14: Differentiable manifolds

The definition of tangent vectors can also be given in intrinsic terms,
independent of the embedding of M into E7.

We will call two curves x = @(t}yand x = Y1) equivalent if @(0) = P{0) = x
and lim, ,, (@(t) — Y(¢))/t = 0 in some chart. Then this tangent relationship
is true in any chart {prove this!).

Definition. A tangent vector to a manifold M at the point x is an equivalence
class of curves @(t), with @{0) = x.

It is easy to define the operations of multiplication of a tangent vector
by a number and addition of tangent vectors. The set of tangent vectors
to M at x forms a vector space TM, . This space 1s also called the tangent
space to M at x.

For embedded manifolds the definition above agrees with the previous
definition. Its advantage lies in the fact that it also holds for abstract
manifolds, not embedded anywhere,

Definition. Let U be a chart of an atlas for M with coordinates g, ..., ¢,.
Then the components of the tangent vector to the curve q = ¢(¢) are the
numbers &;.. .., En. where &, = (de/dt)] - q.

D The tangent bundie

The union of the tangent spaces to M at the various points, U“M TM,, has
a natural differentiable manifold structure, the dimension of which 1s twice
the dimension of M.

This manifold is called the tangent bundle of M and is denoted by TM. A
point of TM is a vector §, tangent to M at some point x. Local coordinates
on TM are constructed as follows, Let g,,..., g4, be local coordinates on
M,and ¢,, ..., £, components of a tangent vector in this coordinate system.
Then the 2r numbers (g, ..., g, &y, ..., &) give a local coordinate system
on TM. Oune sometimes writes dg, for &;.

The mapping p: TM — M which takes a tangent vector & to the point
x € M at which the vector is tangent to M (§ ¢ TM,), is called the natural
projection. The inverse image of a point x € M under the natural prejection,
p~'(x), is the tangent space TM,. This space is called the fiber of the tangent
bundle vver the point x.

E Riemannian manifolds

If M is a manifold embedded in euclidean space, then the metric on euclidean
space allows us to measure the lengths of curves, angles between vectors,
volumes, ete. All of these quantities are expressed by means of the lengths of
tangent vectors, that is, by the positive-definite quadratic form given on
every tangent space TM, (Figure 63);

TM,—- R &§-<E8)
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4: Lagrangian mechanics on manifolds

Figure 63  Riemannian mctric

For example. the length of a curve on a manifeld is expressed using this form as K;) =

f:.’. \_«’"r(.c;x,.d;(). of, il the curve is given parametnically, ;[tg. 6, ] = M, r = x{r} € M. then

1y = I G iodn

Definition. A differentiable manifold with a fixed positive-definite quadratic
form <&, &> on every tangent space TM, is called a Riemannian manifold.
The quadratic form is called the Riemannian metric.

Remark. Let U be a chart of an atlas for M with coordinates gy, ..., g,.
Then a Riemannian metric is given by the formula

"

dSZ = Z ai}(q)dq"i' dq; a;j = i,
ihi=1
where dg; are the coordinates of a tangent vector.
The functions a,{q) are assumed to be differentiable as many times as
necessary.

F The derivative muap

Let /1 M — N be a mapping of a manifold M to a manifold N. f is called
differentiable if in local coordinates on M and N it is given by differentiable
functions.

Definition. The derivative of a differentiable mapping f: M — N at a point
X € M is the linear map of the tangent spaces

j;tx: TM: - TNJ"(*]’

which is given in the following way (Figure 64):

Let ve TM, . Consider a curve ¢: B — M with @(0) = x, and velocity
vector (de/dt)l,_o = v. Then f,, v is the velocity vector of the curve
fr@:R— N,

d
f¥ = g | S0
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Figure 64 Derivative of a mapping
PrOBLEM. Show that the vector f,,¥ does not depend on the curve @, but only on the vector v.

ProsLEM. Show that the map f,.: TM, = TN, is linear,

PROBLEM. Let x = (..., x,) be coordinates in a neighborhood of xe Moand ¥y = (.. ... o)
be coordinates in a neighborhood of ¥ € N. Let § be the set of components of the vector ¥, and
1 the sel of components of the vector £, v. Show (hat

le. m=%

A i
X T (:‘Xj

ay;

¥

]":

Tazking the union of the mappings f,, for all x, we get a mapping of the whole tangent
bundle

S TM TN fv=f,v forveTM,
ProB1.EM. Show that f, is a differentiable map.

ProBLEM, Let 1M - N g N Kandh =gy {1 M — K Showthath, =g, f..

19 Lagrangian dynamical systems

In this paragraph we define lagrangian dvnamical systems on manifolds. Systerms with holonomic
cOnstraints are a particular case.

A Definition of a lagrangian system

Let M be a differentiable manifold, TM its tangent bundle, and L: TM — R
a differentiable function. A map y: R —» M is called a motion in the lagrangian
sysiem with configuration manifold M and lagrangian function L if v is an
extremal! of the functional

o(y) = J”L(?)dr,

where 7 is the velocity vector y(t)e TM,,,,.

FExampie. Let M be a region in a coordinale space wilh coordinates q = (g,... .. if,). The
lagrangian funcuon L: TM — R may be writien tn the form of a function L{q. §) of the 2n
coordinates. As we showed in Section 12, the evolution of coordinates of a point moving with
time satisfies Lagrange's equations.

R3



4: Lagrangian mechanics on manifolds

Theorem. The evolution of the local coordinates q = (4, . ... q,) of a point Y(r)
under motion in a lagrangian system on a manifold satisfies the Lagrange
equations

d 0L CL

dtoq  dq°
where L{q,q) is the expression for the function L: TM — Rinthe coordinates
qand qon TM.

We often encounter the following special case.

B Natural systems
Let M be a Riemannian manifold. The quadratic form on each tangent space,
T= '}{(“', \’> Ve TMN!

is called the kinetic energy. A differentiable function U: M — R is called a
potential energy.

Definition. A lagrangian system on a Riemannian manifold is called natural
if the lagrangian function is equal to the difference between kinetic and
potential energies: L = T — U.

ExaMpLE. Consider two mass points m; and m, joined by a ling segment of length | in the
{x, ¥)}-plane. Then a configuration space of three dimensions
M=Rx5 cRx R?

is defined in the four-dimensional configuration space B2 x R? of two free points (x, ) and
(3. ¥2) by the condition /(x, — x;)* + {y; = ¥;)? = {{Figure 65).

m\n 2

Figure 65 Segment in the plane

x

There is a quadratic form on the tangent space to the four-dimensional space (x,, x,, ¥, ¥2):
m (i3 + B+ mg(d + )

Our three-dimensional manifold, as it is embedded in the four-dimensionai one, is provided with
a Ricmannian metric. The holonomic system thus obtained is called in mechanics a line segment
of fixed length in the (x, y)-plane. The kinetic energy is given by the formula
Gt B

2 2o

T=m,
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19: Lagrangian dynamical systemns

C Systems with holonomic constraints

In Section 17 we defined the notion of & system of point masses with hole-
nomic constraints. We will now show that such a system 1s natural.

Consider the configuration manifold M of a system with constraints as
embedded in the 3n-dimensional configuration space of a system of free
points. The metric on the 3n-dimensional space is given by the quadratic
form Y%, ms? The embedded Riemannian manifold M with potential
energy U coincides with the system defined in Section 17 or with the limiting
case of the system with potential U + Nq3, N — oc, which grows rapidty
outside of M.

D Procedure for solving problems with constraints

]. Determine the configuration manifold and introduce coordinates
g1 .-, g (in a neighborhood of each of its points).
2. Express the kinetic energy T = 3, 4m;i7 as a quadratic form in the

generalized velocities
T = %Z a;{9)4:4;-

3. Construct the lagrangian function L. = T — U(q) and solve Lagrange’s
equations.

ExaMPLE, We consider the motion of a point mass of mass | on a surface of revolution in three-
dimensional space. It can be shown that the orbits are geodesics on the surface. In cylindrical
coordinates r. 4. ¢ the surface is given (Jocally} in the form r = r{z) or ¢ = z(¢). The kinetic
encrgy has the form (Figure 66)

T=H& + 3 + 2 = [ + r):? + rlo)e?)
In coordinates @ and z, and
T= 3%+ 32 + 27y = U+ 270 + r¢7)

in coordinates r and . (We have used the identity &2 + 2 = £ + r2p?)
The lagrangian function L is equal to T. [n both coordinate systems ¢ is a cyclic coordinate.
The corresponding momentum is presetved: p, = r*¢ is nothing other than the z-component of

z

Figure 66 Surface of revolution
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4: Lagrangian mechanics on manifolds

angular momentum. Singe the systern has two degrees of lreedom, knowing the cyclic coordinate
w is sufficient for integrating the problem completely (cf. Corollary 3, Section {5).

We can obtain more easily a clear picture of the orbits by recasoning slightly differently.
Denote by % the angle of the orbit with a meridian. We have r¢p = je!sin x where [¢] is the mag-
nitude of the velocity vector (Figure 66).

By the law of conservation of energy, H = L = T is preserved. Therefore. - v| = const, 50
the conservation law for p, takes the form

F SR 2 = Const
(" Clairaut’s theorem ™).

This relationship shows that the motion takes place in the region |sin =] £ Lie.r = ry 50 2,5,
Furthermore, the inclination of the orbit from the menidian increases as the radius r decreases.
When the radius reaches the smallest possible value, r = r; sin xz,. the orbit is reflected and
returns 1o the region with larger » {(Figure 67}

r = rgsinag

r=rgsin oy
Figure 67 Geodesics on a surface of revolution

PrROBLEM, Show that the geodesics on a4 convex surtace of revolution are divided into three
classes: meridians, closed curves, and geodesics dense in a ring r > c.

ProBLEM. Study the behavior of geodesics on the surface of a torus ((r — R+ 2 = ph,

E Non-aqutonomous systems

A lagrangian non-autonomous system differs from the autonomous systems,
which we have been studying until now, by the additional dependence of the

lagrangian function on time:
L:TMxR—-R L =1Liq 41!

In particular, both the kinetic and potential energies can depend on time in a
non-autonomous natural system:

T TM xR->R UMxR-R T=T(@®41 U=U(q1).

A system of » mass points, constrained by holonomic constraints depen-
dent on time, is defined with the help of a time-dependent submanifeld of the
configuration space of a free system. Such a manifold is given by a mapping

M xR-=E" g =X,
which, for any fixed ¢ € R, defines an embedding M — E*. The formula of

section D remains true for non-autonomous systems.
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19: Lagrangian dynamical systems

Figure 68 Bead on 4 rotating circle

Examprr, Consider the motion of 4 bead along u vertical circle of radius » (Figure 68) which
rotates with angular velocity w around the vertical axis passing through the center O of the
circle. The manifold M is the circle. Let g be the angular coordinate on the circle, measured from
the highest point.

Let x, y. and z be cartesian coordinates in E* with origin € and vertical axis z. Let ¢ be the
angle of the plane of the circle with the plane x0z. By hypothesis, ¢ = wt. The mapping
itM o« B — E7is given by the formula

By, 1) = (rSin g Cos e, £ $IN g SN e, r COS ).

From this formula (or, more siniply, from an “infinitesimal right triangte™ we find that

Loom 4 s 3.3 ,
F= % sin” g + rg*) L= myrcos g
Ln this case the lagrangian function L = T — L7 turns aut to be independent of 1, although the
censtraint dovs depend on time. Furthermore, the lagrangian function turns out to be the same
as in the one-dimensional system with kinelic energy
M
=4 M = m,

-
and with potential cnergy
L s i# N
Vi=Acosy - Bsin®q.  4=myr, B=_ o'r’

The lorm of the phase porirait depends on the ratio between A and B. For 28 < A (ie. for a
ratation of the circle slow enough that w?r < ¢), the lowest position of the bead (g = 7) is

I

Figure 69 Effective potential energy and phase pianc of the bead
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4: Lagrangian mechanics on manifolds

stable and the characteristics of the motion are generally the same as in the case of a mathematical
pendulum (e = 0

For 2B > A, ie., for sufficiently fast rotation of the circle, the lowest position of the bead
becomes unstable: on the other hand. two stable positions of the bead appear on the circle,
wherecos g = — A/2B = —g./wo’r. The behavior of the bead under all possible initial conditions
is clear from the shape of the phasc curves in the (g, g)-plane (Figure 69).

20 E. Noether’s theorem

Various laws of conservation (of momentum, angular momentum, ete.) are particular cases of
one general theorem: (o every onc-parameter group of diffeemorphisms of the conliguration
manifold of a lagrangian system which preserves the lagrangian function, there corresponds 4
first integral of the equations of motion.

A Formulation of the theorem

Let M be a smooth manifold, L: TM — R a smooth function on its tangent
bundie TM. Let h: Af — M be a smooth map.

Definition. A lagrangian system (M, L) admits the mapping hif for any tangent
vector ve TM,

Lk, v) = L(v).

ExampLe. Let M = {(x,. x5, x50}, L = (ms20(%] + 83 + %3) — Uix,. xy) The system admits
the translation h: (x,, X;. x3) = (x, + 5. X;. x5} along the x, axis and does not admit, generally
spcaking, translations along the x, axis.

Noether’s theorem. If the system (M, L) admits the one-parameter group of
diffeomorphisms h*: M — M, s ¢ R, then the lagrangian system of equations
corresponding to L has a first integrat I: TM — R.

In local coordinates g on M the integral I is written in the form

_oL
34 ds

(g, q)

s=0

B Proof

First, let M = R" be coordinate space. Let @: R — M, q = ¢(1) be a solution
to Lagrange’s equations. Since &, preserves L, the translation of a solution,
B s @: R — M also satisfies Lagrange’s equations for any s.*®

We consider the mapping ®: R x R — R", given by q = ®(s,¢) = ¥ (¢(1))
(Figure 70).

We will denote derivatives with respect to ¢ by dots and with respeci to s
by primes. By hypothesis
= a_L(q)' (D) — a_L.([)' + (?,—I:‘(.D’,

ds oq oq

(1) 0

38 The authors of several textbooks mistakenly assert that the converse is also trug, ie, that if
i takes solutions to solutions, then i} preserves L,
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20: E. Noether's theorem

g(r)

g (s, 1) =h(git)

R ()
Figure 70 Noether's theorem

where the partial derivatives of L are taken at the point g = ®(s, 1), 4 =
(s, 1).

As we stated above, the mapping @], one: R = R" for any fixed s
satisfies Lagrange's equation

& [AL . aL .
5 [?ﬁ (D5, 1), B(s, r))] = 5(! (P(s, 1), B(s, ).

We introduce the notation F(s, £} = (L/34)X®(s, 1), ®(s, 1)) and substitute
JF /ot for ¢L/0q in (1)
Writing q' as dq’/dt, we get

o (4N, eL(d \_dfL \_d -
“lza Ta\at Ta\aY T @

Remark. The first integral [ = (8L/0q)q" is defined above using local
coordinates q. It turns out that the value of 1(v) does not depend on the choice
of coordinate system q.

In fact, I is the rate of change of L{¥) when the vector v e T M varies inside
T M, with velocity (d/ds)|,_ o #*x. Therefore, I(v} is well defined as a function
of the tangent vector v € TM,. Noether's theorem 1s proved in the same way
when M is a manifold.

C Examples

ExaMpLE 1. Consider a system of point masses with masses m;:
X
L=3m;—U®X Xi = Xy + X283 + X363,
constrained by the conditions f{x) = 0. We assume that the system admits
translations along the e, axis:
B.x; > x; +se; foralli

In other words, the constraints admit motions of the system as a whole
along the e, axis, and the potential energy does not change under these.
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4: Lagrangian mechanics on manifolds

By Noether's theorem we conclude: If a system admits translations along
the e, axs, then the projection of its center of mass on the e; axis moves
linearly and unifermly.

In fact, {(d/ds)|.— o ’x; = e,. According to the remark at the end of B, the
quantity

¢L .
I = Zaiel = Zm‘-.’(“

is preserved, i.e., the first component P, of the momentum vector is pre-
served. We showed this earlier for a system without constraints.

ExamrpLE 2. If a system admits rotations around the e, axis, then the angular
motmentum with respect to this axis,

fMtl = Z ({xif miii]a el)

is conserved.
[t is easy to verify that if #° is rotation around the e, axis by the angle s,
then (d/ds)|,— o h*x; = [e,, x;], from which it follows that

cL
! = zéx_ e, x] = ‘Z(miiis [e,, x; 1) = ;{[xfs m;x;], ;).

PrOBLEM 1. Supposc that a particle moves in the lield of the uniform helical line x = cos @,
v =sin @ 7 = ¢ Find the law of conservation corresponding to this helical symmetry.

ANSWER. In any system which admits helical moiions leaving our helical line fixed, the quantity
P =Py + M;is conserved.

ProBLEM 2. Suppose that a rigid body is moving under its own inertia. Show that its center of
mass moves lincarly and uniformly. If the center of mass 1% at rest. then the angular momentum
with respect to it 1s conserved,

ProBriM 3. What quantity is conserved under the motion of a heavy rigid body il it is Axed at
some point 07 What il. in addition, the body is symmetric with respect to an axis passing
through 0?7

PROBLEM 4. Extend Noether's theorem to non-autonomous lagrangian systems.
Hini, Let M| = M x [ be the exiended configuration space (the direct produet of the
configuration manifold M with the time axis ®).
Define a function L,; TM, — i by
dt

dr’

Le.. in local coordinates g, 1 on M, we deline it by the formula

dq di dq;dt dr
Lyg.e. .- 1= Ll N P
1(‘] d1 dt) (q drdr I) 4t
We apply Noether's theorem to the lagrangian system (M,, L}
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If L, admits the transformations A% A, — M, wc obtatn a first integral {,: TM, - R
Since | L.dt = | L, de. this reduces to a first integral /- TM x R — R of the original system,
If. in local coordinates {g.tyon M |, we have [ | = [ (g, ¢.dq;dv, dtidt).then [{q. 4.1} = 1,(q.1.4.1).

In particular, if L. does not depend on time, L, admits translations along time. #%(q.r1) =
(g.t + ). The corresponding first integral f 18 the energy integral.

21 D’Alembert’s principle

We give here a new definition of a system of point masses with holonomic constraints and prove
its equivalence te the delinitien given in Section 17.

A Example

Consider the holonomic system (M, L), where M is a surface in three-
dimensional space {x}:

L = imx? — U(x).

In mechanical terms, “the mass point x of mass m tmust remain on the smoocth
surface M.”

Consider a motion of the point, x(¢). If Newton’s equations mX + (éU/0x)
= 0} were satisfied, then in the absence of external forces ({J = 0) the tra-
jectory would be a straight line and could not lie on the surface M.

From the point of view of Newton, this indicates the presence of a new
force “forcing the point to stay on the surface.”

Definition. The quantity

au
R — mi
mx + _6)(

1s called the constraint force (Figure 71).

£

Figure 71 Constraint force

If we take the constraint force R(t) into account, Newton’s equations are
obviously satisfied:

U

Y LR
8x+

mX =

The physical meaning of the constraint force becomes clear il we consider our system with
constraints as the limit of systems with potential energy U + NU, as N — «, where U (x) =
#{x. M). For large N the constraint potential NU, produces a rapidly changing force
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4: Lagrangian mechanics on manifolds

F = — N &U ;% when we pass to the himit (N — ) the average value of the force F under
oscillations of x near M is R. The force F is perpendicular to M. Therefore, the constraint
force R is perpendicular to M: {R. £} = O for every tangent vector &

B Formulation of the D’ Alembert-Lagrange
principle

In mechanics, tangent vectors to the configuration manilold are called
virtual variations. The D’Alembert-Lagrange principle states:

, . oU
(mx + Ee E_,) =0
Jor any virtual variation §, or stated differently, the work of the constraint force
on any virtual variation is zero.

For a system of points x; with masses m; the constraint forces R; are defined
by R, = m,X; + (8U/2x;), and D’Alembert’s principle has the form ) (R;, &)
=0,0r ¥ ((m% + (0U/dx,), &) = 0, i.e., the sum of the works of the con-
straint forces on any virtual vanation {§;} € TM, is zero.

Constraints with the property described above are called ideal.

If we define a system with holonomic constraints as a limit as N — =, then the D'Alembert -
Lagrange principle becomes a theorem: its proof is sketched above [or the simplest casc.

It is possible, however, to define an ideal holonomic constraint using the D'Alembert-
Lagrange principle. In this way we have three definitions of holonomic systems with constraints:

1. The limit of systems with potential energies L' + NU as N — x.

2. A holonomic system (M, L), where M is a smooth submanifold of the configuration space
of a system without constraints and L is the lagrangian,

3 A system which complies with the D'Alemberi- Lagrange principle.

All three definitions are mathematically equivalent.
The proof of the implications (1} = (2) and {1) = (3} is sketched above and will not be given
in further detail. We will now show that (2} = ().

C The equivalence of the D" Alembert-Lagrange
principle and the variational principle

Let M be a submanifold of euclidean space, M < R¥, and x: ® — M a curve,
with x(15) = Xq, X(1;) = X,.

Definition. The curve x is called a conditional extremal of the action functional

Ty i?.
d = ’[0 {7 - U(x)}dt,

if the differential 6@ is equal to zero under the condition that the variation
consists of nearby curves*? joining X, to x, in M.

% Strictly speaking, in order to define a variation 3d, one must define on the set of curves near x
on M the structure of a region in a vector space. This can be done using coordinates on M
however, the property of being a conditional extremal does not depend on the choice of a co-
ordinate system.
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We will write
(1) Oy @ =0,
Clearly, Equation (1) is equivalent to the Lagrange equations

doL_aL _® @
_— = _—. . — X X =X
4y oq 2 1

in some local coordinate system q on M.

Theorem. A curve x: R —» M < R" is a conditional extremal of the action
(i.e., satisfies Equation (1)) if and only if it satisfies D" Alembert’s equation

. oU
(2) (x + 3 E,) =0, VEeTM,.

Lemma. Let f: {t: 1y <t < t;}) — RY be a continuous vector field. If, for every
continuous tangent vector field &, rangent to M along x (i.e., §(t)e TM,,
with E(t) = 0 for t = t4, t,), we have

f'f(r)a(r)d: =0,

then the field f(t) is perpendicular to M at every point X(t} (i.e., (F(t),h} =0
for every vector he TM,,,,) (Figure 72).

Figure 72 Lemma about the normal field

The proof of the lemma repeats the argument which we used to derive the
Euler-Lagrange equations in Section 12.

PROOF OF THE THEOREM. We compare the value of @ on the two curves X(¢)
and x(t) + E(r), where &(t,) = E(t;) = 0. Integrating by parts, we obtain

50 = J (xé - %@)dr = —J’“ (x + g—f)gm.
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Itis obvious from this formula*® that Equation (1), §,,® = 0, is equivalent
to the collection of equations

3) f (i+;—f)§d1=0‘

for all tangent vector fields &(r)e TM,,, with &(ty) = &(r;) = 0. By the
lemma (where we must set f = X + (2U/8x))the collection of equations (3)

is equivalent to the IYAlembert-Lagrange equation (2). O
D Remarks

Remark ]. We derive the I¥ Alembert—Lagrange principle for a system of n
points x;€ R* i =1, ..., n, with masses m;, with holonomic constraints,

from the above theorem.

In the coordinates X = {X;, = \/n—iix,-}, the kinetic energy takes the form
T =4y mx} =X~

By the theorem, the extremals of the principle of least action satisfy the

condition
~  ou
(X + g, é) = 0

{the D'Alembert-Lagrange principle for points in B*": the 3n-dimensional
reaction force is orthogonal to the manifold M in the metric T). Returning
to the coordinates x;, we get

) eu —e Y . oU
0= (\/;ixi + 5\‘/?;‘;!1 *’miﬁs) = Z (mixi + é’_xf’ §s),

ie, the DXAlembert-Lagrange principle in the form indicated earlier: the
sum of the work of the reaction forces on virtual variations is zero.

Remark 2. The D’Alembert-Lagrange principle can be given in a slightly
different form if we turn to statics. An equilibrium position is a point x, which
is the orbit of a motion: x(t) = X,.

Suppose that a point mass moves along a smooth surface M under the
influence of the force f = —aU/ox.

Theorem. The point X, in M is an equilibrium position if and only if the force
is orthogonal to the surface at Xo:{(x), &) = O for all §e TM .

This follows from the D’Alembert-Lagrange equations in view of the
fact that X = 0.

Definition. —mx is called the force of inertia.
0 The distance of the points x(r) + E(t} from M is small of second-order compared with £1).
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21: D'Alembert’s principle

Now the D'Alembert-Lagrange principle takes the form:

Theorem. [f the forces of inertia are added to the acting forces, x becomes an
equilibrium position.

Proor. D’Alembert’s equation
(—-mx+£E)=0

expresses the fact, as in the preceding theorem, that x is an equilibrium
position of a system with forces —m% + f. O

Entirely analogous statements are true for systems of points: If x = {x;}
arc equilibrium positions, then the sum of the work of the forces acting on the
virtual variations is equal to zero. If the forces of inertia —m; X,(t} are added
to the acting forces, then the position X(¢} becomes an equilibrium position.

Now a problem about motions can be reduced to a problem about
equilibrium under actions of other forces.

Remark 3. Up to now we have not considered cases when the constraints
depend on time. All that was said above carries over to such constraints
without any changes.

ExampLe. Consider a bead sliding along a rod which is tilted at an angle «
to the vertical axis and is rotating uniformly with angular velocity @ around

A

[o
Figure 73 Bead on a rotating rod

this axis (its weight is negligible). For our coordinate g we take the distance
from the point 0 (Figure 73). The kinetic energy and lagrangian are:

L=T=1m?=1mg* + Imw??,

F =g smo.
Lagrange's equation: mg = maw?q sin? x.

The constraint force at each moment is orthogonal to virtual vartations
{i.e., to the direction of the rod), but is not at all orthogonal to the actual
trajectory.

Remark 4. 1t is easy to derive conservation laws from the D’Alembert-
Lagrange equations. For example, if translation along the x, axis &, = e, is
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4: Lagrangian mechanics on manifolds

among the virtual variations, then the sum of the work of the constraint forces
on this variation is equal to zero:

S(Rie)=(Y R.e)=0.

If we now consider constraint forces as extérnal forces, then we notice that the
sum of the first components of the external forces 1s equal to zero. This means
that the first component, P,, of the momentum vector 1s preserved.

We obtained this same result earlier from Noether’s theorem.

Remark 5. We emphasize once again that the holonomic character of some
particular phystcal constraint or another (1o a given degree of cxactness) is 4
question of experiment. From the mathematical point of view, the holonomic
character of a constraint 1s a postulate of physical origin; it can be introduced
in varicus equivalent forms, for example. in the form of the principle of least
action (1} or the D’Alembert-Lagrange principle (2), but, when defining
the constraints, the term always refers to experimental facts which go beyond
Newton's equations.

Remark 6. Our terminology differs seomewhat from that used in mechanics
textbooks, where the D’Alembert-Lagrange principle is extended to a wider
class of systems (“non-holonomic systems with ideal constraints™). In this
book we will not consider non-holonomic systems. We remark only that one
example of a non-holonomic system is a sphere relling on a plane without
slipping. In the tangent space at each point of the configuration manifold of a
non-holonomic system there is a fixed subspace to which the velocity vector
must belong.

Remark 7. If a system consists of mass points connected by rods, hinges,
etc., then the need may arise to talk about the constraint force of some partic-
ular constraint.

We defined the total “constraint force of all constraints ™ R, for every mass
point m;. The concept of a constraint force for an individual constraint is
impossible to define, as may be already seen from the simple example of a beam
resting on three columns. If we try to define constraint forces of the columns,
R, R,, R, by passing to a limit (considering the columns as very ngid
springs), then we may become convinced that the result depends on the
distribution of rigidity.

I S

Figure 74 Constraint force on a rod
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21: D’Alembert’s principle

Problems for students are selected so that this difficulty does not arise.

ProsLEM, A rod of weight P, tilted a1 an angle of 607 to the plane of 2 table, begins to fall
with initial velocity zero (Figure 74). Find the constraint force of the table at the initial moment,
considering the table as (a) absolutely smooth and (b) absolutely rough. (In the first case, the
holonemic constraint holds the end of the rod on the plane of the table. and in the second case,

4t 4 given point.)
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Oscillations

Because linear equations are easy to solve and study, the theory of linear
oscillations is the most highly developed area of mechanics. In many non-
linear problems, linearization produces a satisfactory approximate solution.
Even when this is not the case, the study of the linear part of a problem is
often a first step, to be followed by the study of the relation between motions
in a nonlinear system and in its linear model.

22 Linearization

We give here the definition of small oscillations.

A Equilibrium positions

Definition. A point X, is called an equilibrium position of the system

dx
1 — = f(x), x e R
() i {x)
if x(t) = X, is a solution of this system. In other words, f(x,) = 0, 1e,
the vector field f(x) is zero at x;.

ExampLE. Consider the natural dynamical system with lagrangian function
L{q,q) = T — U, where T = } Y a;{0)4:4; = O and U = U(g):

doL oL

(2) aa_g‘i'! qz(qns‘h)

Lagrange's equations can be written in the form of a system of 2n first-
order equations of form (1). We will try to find an equilibrium position:
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22: Linearization

Theorem. The point q = qg., § = g will be an equilibrium position if and only
ifdy = Qandqq is a critical point of the potential energy, i.e.,

ou

— = 0.
aq qo

(3)

Proor. We write down Lagrange’s equations

d (?T_GT au

droq  8q dq°

From (2) it is clear that, for ¢ = 0, we will have 3T/dq = 0 and 3T/dq = 0.
Therefore, 4 = qq is a solution in case {3) holds and only in that case. [

B Stabiliry of equilibrium positions

We will now investigate motions with intial conditions close to an equi-
librium position.

Theorem. If the point q, is a strict local minimum of the potential energy U,
then the equilibrium = qq is stable in the sense of Liapunov.

ProOF. Let U(g,) = k. For sufficiently small ¢ > 0, the connected com-
ponent of the set {q: U(q) < h + &} containing q, will be an arbitrarily
small neighborhood of g, (Figure 75). Furthermore, the connected com-
ponent of the corresponding region in phase space p, ¢, {p,q: E(p, q) <
h + ¢}, (where p = 0T/0{ is the momentum and E = T + U is the total
energy} will be an arbitrarily small neighborhood of the point p = 0, q = q,.

But the region {p,q: E < k + ¢} 1s invariant with respect to the phase
flow by the law of conservation of energy. Therefore, for initial conditions
p(0), q(0) close enough to (0, q,), every phase trajectory (p(t), q(t)) is close to

(Osq{])- D
u
3
h +E—m

b
q

P

E<h+e

q

Figure 75 Stable equilibrium position
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3 Oscillations

PropLeM. Can an equilibrium position @ = q,, p = 0 be asymptotically stable?

PropLeM. Show that in an gralyiic sysiem with one degree of freedom an equilibrium position
q, which is not a strict local minimum of the polential energy is not stable in the sense of
Lizpunoyv. Produce an example of an infinitely differentiable system where this is not lrue.

Remark. Tt secems likely that in an analytic system with r degrees of
frcedom, an equilibrium position which i1s not a minimum point 1s unstable:
but this has never been proved for n > 2.

C Linearization of a differential equation

We now turn to the general system (1). In studying solutions of (1} which are
close to an equilibrium position X, we often use a lirearization. Assume that
Xy = O (the peneral case is reduced to this one by a translation of the co-
ordinate system). Then the first term of the Taylor series for f is linear:

o |
f(x) = 4% + Ry(x), A =—| andR, = Ox?),
0x g

where the linear operator 4 is given in ¢oordinates x, ..., x, by the matrix
_ 4

53(_}

A(x); = Zaijxj; A

Definition. The passage from system (1} to the system

dy

(4) e Ay {(xeR", ye TRY)

is called the linearization of (1).

ProBLEM. Show that linearization is a well-defined operation: the operator
A does not depend on the coordinate system.
The advantage of the linearized system is that it is linear and therefore
easily solved:
2,2
y(t) = e*'y(0), wheree® = E + At + =T 4o

Knowing the solution of the linearized system (4), we can say something
about solutions of the original system (1). For small enough X, the difference
between the linearized and original systems, R,(x), is small in comparison
with x. Therefore, for a long time, the solutions y(r), x(t) of both systems
with initial conditions ¥(0) = x(0) = x, remain close. More explicitly, we
can casily prove the following:

Theorem. For any T > 0 and for any ¢ > 0 there is a 6 > O such that if
|X(0)| < &, then |x(t) — ¥(t)) < £é for all ¢t in the interval 0 <t < T.
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22: Linearization

D Linearization of a lagrangian system

We return again to the lagrangian system (2) and try to linearize it in a
neighborhood of the equilibrium position q = q,. In ordcer to simplify the
formulas, we choose a coordinate system so that g, = 0,

Theorem. {n order to linearize the lugrangian system (2) in a neighborhood of
the equilibrium position @ = 0, it is sufficient to replace the kinetic energy
T = Ja;£9)4;4, by its value at q = 0.
T, = %Z a.‘;é.‘@j. a;; = a;{0),
and replace the potential energy U(q) by its quadratic part
az U
B 84104, l4=0

ProOF. We reduce the lagrangian system to the form (1) by using the canonical
variables p and q:

U, = %Zbijf}'i%e bij

. CH . OH
T T
Since p = q = 0is an equilibrium position, the expansions of the right-hand
sides in Taylor series at zero begin with terms that are linear in p and q.
Since the right-hand sides are partial derivatives, these finear terms are
determined by the quadratic terms H, of the expansion for H(p, q). But
H, is preciscly the hamiltoman function of the system with lagrangian
L, =T, — U;,since, clearly, H, = T,(p) + U {q). Therefore, the lincarized
equations of motion are the equations of motion for the system described
in the thcorem with L, = T, — U,. d

. Hp.q@=T+ U

ExampLi:. We consider the system with one degree of freedom:
T=3al@q?, U= "Uly.

Let ¢ = g, be a stable equilibrium position: (@U/6q)|,=4, = 0,(?U2¢%} =,
> O (Figure 76).

s

o
Y

Figure 76 Linearization
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5: Oscillations

As we know from the phase portratt, for initial conditions close to ¢ = g,
p = 0, the soluticn is periodic with period 1 depending, generally speaking,
on the initial conditions. The above two theorems imply

Corollary. The period © of oscillations close to the equilibrium position qq
approaches the limit 14 = 2njw,, (where wf = bja, b = (B*U/0¢%) |- g6
and a = a(q,)) as the amplitudes of the osciliations decrease.

Proor. For the linearized system, T, = }ag® and U, = 3b¢* (taking g, = 0).
The solutions to Lagrange's equation § = —wdq have period 1, = 2n/wy:

g = ¢, COS gt + ¢, Sin wyt

for any initial amplitude. O

E Small oscillations

Definition. Motions in a linearized system (L., = T, — U,) are called smalil
oscillations*! near an equilibrium q = q,. In a one-dimensional problem
the numbers 1, and w, are called the period and the freguency of small
oscillations.

ProeLEM. Find the period of small oscillations of a bead of mass 1 on a wire y = Uix) in a
gravitational field with g = 1, near an equilibrium position x = x, (Figure 77).

o ¥

mg

K“O
X

Figure 77 Beud on a wire

Solution. We have

U= mgyv = Lix)

aUy?
T=dme? = %[I + (E) ]_\"2.

Let xg be a stable equilibrium position: (AU :8x)|,, = 0; (M Ux%),, > 0. Then the frequency
of smalt oscillations, «w. is defined by the formula

=y
oo (Y]
X5
since, for the linearized system. T, = §4% and L', = ¢ (g = x — x,)

41 If the eyguilibrium position is unstable. we will talk about “unstable smalt oscillations™
even though these motions may not have an oscillatory character,
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23 Small oscillations

PrOBLEM, Show that not only a small oscillation. but any motion of the bead is equivalent to a
motion in some one-dimensional system with lagrangian function L = 4% — Vig).
Hint. Take length along the wire for .

23 Small oscillations

We show here that a lagrangian systemn undergoing small oscillations decomposes into a direct
product of systems with one degree of freedom.

A A problem about pairs of forms

We will consider in more detail the problem of small oscillations. In other
words, we consider a system whose kinetic and potential energies are
quadratic forms

(1 T=3444 U=3Bq,q qeR, deR"

The kinetic energy is a positive-definite form.

In order to integrate Lagrange’s equations, we will make a special choice
of coordinates.

As we know from linear algebra, a pair of quadratic forms (4q, q), (Bq, q),
the first of which is positive-definite, can be reduced to principal axes by a
linear change of coordinates:*?

Q=Cq Q=(Q11""!Qn)'
In addition, the coordinates Q can be chosen so that the form (Aq, q) de-
composes into the sum of squares (Q, Q). Let Q@ be such coordinates; then,
since Q = (4, we have
@ T=, Y0 U-3YAok
2 i=1 2 i=1

The numbers A, are called the eigenvalues of the form B with respect to A.

PrOBLEM. Show that the eigenvalues of B with respect to A satisfy the char-
acteristic equation

(3) det|B — 44| =0,

all the roots of which are, therefore, real (the matrices 4 and B are symmetric
and 4 = 0),

B Characteristic oscillations

In the coordinates Q the lagrangian system decomposes into n independent
equations

4) Qi = —A4Q:.
** 1f one wants 1o, one can introduce a cuclidean structure by taking the first form as the scalar

product. and then reducing the second form to the principal axes by a transformation which is
orthogonal with respect to this cuclidean structure.
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5: Oscillations

Therefore we have proved:

Theorem. A system performing small oscillations is the direct product of n one-
dimensional systems performing small oscillations.

For the one-dimensional systems, there are three possible cases:
Case I: A = @? > 0;the solution is @ = C, cos wt + C, sin wt (oscillation)
Case 2: A = 0; the solution is @ = C, + C,t (neutral equilibrium)
Case 3: A = —k? < 0; the solution is @ = C, cosh kt + C, sinh kt
(instability)

Corollary. Suppose one of the eigenvalues of (3) is positive: A = w? > 0, Then
system (1) can perform a small oscillation of the form

(5) q(t) = (C, cos wr + C, sin )i,

where & is an eigenvector corresponding to A (Figure 78):
BE = AAE,

Figure 78 Characteristic oscillation

This oscillation is the product of the one-dimensional motion @; =
C, cos w;t + C, sin w;f and the trivial motion @; = 0 (j # i).

Definition. The periodic motion (5} is called a characteristic oscillation of
system (1), and the number w is called the characteristic frequency.

Remark. Characteristic oscillations are also called principal oscillations
or normal modes, A nonpositive A also has eigenvectors; we will also call the
corresponding motions “characteristic oscillations,” although they are not
periodic; the corresponding “characteristic frequencies” are imaginary.

PropLEM. Show that the number of independent real characteristic oscil-
lations is equal to the dimension of the largest positive-definite subspace for
the potential energy 1(Bq, q).
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23: Small oscillations

Now the result may be formulated as follows:

Theorem. The system (1) has n characteristic oscillations, the directions of
which are pairwise orthogonal with respect to the scalar product given by
the kinetic energy A.

Proor. The coordinate system Q is orthogonal with respect to the scalar
product {Aq, q) by (2). O

C Deconposition into characteristic oscillations
It follows from the above theorem that:

Corollary. Every small oscillation is a sum of characteristic oscillations.

A sum of characteristic oscillations is generally not periodic (remember
the Lissajous figures!).

To decompose a motion into a sum of characteristic oscillations, it is
sufficient to project the initial conditions q, 4 onto the characteristic direc-
tions &; and solve the corresponding one-dimensiona! problems (4).

Therefore, the Lagrange equations for system (1) can be solved in the
following way. We first look for characteristic oscillations of the form
q = "€ Substituting these into Lagrange’s equations

d
—Aq = —Bq,
274 q
we find
(B — w?d)E = 0.

From the characteristic equation (3) we find » eigenvalues 4, = w?. To these
there correspond n pairwise orthogonal eigenvectors £,. A general solution
in the case 4 5 0 has the form

q(t) = Re ¥ C, e"*E,.
k=1
Remark. This result is also true when some of the 4 are multiple eigen-
values.
Thus, in a lagrangian system, as opposed to a general system of linear
differential equations, resonance terms of the form ¢ sin wi, etc. do not arise,
even in the case of multiple eigenvalues.

D Examples
ExampLE L. Consider the system of two identical mathematical pendulums of length !, = I, = 1
and mass m; = m; = | in a gravitational field with g = 1. Suppose that the pendulums are

connected by a weightless spring whose length is equal to the distance between the points of
suspension (Figure 79). Denole by g, and g, the angles of inclination of the pendulums. Then
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5: Oscillations

el

q; 92

Figure 79 Identical connected pendulums

for small oscillations, T = (3] + g3} and U = Mgi + 43 + xfg, — ¢,)°), where $xig, — ¢,)°
is the potential energy of the clasticity of the spring. Set

+ — 4
0, = q’_ﬁ and O, = i __:‘lﬁ_
N N
Then
O, + Q. 0 -0,
gy =-——z = and gy == 7L
Ve V2

and both forms are reduced to principal axes:
T=40t+03) U= HwiQl + wid)

where w; = | and w, = I_T {Figure 80} So the two characteristic oscillations are as
follows (Figure 81):

1. Q; = 0,1e, g, = g;: both pendulums move in phase with the original [requency [, and the
spring has no cffect;

2.4, =01, ¢, = —g;: the pendulums move in opposile phase with increased frequency
wi; > | due to the action of the spring.

4z
[

2

4

2U=1

¢

H

Vi 2w

Figure 80 Configuration space of the connected pendulums

g e

—_— — ——
Figure 81 Characteristic oscillations of the connected pendulums
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23: Small oscillations

Now let the spring be very weak: « < 1. Then an interesting effect called exchange of energy
oceurs.

ExaMPLE 2. Suppose that the pendulums are at rest at the initial moment, and one of them is
given velocity 4, = 5. We will show that alter some time T the first pendulum will be almost
stationary, and all the energy will have gone to the second.

It follows from the initial conditions that @,(0) = £,(0) = 0. Therefore. §, = ¢, sin ¢, and

Q: = cysinwt with & = T+ 222 1+« (x < [). But 0,(0) = 0,(0) = r//2. Therefore,

E . .
¢, = v/ 2and ¢y = vie, /2, and our solution has the form
v o ef 1
g, = = |sin ¢ + — sin e gy =z Lsint — - sin oy
2 o 2 £
or. disreparding the term p(l = (1,;w)sin wr, which is small since % is.

v, 3 . s
g = E(Sm I+ Sin o) = b Cos & Sin ',

[a . . . .
45 :.:E(smr—sm wr) = —0Cos w'sin &,
o ~1 oz , w4t
b= —0 ® - w = — x 1
2 2 2

The quantity & = %/2 is small, since « is: therefore ¢, undergoes an oscillation of frequency
@' = 1 with slowly changing amplitude » cos &t (Figure 82).

After time T = n/2¢ = m/a, essentially only the second pendulum will be oscillating; after
2T, again only the first, etc. (*beats™) (Figure 83).

4

q;

Figure 82  Beats: trajectories in the configuration spacc

9, EF

Figure 83 Beats
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§: Oscillations

Figure 84 Connected pendulums

bz

4;

Figure 85 Potential energy of strongly connected pendulums

ExaMpLE 3. We investigaie the characteristic oscillations ol two different pendulums {m, # m,,
!, # l;,g = 1), connected by a spring with energy folg, — g.)* (Figure 84). How do the charac-
teristic frequencies behave asa - Oorasx — =7

We have
T = ¥m 147 + mzi343)
2 2
o i1 4y X 2
U *mihf“‘mz’z?"' i(-‘-h - 43)"

Therefore (Figure 85},

4o mi; 0 B my ) + o -
0 mt —x myl, + o
and the characteristic equation has the form

md +a—Am -z )

det(B — id) =
( ) ( — myly + a — dm, i3

or
ad? — (by + bydi + (g + 02} =0,
where
a=mm,ii
by =mlimy (1 + 1) by, =mit +m,t
co = mymizhf; ¢y =ml, + myly.
This is the equation of a hyperbola in the (x, A)-plane (Figure 86}. As o — 0{weak spring) the

frequencies approach the frequencies of ree pendulums (w? , = 1, }); as 2 = . one of the
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23: Small oscillations

o
f fi A= w?

2

w Wl wl

Figure 86 Dependence of characteristic frequencies on the stiffness of the spring

/
my
K

Figure 87 Limiting case of pendulums connected by an infinitely stiff spring

frequencies tends to ., while the other approaches the characteristic frequency e, of a pendu-
lum with two masses on one rod (Figure 87):

2

my 4+ moly
wh =

Com B4 m,
ProBLEM. Investigale the characteristic oscillations of a planar double pendulum (Figure 88},

ProsLem. Find the shape of the (rajectories of the small oscillations of a point mass on the plane,
sitting inside an equilateral triangle and connected by identical springs to the vertices (Figure §9).

s
i
nty
I
ni

Figure 88 Double pendulum

-

Figure 89 System with an infinite set of characteristic oscillations
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5: Oscillations

Solution. Under rolation by 120° the system is mapped onto itsell. Consequently, all direc-
tions are characteristic, and both characteristic [requencics are the same: U = o?(x* + ).
Therefore, the trajectories are ellipses (ef. Figure 20).

24 Behavior of characteristic frequencies

We prove here the Rayleigh-Courant-Fisher theorem on (he behavior of characteristic fre-
quencies of a system under increases in rigidity and under imposed constraints,

A Behavior of characteristic frequencies under a

change in rigidity
Consider a system performing small oscillations, with kinetic and potential
energies

T=4A44,4) >0 and U =%XBqq)>0 forallq,qs#0.

Definition. A system with the same kinetic energy, and a new potential energy
U, is called more rigid if U' = X{B'q,q) = ¥Bq,q) = U forallq.

We wish to understand how the characteristic frequencies change under
an increase in the rigidity of a system.

ProBLEM. Discuss the one-dimensional case.

Theorem 1, Under an increase in rigidity, all the characteristic frequencies
are increased, i.e., if w0, < wy < .+ < w, are the characteristic frequencies
of the less rigid system, and @) < @) £ -+ < w, are the characteristic
Jrequencies of the more rigid system, thenw, < 0}, w, < W), . .. 0, < w,.

This theorem has a simple geometric meaning. Without loss of generality
we may assume that A = E, i.e., that we are considering the euclidean struc-
ture given by the kinetic energy T = ¢, §). To each system we associate the
ellipsoids E:(Bq,q} = | and E:(B'q,q) = L.

It is clear that

Lemma 1. If the system U’ is more rigid than U, then the corresponding
ellipsoid E' lies inside E.

It is also clear that

Lemma 2. The major semi-axes of the ellipsoid are the inverses of the char-
acteristic frequencies ;1 w; = 1/a;.

Therefore, Theorem 1 is equivalent to the following geometric proposition
(Figure 90).
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24: Behavior of characteristic frequencies

az

2

Figure 9¢ The semi-axes of the inside ellipse are smaller.

Theorem 2. If the ellipsoid E with semi-axes a, > a, > --- = a, contains the
ellipsoid E' with semi-axes a\| > a3 > --- > a;,, both ellipses having the
same center, then the semi-axes of the inside ellipsoid are smaller

a, Zaphazzail!"‘sanza;'

ExampLE. Under an increase in the rigidity = of the spring connecting the pendulums of Example
3, Section 23, the potential energy grows, and by Theorem 1, the characteristic frequencies grow
duw;ide > 0,

Now consider the case when the rigidity of the spring approaches infinity, « — = Then in
the limit the pendulums are rigidly connected and we get a system with one degree of freedom:
the limiling characteristic frequency w, satisfies &, < w_ < w,.

B Behavior of characteristic frequencies under the
imposition of a constraint

We return to a general system with n degrees of freedom, and let T = 4(g, §)
and U = }(Bq, q) (g€ R") be the kinetic and potential energies of a system
performing small oscillations.

(8q,q)=1
Rn—.’

Figure 31 Linear constraint

Let R"™!' < R” be an (n — 1)-dimensional subspace in R” (Figure 91).
Consider the system with n — 1 degrees of freedom (q € R"~ ') whose kinetic
and potential energies are the restrictions of T and U to R*~!. We say that
this system is obtained from the original by imposition of a linear constraint.

Let w;, < w, < --- < w, be the n characteristic frequencies of the original
system, and

W) LW << w,_,

the (n — 1) characteristic frequencies of the system with a constraint.
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5: Oscillations

wi iz We

) (%3 wn— 1
Figure 92 Separation of frequencies
Theorem 3. The characteristic frequencies of the system with a constraint
separate the characteristic frequencies of the original system (Figure 92):
0 S LW S0, < L W, W,

By Lemma 2 this theorem is equivalent to the following geometric propo-
sition.

Theorem 4. Consider the cross-section of the n-dimensional ellipsoid E =
{q:(Bq, q) = 1} with semi-axes a, > a, > --- = a, by a hyperplane R"~!
through its center. Then the semi-axes of this (n — 1)-dimensional ellip-
soid —the cross-seciion E —separate the semi-axes of the ellipsoid E'
(Figure 93):

ty 20’1 23220,22"'219"._] 2&;-1 > a,.

a.

Figure 93 The semi-axes of the intersection separate the semi-axes of the ellipsoid

C Extremal properties of eigenvaiues

Theorem 35, The smallest semi-axis of any cross-section of the ellipsoid E with
semi-axes d, = dy > --- > a, by a subspace B* is less than or equal to ay:

a, = max min x|
1Bk xceRKAE

(the upper bound is attained on the subspace spanned by the semi-axes
4y 2 a3 2 2 )

Proor.** Consider the subspace R"**! spanned by the axes a, = a4, = - -
> a,. Its dimension is n — k + 1. Therefore, it intersects R*, Let x be a point
of the intersection lying on the ellipsoid. Then [Ix| < a,, since x € R"7**1,

43 It is useful to think of the case n = 3, k = 2.
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25: Parametric resonance

Since ! < ||x[|, where { is the length of the smallest semi-axis of the ellipsoid
E ~ R¥ { must be no larger than a,. O

Proor oF THEOREM 2. The smallest semi-axis of every A-dimensional
section of the inner ellipsoid B* N E’ is less than or equal to the smallest
semi-axis of R* ~ E. By Theorem 5,

@, = max min |x|| £ max min ||X|| = 4. 1
{R*, xeR*~E’ (B*) xeRk~E

ProOF OF THEOREM 4. The inequality «, < a, follows from Theorem 35,
since in the calculation of g, the maximum is taken over a larger set. To prove
the inequality a; > a,.,, we intersect R"~' with any k + 1-dimensional
subspace R** !, The intersection has dimension greater than or equal to k.
The smallest semi-axis of the ellipsoid E' n R**! is greater than or equal to

the smallest semi-axis of £ » R¥*'. By Theorem 5,

a4, = Mmax min ||xj| > max min  |x|
Rk @1~} xcB*n £ (R *1 c Rl xeR**+! ~ E
> max min |Ix|| = a,,. d

{BA+ 1 c R} xeRH+1nE
Theorems | and 3 follow directly from those just proven.

ProBLEM. Show that if we increase the kinetic energy of a system without
decreasing the potential energy (for example, we increase the mass on a given
spring), then every characteristic frequency decreases.

ProbLem. Show that under the arthegonal projection of an cllipsoid lying in one subspace of
euclidean space onto another subspace, all the semi-axes are decreased.

ProBLEM. Suppose that a quadratic form A{z) on cuclidean space B is a continuously differcn-
tiable function of the parameter . Show that cvery characteristic frequency depends differen-
tiably on #, and find the derivatives,

ANswER. Let 4,,..., 4, be the eigenvalugs of 4{0}. To every eigenvalue 2, of multiplicity v; there
corresponds a subspace R*. The derivatives of the eigenvalues of A{g) at 0 are equal to the
eigenvalues of the restricted form B = (dA4/de)|, ., on B

In particular. if all the eigenvalues of A(0) are simple, then their derivatives are equal to the
diagonal clements of the matrix B in the characteristic basis for (00,

It follows lrom this problem that when a form is increased, its eigenvalues grow. In this way
we obtain new proofs of Theorems 1 and 2.

ProaLeM. How does the pitch of a bell change when a crack appears in the beli?

25 Parametric resonance

[f the parameters of & system vary periodically with time. then an equilibrium position can be
unstable, even if it 15 stable for each fixed value of the parameter. This instability is what makes it
possible 10 swing on a swing.
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5: Oscillations

A Dynamical systems whose parameters vary
periodically with time

ExaMpLE 1. A swing: the length of the equivalent mathematical pendulum
I(t) varies periodically with time: i{t + T) = Hi) (Figure 94).

Vs

/

Figure 94 Swing

ExampLE 2. A pendulum in a periodically varying gravitational field (for
example, the moon) is described by Hill’s equation:

(D = -ty o+ T)=ol)

ExampLg 3. A pendulum suspended from a point which periodically oscillates
vertically is also described by an equation of the form (1).

For systems with periodically varying parameters the right-hand side of
the equations of motion are periodic functions of t. The equations of motion
can be written in the form of a system of first-order ordinary differential
equations
2) x = f(x, t) fix,t + T)Y=1f(x, 1), xeR"
with periodic right-hand sides. For example, Equation (1) can be written as
the system

)El = X2

{3) 5 }w(t + T) = w(t).

Xy = —wix,

B The mapping at a period

Recall the general properties of the system {2). We denote by g': B" > R" the
mapping taking x € R” to the value at time ¢, g'x = @(¢), of the solution ¢ of
system (2} with initial conditions @(0} = x (Figure 95).
The mappings g’ do not form a group: in general,
gt+s ;é gl'gs ;é gsgf‘

ProBLEM. Show that {g*} is a group if and only if the right-hand sides f do not
depend on ¢.

ProBLEM. Show that, if T is the period of f, then g7 = ¢g°. ¢’ and, in
particular, g"* = (g7)", so that the mappings g"7 (n an integer) form a group.
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25:; Parametric resonance

7

*o

-

t 7
Figure 95 Mapping at a period
The mapping g': R” - R” plays an important role in what is to come; we
will call it the mapping at a period and will denote it by
AR — ®" AX(0Y = x(T).

ExaMrLE. For the systems
{i’, = x; {,‘il =X,
Xy = a0 %= — %

which can be considered periodic with any period T, the mapping A is a rotation or a hyper-
bolic rotation (Figure 96).

X3 X2
{
X
¥ ™o A
Ax
N
Xr - X
Figure 96 Rotation and hyperbolic rotation
Theorem.

1. The point X, is a fixed point of the mapping A (AX, = X,) if and only if the
solution with initial conditions x{0} = X, is periodic with period T.

2. The periodic solution x(t} is Liapunov stable (asymptotically stable) if and
only if the fixed point x, of the mapping A is Liapunov stable (asymptoti-
cally stable).**

3. If the system (2) is linear, ie., f(X, t) = f(t}X is a linear function of X,
then A is linear.

4. If the system (2) is hamiltonian, then A preserves volume: det 4, = 1.

** A fixed point X, of the mapping A is Liapunov stable {respectively, asymptotically stable) if
¥e = 0, 38 > 0 such that if |x — xg) < &, then |4"% — A"%,| < ¢ for all § < n < x (respec-

tively, A"x — A"xy; - 0asn — x).
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5: Oscillations

ProOF. Assertions (1} and (2) follow from the relationship g7 5 = 4.
Assertion (3) follows from the fact that a sum of solutions of a linear system
is again a solution. Assertion (4) follows from Liouville's theorem. ]

We apply the theorem above to the mapping 4 of the phase plane {(x,, x;)}
onto itself, corresponding to the equation (1) and the system (3). Since (3) is
linear and hamilionian (H = {w?x? + $x3), we get:

Corollary. The mapping A is linear, and preserves area (det A = 1), The trivial
solution of Equation (1) is stable if and only if the mapping A is stable.

ProBLEM. Show that a rotation of the planc is a stablc mapping, and a
hyperbolic rotation is unstable.

C Linear mappings of the plane to itself which
preserve area

Theorem. Let A be the matrix of a linear mapping of the plane 1o itself which
preserves area (det A = 1). Then the mapping A is stable if |tr A| < 2, and
unstable if [tr 4] > 2{tr A = a,, + a;,).

Proor, Let 4; and 4, be the eigenvalues of A. They satisfy the characteristic
equation A% — (tr A)A + | = 0 with real coefficients i, + 4, = tr 4 and
Ay- Ay =det A = 1. The roots 4, and 1, of this real quadratic equation are
real for [tr A| > 2 and complex conjugatc for [tr 4] < 2.

In the first case one of the eigenvalucs has absolute value greater than 1,
and one has absolute value less than 1; the mapping 4 is a hyperbolic
rotation and is unstable (Figure 97).

@ A
i “'

Figure 97 Eigenvalucs of the mapping 4

In the second case the eigenvalues liec on the unit circle (Figure 97):
1=A4,-4, =4, -4 =4~

The mapping 4 is equivalent to a rotation through angle « (where 4, , =
e*'), e, it may be reduced to a rotation by means of an appropriate choice of
coordinates on the plane. Therefore, it is stable. O

In this way, every question about the stability of the trivial soiution of an
equation of the form (1) is reduced to computation of the trace of the matrix
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25: Paramelric resonance

A. Unfortunately, the calculation of this trace can be done explicitly only in
special cases. It is always possible to find the trace approximatcty by numeri-
cally integrating the equation on the interval 0 < ¢ < T. In the important
case when e(t)is close to a constant, some simple general arguments can help.

D Strong stability

Definition. The trivial solution of a hamiltonian linear system is strongly
stable if it is stable, and if the trivial solution of every sufficiently close
linear hamiltonian system is also stable.*®

The two theorems above imply:

Corollary. If|tr A| < 2, then the trivial solution is strongly stable.

ProOF. If |tr A| < 2, then a mapping A’ corresponding to a sufficiently close
system will also have |tr A'] < 2 O

Let us apply this to a system with almost constant {only slightly varying)
coefficients. Consider, for example, the equation
4) % = —w?(l + za(t))x, € <€l

where a(t + 2r) = alt}, e.g., a(t) = cos t (Figure 98) (a pendulum whose
frequency oscillates near @ with small amplitude and period 27).*¢

N\ TN
N C

—_—

Figurc 98 Instantaneous frequency as a function of time

We will represent cach system of the form (4) by a point in the plane of
parameters ¢, @ > 0. Clearly, the stable systems with [tr A] < 2 form an
open set in the (w, ¢)-planc: so do the unstable systems with Jtr A > 2
(Figure 99).

The boundary of stability is given by the equation [tr 4| = 2.

Theorem. All points on the w-axis except the integers and half-integers
w=k2,k=0,1,2,...correspond to strongly stable systems (4).

45 The distance between two lincar systems with periodic coefficients, £ = By(f)x, X = B,(r)x,
is Qefined as the maximum over ¢ of the distance between the operators B,(1) and B.(¢).

4610 the case af¢} = cos . Equation (4} is caited Marhiew's equation.
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5 Oscillations

%]

Figurc 99 Zones of parametric resonance

Thus, the set of unstable systems can approach the e-axis only at the
points « = k/2. In other words, swinging a swing by small periodic changes
of the length is possible only in the case when one period of the change in
length is close to a whole number of half-periods of characteristic oscillations
—a result well known experimentally.

The proof of the theorem above is based on the fact that for ¢ = 0, Equation
(4) has constant coefficients and is clearly solvable.

ProeLEM. Calculate the matrix of the transformation 4 after period T = 2n
in the basis x, x for system (4) with ¢ = (.

Solution. The general solution is:
X = ¢; cos wt + ¢, sin wt.

The solution with initial conditions x = 1, X = 0 is;

X = COS wit X = —asin we.

The solution with initial conditions x = 0, X = 1 is;
x = —sin i X = CO0S wi.

w

ANSWER.
1.
cos 27w - 8in 27w
A p=1 W
—@sin2nw  cos 2aw
Therefore, |tr Al = |2cos2wn| <2 if w# k2, k=0,1, ..., and the

theorem follows from the preceding corollary.

A more careful analysis®” shows that in general (and for a(t) = cos )
the region of instability (shaded in Figure 99) in fact approaches the w-axis
near the points w = k/2, k = 1,2, .. ..

47 Cf., for example. the problem analyzed below.
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25 Parametric resonance

Thus, for @ = k/2, k =1, 2, ..., the lowest equilibrium position of the
idealized swing (4) is unstable and it swings under an arbitrarily small
periodic change of length. This phenomenon is called parametric resonance.
A characteristic property of parametric resonance is that it is strongest when
the frequency of the variation of the parameter v {in Equation {4}, v = 1)
is twice the characteristic frequency w.

Remark. Theoretically, parametric resonance can be observed for the
infinite collection of cases wir > k2, k = 1, 2, .... In practice, it is usually
observed only when k is small (k = 1, 2, and more rarely, 3). The reason is
that:

1. Forlarge k the region of instability approaches the w-axis in a very narrow
“tongue” and the rescnance frequencies o2 must satisfy very rigid bounds
(~ 8%, where 8 € (0, 1) depends on the width of the analyticity band for the
function a(z) in (4)).

2. The instability itself 1s weak for large k, since |tr 4| — 2 is small and the
eigenvalues are close to 1 for large k.

3. If there is an arbitrarily small amount of friction, then there is 2 minimal
value ¢, of the amplitude in order for parametric resonance to begin {(for e
less than this the oscillation dies out). As k grows, g, grows quickly (Figure
100).

'V

—

Figure 100 Influence of Iriction on parametric resenance

We also notice that for Equation (4) the size of x grows without bound in
the unstable case. In real systems, osciilations attain only finite amplitudes,
since for large x the linear equation (4) itself loses influence, and we must
consider the nonlinear effects.

ProBLEM. Find the shape of the region of stability in the cer-plane for the system described by
the equations
. 2 W+ J<ran
X= —f0nx figy = £l
Ly — b te < dn
Fle + 2r) = {0
Solurion. 1t loilows lrom the solution of the preceding prablem that 4 = 4, 4,. where

1
Cx — 5
Ay = w
— S, Cy

U = €08 MGk, 8, = SIN ALy, 0 - = (U *+ L,
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5: Oscillations

Therefore, the boundary of the zone of stabiiity has the equation

W, w
{5 [tr A| = ‘2('1('3 - (;_1 + —z)slsz

Wy

=2

Since £ <€ 1, we have i ji, = (w + &£){wr — £) = |. We introduce the notation
wy oy
— + = X1 + AL

L o

Then, as is casily computed, A = (2e%ie0?y + O(* <€ 1. Using the relations 2c,c;, =
cos 2me + cos 2ner and 25,5, = cos 2re — cos 2o, we rewrile Fquation (5)in the form

~Acos 2me + (2 + A)cos Zaw = +2

or
(63) 5 2+ Acos2ne
rOs A = . —
A [M] te ') N 6
-2 + Acos 2ne
(6h) Cos 2m = —— - ——
244

In the first case cas 2rw = |, Therefore, we set
w=k+alal 2l cos 2ney = cos 2mg = 1 — 2nigt + Ofa®).
We rewrite Equation (6a) in the form

A

cos 2nm =1 — (I ~ COs 278)

t-)|

of 2re? 4+ Ola*) = Arn?e? + O(*).
Substituting in the value A = (2e%/w?) + Q(c*), we find

2 2
L il

a=+ —+oaled) ie, w=k* , +ofe)
w? k

Equation (6b) is solved analogously: for the result we get

+ -t ole).
_ £
27 atk + 4

Therefore the answer has the form depicted in Figure 101,

YN
A

Figure 101 Zones of parametric resonance for f= w + ¢
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25: Parametric resonance

E Stability of an inverted pendulum with vertically
oscillating point of suspension

ProBLeM. Can the topmost, usually uastable, equilibrium position of a
pendutum become stable if the point of suspension oscillates in the vertical
direction (Figure 102)?

mg

gaI

a Parabola

Figure 102 Inverted pendulum with oscillating point of suspension

Let the length of the pendulum be I, the amplitude of the oscillation of the
point of suspension be a < |, the period of oscillation of the point of suspen-
sion 21, and, moreover, in the course of every half-period let the acceleration
of the point of suspension be constant and equal to +c¢ (then ¢ = 8a/7?). It
turns out that for fast enough oscillations of the point of suspension (z < 1)
the topmost equilibrium becomes stable.

Solution. The equation of motion can be written in the form ¥ = (w? 4+ d%)x (1he sign chanpes
after time 7), where w? = g/ and ¢* = ¢;l. I the oscillation of the suspension is fast enough,
then d? = w? (d® = §ailr?).

As in the previous problem, A = 4, 4, where

1 1
chkr -shkr cos Q1 — sin L
A, = k A, = Q
kshkr chkt —QsinQr cosOr
k= d* + w?, QF = 4% — i

The stability condition |tr 4| < 2 therefore has the form

<2

o

k 0
2 ch krcos {0t 4+ (ﬁ - I)s;h kz sin O

We will show that this condition is [ulfilled for sufficiently fast oscillations of the point of
suspension, Le., when ¢ & ¢. We introduce the dimensionless vanables ¢, u:
a A ¥
=g 41 -q:yzél_
f ¢
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5: Oscillations

Then

kr=226/1 427 Or=2,2e/1 -0

ko w122
A DL L LN o (2]
Q & [ ﬁ+m # G

Therefore, for small & and p we have the following expansion with error ofg* + u*):

chkr =1 +4e® (1 +p)+%c* + - cosQr=1—4g21 —p?) + & + -~

kO
(ﬁ - ;)sh kTsin Qr = 1667u® + -

50 the stability condition (7) takes the form

201 = 166* + B 4 el - + leefut < 2,

i.e., disregarding the small higher-order terms, $16¢* = 32p%® or p < £./2/3, or gfc < 2a/3L

This condition can be rewritten as

3o !
N> \/ama 20,220415,

where N = 1/27 is the number of oscillations of the point in one unit of time. For example, if the
length of the pendulum 7 is 20 cm, and the amplitude of the oscillation of the point of suspension

ais 1 cm, then

{980
N=z022 56 -20 = 31 (oscillations per second).

For example, the topmost position is stable if the frequency of oscillation of the peint of

suspension is greater than 40 per second.
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Rigid bodies

In this chapter we study in detail some very special mechanical problems.
These problems are traditionally included in a course on classical mechanics,
first because they were solved by Euler and Lagrange, and also because we
live in three-dimensional euclidean space, so that most of the mechanical
systems with a finite number of degrees of freedom which we are likely to
encounter consist of rigid bodies.

26 Motion in a moving coordinate system
In this paragraph we define angular velocity.

A Moving coordinate systems

We look at a lagrangian system described in coordinates q, t by the lagrangian
function L(q, q, £). It will often be useful to shift to a moving coordinate
system (O = Q(q, 1).

To write the equations of motion in a moving system, it is sufficient to
express the lagrangian function in the new ccordinates.

Theorem. If the trajectory 7. q = @(t) of Lagrange's equations d(3L/dq)/dt =
CLiEq is written as v: Q = ®(t) in the local coordinates Q, t (where Q =
Q(q, 1)), then the function ®{t) satisfies Lagrange’s equations d(2L'/6Q)/dt =
JL'18Q, where L'(Q, Q, t) = L(q.4, 1).

Proor. The trajectory y 1s an extremal: & [, 1(q, 4, t)dt = 0. Therefore,
0 _[? L(Q, Q, t)dt = 0 and ®(r) satisfies Lagrange’s equations. O
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6: Rigid bodies

B Motions, rotations, and translational motions

We consider, in particular, the important case where q is the cartesian radius
vector of a point relative to an inertial coordinate system & (which we will
call stationary), and Q is the cartesian radius vector of the same point relative
to a moving coordinate system K.

Definition. Let k and K be oriented euclidean spaces. A motion of K relative
1o k 1s a mapping smoothly depending on ¢:

DK —k,

which preserves the metric and the orientation (Figure 103).
\~ ~
k /
. ¢
S |K

Figure 103 The motion I, decomposed as the product of a rotation B, and transla-
tion C,

Definition. A motion D, is called a rotation if it takes the origin of K to the
origin of &, i.e., if D, 1s a linear operator.

Theorem, Every motion D, can be uniguely written as the composition of a
rotation B, K — k and a translation C,: k — k:
D, = C,B,,
where C,q = q + (), (q. re k).
PrOOF. We set 1(t) = D,0, B, = C,; 'D,. Then B,0 = 0. O

Definition. A motion D, is called trapslational if the mapping B,: K — k
corresponding to it doesnotdependont: B, = By = B,D,Q = BQ + ).

We will call k a stationary coordinate system, KX a moving one, and
q(t) € k the radius-vector of a point moving relative to the stationary system;
if
(1) q(t) = D, Q(1) = B,Q(t) + r(1)

(Figure 104), Q{t)is called the radius vector of the point relative to the moving
system.

Warning, The vector B,Q(t) € k should not be confused with Q{t)e K—
they li¢ in different spaces!
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26: Motion in 4 moving coordinate sysiem

B (1)

Figure 104 Radius vector of a point with respect to stationary (g) and moving (Q)
coordinate systems

C Addition of velocities

We will now express the “absolute velocity” q in terms of the relative motion
Q(:) and the motion of the coordinate system, D,. By differentiating with
respect to ¢ in formula (1) we find a formula for the addition of velocities

(2) §d=BQ + BQ + 1.

In order to clarify the meaning of the three terms in (2), we consider the
following special cases.
The case of translational motion (B = 0)

In this case Equation (2) gives q = BQ + I, Inother words, we have shown

Theorem. If the moving system K has a translational motion relative to k, then
the absolute velocity is equal to the sum of the relative velocity and the
velocity of the motion of the system K :

(3) Y=V + ¥,
where

v = Q€ k is the absolute velocity,

]

v = BQ ek is the relative velocity (distinct from Q € K1)

v, = F ek is the velocity of motion of the moving coordinate system.

D Angular velocity

In the case of a rotation of K the relationship between the relative and ab-
solute velocities is not so simple. We first consider the case when our point is
at rest in K (ie, Q = 0) and the coordinate system K rotates (i.e., r = 0).
In this case the motion of the point g(¢) s called a transferred rotation.

EXAMPLE. Rotation with fixed angular velocity me k. Let U(t): k — k be the
rotation of the space k around the w-axis through the angle [@|t. Then
B(t) = U()B(0) is called a uniform rotation of K with angular velocity w.
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6: Rigid bodies

£

o
Figure 105 Angular velocity

Clearly, the velocity of the transferred motion of the point g in this case is
given by the formula (Figure 105)

4= [(ﬂ, q]

We now turn to the general case of a rotation of K (r = 0, Q = 0).

Theorem. A: every moment of time t, there is a vector o{t) €k such that the
transferred velocity is expressed by the formula

4) q=[w q], Yqek.

The vector @ is called the instantaneous angular velocity; clearly, it is
defined uniquely by Equation (4).

Corollary. Suppase that a rigid body K rotates around a stationary point 0 of
the space k. Then at every moment of time there exists an instantaneous axis
of rotation —the straight line in the body passing through O such that the
velocity of its points at the given moment of time is equal to zero. The
velocity of the remaining points is perpendicular to this straight line and is
proportional to the distance from it.

The instantaneous axis of rotation in k is given by its vector w; in K the
corresponding vector is denoted by @ = B~ e e K; Q is called the vector of
angular velocity in the body.

Exampie. The angular velocity of the earth is directed from the center to the North Pole: its
length is equal to 27/3600 24 sec ' = 2.3-10" % sec™ ",

PROOF OF THE THEOREM. By (2) we have
4 = BQ.

Therefore, if we express Q in terms of q, we get § = BB~ 'q = Aq, where
A = BB~ ':k — k is a linear operator on k.
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Lemma 1. The operator A is skew-symmetric: A' + A = 0,

ProoF. Since B: K — k is an orthogonal operator from one euclidean space
to another, its transpose is its inverse: B' = B~ !: k — K. By differentiating
the relationship BB* = E with respect to 1, we get

BB + BB =0 BB '+ (BB 'Y =0. O

Lemma 2. Every skew-symmetric operator A on a three-dimensional oriented
euclidean space is the operator of vector multiplication by a fixed vector:

Aq = [@,q] for aliqe R,

PrOOF, The skew-symmetric operators from R? to R? form a linear space.
Its dimension is 3, since a skew-symmetric 3 x 3 matrix is determined by its
three elements below the diagonal.

The operator of vector multiplication by o is linear and skew-symmetric.
The operators of vector multiplication by all possible vectors @ in three-
space form a linear subspace of the space of all skew-symmetric operators.

The dimension of this subspace is equal to 3. Therefore, the subspace of
vector multiplications is the space of all skew-symmetric operators. ]

CONCLUSION OF THE PROOF OF THE THEOREM. By Lemmas 1 and 2,

q=Aq=[mw,q] O

In cartesian coordinates the operator A4 is given by an antisymmetric
matrix; we denote its elements by +w, , 3:

0 '_wa (.02
A = w3 0 _wl
—w, W 0

In this notation the vector @ = w,e; + w,e, + w,e; will be an eigenvector
with eigenvalue 0. By applying A to the vector q = q,&, + g,€; + ¢a€;3,
we obtain by a direct calculation

Aq = [a, q].

E Transferred velocity

The case of purely rotational motion

Suppose now that the system K rotates {r = 0}, and that a point in K
is moving (€ # 0). From {2) we find (Figure 106)

q=BQ + BO =[wq] +v.

In other words, we have shown
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O
Figure 106  Addition of velocities

Theorem. If a moving system K rotates relative to 0 ¢k, then the absolute
velocity is equal to the sum of the relative velocity and the transferred
velocity:

v=v 4+ v,
where
v = €k is the absolute velocity
(5) v = BQek is the relative velocity

v, = BQ = [o,q] €k is the iransferred velocity of rotation.

Finally, the general case can be reduced to the two cases above, if we
consider an auxiliary system K, which moves by translation with respect to
k and with respect to which K moves by rotating around 0 K,. From
formula {2) one can see that

V=V + v, + v,
where
v = q €k is the absolute velocity,
v = BQ ek is the relative velocity,
v, = BQ = [®, q — r]ek is the transferred velocity of rotation,
and
vy = rek is the velocity of motion of the moving coordinate system.

ProBLEM. Show that the angular velocity of a rigid bedy does not depend on
the choice of origin of the moving systcm K in the body.

PrOBLEM. Show that the most general movement of a rigid body is a helical
movement, i.e,, the composition of a rotation through angle ¢ arcund some
axis and a translation by h along it.

ProBLEM. A watch lies on a table. Find the angular velocity of the hands ol the watch: (a) relative
Lo the eartly, (b) relative to an incrtial coordinate system.
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27: Inertial forces and the Coriolis force

Hine. If we are given three coordinate systems &, K. and K ,. then the angular velocity of K,
relative to k is equal Lo the sum of the angular velocities of K| refative to & and of K, relative
to K. since

(E+ A+ WE+ Ay + - )=E + (A + 40+,

27 Inertial forces and the Coriolis force

The equations of motion in 4 nen-inertial coordinate system differ from the equations of moticn
in an inertial system by additional terms called inertial forces. This allows us to detect experi-
mentally the non-inertial nature of a system {for example, the rotation of the earth around 115
axis}

A Coordinate systems moving by transiation

Theorem. In a coordinate system K which moves by translation relative to an
inertial system k, the motion of a mechanical system takes place as if the
coordinate system were inertial, but on every point of mass m an additional
“inertial force” acted: F = —m¥, where ¥ is the acceleration of the system K.

ProOF. If Q = q — r(1), then mQ} = m§ — mf. The eflect of the translation of
the coordinate system is reduced in this way to the appearance of an addi-
tional homogeneous force field—mW, where W is the acceleration of the
origin. O

h

mig —r)

AR

TIPS
Figure 107  Overload

ExaMeLE |- A the moment of lakeofl, a rocket has acceleration F direcled upward (Figure 107).
Thus, the coordinate system X connected to the rocket is not inertial, and an observer inside can
detect the existence of a force field mW and measure the inertial force, for example, by means of
welghted springs. [n this case the inertial foree is called overfoud *

ExamrLE 2. When jumping from a lofi, a person has acceleration g, directed downwards. Thus,
the sum of the inertial force and the force of gravity is equal to zero; weighted springs show that
the weight of any object is equal to zero, so such a state is calied weightlessness. In exactly the
same way, weightlessness is observed in the free ballistic Rlight of a satellite since the force of
inertia is opposite to the gravitational lorce of the earth.

ExampLe 3. If the point of suspension ol a pendulum moves with acceleration W(z), then the
pendulum moves as il the force of pravity g werc variable and equal to g — W{).

* Translator's note. The word orerfoad is the literal translation of the Russian term peregrizha.
There does not seem to be an English term for this particular kind of inertial force.
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6: Rigid bodies

B Rotating coordinate systems

Let B,: K — k be a rotation of the coordinate system K relative to the sta-
tionary coordinate system k. We will denote by Q(t) € K the radius vector of
a moving point in the moving coordinate system, and by q(¢t) = B, Q(t) ek
the radius vector in the stationary system. The vector of angular velocity in
the moving coordinate system is denoted, as in Section 26, by £2. We assume
that the motion of the point q in k is subject to Newton’s equation m{ =

f(q, 9).
Theorem. Motion in a rotating coordinate system takes place as if three addi-
tional inertial forces acted on every moving point Q of mass m:

1. the inertial force of rotation: m[£2, Q],
2. the Coriolis force: 2m[&2, Q], and
3. the centrifugal force: m[{Q, [Q, Q]].

Thus
mQ =F - m[ns Q] - 2m[na Q] - m[ﬂs [Qs Q]]s
where

BF(Q, Q) = f(BQ, (BQ) ).

The first of the inertial forces is observed only in nonuniform rotation.
The second and third are present even in uniform rotation.

Figure 108 Centrifugal force of inertia

The centrifugal force (Figure 108) is always directed outward from the
instantancous axis of rotation £; it has magnitude |§2|%, where r is the
distance to this axis. This force does not depend on the velocity of the relative
motion, and acts even on a body at rest in the coordinate system K.

The Coriolis force depends on the velocity Q. In the northern hemisphere
of the earth it deflects every body moving along the earth to the right, and
every falling body eastward.
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27 Inertial forces and the Coniolis force

PROOF OF THE THEOREM. We notice that for any vector X€ K we have
BX = B[Q, X]. In fact, by Section 26, BX = [, x] = [BS, BX]. This is
equal to B[, X] since the operator B preserves the metric and orientation,
and therefore the vector product. )

Since q = BQ we see that § == BQ + BQ = B(Q + [£2, Q]). Differenti-
ating once more, we obtain

i = BQ + [ QD + BQ + (£.Q] + [2,Q))
= B2, (Q + [2.QD] + Q + [2 Q] + [, QD
= BQ + 2[, Q] + [2.[2. Q1] + [£2, QD). O

(We again used the relationship BX = B[£2, X]; this time X = Q +
[, Q])

We will consider in more detail the effect of the earth’s rotation on jaboratory experiments.
Since the earth rotates practically uniformly, we can take £2 = 0. The centrifugal force has its
largest value at the equator, where it attains Q%p/g = (7.3 x 10752 6.4 x 105/9.8 = 3;1000
the weight. Within the limits of a laboratory it changes little, 50 to observe it one must travel
some dislance. Thus, within the imits of a laboratory the rotation of the earth appears only in
the form of the Coriclis force: in the coordinate system Q associated to the earth, we have, with
good accuracy,

d . ,
5 MQ = me + 2m[Q Q]
{the centrifugal force is taken inte account in g).

ExaMpLE |. A stone is thrown {without inilial velocity) into a 250 m deep mine shaft a1 the
latitude of Leningrad. How far does it deviate from the vertical?
We solve the equation

Q=g+2002)
by the following approach, taking £ < 1. We set {Figure 109)
Q = QI + Q..
where Qz({]) =0,(0) = 0and Q, = Q,(0} + gr*/2. For ;. we then get
. 0 2t i
Q: =2 @)+ 00)  Q slEMsIHO] h-%-
Q, () 2
¥ AN
£
£
a,(0)

Figure 109 Displacement of a falling stone by Coriolis force
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6: Rigid bodies

From this it is apparent that the stone tands about

2% .27 .
?|h||ﬂ[cosx :.:-3—-250-?- 1072 fm = 4 em

to the gast.

PrOBLEM, By how much would the Coriolis foree displace a missile fired vertically upwards at
Leningrad from falling back onto its launching pad, if the missile rose 1 kilometer?

ExaMpLE 2 (The Foucault pendufum). Consider small oscillations of an ideal pendulum. taking
into account the Coriolis force. Lel e,, e,, and €, be the axes of a coordinate system associated
to the earth, with e, direcled upwards, and e, and e, in the horizontal plane (Figure (10). In

a

X

Figure 11¢ Coordinate system for studying the motion of a Foucault pendulum

the approximation ol small oscillations, z = 0 {in companson with % and y}: therefore, the
horizontal component of the Coriolis force will be 2miQ e, ~ Zmx{) e . From this we get the
equations of motion

¥ = —wlx 4+ 290, Q. = |92] sin 4, where 4, 15 the latitude)
F= —wly - 22Q.,
[f we set x + iy = w, then ¥ = % + iy, w = ¥ + (f. and the two equations reduce to one
comples equation
W+ 2+ ofe =0

Wesolveittw = ¢ 2+ 204+ e =01 = ~if), + :'\_.-'?2_?_+ . But £} < o’ Therelore.
L ¥+ e =+ 0(Q2). from which it lollows. by disregarding Q2. that

Az -if), £ iw
or, to the same accuracy.

W= e - [ﬂ‘!(n‘.' |£’w" + (_2 e - |'mi)l

For €. = 0 we get the usual harmonic oscillations of a spherical pendulum. We sce that the
effect of the Coriolis force reduces to a rotation of the whole picture with angular velocity - Q..
where |[€1,| = |$2] sin 4.

{n particular, if the initial conditions correspond to a planar motion (30} = ¥(0) - 0), then
the planc of oscillation will be rotating with angular velocity —£), with respect Lo the earth’s
coordinate system (Figure [11).

Al & pole. the plane of oscillation makes one turn in a twenty-four-hour day (and is fixed
with respect to a coordinate system not rotating with the earth). At the latitude of Moscow (567}
the plane of oscillation turns 0.83 of a rotation in a twenty-four-hour day. ie, 12.57 in an hour.
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28: Rigid bodies

Figure 111 TFrajectory of a Foucault pendulum

ProBLEM. A river flows with velocity 3 kmihr. For what radius of curvature of a river bend is the
Coriolis foree from the earth's rolation greater than the centrifugal force determined by the flow
of the river?

Answir. The radius of curvature must be least on the order of 10 km for a river ol medium
wiidth.

The solution of this problem explains why a large river in the northern hemisphere {lor
example, the Volga in the middle of its course}, undermines the base of its right bank. while a
river like the Moscow River, with its abrupt bends of small radius, undermines either the ieft or
right {whichever is outward from the bend) bank.

28 Rigid bodies

In this paragraph we define a rigid body and i1s inertia lensor, inertia ellipsoid, moments of
mertia. and axes of inertia.

A The configuration manifoid of a rigid body

Definition. A rigid body is a system of point masses, constrained by holonomic
relations expressed by the fact that the distance between points is constant:

(1} |%; — %;] = ry; = const.

Theorem. The configuration manifold of a rigid body is a six-dimensional
manifold, namely, B> x SO(3) (the direct product of a three-dimensional
space B> and the group SO(3) of its rotations), as long as there are three
paints in the body not in a straight line.

ProoF. Let x4, X,, and x; be three points of the body which do not lie in a
straight line. Consider the right-handed orthonormal frame whose first
vector Is in the direction of x; — x|, and whose second is on the X, side in the
X,X,%;-plane (Figure 112}). It follows from the conditions |X; — x;| = r;;
(i = 1, 2, 3), that the positions of all the points of the body are uniquely
determined by the positions of X, X, , and X5, which are given by the position
of the frame. Finally, the space of frames in R is R* x SO(3), since every
frame is obtained from a fixed one by a rotation and a transiation.*® O

4 Sirictly speaking, lhe conliguration space of & rigid body is B x O(3), and R? x SO(3) is
only one of the two connected components of this manifold, corresponding to the orientation of

the bady.
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€z

€4

¥3

Figure 112 Configuration manifold of a rigid body
ProBLEM. Find the configuration space of a rigid body, all of whose poinis lie on a ling,

Answer, E* x §2,

Definition. A rigid body with a fixed point O is a system of point masses con-
strained by the condition x, = O in addition to conditions (1).

Clearly, its configuration manifold is the three-dimensional rotation
group S0(3).

B Conservation laws

Consider the problem of the motion of a free rigid body under its own nertia,
outside of any force field. For an {(approximate) example we can use the
rolling of a spaceship.

The system admits all translational displacements: they do not change
the lagrangian function, By Noether’s theorem there exist three first integrals:
the three compoenents of the vector of momentum. Therefore, we have shown

Theorem. Under the free motion of a rigid body, its center of mass moves
uniformly and linearly.

Now we can look at an inertial coordinate system in which the center of
inertia is stationary. Then we have

Corollary. A free rigid body rotates about its center of mass as if the center of
mass were fixed at a stationary point 0.

In this way, the problem is reduced to the problem, with three degrees of
freedom, of the motion of a rigid body around a fixed point 0. We will study
this problem in more detail (not necessarily assuming that @ is the center of
mass of the body)

The lagrangian function admits ali rotations around O. By Noether’s
theorem there exist three corresponding first integrals: the three components
of the vector of angular momentum. The total energy of the system, E = T,
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28: Rigid bodics

is also conserved (here it is equal to the kinetic energy). Therefore, we have
shown

Theorem. fn the problem of the motion of a rigid body around a stationary point
0, in the absence of outside forces, there are four first integrals: M., M,,
M., and E.

From this theorem we can get qualiéative conclusions about the motion
without any calculation.

The position and velocity of the body are determined by a point in the
six-dimensional manifold TSO4{3)- the tangent bundle of the configuration
manifold SO(3). The first integrals M,, M,, M_, and E are four functions on
TSO{3). One can verify that in the general case (if the body does not have any
particular symmetry) these four functions are independent. Therefore, the
four equations

wa=C1 .My= Cz M':=C'3 E:C4>0

define a two-dimensional submanifold I, in the six-dimensional manifold
TSO3)

This manifold is invariant: if the initial conditions of motion give a point
on V., then for all time of the motion, the point in TSO(3) corresponding to
the position and velocity of the body remains in F,.

Therefore, V., admits a tangent vector field (namely, the field of velocities
of the motion on TSO(3}}; for C, > 0 this field cannot have singular peints.
Furthermore, it is casy to verify that ¥, is compact {using E) and oricntable
(since TSO(3) is orientable).**

In topology it is proved that the only connected orientable compact two-
dimensional manifolds are the sphercs with » handles, n = 0 (Figure 113).
Of these, only the torus (# = 1)admits a tangent vector field without singular
points. Therefore, the invariant manifold V, is a two-dimensional torus (or
several tor).

We will see later that one can choose angular coordinates @, ¢, , (mod 2=x)
on this torus such that a motion represented by a point of V, is given by the
equations ¢, = ar{c), ¢, = w,(c).

4* The following assertions are easy 1o prove:

L. Let fi.....fir M — & be functions on an oriented manifold M. Consider the set V' given by
the equations f; = ¢y, ..., fi = ¢, Assume that the gradients of f..... i are linearly
independent at cach point. Then ¥V is oricntable.

2. The direct product of orientable manifoids is orientable.

3. The tangent bundle TSO{3} is the direct product E* x $0(3). A manifold whose tangent
bundie is a direct product is called paraflelizable. The group SO(3) (like every Lie group) is
paraliclizable.

4. A parallelizable manifold 15 origniable.

It follows from assertions 1—4 that SO(3), TSO(3), and F, are orientable.
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(o3 Ce

Figure 113 Twe-dimensional compact connected orientable manifoids

In other words, a rotation of a rigid body is represented by the super-
position of two periodic motions with (usually) different periods: if the
frequencies ¢, and @, are non-commensurable, then the body never returns
to its original state of motion. The magnitudes of the frequencies w, and s,
depend on the initial conditions C.

C The inertia operator>®

We now go on to the quantitative theory and introduce the following
notation. Let k be a stationary coordinate system and K a coordinate system
rotating together with the body around the point O: in K the body is at rest.

W

¢

Figure 114 Radius vector and vectors of velocity, angular velocity and angular
momentum of a point of the body in space

Every vector in K is carried over to k by an operator B. Corresponding
vectors in K and k will be denoted by the same letter: capital for K and lower
case for k. So, for example (Figure 114),

q €k is the radius vector of a peint in space;

Q e K is its radius vector in the body, q = BQ:

v = q € k15 the velocity vector of a point 1n space;

¥ € K 1s the same vector in the body, v = BY;

@ €k is the angular velocity in space;

Qe K is the angular velocity in the body, & = BLQ;

m € k is the angular momentum in space;

M < K is the angular momentum in the body, m = BM.

Since the operator B: K — k preserves the metric and orientation, it
preserves the scalar and vector products.

3% Often called the inertia rensor {translator’s note).
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By definition of angular velocity (Scction 26),

v = [w,q].
By definition of the angular momentum of a point of mass m with respect
to O,
m = [g, mv] = m[q, [, q]].

Therefore,
M =m[Q, [€. Q]].
Hence, there is a linear operator transforming £ to M:
A:K =+ K ALk = M.
This operator still depends on a point of the body (Q) and its mass (m).

Lemma. The operator A is symmetric.

ProoF. In view of the relation ([a, b], ¢} = ([¢, a], b) we have, for any X and
Y in K,

(AX, Y) = m({Q, [X, Q]], ) = m{[Y, Q], [X, Q).

and the last expression is symmetric in X and Y. O

By substituting the vector of angular velocity £ for X and Y and noticing
that [£2, Q]* = V? = ¥?, we obtain

Corollary. The kinetic energy of a point of a body is a quadratic form with
respect to the vector of angular velocity £, namely:

T = 448, Q) = ¥M, Q).

The symmetric operator A is called the inertia operator (or tensor) of the
point Q.

If a body consists of many points Q; with masses m;, then by summing we
obtain

Theorem. The angular momentum M of a rigid body with respect to a stationary
point O depends linearly on the angular velocity , i.e., there exists a linear
operator A:K — K, AQ = M. The operator A is symmetric.

The kinetic energy of a body is a quadratic form with respect to the angular
velocity €2,

T = {40, Q) = 1M, Q).

ProoF. By definition, the angular momentum of a body is equal to the sum
of the angular momenta of its points:

M=YM=3A40=40 whered =) 4;.
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Since by the lemma the inertia operator 4; of every point is symmetric,
the operator A4 is also symmetric. For kinetic energy we obtain, by definition,

T =Y T = 5 HM, ) = M. ) = J40. ), O

D Principal axes

Like every symmetric operator, 4 has thre¢c mutually orthogonal char-
acteristic directions. Let e,, e;, and e, € K be their unit vectors and I,, I,
and I, their eigenvalues. In the basis €;, the inertia opcrator and the kinetic
energy have a particularly simple form:

M, = IEQE
T =31,08 + 1,3 + 1,Q9).

The axes e; are called the principal axes of the body at the point O.

Finally, if the numbers I, [, and I, are not all different, then the axes e,
are not uniquely defined. We will further clarify the meaning of the eigen-
values ,, f,,and I,.

Theorem. For a rotation of a rigid body fixed at a point O, with angular velocity
0 = Qe (Q = |82|) around the e axis, the kinetic energy is equal to

T =31,Q2 wherel, =) my?
and r; is the distance of the i-th point to the e axis (Figure 115).

0 =10le

Figure 115 Kinetic energy of a body rotating around an axis

PROOF. By definition T = 3} mvZ: but |v,| = Oy, s0 T = 33 mrH)Q7.

The number I, depends on the direction e of the axis of rotation £2 in the
body.

Definition. 1, is called the moment of inertia of the body with respect to the

€ axis:
2
i, = Z mri.
i
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By comparing the two expressions for T we obtain:

Corollary. The eigenvalues I; of the inertia operator A are the moments of
inertia of the body with respect to the principal axes e;.

E The inertia ellipsoid

In order to study the dependence of the moment of inertia [, upon the direc-
tion of the axis € in a body, we consider the vectors ¢/,/1,, where the unit
vector e runs over the unit sphere,

Theorem. The vectors ef\/l:form an ellipsoid in K.

Proor. If & = e/\/f—m then the quadratic form T = {(4€Q, €} is equal 1o 3.
Therefore, {£2} is the level set of a positive-definite quadratic form, i.e., an
ellipsoid. 0

One could say that this ellipsoid consists of those angular velocity vectors
Q whose kinetic energy is equal to .

Definition. The ellipsoid {€2: (A€, £2) = 1} is called the inertia ellipsoid of the
body at the point 0 (Figure 116).

Ellipsoid of inertia
Figure 116 Ellipsoid of inertia

In terms of the principal axes e, the equation of the inertia ellipsoid has
the form

Thercfore the principal axes of the inertia ellipsoid are directed along the
principal axes of the inertia tensor, and their lengths are inversely proportional

o 1.

Remark. If a body is stretched out along some axis, then the moment of
incrtia with respect to this axis is small, and consequently, the inertia el-
lipsoid is also stretched out along this axis; thus, the inertia ellipsoid may
resemble the shape of the body.

If a body has an axis of symmetry of order k passing through @ (so that it
coincides with itself after rotation by 2x/k around the axis), then the inertia
ellipsoid also has the same symmetry with respect to this axis. But a triaxial

139



6: Rigid bodies

ellipsoid does not have axes of symmetry of order k > 2. Therefore, every axis
of symmetry of a body of order k > 2 is an axis of rotation of the inertia
ellipsoid and, therefore, a principal axis.

ExampLE. The inertia ellipsoid of three points of mass m at the vertices of an equilateral triangle
with center @& is an ellipseid of revolution around an axis normal to the plane of the triangle
{Figure 117).

0 O

Figure 117 Ellipsoid of inertia of an equilateral triangle

If there are several such axes, then the inertia ellipsoid is a sphere, and any
axis is principal.

PrOBLEM, Draw the line through the center of & cube such thal the sum of the squares of its
distances from the vertices of the cube is: (a) largest, (b} smallest.

We now remark that the inertia eliipsoid (or the inertia operator or the
moments of inertia I, [,, and I;) completely determines the rotational
characteristics of our body: if we consider two bodies with identical inertia
ellipsoids, then for identical initial conditions they will move identically (since
they have the same lagrangian function L = T).

Therefore, from the point of view of the dynamics of rotation around 0,
the space of all vigid bodies is three-dimensional, however many points com-
pose the body.

We can even consider the “solid rigid body of density p(Q),” having in
mind the limit as AQ — 0 of the sequence of bodies with a finite number of
poiats Q; with masses p(Q)AQ; (Figure 118) or, what amounts to the same
thing, any body with moments of inertia

L= {[[r@rue,

whete r is the distance from QQ to the e axis.

AT AL,
w4 !
e a=0
A |
( ¥
L/

Figure 118 Continuous solid rigid body
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ExaMPLE. Find the principal axes and moments of incrtia of the uniform planar plate x| = @,
|¥| = b, z = 0 with respect to O.

Solution. Since the plate has three planes of symmetry, the inertia llipsoid has the same planes
of symmetry and, therefore, principal axes x, y, and z. Furthermore,

R L ma’
= xipdxdy = .
Cavon 3

—

In the same way

Clearly, f, = f, + 1.

PronLeM. Show that the moments of inertia of any body satisly the triangle inequalities
Ll + 1 L<ly+I and £, <1, +1;.

and that equality holds only for a planar body,

ProaLEM. Find the axes and moments of inertia of a homogencous ellipsoid of mass m with
semiaxes @, b, and ¢ relative to the center 0.
Hine First look at the sphere.

PrROBLEM. Prove Steiner’s theorem: The moments of mnertia of any rigid body
relative to two parallel axes, one of which passes through the center of mass,
are related by the equation

=1y + mr?,

where m is the mass of the body, r is the distance between the axes, and I
is the moment of inertia relative to the axis passing through the center of
mass.

Thus the moment of inertia relative to an axis passing through the center
of mass is less than the moment of inertia relative to any parallel axis.

ProbLEM. Find the principal axes and moments of inertia of a uniform tetrabedron relative to
1S vertiees.

ProsrLem. Draw the anpular momentum vector M for a body with a given mertia ellipsoid
rotating with a given angular velocity .

ANSWER. M is in the direction normal to the inertia ellipsoid at a point on the € axis {Figure 119).

9]

Figure 119 Angular velocity. cliipsoid of inertia and angular momentum
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Figure 12¢  Behavior of moments of inertia as the body becomes smaller

PROBLEM. A picce is cut off a rigid body fixed at the stationary point 0. How are the principal
moments of inertia changed? (Figure 120},

Answer, All three principal moments are decreased.
Hine. Cf. Section 24.

ProBLEM. A small mass ¢ is added to a rigid body with moments of inertia f, > I, == I, at the
poiml Q = x,e, + x,€; + x;¢;. Find the change in [, and e, with error O(e%).

Sohition. The center of mass is displaced by a distance of order ¢. Therelore, the moments of
inertia of the old body with respect 10 the parallel axes passing through the old and new centers
of mass differ in magnitude of order 22, At the same time, the addition of mass changes the
moment of inertia relative 1o any fixed axis by order £. Therefore, we can disregard the displace-
ment of the center of mass for calculations with error Of&?),

Thus, after addition of a small mass the kinetic energy takes the form

T=T + [ Q1 + O@?)

where Ty = 3(J, Q% + 1,02 + 1;03) 1s the kinetic energy of the original body. We look for the
eigenvalue I, (z) and eigenvector e,{g) of the inertia operator in the form of a Taylor series in &
By equating coefficients of ¢ in the relation A(g)e,(e) = I (eleie), we find that, within error
Ofe?y:

Iy =1, +exi+x3) and e fehme, + s(-—{'x—z e, + allat ea)_

L =1 =1
From the formula for (&) it is clear that the change in the principal moments of inertia (to the
first approximation in £) 1s as if neither the center of mass nor the principal axes changed. The
formula for e,(z) demonstrates how the directions of the principal axes change: the largest
principal axis of the inertia ellipscid approaches the added point, and the smallest recedes from
it. Furthermore, the addition of a small mass on one of the principal planes of the inertia
ellipsoid rotates the two axes lying in this plane and does not change the direction of the third
axis. The appearance of the differences of moments of inertia in the denominator 15 connected
with the fact that the major axes of an cllipsoid of revolution are not defined. If the inertia
etlipsaid s nearly an ellipsoid of revolution (ie, !, = I,) then the addition of 4 small mass could
strongly turn the axcs e, and €, in the plane spanned by them.

29 Euler’s equations. Poinsot’s description of the motion

Here we study the motion of a rigid body around a stationary point in the absence of outside
forces and the similar motion of a free rigid body. The motion lurns out to have two frequencies.

A Euler's equations

Consider the motion of a rigid body around a stationary point 0. Let M be
the angular momentum vector of the body relative to O in the body, & the
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angular velocity vector in the body, and A the inertia operator (482 = M);
the vectors £ and M belong to the moving coordinate system K (Section 26).
The angular momentum vector of the body relative to O in space, m = BM,
is preserved under the motion (Section 28B),

Therefore, the vector M inthe body (M € K)must moveso thatm = B,M(r)
does not change when ¢ changes.

Theorem
dM

(1 5~ (ML

Proor. We apply formula (3), Section 26 for the velocity of the motion of
the “point™ M(t) € K with respect to the stationary space k. We get
m = BM + [, m] = B(M + [, M]).

. But since the angular momentum m with respect to the space is preserved
(h=0),M + [£, M] = 0. O

Relation (1} is called the Euler equations. Since M = Af), (1) can be
viewed as a differential equation for M (or for £2). If
anlel +Qzez+Q3e3 al‘]d M=M181+M282+M3e3
are the decompositions of £ and M with respect to the principal axes at O,
then M, = [;{}; and (1) becomes the system of three equations

dM dM dM
@ —r=aMM,  —t=aMM, :

Whel‘ea1 :(12‘—13)}{! 13,0'2 (I3 I)/I fl,anda3 (‘fl _'Iz),fl 12,01‘
in the form of a system of three equations for the three components of the
angular velocity,

= a; M, M,,

dQ,

jr1 d = Uz 3)0293,
dQ,

l’z d (I,} - ! )IISQI!
LY

I, d’ (I, — 1,)2,9;.

Remark. Suppose that outside forces act on the body, the sum of whose
moments with respect to @ is equal to n in the stationary coordinate system
and N in the moving system (n = BN). Then

m=n
and the Euler equations take the form

dM
— =M, 0 N.
il [M, 2] +
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6: Rigid bodies

B Solutions of the Euler equations
Lemma. The Euler equations (2) have two quadratic first integrals

M} M} M3
2E="L 4 24 2 and M? = ME+ ME+ M
ST PR £

PROOF. E is preserved by the law of conservation of energy, and M? by the
law of conservation of angular momentum m, since m?> = M?* = M2 [

Thus, M lies in the intersection of an ellipsoid and a sphere. In order to
study the structure of the curves of intersection we will fix the ellipsoid
E > 0 and change the radius M of the sphere (Figure 121).

el

L]

Figure 121 Trajectories of Euler's equation on an energy level surface

We assume that f, > [, > f;. The semiaxes of the ellipsoid will be
\/Z_,iill > \/2E12 > \/ﬁ. If the radius M of the sphere is less than the
smallest scmiaxes or larger than the largest (M < \/ﬁEfa or M > J2EI),
then the intersection is empty, and no actual motion corresponds to such
values of E and M. If the radius of the sphere is equal to the smallest semi-
axes, then the intersection consists of two points. Increasing the radius, so
that \/2—E.’3 < M < [ /2EI;, we get two curves around the ends of the small-
est semiaxes, In exactly the same way, if the radius of the sphere is equal
to the largest semiaxes we get their ends, and if it is a little smaller we get
two closed curves close to the ends of the largest semiaxes. Finally, if
M = /2E[;, the intersection consists of two circles.

Each of the six ends of the semiaxes of the ¢ltipsoid is a separate trajectory
of the Euler equations (2)—a stationary position of the vector M. It corre-
sponds to a fixed value of the vector of angular velocity directed along one
of the principal axes e;; during such a motion, £2 remains collinear with M.
Therefore, the vector of angular velocity retains its position o in space
collinear with m: the body simply rotates with fixed angular velocity around
the principal axis of inertia e;, which is stationary in space.
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29: Euler's equations. Poinsot’s description of the motion

Definition. A motion of a body, under which its angular velocity remains
constant {w = const, £ = const) is called a stationary rotation.

We have proved:

Theorem, A rigid body fixed at a point O admits a stationary rotation around
any of the three principal axes e, e,, and e;.

If, as we assumed, I; > I; > I, then the right-hand side of the Euler
equations does not become 0 anywhere ¢lse, i.e., there are no other stationary
rotations.

We will now investigate the stability (in the sense of Liapunov) of solu-
tions to the Euler equations.

Theorem. The stationary solutions M = M €, and M = M,e; of the Euler
equations corresponding to the largest and smallest principal axes are
stable, while the solution corresponding to the middle axis (M = M,e,)
is unstable.

ProoF. For a small deviation of the initial condition from M, e, or M,e,,
the trajectory will be a small closed curve, while for a small deviation from
M e, it will be a large one. i

PROBLEM. Are stationary rorations of the body around the largest and smallest principal axes
Liapunov stable?

ANSWER. No.

C Poinsor’s description of the motion

It is easy to visualize the motion of the angular momentum and angular

velocity vectors in a body (M and Q}—they are periodic if M # /2EI,.
In order to see how a body rotates in space, we look at its inertia ellipsoid.

E={Q:{(40, Q) =1} < K,

where 4: 0 — M is the symmetric operator of inertia of the body fixed
at 0.

At every moment of time the ellipsoid E occupies a position B,E in the
stationary space k.

Theorem (Poinsot). The inertia ellipsoid rolls without slipping along a station-
ary plane perpendicular to the angular momentum vector m (Figure 122).

Proor. Consider a plane n perpendicular to the momentum vector m and
tangent to the inertia cllipsoid B, E. There are two such planes, and at the
point of tangency the normal to the ¢liipsoid is parallel to m.
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6: Rigid bodies

Figure 122 Rolling of the ellipsoid of inertia on the invariable plane

But the inertia ellipsoid E has normal grad(A£}, Q) = 240 = 2M at the
point £&. Therefore, at the points +& = w/./2T of the @ axis, the normal to
B,E is collinear with m.

So the plane = is tangent to B, E at the points +¢ on the instantaneous
axis of rotation. But the scalar product of § with the stationary vector m is
equal to i(l/\/2_T)(m. ®) = i\/ﬁ, and is therefore constant. So the
distance of the plane n from O does not change, i.e., n is stationary.

Since the point of tangency lies on the instantaneous axis of rotation, its
velocity is equal to zero. This implies that the ellipsoid B, E rolls without
slipping along n. U

Translator’s remark: The plane 7 is sometimes called the invariable plane.

Corollary. Under initial conditions close to a stationary rotation around the
large (or small) axis of inertia, the angular velocity always remains close
to its initial position, not only in the body () but also in space {w).

We now consider the trajectory of the point of tangency in the stationary
plane =. When the point of tangency makes an entire revolution on the ellip-
soid, the initial conditions are repeated except that the body has turned
through some angle « around the m axis. The second revolution will be
exactly like the first; if « = 2n(p/g), the motion is completely periodic; if
the angle is not commensurable with 2z, the body will never return to its
initial state.

In this case the trajectory of the point of tangency is dense in an annulus
with center O in the plane (Figure 123).

ProBLEM. Show that the connected components of the invariant two-
dimensional manifold V, (Section 28B) in the six-dimensional space TSO(3)

146



29: Euler's equations. Poinsot’s description of the motion

Figure 123 Trajectory of the point of contact on the invariable plane

are tori, and that one can choose coordinates ¢, and ¢, mod 27 on them so
that ¢, = o,(c)and ¢, = w,(c).
Hinr. Take the phase of the periodic variation of M as ¢,.

We now look at the important special case when the mertia ellipsoid is
an ellipsoid of revolution:

12:‘!3#11'

In this case the axis of the ellipsoid B,e,, the instantaneous axis of rotation
), and the vector m always lie in one plane. The angles between them and the
length of the vector w are preserved ; the axes of rotation (w) and symmetry
(B,e,} sweep out cones around the angular momentum vector m with the
same angular velocity (Figure 124). This motion around m is called pre-
cession.

PropLEM. Find the angular velocity of precession.

AnsweR. Decompose the angular velocily vector @ into components in the directions of the

angular momentum vector m and the axis of the body B,e,. The first component gives the angular
velocity of precession, m,, = M/,

Figure 124 Rolling of an ellipsoid of revolution on the invariable plane
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6: Rigid bodies

Hint. Represent the motion of the body as the product of a rotation around the axis of
momentum and a subscquent rotation arcund the axis of the body. The sum of the angular
velocity vectors of these rotations is equal to the angular velocity vector of the product.

Remark. In the absence of outside forces, a rigid body fixed at a point O is represented by a
lagrangian system whose configuration space is a group, namely SO(3), and the lagrangian
lunction is invariant under left lranslations, One can show that a significant part of Euler's theory
of rigid bedy motion uses only this property and therefore holds for an arbitrary left-invariant
lagrangian system on an arbitrary Lie group. In particular. by applying this theory to the group
of volume-preserving diffeomorphisms of a domain D in a riemannian manifold, one can oblain
the basic theorems of the hydrodynamics of an ideal Auid. (See Appendix 2.}

30 Lagrange’s top

We consider here the motion of an axially symmetric rigid body fixed at a stationary point in a
uniform force field. This motion is composed of three periedic processes: rotation, precession,
and nutation.

A Euler angles

Consider a rigid body fixed at a stationary point ¢ and subject to the action
of the gravitational force mg. The problem of the motion of such a “heavy
rigid body™ has not yet been solved in the general case and in some sense is
unsolvable.

In this problem with three degrees of freedom, only two first integrals
are known: the total energy E = T + U, and the projection M, of the
angular momentum on the vertical. There is an important special case in
which the problem can be completely solved-—the casc of a symmetric top. A
symmetric or lagrangian top is a rigid body fixed at a stationary point O
whose inertia ellipsoid at O is an ellipsoid of revolution and whose center of
gravity lies on the axis of symmetry e, (Figure 125). In this case, a rotation

3

k[‘ 7 g =lcosd

Hl, .
& (2

-

Figure 125 Lagrangian top

around the e; axis does not change the lagrangian function, and by Noether’s
theorem there must exist a first integral in addition to E and M, (as we will
see, it turns out to be the projection M; of the angular momentum vector on
the e; axis).

If we can introduce three coerdinates so that the angles of rotation around
the z axis and around the axis of the top are among them, then these co-
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30: Lagrange's top

ordinates will be cyclic, and the problem with three degrees of freedom will
reduce to a problem with one degree of freedom (for the third coordinate).

Such a choice of coordinates on the configuration space SO(3) is possible;
these coordinates «, \, 8 are called the Euler angles and form a local co-
ordinate system in SO(3) similar to geographical coordinates on the sphere:
they exclude the poles and arc multiple-valued on one meridian.

Vertical

Projection of
the top’s axis

Nodal ling

Figure 126 Euler angles

We introduce the following notation (Figure 126):

€., €, and e, are the unit vectors of a right-handed cartesian stationary
coordinate system at the stationary point O;
e,,¢,,and e, are the unit vectors of a right moving coordinate system
connected to the body, directed along the principal axes at ;
I, = I, # I are the moments of inertia of the body at O;
ey 1s the unit vector of the axis [e. , e,], called the “line of nodes™
(all vectors are in the “stationary space™ k).

In order to carry the stationary frame (e,, ¢,, ¢;) into the moving frame
(e,. e, €3}, we must perform three rotations:

1. Through an angle ¢ around the e, axis. Under this rotation, e. remains
fixed, and e, goes to ey.

2. Through an angle 8 around the ey axis. Under this rotation, e, goes to
e,, and ey remains fixed.

3. Through an angle # around the e, axis. Under this rotation, e, goes to
e,, and e, stays fixed.

After all three rotations, e, has gone to ¢, and e, to e;; therefore, e,
goes to e,.
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6: Rigid bodies

The angles ¢, \, and 0 are called the Euler angles. 1t is easy to prove:

Theorem. To every triple of numbers @, 6,  the construction above associates
a rotation of three-dimensional space, Bigp, 8, ) e 8O(3), taking the
frame (e, e, e,) into the frame (e,,e,,e,). In addition, the mapping
(¢, 0, y) — Blo, 8, ¥} gives local coordinates

0<op<2n 0<ih <2n D<B<m

on SO(3), the configuration space of the top. Like geographical longitude,
@ and ¥ can be considered as angles mod 2n; for 8 = 0 or 8 = w the map
(¢, 8, ) — B has a pole-type singularity.

B Calculation of the lagrangian function

We wili express the lagrangian function in terms of the coordinates ¢, 8,
and their derivatives.
The potential energy, clearly, is equal to

U= ijzg dm = mgzy = mglcos 0,

where z,, 1s the height of the center of gravity above 0 (Figure 125).
We now calculate the kinetic energy. A small trick is uvseful here: we
consider the particilar case when @ = = 0.

Lemma. The angular velocity of a top is expressed in terms of the derivatives
of the Euler angles by the formula

o = Oe, + (@sin e, + (f + ¢ cos Be,,
o=y =0

PrOOF. We look at the velocity of & point of the top occupying the position
r at time t. After time dt this point takes the position (within (dt)?)

B(g + de, 8 + d6, ¥ + dy)B™ (¢, 0,¥)r,

where do = ¢ dt, d0 = Odr and dy = V) du.
Consequently, to the same accuracy the displacement vector is the sum
of the three terms

B + do,0,y)B™ (@, 6, 4y — 1 = [w,, rldt,
B((Pa 0 + dgs w)B_ ]((ps 83 !l’)l' —-r= [(J.)a, r]d[,
B(p, 0, ¢ + d@)B™ (i, 8. — v = [0, r]dt

(the angular velocities ,, 0y, and oy, are defined by these formulas).
Therefore, the velocity of the point r is v = [@, + @y + @, 1], so the
angular velocity of the body is

w=m¢+m9+m¢,,

where the terms are defined by the formulas above.
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30: Lagrange's top

It remains to decompose the vectors @,, oy, and w, with respect to
€, e,, and e;. We have not yet used the fact that 9 = ¥ = 0. If @ = ¢ = 0,
then

Ble + do,6,418” (9,0, ¥)

is simply a rotation around the axis e, through an angle de, so
M, = Pe,.
Furthermore, B(p, 8 + d8, ¥)B~ (@, 8, )} is simply a rotation around the
axis ey = €, = e, through an angle d6 in the case ¢ = ¢ = 0, s0
oy = éel.
Finally, B(e, 8, + d¥)B™ (¢, 6, /) is a rotation through an angle dy
around the axis e;, s0 .
o, = ye,.
In short, for ¢ = ¢ = 0 we have
= ¢e, + éel + era-
But, clearly, for¢ = ¢y = 0
e, =e,cos B + e, sin (.

So the components of the angular velocity along the principal axes e,, e,,
and e; are
w, =48 w, =¢sind  wy; =¥ + pcosh. O

Since T = $(1,0% + I, w3 + [,w}), the kinetic energy for ¢ =y = 0 is
given by the formula

i I
T=?1(92+¢zsm28)+§(w+¢cos9)’.

But the kinetic energy cannot depend on ¢ and : these are cyclic co-
ordinates, and by a choice of origin of reference for ¢ and ¥ which does not
change T we can always make ¢ = 0 and ¢ = 0. Thus the formula we got
for the kinetic energy is true for all ¢ and .

in this way we obtain the lagrangian function

I o -
L= 5‘(192 + ¢?sin? 6) + I—;(n!r + ¢ cos 8)* — mgl cos 6.

C Investigation of the motion

To the cyclic coordinates ¢ and ¥ there correspond the first integrals
dL ,

i M, = ¢(I,sin? 8 + Iycos? ) + yfycos

L . ;

w = M3 = @130058 + wla

151



6: Rigid bodics

Theorem. The inclination & of the axis of the top to the vertical changes with
time in the same way as in the one-dimensional system with energy

I,
E = 5‘ 8 + U.q(®),

where the effective potential energy is given by the formula

(M, — M, cos 0)?

U =
o 21, sin? 0

+ mgi cos 0.

Proor. Following the general theory, we express ¢ and ¥ in terms of M,
and M,. We get the total energy of the system as

I, ., M3 (M, — M, cos 8)*
E==lgryom3 : — My
3 O g, Tmeleos b+

and
. M,— M;cosf
©= 1, sin%#f

The number M32/2I; = E — E’, independent of 0, does not affect the
equation for 6. OJ

In order to study the one-dimensional system above it is convenient to
make the substitutioncos @ = u{—1 < u < ).
We also write

M, M, 2F 2mgl
—_— = b — = = .
7 a I, I, % T, f=0

Then we can rewrite the law of conservation of cnergy £ as

0t = f(u),

where f(u) = (@ — pu)(l — u?) — (@ — bu)?, and the law of variation of
the azimuth ¢ as

. a-—bu
(P=Tj—2-

We notice that f(u} is a polynomial of degree 3, f(+ ») = + 0, and
f(xl)= —(@F by <0if a # £h On the other hand, actual motions
correspond to constants a, b, «, and f for which f(u) > 0 for some
—1 < u < 1. Thus f(u) has exactly two real roots u, and u, on the interval
—1 < u < 1 {and one for u > 1, Figure 127). Therefore, the inclination ¢
of the axis of the top changes periodically between two limit values 8, and &,
(Figure 128). This periodic change in inclination is called nutation.
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30: Lagrange's top

/N ' /.
/(“f N\

Figure 127 Graph of the function f(u)

We now consider the motion of the azimuth of the axis of the top. The
point of intersection of the axis with the unit sphere moves in the ring between
the parallels ¢, and #,. The variation of the azimuth of the axis is determined
by the equation

. a—bu

=T

If the root ' of the equation a4 = bu lies outside of (u,, w,), then the angle ¢
varies monotonically and the axis traces a curve like a sinusoid on the unit
sphere (Figure 128(a)). If the root u* of the equation a = by lies inside
(uy, u,), then the rate of change of ¢ is in opposite directions on the parallels
8, and #;, and the axis traces a looping curve in the sphere (Figure 128(b)).

If the root «’ of @ = bu lies on the boundary (e.g., ¥’ = u,), then the axis
traces a curve with cusps (Figure 128(c)).

The last case, although exceptional, is observed every time we release
the axis of a top launched at inclination 8, without initial velocity; the top
first falls, but then rises again.

The azimuthal motion of the top is cailed precession. The complete
motion of the top consists of rotation around its own axis, nutation, and
precession. Each of the three motions has its own frequency. If the frequencies
are incommensurable, the top never returns to its initial position, although
it approaches 1t arbitrarily closely.

o,

(31 (b {c)
Figure 128 Path of the top’s axis on the unit sphere
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6: Rigid bodies

31 Sleeping tops and fast tops

The formulas obtained in Section 30 reduce the solution of the equations of motion of a top to
elliptic integrals. However, qualitative information about the motion is usually easy to obtain

without turning to quadrature.
[n this paragraph we investigate the stability of a vertical top and give approximate lormulas
for the motion of a rapidly spinning top.

A Sleeping tops

We consider first the particular solution of the equations of motion in
which the axis of the top is always vertical (6 = 0) and the angular velocity
is constant (a “sleeping” top). In this case, clearly, M, = M, = I,w,
(Figure 129).

il

Figure 129 Sleeping top

ProsLEM. Show that 4 stationary rotation around the vertical axis is always Liapunov unstable.

We will lock at the motion of the axis of the tap, and not of the top itself.
Will the axis of the top stably remain close to the vertical, i.e., will 8 remain
small? Expressing the effective potential ¢nergy of the system

(M, — M, cos0)?

U = 37, sin’ @ + mgl cos
as 4 power series in #, we find
5 w3(0%/4) 6?
=22 T = A#* + ...
Uenr 21,67 + my! 3 + C+ + oy
4= @3 mgl

81, 27
If A > 0, the equilibrium position # = 0 of the one-dimensional system
is stable, and if A < 0 it is unstable, Thus, the condition for stability has the
Jorm
dmgli
> mfgz .
3
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31: Sleeping tops and fast tops

When friction reduces the velocity of a sleeping top to below this limit, the
top wakes up.

ProBLEM. Show thal, for w3 > dmgl 1, /13, the axis of a sleeping top is stable with respect 1o
perturbations which change the values of M, and M, as well as 6.

B Fast tops

A top is called fast if the kinetic energy of its rotation is large in comparison
with its potential energy:

L, w3 > mgl.

It is clear from a similarity argument that multiplying the angular velocity
by N is exactly equivalent to dividing the weight by N2

Theorem. If, while the initial position of a top is preserved, the angular velocity
is multiplied by N, then the trajectory of the top will be exactly the same as
if the angular velocity remained as it was and the acceleration of gravity
g were divided by N*. In the case of large angular velocity the trajectory
clearly goes N times faster.®!

In this way we can study the case g — 0 and apply the results to study
the case w — 20.

To begin, we consider the case g = @, i.e, the motion of a symmetric
top in the absence of gravity. We compare two descriptions of this motion:
Lagrange’s (Section 30C) and Poinsot’s (Section 29C).

We first consider Lagrange’s equation for the variation of the angle of
inclination 8 of the top’s axis.

Lemma. In the absence of gravity, the angle 8, satisfying M, = M5 cosfl,
is a stable equilibrium position of the eguation of motion of the top's axis.
The frequency of small oscillations of 8 near this equilibrium position is
equal to

I3y

nut I
1

Procf. In the absence of gravity the effective potential energy reduces to

. (M. — M, cos 8)?
Vs = —"— 3
21, sin? 6

This nonnegative function has the minimum value of zero for the angle ! = @ determined by
the condition M. = M cos 0, (Figure 130). Thus, the angle of inclination @, of the (op's axis

! Denote by g,(t, &) the position of the top at time ¢ with initial condition & e TSO(3) and
gravitational acceleration g. Then the theorem says that

@, NE) = @y—2,(N1, &),
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6: Rigid bodies

L.’L\”.

%, 0

Figure 13¢ Effective potential energy of a top

Lo the vertical is siably stationary: for small deviations of the initial angle # from &, there will
be periodic oscillations of # near 8, (nutation). The frequency of these oscillations is easily
determined by the following general formula: the frequency « of small oscillations in a one-
dimensional system with energy

ax? ,
E= 5 + Lix), Uxg) = min L{x)

is given (Section 220 by the lormula

, L)
= —.
a

The energy of the one-dimensional system describing oscillations of the inclination of the top’s
axis is

!
2—] ﬁz + U

For & = 8, + x we find M_ — M, cos 8 = M (cos 8, — cos{fly + x)) = M,x sin 8, + O(x?)

M3i-x2-sin? 6 Bl
> °+0(x2)=-—; Sx 4o,

U,y=—>- """ °
el 21, sin? 0, I,

[rom which we obtain the expression for the frequency of nutation
Fyo,
Wiy = n'—|

From the formula ¢ = (M, — M;cos0)/I,sin” § it is clear that, for
f = 8,, the azimuth of the axis does not change with time: the axis is
stationary. The azimuthal motion of the axis under small deviations of 8
from 8, could also be studied with the help of this formula, but we will deal
with it differently.

The motion of a top in the absence of gravity can be considered in
Poinsot’s description. Then the axis of the top rotates uniformly around the
angular momenturn vector, preserving its position in space. Thus, the axis
of the top describes a circle on the sphere whose center corresponds to the
angular momentum vector (Figure 131).

Remark. Now the motion of the top's axis, which according to Lagrange was called mutation,
1s called precession in Poinsot’s description of motion.
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31: Sleeping tops and fast tops

L

Figure 131 Comparison of the descriptions of the motion of a top according to
Lagrange and Poinsot

This means that the formula obtained above for the frequency of a small
nutation, wy, = fywy/f, agrees with the formula for the frequency of
precession w = M/[, in Poinsot’s description: when the amplitude of
nutation approaches zero, I,w; — M.

C A topin a weak field

We go now to the case when the force of gravity is not absent, but is very
small (the values of M, and M, are fixed). In this case a term mg! cos 8,
small together with its derivatives, is added to the effective potential energy.
We will show that this term stightly changes the frequency of nutation.

Lemma. Suppose that the function f{x) has a minimum at x = 0 and Tavlor expansion f(x) =
Ax32 + .., A = 0. Suppose thar the function h(x) hay Taylor expansion W(x) = B+ Cx + -+
Then, for sufficiently small &, the funcrion fix} = flx) + ehi{x) has a minimum at the point
(Figure 132)
Ce
Xe=— — + O(EZL
A

which is close to zero. In addition, {{x,) = A4 + Ofe).

PROOF. We have f/(x) = Ax + Ca + O{x?} + Olzx), and the result is obtained by applying the
implicit function theorem to f;'(x). O

fix)
fox)

eh(x}

- ¥

Xe

Figure 132 Displacement of the minimum under a small change of the function
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By the lemma, the effective potential energy for small g has 4 minimum
0, close to 8, and at this point U” differs slightly from U"(6,). Therefore, the
frequency of a small nutation near €, 1s close to that obtained for g = 0:
i
lim @,y = = ;.
g—0 Jl(1

D A rapidly thrown top

We now consider the special initial conditions when we release the axis of
the top without an initial push from a position with inclination 8, to the
vertical.

Theorem. If the axis of the top is stationary at the initial moment (¢ = 6 = 0)
and the top is rotating rapidly around its axis (w; — o), which is inclined
from the vertical with angle 0,(M, = M cos f,), then asymptotically, as
w5 — 20,

1. the nutation frequency is proportional to the angular velocity:

2, the amplitude of nutation is inversely proportional to the square of the
angular velocity;

3. the frequency of precession is inversely proportional te the angular
velocity;

4. the following asymptotic formulas hold (as w4 - 20}):

3 Iymgl mgl

(0, ~ — Aoy ™~ — 5 8108 w o~ T
t 3 t 0

nu I] nu [%({)% pTEC 13 3

(here f(w3) ~ glw3) if lim, . (fig) = 1).

For the proof, we look at the case when the initial angular velocity 1s
fixed, but g — 0. Then by interpreting the formulas with the aid of a simitarity
argument {cf. Section B), we obtain the theorem.

We already know from Section 30C that under our initial conditions the axis of the top traces
a curve with cusps on the sphere.

Uest
4

— 8
Figure 133  Definition of the amplitude of nutation
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We apply the lemma (0 locate the minimum point &, of the effective potential energy. We
set {Figure 133)

=i +x cosfl =cosdy — xsinf, + .-

Then we obtain, as above, the Taylor expansion in x at &,

B 2
20,
Applying the lemma to f = Uyl, . ¢ = £ h = mi cosif, + x), we find that the minimum of the
effective potential energy U, Is attained at angle of inclination

Uitlo=o = + o, mgl cos & = mgl cos 0, — xmgl sin 8, + -+,

Il sin i)
0,8, +x, x,=- o “g + Oy,
_-‘(fJ_-‘

Thus the inclination # of the top’s axis will oscillate near ﬁg(Figure 134). But. at the injial moment.

Figure 134 Motion of a top’s axis
# = 0, and # = 0. This means that f, corresponds to the highest position of the axis of the top.
Thus, for small g, the amplitude of nutation is asvmptotically equal to

Iomlsindly
e ™ Yy ™ r o3 g lg -+ 0.
fyeny

We now find the precessional motion of the axis. From the general formula
. M. — Mscos 8
G=f
fysin?

for M, = M, cosfl,and & = 6, + x, we find that M, = M, cosd = M,xsind, + - -50

. M,

@ = - . Lx 4

I sin

But x oscillates harmonicaily between 0 and 2x, (up to O(g?)). Therefore, the average value of
the velocity of precession over the period of nutation 15 asymptotically equal to

- M, mgl
P iinG, " ey 7Y
ProBLEM. Show that
o 1y — o0
im lim 22— 2O _

g~0i~ IG5,
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PART III
HAMILTONIAN MECHANICS

Hamiltonian mechanics is geometry in phase space. Phase space has the
structure of a symplectic manifold. The group of symplectic diffeomorphisms
acts on phase space. The basic concepts and theorems of hamiltonian
mechanics (even when formulated in terms of local symplectic cocrdinates)
are invariant under this group (and under the larger group of transformations
which also transform time).

A hamiltonian mechanical system is given by an even-dimensional mani-
fold (the *phase space™), a sympiectic structure on it (the “Poincaré integral
invariant”) and a function on it (the “hamiltonian function™). Every one-
parameter group of symplectic diffeornorphisms of the phase space pre-
serving the hamiltonian function is associated to a first integral of the
equations of motion.

Lagrangian mechanics is contained in hamiltonian mechanics as a special
case (the phase space in this case is the cotangent bundle of the configuration
space, and the hamiltonian function is the Legendre transform of the lagrang-
ian function).

The hamiltonian point of view allows us to solve completely a series of
mechanical problems which do not yield solutions by other means (for
example, the problem of attraction by two stationary centers and the problem
of geodesics on the triaxial ellipsoid). The hamiltonian point of view has
even greater value for the approximate methods of perturbation theory
(celestial mechanics), for understanding the general character of motion
in complicated mechanical systems {ergodic theory, statistical mechanics)
and in connection with other areas of mathematical physics (optics, quantum
mechanics, etc.).



Differential forms

Exterior differential forms arise when concepts such as the work of a field
along a path and the flux of a fluid through a surface are generalized to higher
dimensions.

Hamiltonian mechanics cannot be understood without differential forms,
The information we need about differential forms involves exterior multi-
plication, exterior differentiation, integration, and Stokes’ formula,

32 Exterior forms

Here we define exterior algebraic forms

A l-forms

Let R be an n-dimensional real vector space.®* We will denote vectors in this
space by &, 1, ...

Definition. A form of degree 1 {or a 1-form) is a linear function 0: R* — R, i.e,,

(4,81 + 4,§2) = LwE;) + L w(,), A, AeRand §,,&,e R

We recali the basic facts about 1-forms from linear algebra. The set of all
I-forms becomes a real vector space if we define the sum of two forms by

(0, + ©2)§) = w,(€) + w,(8),

and scalar multiplication by
(Aw)&) = Aw().

32 It is essential to note that we do not fix any special euclidean structure on B". In some examples
we use such a structure; in these cases this will be specifically stated (" euclidean R™™).

163



7: Differential forms

The space of 1-forms on R" is itself n-dimensional, and is also called the dual
space (R")*.

Suppose that we have chosen a linear coordinate system x,, ..., x, on R".
Each coordinate x; s itself a 1-form. These n 1-forms are linearly independent.
Therefore, every 1-form o has the form

W =X+ + X, a e R
The value of @ on a vector & is equal to
w(8) = a;x,(§) + - + a,x,8),
where x,(&), ..., x,(§) are the components of & in the chosen coordinate

system.

ExaMPLE. If a uniform force field F is given on euclidean R?, its work A on the displacement §
18 a |-form acting on § (Figure 135).

F {force)

w(®) =(F. §)

¥ (displacement)

Figure 135 The work of a force is & 1-form acting on the displacement.

B 2-forms

Definition. An exterior form of degree 2 (or a 2-form) is a function on pairs of
vectors w?: R" x R* — R, which is bilinear and skew symmetric:

(A& + 2285, 83) = 4,0%E, &) + A (&2, &3)

®*(§y, §;) = _wz(gz . E1),
Vi, A, e R Ey &8 € R

ExampLg L. Let 8(&,, E;) be the oriented area of the parallelogram constructed on the vectors
&, and &, of the oriented euclidean plane B?, i.e.,

‘:ll 612
éZl iZZ

with e, e, a basis giving the orientation on B2
1t is easy to see that S(§,, &) is 2 2-form (Figure 136).

, where&, =& &, + {156, 8; = &y + §p0,

S(glv gz) =

ExAMPLE 2. Let v be a uniform velocity vector ficld for a fluid in three-dimensional oriented
euclidean space (Figure 137). Then the flux of the fluid over the area of the parallelogram
£,.&, is a bilinear skew symmetric function of §, and §;, i.e., a 2-form defined by the triple scalar
praduct

wz{gl az) = ("1 él! ﬁz)
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32: Exterior forms

Figure 137  Flux of a Auid through a surface is a 2-form.

ExaMmpLe 3, The oriented area of the projection of the parallelogram with sides &, and &; on
the x|, x,-plune in cuclidean B is a 2-form.

ProsrLiv |, Show that for cvery 2-form o2 on B we have
e E, E) ~ 0, vE c A",
Sotution. By skew symmetry, (5, &) = —w3(E, &),
The set of all 2-forms on R™ becomes a real vector space if we define the
addition of forms by the formula
() + @)&1, §7) = 0,8, &;) + w,(E;, &)
and multiplication by scalars by the formula

(Aw)E,, &;) = Aw(g;, &,).

PrOBLEM 2. Show that this space is finite-dimensional, and find its dimension.
ANSWER. nfn — 1)72: 4 basis is shown below.

C k-forms

Definition. An exterior form of degree k, or a k-form, is a function of k vectors
which is k-linear and antisymmetric:

w487 + 4,81, 85, ..., &) = Lo(E], € B+ A o(8], 8,5, ..., B
WGy i) = (—D(E,, ... &),
where

0 if the permutation #,, ..., i, is even;
“ |1 if the permutation i,, ..., i, is odd.
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£

Figure 138  Oriented volume is a 3-form.

Exampre 1. The ariented volume of the parallelepiped with edges &,.. ... £, in oriented cuclidean
space 2" is an n-lorm (Figure 138).

110 s e

=l T wen

where &, = &, e, + - + S and e ... ¢, are a basis of B".

Exampre 2. Let A* be an oriented k-plane in n-dimensional guclidean space B Then the
k-dimensional oriented volume of the projection of the parallelepiped with edges &, &5, ...,
£, € B onto B is a k-form on 3"

The set of all k-forms in R" form a real vector space if we introduce
operations of addition

(W) + @;)(&) = 0, (8) + w, (), E={E,.... &} § e R,

and multiplhication by scalars

(A )E) = Aw(E).

PrOBLEM 3. Show that this vector space is fimite-dimensional and lind its dimension.
ANSWER. (}); a basis 18 shown below.

D The exterior product of two 1-forms

We now introduce one more operation: exterior multiplication of forms.
If w* is a k-form and @' is an {-form on ", then their exterior product &* A &'
will be a &k + I-form. We first define the exterior product of i-forms, which
associates to every pair of l-forms w,, @, on R" a 2-form w, A @, on B

Let & be a vector in R", Given two 1-forms w, and w,, we can define a
mapping of R" to the plane B x R by associating to § € R" the vector w(§)
with components o,(E) and w,(§) in the plane with coordinates v,, w,
(Figure 139).

Definition. The value of the exterior product @, A w; on the pair of vectors
£,.&, € R"is the oriented area of the image of the parallelogram with sides
(&) and w(&,) on the w,, w,-plane:

(&) wy&))

(wy A W)€, &y) = un(8y) &) |
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w(k;)

£ady

Figure 139 Definition of the exterior product of two L-forms

Propism 4. Show that e ~ w, really is a 2-form.
PrOBILEM 5. Show that the mapping

(iny, g) = 2y Ay
15 hilincar and skew symmetric:

fdp Ay = g ANy,

(A + A"y Aoy = A Aoy + A%t Aoy

Hiri. The determinant is bilinear and skew-symmetric not only with respeet to rows, but
also with respect to columns,

Now suppose we have chosen a system of linear coordinates on R", i.e., we
are given n independent 1-forms x, ..., x,. We will call these forms basic.

The exterior products of the basic forms are the 2-forms x; A x;. By skew-
symmetry, x; ~ x; = 0and x; A x; = —x; A x;. The geometric meaning of
the form x; A x;is very simple: its value on the pair of vectors &,, &, is equal
to the oriented area of the image of the parallelogram &, €, on the coordinate
plane x;, x; under the projection parallel to the remaining coordinate
directions.

ProBLEM 6. Show that the (3) = alr — 1)/2 forms x; A x; {i < j) are linearly independent.

In particular, in three-dimensional euclidean space (x,, x,, x3), the area
of the projection on the (x,, x,)-plane is x; ~ x5, on the (x,, x5)-plane it is
X3 A X3, and on the {x;, x,)}-plane 11 18 x; A x,.

PrOBLEM 7. Show that every 2-form in the three-dimensional space (x|, x,, x,) is of the form

Poay aoxg + @xy A x4 Ry o~ oxg.
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7: Diflerential forms

ProBLEM &, Show that every 2-form on the n-dimensional space with coordinates x,, ..., x,
can be uniquely represenied in the form

el = Y g Ax;

i<j

Hint. Let e; be the i-th basis vector, 1e. x (&) = 1. x{e;} = O for i # j. Look at the value of
the form «? on the pair e;, ¢;. Then

a; = wi(e;, eh

E Exterior monomials

Suppose that we are given k 1-forms ,, ..., w,. We define their exterior
product @, A - - A .

Definition. Set
wi (&) -+ wdEy)
(wl"\”""\wk)(gly-”v&.lk): .
o (&) - w8
In other words, the value of a product of 1-forms on the parallelepiped

E.,...,E isequalto the oriented volume of the image of the parallelepiped
in the oriented euclidean coordinate space R* under the mapping & —

(0,8, ..., 0B

PrROBLEM 9. Show that m, ~ -+ A oy is a k-form.

ProsLEM 10. Show that the operation of exterior product of 1-forms gives a multi-linear skew-
symmelric mapping

(L PIN1  IE Y (T TR S N ¢ TN
In other words,
(e, + Ay nowy e Aty =AW Awg s AW AW A Ay

and

wp, Aoty = (= 1Day A Aoy,
where

B {0 if the permutation iy, ...,k is even,

"1 ifthe permutation iy,... .4, is odd.

Now consider a coordinate system on R” given by the basic forms x,, ...,
x,. The exterior product of k basic forms

Xi A A X, l i, <n,

1 -

is the oriented volume of the image of a k-parallelepiped on the k-plane
{xi,» ---, x;) under the projection parallel to the remaining coordinate
directions.
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32: Extcrior forms

PrOBLEM L1. Show that, il two of the indices £, .. .. i, arc the same. then the form x;, A -~ A X;,
i5 ZEro,
ProBLEM 12. Show that the forms

Xjy AoceoA X, wherel =) < << <o,

i

are lincarly independent.
The number of such forms is clearly (7). We will call them basic k-forms.

PROBLEM 3. Bhow that every k-form on R” can be uniquely represented as a linear combination
of basic forms:
HES T

Himtoay, | 0 =

[

It follows as a result of this problem that the dimension of the vector space
of k-forms on R" is equal to (}). In particular, for k = n, () = 1, from which
follows

Corollary. Every n-form on R" is either the oriented volume of a parallelepiped
with some choice of unit volume, or zero:

W' = qexy A A X,
PropLEM 14, Show that every k-form on B with &k > » is eero.

We now consider the product of a k-form «* and an i-form «'. First,
suppose that we are given two monomials
W=w, A Aw and o =w, A A W,
where ), . .., wy . are 1-forms. We define their product w* A @' to be the
monomial
(0 A A W) A (@pay A AW y)

=y oA A w‘( LAT £ S LA £.# P

PROBLEM 15, Show that the product of monomials is associative:
(W A ) A o =af A (o A o™
and skew-commulative:
whoa o = (=1 A ot
Hint. In order to move cach of the [ factors of o' forward. we need k inversions with the

k factors of wh.

Remark, [t is useful to remember that skew-commutativity means commutativity only if
one of the degrees k and 1 is even, and anti-commutativity if both degrees & and ! are odd.
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7. Differential forms

33 Exterior multiplication

We define here the operation of exterior multiplication of forms and show that i1 is skew-
commutative, distributive, and associative.

A Definition of exterior multiplication

We now define the exterior multiplication of an arbitrary k-form w* by an
arbitrary J-form ', The result w* A o' will be a k + I-form. The operation of
multiplication turns out to be:

1. skew-commutative: w* A @' = (— o' A of;
2. distributive: (A, + 1,05 A o' = 1,0k A &' + 08 A @
3. associative: (0* A @) A ™ = ©* A (0 A ©™).

Definition. The exterior product w* A o' of a k-form w* on R" with an
I-form o' on R" is the k + I-form on R" whose value on the k + ! vectors
&ooo o Bin B o - Bia € RMis equal to

(1) (@ A OV E) = L (=10 s &0 0 6

wherei, < --- < i,andj, < - <jiliy. ... &, j(,.--.f;) 18 a permutation
of the numbers {1, 2,..., k + {); and

_ {1 if this permutation is odd;
~ )0 if this permutation is even.

In other words, every partition of the k +  vectors &, ..., &.; into two
groups (of k and of ! vectors) gives one term in our sum (1). This term is equal
to the product of the value of the k-form w* on the k vectors of the first group
with the value of the I-form o' on the [ vectors of the second group, with sign
+ or — depending on how the vectors are ordered in the groups. If they are
ordered in such a way that the k vectors of the first group and the { vectors of
the second group written in succession form an even permutation of the
vectors §,, &, ..., By, then we take the sign to be +, and if they form an
odd permutation we take the sign to be —.

Exampie. If k = [ = 1, then there are just two partitions: §,, §, and &;, &,.
Therefore,

(w, A )&, 85) = 0,(81)wx(E2) — @4(81)0,(E,),

which agrees with the definition of multiplication of 1-forms in Section 32.

ProBLEM 1. Show that the definition above actually defines a k + [-form (i.e., that the value of
(w* ~» @) (E,....,E . ) depends linearly and skew-symmetrically on the vectors §).
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33: Exterior multiplication

B Properties of the exterior product

Theorem. The exterior multiplication of forms defined above is skew-com-
mutative, distributive, and associative. For monomials it coincides with the
multiplication defined in Section 32,

The proof of skew-commutativity is based on the simplest properties of
even and odd permutations (cf. the problem at the end of Section 32) and will
be left to the reader.

Distributivity follows from the fact that every term in (1) is linear with
respect to w* and '

The proof of associativity requires a little more combinatorics. Since the
corresponding arguments are customarily carried out in algebra courses for
the proof of Laplace’s theorem on the expansion of a determinant by column
minors, we may use this theorem.*?

We begin with the following observation: if associativity is proved for the
terms of a sum, then it is also true for the sum, i.e.,

(@) A @) A vy =) Ao A @) implies
(] A @y} A wy =] A (wy A @)
(] + w)) A wy) Ay = (W] + @) A (0 A ©,).

For, by distributivity, which has already been proved, we have

(@] + @) A @,) A Wy = ({(W) A W) A @)+ (@] A wy) A @3),
(w1 + 07) A (W, A w3) = (W) A (W, A 0y)) + (W] A (@ A wy)).

We already know from Section 32 (Problem 13) that every form on R" is a
sum of monomials; therefore, it is enough to show associativity for multi-
plication of monomials.

Since we have not yet proved the equivalence of the definition in Section
32 of maltiplication of &k L-forms with the general definition (1), we will
temporarily denote the multiplication of k 1-forms by the symbol A, so that
our monomials have the form

where w,, ..., &, ,, are 1-forms,

3 A direct proof of associativily (also containing a proof of Laplace's theorem) consists of
checking the signs in the identity

(¥ A o) A w™E,... ., Gictem) = 2+ MG BOE B0 B,

where [, < --- < i, §, <o < ji By << by k) 15 8 permutation of the numbers
(Lo k+1+mh
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7. Diflerential forms

Lemma. The exterior product of two monomials is a monomial:

(W) A R A (o Ao A ayyy)

=Wy A AW AWy A A Wy

Proor. We calculate the values of the left and right sides on & + ! vectors
€., ..., &1 The value of the left side, by formula (1), is equal to the sum of
the products
Z + det (&) det |wydE; )l
1gigk k<igk+!

of the minors of the first k columns of the determinant of order k + {and the
remaining minors. Laplace’s theorem on the expansion by minors of the
first k columns asserts exactly that this sum, with the same rule of sign choice
as in Definition (1), is equal to the determinant det|w(E))]. O

It foliows from the lemma that the operations = and A coincide: we get,
in turn,

Wy AWy, = W A @y,
Wy AWy Awy=(wy Awy) Aay= (0 A ) A ©y,
wy Awy A A=) Aw)) AW} A A o)

The associativity of A -multiplication of monomials therefore follows from
the obvious associativity of A -multiplication of 1-forms. Thus, in view of the
observation made above, associativity s proved in the general case.

PrOBLEM 2. Show Lhat the exterior square of a I-form, or, in general, of a form of odd order, is
equal 1o zero: w* » w* = 0if kis odd.

Exampre | Consider a coordinate system pg..... Pov 100 -- 4., on ®?" and the 2-form
W = 3P g

[Geometrically, this form signifies the sum of the oriented areas of the projection of a paral-
lelogram on the n two-dimensional coordinate planes (p. 4} ... {p,. q.). Later, we will see

that the 2-form c? has a special meaning for hamiltonian mechanics. 1t can be shown that every
nondegenerate™® 2-form on R*" has the form «? in some coordinate system (p,,...,¢.).]

PropLem 3. Find the exterior square of the 2-form w?,

ANSWER.
wlawl= =2 p AP nq N g

i=
ProBIEM 4. Find the exterior k-th power of w?.

ANSWER.
wawta-awt =gkl Y poAAp Ag A A g
e et e

k

%% A bilinear form w? is nondegenerate if ¥ # 0, In: w?(E, q) # 0. See Section 41B.
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33: Exterior multiplication

In particular,
Wl aawl = kalpyaap A A Ay,

———
H
is, up to a factor, the volume of a 2r-dimensional parallelepiped in B2,
ExampLE 2. Consider the oriented euclidcan space B3. Every vector A € B? determines a [-form
any. by mA(&) = (A, &) (scalar product) and a 2-form wj by
wiE,. 1) = (A E, . ED (triple scalar produet).
PrOBLEM 5. Show that the mups A — ) and A — ] establish isomorphisms of the linear space

R of vectors A with Lhe linear spaces of 1-forms on B and 2-forms on R’ Il we choose an
orthonormal oriented coordinate system (x,, x,. x,) on 22, (hen

wh = Ax; + Ayx + A3x;
and
wh = A X A Xy + ArXs A Xy + Aaxg A X,
Remark. Thus the isomorphisms do not depend on the choice of the orthonormal oriented
coordinate system (x,, Xz, X3). But they do depend on the choice of the euclidean structure

on A%, and the isomorphism A — wj also depends on the orientation {coming implicitly in the
definition of triple scalar produect).

ProsLEM 6. Show that, under the isomorphisms established above, the exterior product of
I-forms becomes the veclor product in B3, ic, that
1 1 __ 2 . . 3
wy noiog = ey g forany A Be R

In this way the extenior product of 1-forms can be considered as an extension of the vector
product in B to higher dimensions. However, in the #-dimensional case. the product is not a
vector in the same space: the space of 2-forms on B” is isomorphic to R" only for » = 3.

ProBLEM 7. Show that, under the isomorphisms established above, the exterior product of a
I-form and a 2-form becomes the scalar product of vectors in R*:

i A owh = (AVBM, A xy A Xy

C Behavior under mappings

Let f:RB™ - R" be a linear map, and «* an exterior k-form on R” Then
there is a k-form f*w* on R™, whose value on the k vectors &,, ..., &, € R"
is equal to the value of »* on their images:

(f*" W&y, - B = (f& .. 8.

ProsLEM 8. Virify that f** is an exterior form.

ProsrEm 9. Verify that f* is a linear operator from the space of k-forms on B (o the space of
k-forms on R™ (the star superseript means that f* acts in the opposite direction lrom /).

ProeLEM 10, Let /2 R™ — R"and g: 3" - R Verify that (g= f)* = f*- ¢g*

ProBLEM 11, Verify that f* preserves exterior multiplication: f*w® A ') = (f*0*) A (f*e').
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7: Differential forms

34 Differential forms

We give here the definition of differential forms on differentiable manifolds.

A Differential I-forms

The simplest example of a differential form is the differential of a function.

Exampeg, Consider the function y = f{x} = x% lis differential df = 2x dx depends on the
point x and on the "increment of the argument.” i, on the tangent vector & to the x axis. We
fix the point x. Then the diflerential of the function at x, df' |, depends finearly on E. So, il x =1
and the coordinate of the tangent vector £ is equal to 1, then df = 2, and if the coordinate of
£ is equal (o 10 then df = 20 (Figure 140),

df

£

X

Figure 140 Differential of a function

Let /M — R be a differentiable function on the manifold M (we can
imagine a “function of many variables” f: R" - R). The differential df |,
of fat x is a linear map

af: TM, = R

of the tangent space to M at x into the real line. We recall from Section 18F the
definition of this map:

Let £ TM, be the velocity vector of the curve x(t): R - M; x(0) = x
and %(0) = &, Then, by definition,

B = 5| 16

1
Proprim 1. Let £ be the velocity vector of the plane curve x(¢) = cost, (1) = sint at ¢ = 0.
Calculate the values of the differentials dx and dy of the functions x and y on the vector &
{Figure 141).

ANSWER. dxliy. o) = O, dyly of8) = 1

Note that the differential of a function fat a point x € M is a I-form df, on
the tangent space TM, .
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34: Differential forms

X

Figure 141 Problem 1

The differential df of f on the manifold M is a smooth map of the tangent
bundle TM to the line

df: TM - R (TM= U TM,).
This map is differentiable and is linear on each tangent space TM, = TM.

Definition. A differential form of degree 1 (or a 1-form) on a manifold M 1s a
smooth map
w:TM - R

of the tangent bundle of M to the line, linear on each tangent space TM,.

One could say that a differential 1-form on M is an algebraic 1-form on
TM, which is “differentiable with respect to X.”

ProsLEM 2. Show thal every differential I-form on the line is the differential of some function.

PrROBLEM 3. Find differential 1-forms on the circle and the plane which are not the differential
of any function.

B The general form of a differential I-form on R”

We take as our manifold M a vector space with coordinates xy, ..., X,.
Recall that the components &,, ..., &, of a tangent vector § € TRy are the
values of the differentials dx;, . .., dx, on the vector & These n 1-forms on

TR® are linearly independent. Thus the [-forms dx,, . .., dx, form a basis for
the n-dimensional space of 1-forms on TR, and cvery 1-form on TRy can
be uniquely written in the form a; dx; + - + a, dx,, where the a; are real
coefficients. Now let o be an arbitrary differential 1-form on R". At every
point x it can be expanded uniquely in the basisdx,,.... .dx,. From this we get:

Theorem. Every differential 1-form on the space R" with a given coordinate
System Xy, .. ., x, can be written uniquely in the form
® = a,(x)dx, + - + a,(x)dx,,

where the coefficients aj{(x) are smooth functions.
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Ez E_;

0 ! 2 3 ¥

Figure 142 Problem 4

PrOBLEM 4. Calculate the value of theforms vy = dxy, o, = xpdxy.andw, = dri(r? = x] + x)
un the veetors £, §,. and &, { Figure 142)

ANSWER.
& & &
my |0~ |
s | n -2 <2
wy! & —§ 0
PROBLEM 5. Let x,,.. ., x, be functions on a manifold M forming a local coordinate system in

some region. Show that every l-form on this region can be uniquely written in the form
w = ay(x)dxy + -+ ax)dx,.

C Differential k-forms

Definition. A differential k-form w*|, at a point X of a manifold M is an exterior
k-form on the tangent space TM, to M at X, i.e., a k-linear skew-symmetric
function of k vectors &, ..., &, tangent to M at x.

If such a form e*|, is given at every point x of the manifold M and if it is
differentiable, then we say that we are given a k-form w* on the manifold M.

ProrLEm 6. Put a natural differentiable manifoid structure on the set whose elements are k-tuples
of vectors tangent to M at some point x.

A differential k-form is a smooth map from the manifold of Problem 6 to
the line.

PropLesm 7. Show that the k-forms on M form a vector spuce (infinite-dimensional if k does not
exceed the dimension of AM).

Differential forms can be multiplied by functions as well as by numbers.
Therefore, the set of C* differential k-forms has a natural structure as a
module over the ring of infinitely differentiable real functions on M.
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D The general form of a differential k-form on R”

Take as the manifold M the vector space R” with fixed coordinate functions

X1, ..-» X, R" = R. Fix a point x. We saw above that the n 1-forms dx,, ...,

dx, form a basis of the space of 1-forms on the tangent space TR".
Consider exterior products of the basic forms:

ax;, Ao Adxg,

I.l {"'<ika

In Section 32 we saw that these (]} k-forms form a basis of the space of exterior
k-forms on TR;. Therefore, every exterior k-form on TR can be written
untquely in the form

Z i ik dx,-l LA dx,-k‘
By ey

Now let w be an arbitrary differential k-form on R”. At every point X it
can be uniquely expressed in terms of the basis above. From this follows:

Theorem. Every differential k-form on the space R" with a given coordinate
system Xy, . .., x, can be written uniguely in the form

wt = Z Giy, 5 XX A A dx;,
By oS )

where the a; . . (X) are smooth functions on R",

ProBLEM §. Calculate the value of the forms i, = dx, ~ dx,, w, = Xpdx adx, — xpdxg A
dx and wy = rdr A do (where x|, = rcos ¢ and x, = rsin o) on the pairs of vectors (€. ),
(8. my). and (5, ) (Figure 143).

ANSWER,
CELm) G Eyamy)

i, | i -1
2 1 -3
1 1 —1

-}

Figure 143 Problem 8
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7: Differential forms

PropLEM 9. Calculate the value of the forms r, =dx, A dx;, wy; = x; dxy A dx;, and
wy = dx; ~ dr (r? = xi + x3 + x3), on the pair of vectors & = (1, 1, 1}, n = (1, 2. 3} at the
point x = {2,0,0).

ANSWER. ) = L, = —2, w3 = —8.

PrOBLEM 10, Let x,, ..., x,; M — R be funciions on a manifold which form a local coordinate
system on some region. Show that every differential form on this region can be wrilten uniquely in
the form

= Y, X, A A,

[

ExampLe, Change of variables in a form. Suppose that we are given two
coordinate systems on R?: x,, x,, x5 and yy, ¥, ¥3. Let @ be a 2-form on R*.
Then, by the theorem above, w can be written in the system of x-coordinates
as w= X, dx; A dxs + X,dxs A dx; + Xydx;, A dx,, where X, X,
and X, are functions of x,, x,, and x5, and in the systern of y-coordinates as
w=Y dy, ndyy+ Yodvy Adyy + Yady, » dy,, where ¥,, ¥,, and T;
are functions of y,, y,, and y;.

ProsrEM | 1. Given the form written in the x-coordinates (i.c., the X} and the change of variabies
formulas x = x(y), wrile the form in y-coordinates, Le., find ¥.
Solution. We have dx; = {Tx,/@y Y dy, + (€x/3y.) dvy + (8x,i0x,) dy,. Therefore,
] E

&y X, &x ix X ax
dx; A dx;, = (T dye + o—=dy, + —Zd}-,) A (1—3 dy, + - vy + 1-—3 dy]),
oy C¥z 2y ¥y )2 hs
from which we get

Diy\, ¥2)

3 I‘

Xz‘f?_(?fa,mﬂ X}‘D(xl.n_]_ e

D(y;. ¥3) 1 D(y,. y2)

E Appendix. Differential forms in three-dimensional spaces

Let M be a three-dimensional oriented riemannian manifold {in all future
examples M will be euclidean three-space R3). Let x,, x,, and x5 be local
coordinates, and let the square of the length element have the form

ds* = E, dx? + E, dx? + E, dx3

(i.e., the coordinate system is triply orthogonal).

ProeLem 12, Find E|, E,. and E, for caricsian coordinates x, y, z. for cylindrical coordinates
r. @, z and for spherical coordinates R, p, @ in the euclidean space R* (Figure 144},

ANSWER,

ds® = dx? + dy? + dz? = dr? + rtdep? + d2? = dR? + RPcos? ¥ det + RT 6%

We let e, e, and e; denote the unit vectors in the coordinate directions.
These three vectors form a basis of the tangent space.
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34: Differential forms

Figure 144 Problem 12

PropLEM 13, Find the values of the forms dx . dx;, and dx, on the vectors e, e,, and e,.

ANSWER. dx(e) = 1\;75 the rest are zero. In particular, for cartesian coordinates dx(e,) =
dife,} = dz{e,) = |: for cylindrical coordinates dr{e,) = dz{e.) = | and dple,) = 1/r (Figure
145), for spherical coordinates dRieg) = 1, deple,) = /R cos i and diKe,) = I/R.

The metric and orientation on the manifold M furnish the tangent space
to M at every point with the structure of an oriented cuclidean three-dimen-
sional space. In terms of this structure, we can talk about scalar, vector, and
triple scalar products.

ProsLEM 14. Calculate [e,, e;], {eg.e,). and (e., e, ).

ANSWER. £4.0, 1.

In an oriented euclidean three-space every vector A corresponds to a
1-form w} and a 2-form w32, defined by the conditions

wi®) =A%) wiEw=Acg&n. EneR

The correspondence between vector fields and forms does not depend on
the system of coordinates, but only on the euclidean structure and orienta-
tion. Therefore, every vector field A on our manifold M corresponds to a
differential 1-form w! on M and a differential 2-form w3 on M.

Figure 145 Problem 13
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7: Diflerential forms

The formulas for changing from figlds to forms and back have a different
form in each coordinate system. Suppose that in the coordinates x,, x,, and
x3 described above, the vector field has the form

A = Alel + Azez + A3e3

(the components A4, are smooth functions on M). The corresponding 1-form
w4 decomposes over the basis dx;, and the corresponding 2-form over the
basis dx; A dx;.

ProsLEM 15, Given the components of the vector field A, find the decompositions of the 1-form
w) and the 2-form i,

Solution. We have wmile)) = (A.e)) = 4,. Also, (4, dx; + a;dx, + a; dxi}e,) =
a, dx(e)) = al,-"\/gl, From this we get that ¢, = AI¢E, so that

i = Aw-"a dx, + AzV'"E: dx; + AW#'E dx;.
In the same way, we have wife,, e;) = (A, e;, ;) = 4, Also,

(g dxy ~odxs + 2 dxy Aodxy + a3 dx) A dxgdes, ea) = 2, -
N E2E,

Henge, z, = Al\ff,_ E_.a, i.c.
wi = Al\;’rE;,_-IS3 dx; ~odxy + sz-m dxs nodxy + A‘W’ﬁ dx, A dxj.
In particular, in cartesian, cylindrical, and spherical coordinates on R? the vector field
A=d.e + Ae + d.e. = Ade + A,e, + A8, = Ageg + A e, + Ae,
corrasponds to the 1-form
wh = Aodx + A dy 4+ A dz = A dv + rd,do + A.dz = A dR + Rcos 04, dg + RA,d8
and the 2-form

wi = A dy A dz + A ds A dx 4+ A dx A dy
rA, dp A ds + Adz A dr+ rdA, dr » de
= R cos fApdp A df + RA, df » dR + RcosfA_dR A de.

]

An example of a vector field on a manifold M is the gradient of a function
f: M - R. Recall that the gradient of a function is the vector field grad f
corresponding to the differential:

Wgraas = df. i€, df(E) = (grad £,E)  VE

ProeLEmM 16, Find the components of the gradient of a function in the basis e, e,. e;.
Sofution. We have df = (3fjéx,bdx, + (8fidx:)dx, + (8fidx1) dx;. By the problem above

1 &f i daf 1 &
gradf=—_—"-e;,+ — —e; +— —e;.
VE T JE e T
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35: Integration of differential forms

in particular, in carlesian, cylindrical, and spherical coordinates

i & ¢ é 1ar é
grad_f=;‘£ex+ -fe‘.+ fe:= f-e,+—nie“, .ie2
fx v o iz ar r égp dz
3 1 1eof
=_—eg+————¢ - ey
R ® " RcosBap * R&G

o

35 Integration of differential forms

We define here the concepts of a chain, the boundary of a chain, and the integration of a form
over & chain.

The integral of a differential form is a higher-dimensional generalization of such ideas as the
flux of a Auid across 4 surface or the work of a force zlong a path.

A The integral of a I-form along a path
We begin by integrating a 1-form @' on a manifold M. Let
p0<t=<1]-M

be a smooth map (the *path of integration”). The integral of the form
@' on the path y is defined as a limit of Riemann sums. Every Riemann sum
consists of the values of the form w! on some tangent vectors &; (Figure 146):

fwl = lim } w'(§).

? A-Dix1

The tangent vectors §; are constructed in the following way. The interval
0 <t < lisdivided into parts A;: f; < t < t,,, by the points t;. The interval
A; can be looked at as a tangent vector A, to the 1 axis at the point ¢;. Its
image in the tangent space to M at the point y(¢,) is

& = dyl,(A)e TM,,,.
The sum has a limit as the largest of the intervals A; tends to zero. It is
called the integral of the 1-form w! along the path v,

The definition of the integral of a k-form along a k-dimensional surface
follows an analogous pattern, The surface of integration is partitioned into

1«/
A;

b —t—t
£

Figure 146 Integrating a 1-form along a path
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Figure 147 Integrating a 2-form over a surface

small curvilinear k-dimensional parallelepipeds (Figure 147): these paral-
leiepipeds are replaced by parallelepipeds in the tangent space. The sum of the
values of the form on the parallelepipeds in the tangent space approaches
the integral as the partition is refined. We will first consider a particular case.

B The integral of a k-form on eriented euclidean space R*

Let x4, ..., x, be an oriented coordinate system on R* Then every k-form
on R* is proportional to the form dx, A --- A dx, ie., it has the form
w* = @(x)dx, A -+ A dx,, where @(x) is a smooth function.

Let D be a bounded convex polyhedron in R* (Figure 148). By definition,
the integral of the form w* on D is the integral of the function ¢:

J-w" = J @(x)dx,, ..., dx.
) D

where the integral on the right is understood to be the usual limit of Riemann
sums.

Such a definition follows the pattern outlined above, since in this case the
tangent space to the manifold is identified with the manifold.

ProBLEM |, Show that | eo* depends linearly on w*,

PrOBLEM 2. Show that if we divide [} into two distinet polyhedra D, and D,, then

J wt = J ot 4 J‘ wk,
D b 5

1 Fl

In the general case (a k-form on an n-dimensional space) it is not so casy
to identify the elements of the partition with tangent parallelepipeds; we will
consider this case below.

Figure 148 Tntegrating a k-form in k-dimensional space
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35: Integration of differential forms

C The behavior of differential forms under maps

Let f: M — N be a differentiable map of a smooth manifold M to a smooth
manifold N, and let w be a differential k-form on N (Figure 149), Then, a
well-defined k-form arises also on M: it is denoted by f*w and is defined by
the relation

(f*w)(éla sy ék) = w(f*éls v a,f*gk)

for any tangent vectors §,, ..., § € TM,. Here f, is the differential of the
map f. In other words, the value of the form f*w on the vectors &,, ..., &, is
equal to the value of w on the images of these vectors.

N
f‘ w
—l
j *

e

M

Figure 149 A form on N induces a form on M.

ExaMmpLe. If v = f(x,. x3) = x] + x}and w = dy. then

J¥o = 2x dx; + 2x,dx,.

ProsiEM 3. Show that f*w (s a k-Torm on M.

ProeueM 4. Show thal the map f* preserves operations on forms:
Ao, + dgag) = Ay [y + Ay ),

My A en) = (o} A {f*w.)
PROBLEM 5. Let g: L — M be a differentiable map. Show that { fg)* = g*f*.

ProBLEM 6. Let Dy and D, be two compact, convex polyhedra in the oriented k-dimensional
space B* and {* D, - D, a dificrentiable map which is an orientation-preserving diffeomor-
phism®* of the interior of Dy onto the interior of I, Then, for any differential k-form «* on D,

l. frof = [ wt,
In,

*D:

Hint. This s the change of variables theorem for a multiple integral:

J‘ s }'"_)5 @l {xNdx, - dx, = f @y - dy, .

py Xy X, b

3 1.¢.. one-to-one with a differentiable inverse.
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7. Differential forms

D Integration of a k-form on an n-dimensional manifold

Let w be a differential k-form on an n-dimensional manifold M. Let D be a
bounded convex k-dimensional polyhedron in k-dimensional euclidean
space R* (Figure 150). The role of “path of integration” will be played by a

M

<2

Figure 150 Singular k-dimensional polyhedron

k-dimensional cell®® & of M represented by a triple ¢ = (D, f, Or) consisting
of

1. aconvex polyhedron D < R,
2. a differentiable map f: D — M, and
3. an orientation on R¥, denoted by Or.

Definition. The integral of the k-form w over the k-dimensional cell ¢ is the
integral of the corresponding form over the polyhedron D

J‘dw = Lf*w.

ProbLEM 7. Show that the integral depends linearly on the form:

J. Ay + Ay, = 4 jwl + Az J‘w,_.

The k-dimensional cell which differs from o only by the choice of orienta-
tion is called the negative of ¢ and is denoted by —¢ or — 1 - ¢ (Figure 151).

OO

Figure 151 Problem 8

ProBLEM 8. Show that, under a change of orientation, the integral changes sign:

oo

36 The cell ¢ is usually called a singular k-dimensional poiyhedron.
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35: Integration of differential forms

E Chains

The set f(D) is not necessarily a smooth submanifold of M. It could have
“self-intersections” or “folds” and could even be reduced to a point. How-
ever, even in the one-dimensional case, it is clear that it is inconvenient to
restrict ourselves to contours of integration consisting of one piece: it is
useful to be able to consider contours consisting of several pieces which can
be traversed in either direction, perhaps more than once. The analogous
concept in higher dimensions is called a chain.

Definition. A chain of dimension k on a manifold M counsists of a finite collection
of k-dimensional oriented cells ¢, ..., g, in M and integers my, ..., m,,
called multiplicities (the multiplicities can be positive, negative, or zero).
A chain is denoted by

Cy = m;o‘l + -+ m,a,.

We introduce the natural identifications
e+ mya =(m; + myo
MG, + My0, = MaG5 + M40, 0 =0 ag+0=c¢.

ProOBLEM 9. Show that the set of all k-chains on M lorms a commutative group il we define the
addition of chains by the formula

{myog, + - +ma) +{ma, + -+ may=me, + -+ me, +ma, + o+ mLo, .

F Example: the boundary of a polyhedron

Let D be a convex oriented k-dimensional polyhedron in k-dimensional
euclidean space B*. The boundary of I} is the (k — 1)-chain 2D on R* defined
in the following way (Figure 152).

The cells a; of the chain 3D are the (k — 1)-dimensional faces D; of the
polyhedron D, together with maps f;: D; - R* embedding the faces in R* and
orientations Or; defined below; the multiplicities are equal to 1:

D =% o, o =(D,f, Or)

Rule of orientation of the boundary. Let ey, ..., &, be an oriented frame in
R*. Let D, be one of the faces of D. We choose an interior point of D; and there

Figure 152  Oriented boundary
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7: Diflerential forms

construct a vector n outwardly normal to the polyhedron D. An orienting
frame for the face D; will be a frame f,, ..., f,_, on D; such that the frame
{n,f,, ..., f,_)isoriented correctly(ic,the same wayasthe framee,, ..., ).

The boundary of a chain is defined in an analogous way. Let ¢ = (D, f, Or)
be a k-dimensional cell in the manifoid M. Its boundary 8¢ is the (k — 1)
chain: do = ) o; consisting of the cells ¢; = (D;, f;, Or,), where the D; are
the (k — 1)-dimensional faces of D, Or; are orientations chosen by the rule
above, and f; are the restrictions of the mapping f: D — M to the face D;.

The boundary dc, of the k-dimensional chain ¢, in M is the sum of the
boundaries of the cells of ¢, with muiltiplicities (Figure 153):

dc, = dmo, + -+ mo)=m, do( + -+ m,do,.

Obviously, dc, is a (k — 1)-chain on M.>’

a(.‘;,-

(8] Lanl

Figure 153 Boundary of a chain

ProsLEM 0. Show that the boundary of the boundary of any chain is zero: &de, = G

Hint. By the lincarity of 4 it is enough to show that ¢2D = 0 for a convex polyhedron D. It
remains (o verify that every (k — 2)-dimensional face of D appears in 23D twice, with opposite
signs. It is enough 1o prove this for k = 2 (planar cross-sections).

G The integral of a form over a chain

Let w* be a k-form on M, and ¢, a k-chain on M, ¢, = », m;0;. The integral
of the form «w* over the chain ¢, is the sum of the integrals on the cells, counting

multiplicities:
J ot =Y m f o*
(1 [

ProeLEM 11. Show that the integral depends linearly on the form:

J.ru‘{+m§=-|.(u‘i +jru§,

K Che hn

PrOBLEM | 2. Show that inlegration of a fixed form «w* on chains ¢, defines a homomorphism from
the group of chains to the line.

*7 We are taking k > 1 here. One-dimensional chains are included in the general scheme if we
make the following definitions: a zero-dimensional chain consists of a collection of points with
multiplicities; the boundary of an oriented interval ABis B — A (the point B with multiplicity 1
and A with multiplicity — 1): the boundary of a point is empty.
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35: Intcgration of differential forms

ExampLE 1. Let M be the plane {(p, 4}, w' the form pdg, and ¢, the chain consisting of one cell o
with multiplicity 1:

[0 =t £2n]i’(p=cosr,q=sinr).

Then |,, pdq = = In general, if a chain ¢, represents the boundary of a region G (Figure 154), then
[.. pdyg is equal 10 the area of G with sign + or — depending on whether the pair of vectors
{outward normal, oriented boundary vector} has the same or opposite orientation as the pair
{p axis, g axis).

¢

% A pdy

/ ..
—

Figure 154 The integral of the form p dg over the boundary of a region is equal to the
area of the region.

Exampii 2. Let M be the oriented three-dimensional euclidean space R, Then every 1-form on
M corresponds to some vector field A {ew' = w) ) where

wi€) = (A, §).

The integral of w4, on a chain ¢, representing a curve | is called the circulation of the field A

over the curve I
J- wh = J-(A, dn.
£ !

Every 2-form on M also corresponds to some field A (w? = wi, where wi(E, n) = (A, &, q)).
The integral of the form wj on a chain ¢, representing an criented surface § is called the
flux of the field A through the surface 5.

Lwi = J;(A, dn).

ProBLEM | 3. Find the flux of the field A = (1/R*)eg over the surface of the sphere x? + 3 + 22 =
1, oriented by the vectors e,, e, at the point z = 1. Find the flux of the same field over the surface
of the ellipsoid (x*/a®} + (¥*/b*) + z* = 1 oriented the same way.

Hint. Cf. Sectton 36H.

ProOBLEM 14, Suppose that, in the 2n-dimensional space B" = {(p,,...,p.i 410 .. .. g,}}, we are
given a 2-chain ¢; representing a two-dimensional oriented surface § with boundary £. Find

Jdp1 Adg+ - +dp, A dy, and J,pla'q1 + -+ pody,.
[¥) ]

ANSwWER. The sum of the oriented areas of the projection of § on the two-dimensional coordinate
planes p;, g;.
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7: Differential forms

36 Exterior differentiation

We define here exterior differentiation of k-forms and prove Stokes’ theorem: the integral of the
derivative of a form over a chain s equal to the integral of the form itself over the boundary of
the chain.

A Example: the divergence of a vector field

The exterior derivative of a k-form @ on a manifold M is a (k + 1)-form dw
on the same manifeld. Going from a form to its exterior derivative is analo-
gous to forming the differential of a function or the divergence of a vector
field. We recall the definition of divergence.

E)

> 'v‘
Y4
Yol ¢

Figure 155 Definition of divergence of a vector fleld

Let A be a vector field on the oriented euclidean three-space R, and let S
be the boundary of a parallelepiped I with edges &, £, and &, at the vertex x
(Figure 155). Consider the (“outward™) flux of the field A through the
surface §:

F(IT) = J(A, dn).
s

If the parallelepiped [T is very small, the flux F is approximately propor-
tional to the product of the volume of the parallelepiped, V' = (§,, &,. &),
and the “source density” at the point x. This is the limit

fim FEID
rop BV

where €I is the parallelepiped with edges &, £¢§;, ¢&;. This limit does not
depend on the choice of the parailelepiped IT but only on the point x, and is
called the divergence, div A, of the field A at x.

To go to higher-dimensional cases, we note that the *flux of A through a
surface element™ is the 2-form which we called 3. The divergence, then,
is the density in the expression for the 3-form

w? =divAdx A dy A dz,
w3(§1a £;,83) =divA- V&, &2, &3),

characterizing the “sources in an ¢lementary parallelepiped.”
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36: Exterior differentiation

The exterior derivative do* of a k-form o* on an p-dimensional manifold
M may be defined as the principal muitilinear part of the integral of w* over
the boundaries of (k + 1)-dimensionai parallelepipeds.

B Definition of the exterior derivative

Wedefine the value of the formdwon k + 1vectorsg,, ..., &, tangentto M
at x. To do this, we choose some coordinate system in a neighborhood of x
on M, i.e., adifferentiable map f of a neighborhood of the point 0 in euclidean
space R" to a neighborhood of x in M (Figure 156).

Figure 156 The curvilinear parailelepiped [1.

The pre-images of the vectors &, ..., &, , € TM, under the differential
of f lie in the tangent space to R" at 0. This tangent space can be naturally
identified with R", so we may consider the pre-images to be vectors

&L .. Bl e R

We take the parallelepiped IT* in R” spanned by these vectors (strictly
speaking, we must look at the standard oriented cube in R**! and its linear
map onto IT* taking the edges e, ..., e, to &}, ..., EF ,asa(k + 1)
dimensional cell in ®%). The map f takes the parallelepiped IT* to a (k + 1)-
dimensional cell on M (a “curvilinear parallelepiped ™). The boundary of the
cell IT is a k-chain, dI1. Consider the integral of the form w* on the boundary
Il of I1:

F(gls cray §k+1) = J;nwk-

ExampLe. We will call a smooth function ¢: M —+ R a0-lorm on M, The integral of the 0-form ¢
on the O-chain ¢, = 3. m; A; (where the m; are integers and the 4, points of M) is

fw=ZmNM-

€0

Then the definition above gives the “increment™ F{&,) = ¢{x,) — ¢{x) (Figure 157) of the
funciion @, and the principal linear part of F(&,) at 0 is simply the differential of ¢.

ProsLeM 1. Show that the lunction F(E,, ..., &, ) is skew-symmetric with respect to &

It turns out that the principal (k + 1)-lincar part of the “increment”
F(&s, .-, & 1) s an exterior (k + 1)-form on the tangent space TM, to M
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Figure 157 The integral over the boundary of a one-dimensional parallelepiped is the
change in the function.

at x. This form does not depend on the coordinate system that was used to
define the curvilinear parallelepiped I1. It is called the exterior derivative, or
differential, of the form w* (at the point x) and is denoted by dw*.

C A theorem on exterior derivatives

Theorem. There is a unigue (k + 1)-form Q on TM, which is the principal
(k + 1)-linear part at O of the integral over the boundary of a curvilinear
parallelepiped, F(E,, ..., &4 () ie.,

() FeBy, .o 880 ) = 87 10GE,L . G ) oY) (e 0,

The form € does not depend on the choice of coordinates involved in the
definition of F. If, in the local coordinate system x,, ..., x, on M, the form
o® is written as

K _
w = Z iy i dx,-l Ao A dx;k,
then € is written as

(2) Q=do* =3} da, ., ~rdxy r- - Adxy.

We will carry out the proof of this theorem for the case of a form w! =
a(x,, x;)dx, on the x;, x, plane. The proof in the general case is entirely
analogous, but the calculations are somewhat longer.

We caiculate F(&, 1), i.e., the integral of @' on the boundary of the paral-
lelogram IT with sides £ and n and vertex at 0 (Figure 158). The chain &1 is

ntk

£r

Xy

Figure 158 Theorem on exterior derivatives
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given by the mappings of the interval 0 < ¢ < 1 to the plane t = &t, ¢t —
E +ut,t > nt,andt — n + & with multiplicities 1, 1, — 1, and — 1. Therefore,

1
.[ o' = f [a(5t) — aGt + W), — [atD) — alt + &)n, dt
#n 0

where ¢, = dx,(&), 1, =dx, ), ¢, = dx,y(§), and 1, = dx,(W) are the
components of the vectors & and 4. But

ol d
e+ — &) = o0y + 3 + OE% W)
1

(the dertvatives are taken at x, = x, = 0). In the same way

é da
i +8) — al) = 5= &y + 56 + OE W)
1

By using these expressions in the integral, we find that

d
F(&,n) = J‘ R (Cam — §im2) + o(E57).
én dx,

The principal bilinear part of F, as promised in (1), turns out to be the value
of the exterior 2-form
fa

= _—dx, A dx,
x,

on the pair of vectors &, y, Thus the form obtained is given by formula (2),
since

] d 17
—aa'x1 A dx, +—adx2 A dx, -2

dx,.
ax, ax, ax, 4X2 N dxi

da ~ dx, =

Finally, if the coordinate system x,, x, is changed to another (Figure 159),
the parailelogram IT is changed to a nearby curvilinear parallelogram IT', so
that the difference in the values of the integrals, [;n @' — fap ! will be
small of more than second order (prove it!). |

vy

Figure 139 Independence of the exterior derivative from the coordinate system
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PrOBLEM 2. Carry out the proof of the theorem in the general case.

PROBLEM 3. Prove the formutas for differentiating a sum and a product:
died, + wy) = des, + do,.
and

(e A o) = dat oA el 4+ (= DRt A dod,
Probrem 4. Show that the diflerential of a differential is equal to zero: dd = 0.

ProOBLEM 5. Let /1 M — & be a smooth map and o a k-form on N. Show that f*(dw) = J( [ *w).

D Stokes’ formula

One of the most important corollaries of the theorem on exterior derivatives
is the Newton-Leibniz-Gauss-Green-Ostrogradskil-Stokes-Poincaré for-
mula:

(3) J;cw = '[dw,

where ¢ is any (k + 1)-chain on a manifold M and w is any k-form on M.

To prove this formula 1t 1s sufficient to prove it for the case when the chain
consists of one cell 0. We assume first that this cell o is given by an oriented
parallelepiped 1 — R**! (Figure 160).

!
1
I
|

v
411
J

Figure 160 Proof of Stokes’ formula for a parallelepiped

We partition IT into N**! small equal parallelepipeds [T; similar to TI.
Then, clearly,

Nk
j w= 3y Fy whcreF,—=J. 0.
an i=1 en;
By formula (1) we have

Fi’ = dw(ﬁilt T E.vi+1) + O(N_‘k+1}}s
where B}, ..., Ei. are the edges of TI,. But Y " di&i, .. .. g, ) is a

Riemann sum for [, de. It is easy 1o verify that o(N ~** 'Y} is uniform, so

Nkol Nbo+
im Y F = lim Y doE,... &)= j dos
N—ow =t N—ox =1 n
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Finally, we obtain

J w=YF,=1lm Y F;, = | do.
20 1]

N— o
Formula (3) follows automatically from this for any chain whose polyhedra
are parallelepipeds.
To prove formula (3) for any convex polyhedron D, it is enough to prove

it for a simplex,®® since D can always be partitioned into simplices (Figure
161):

D:ZD! 3D:Z§D,.

Figure 161 Division of a convex polyhedron into simplices

Figure 162  Proof of Stokes’ formula for a simplex

We will prove formula (3) for a simplex. Notice that a k-dimensional
oriented cube can be mapped onto a k-dimensional simplex so that:

. The interior of the cube goes diffeomorphically, with its orientation
preserved, onto the interior of the simplex;

2. The interiors of some (k — 1}-dimensional faces of the cube go diffeo-
morphically, with their orientations preserved, onto the interiors of the
faces of the simplex; the images of the remaining (k — 1)-dimensional
faces of the cube lie in the (k — 2)-dimensional faces of the simplex.

For example, for k = 2 such a map of the cube 0 < x,, x; < 1 onto the
triangle is given by the formula y, = x,, y, = x,x, (Figure 162). Then,

*® A two-dimensional simplex is a triangle, a three-dimensional simplex is a tetrahedron. a
k-dimensional simplex is the convex hull of k + 1 points in B" which do not lie in any k — |-
dimensional plane,

Exampie: {xe B*:x; 2 Oand 3%, x, < 1}
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formula (3) for the simplex follows from formula (3) for the cube and the
change of variables theorem (cf. Section 35C).

ExamrLE 1, Consider the 1-form
o' =pydg, +-- + p,dq, = pdq

on R*® with coordinates p,, ..., Pus G1, -+ ., g, Thendw® = dp, A dg, + - --
+ dp, ~ dg, = dp A dq, s0

J‘f dp dq=J. pdq.
3 drg

In particular, if ¢, is a closed surface (dc, = 0), then {{,, dp » dq = 0.

E Example 2— Vector analysis

In a three-dimensional oriented riemannian space M, every vector field A
corresponds to a 1-form wj and a 2-form w2, Therefore, exterior differentia-
tion can be considered as an operation on vectors.

Exterior differentiation of O-forms (functions), 1-forms, and 2-forms cor-
respond to the operations of gradient, curl, and divergence defined by the
relations

df = Wpraa s dwy = wlina dw} = (div A)w?

(the form ? is the volume element on M). Thus, it follows from (3) that

f(v)*f(x)=J'gradfdl ifol=y—x

J.A dl = J.J.curlA‘dn ifoS =1
: s

_USA dn = ” D(div Ayo® ifdD =S.

div[A, B] = (curl A, B) — (curl B, &),

PrOBLEM 6. Show that

curl ¢A = [grad ¢, A] + acurl A,
divaA = {grada, A) + adiv A.
Hint. By the formula for differentiating the product of forms,
d(wly p) = d(wh A }) = dw} A wh — wh A dog.

ProBLeM 7. Show that curl grad = div curl = 0.
Hint. dd = 0.
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36: Exterior differentiation

¥ Appendix 1. Vector operations in triply orthogonal systems

Let x,, x5, x3 be a triply orthogonal coordinatc system on M, ds? =
E, dx? + E; dx? + E, dx3 and e; the coordinate unit vectors {cf. Section
34E).

PropLEM 8 Given the components of a vector field A = A, e, + 4,¢;, + A.e;, find the compo-
nents of its curl,
Solution. According to Section 34E
wh = A\ JE, dx; + A;/E; dx; + Ay /Eqdx,.
Therefore,

. P
5 a
duw) = ({)A"WEE“ 042 Es dx; Adxy+ - = o}
A=V — == H 3t = 1A
dx, - x4 o

According to Section 34E, we have

— . =
JEie JE &, JEse;

A 1 (@A3V€£}:—I3 aAz\/E;) B 2 ¢
curl = —  |— T - 2V _Tle, + - = . - _
\;"Eﬁj dx, Oxy dxy X3 Xy

AJE, An/Er 43JEs

In particular, in cartesian, cylindrical, and spherical coordinates on B°,
LA ("A, aAy) N (an aA,) N (BA}. EA,)
ewlaA=(—--—"]e X Te 4+ | - €
dy az ) &z ax/ ax /)

L{éd, drd, [ WU 1 fard, &4,
— :._... PR — E' + —_ ._ ew + —_ —_— ez
g oz 0z ar r\dr dep

1 (5,4,, dA, cos fj) 1 (aAR J.RA,,) 1 (@RAw 1 5,4,,)
= —_ —_—— = eR + -] - -— ew + - | — = e = ee_
Rcosdl dop an R\ a0 &R R @R cos ! do

ProsLEM 9. Find the divergence of the field A = A€, + 4;€, + A.e;.
Solution. wf = A, JE;E; dx, ~ dxy + -+ Therefore,

dwd = %(Awfs'zsa)dx, Adx, Adxs + e
By the definition of divergence,
dwl = div AJE B, E5 dx, A dx; & dxs.
This means
t

. é : d e 2 pp—
diva= - |- -4\ JEE + o A JEE + | A JE R
\;/EN'-'-zE_\ dx, 8%, 0,

195



7: Differential forms

in particular. in cartesian, cylindrical. and spherical coordinates on B

2d, 84, 4, 1 fdrd, 24 £A,
div A = - + “:'} + -, = - (—— R ——‘o) + -
£x dy dz r\ o dep iz
1 R cos Hdg . aRA 'R cos 4,
Ca il

— - - @
T RcostB ‘R i

ProsLEM 10. The Laplace operator on M is the operator A = div grad. Find its expression in the
coordinates x,.

ANSWER.

oo ] [t (/:32'53 a,r)+ ]
) \I_.’":E]Ez”é; o \W OE;, éx, '
In particular, on R*

2 z a2 o
Af=?—{+ﬂ ﬂ=ﬂ O S ) L

ox

T aw v e T

(‘I

| e, af) . ( 1 :;;) 2 ( ot )]
- " g L _ U = a Y
RZcos B Iif-ER (R cos { &R * Gop \cos H 8o * g cos a8
G Appendix 2: Closed forms and cycles

The flux of an incompressible fluid (without sources) across the boundary
of a region D is equal to zero. We will formulate a higher-dimensional
analogue to this obvious assertion, The higher-dimensional analogue of an
incompressible fluid is called a closed form. The field A has no sources if
divA =20

Definition. A differential form @ on a manifold M is closed if its exterior
derivative is zero: dw = Q.

In particular, the 2-form @] corresponding to a field A without sources
is closed. Also, we have, by Stokes’ formula (3}:

Theorem. The integral of a closed form * over the boundary of any (k + 1)
dimensienal chain ¢, | is equal to zero:

'f Wt =0 ifdo* = 0.
ECk+ 1

ProeLEM L 1. Show that the differential of a form is always closed.

On the other hand, there are closed forms which are not differentials. For
example, take for M the three-dimensional euclidean space R* without O:
M = R3 — 0, with the 2-form being the flux of the field A =(1/R%}eg
(Figure 163). It is easy to convince oneself that div A = 0, so that our 2-form
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36: Exterior differentiation

Figure 163 The ficld A

4 is closed. At the same time, the flux over any sphere with center O is equal
to 4n. We will show that the integral of the differential of a form over the
sphere must be zero.

Definition. A cycle on a manifold M is a chain whose boundary is equal to
zero.

The oriented surface of our sphere can be considered to be a cycle. It
immediately follows from Stokes’ formula (3) that

Theorem. The integral of a differential over any cycle is equal to zero:

J- da)k=0 .{'fach.l = 0.

Thus, our 2-form w3 is not the differential of any 1-form.

The existence of closed forms on M which are not differentials is related
to the topological properties of M. One can show that every closed k-form
on a vector space is the differential of some (k — 1)-form (Poincaré’s lemma).

PROBLEM 2. Prove Poincaré’s lemma for I-forms.
Hint. Consider [%) ' = ¢(x,).

ProeLEM 13. Show that in a vector space the integral of a closed form over any cycle is zere.
Hint. Construct a {(k + 1)-chain whose boundary is the given cycle (Figure 164).

Figure 164 Cone over a cycle
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7: Differential forms

Namely, for any chain ¢ consider the “cone over ¢ with vertex 0.7 If we denote the operation
of constructing a cone by p, then

dep+pdf=1 (the identity map).
Therefore, if the chain ¢ is closed, d(pe} = ¢.
ProBLEM. Show that every closed form on a vector space is an exterior derivative.

Hint. Use the cone construction. Let * be a differential k-form on R". We definca (k — 1)-
form {the “'co-cone over ™) pw* in the following way: for any chain ¢, _,

J pu* =J wt.
LU | Py

It is easy to see that the (k — 1)-form pew* exists and is unique: its value on the veclors
Bl ..., & 1, tangeni 1o R™ at x, is equal to

(po) & - Biay) = ”} e (%, 18y, .. 6 )dt
It is easy to sce that
dep+ped=1 {the identity map).

Therefore, if the form w* is closed, d{pw*) = w*,

ProBLEM. Let X be a vector field on M and w z differential k-form. We define a difierential
{k — 1)-form ixw (the interior derivative of w by X) by Lhe relation

Gxe) €y, - By} = (X, ST A §
Prove the homotopy formula
ixd + diy = Lg.

where Ly is the differentiation operator in the direction of the field X.
[The action of L, on a form is defined, using the phase flow {g'} of the field X, by the relation

d
(Lxw)(§) = o (g, E).
=0

r

Ly is catled the Lie derivative or fisherman’s derivative: the flow carries all possible differential-
geometric objects past the fisherman, and the fisherman sits there and differentiates them.]

Hint. We denote by H the “homotopy operator” associating to a k-chain y:o — M the
(k + L)-chain Hy: (I x &) — M according to the formula (Hy){, x) = ¢'y(x) (where [ = [0, 1.
Then

g'y — v = (Hy) + H(&).
PROBLEM. Prove the formutla for differentiating a vector product on three-dimensional euclidean
space {or on a tiemannian manifold):
curl[a, b] = {a, b} + adivb — bdiva

{where {a, b} = L,bis the Poisson bracket of the vector fields, cf. Section 39).
Hint. [f 1 is the volume element, then

Tewrtfa, b7 = digiyt diva =di,7 and {ab} = L,b;

by using these relations and the fact that 4 = 0, it is easy to derive the formula for curl[a, b] from
the homotopy formula.
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36: Exterior differentiation

H Appendix 3. Cohomology and homology

The set of all k-forms on M is a vector space, the closed k-forms a sub-
space and the differentials of (k — P)-forms a subspace of the subspace of
closed forms. The quotient space

{closedforms}
Tdifferentials ~ 1 M )

is called the k-th cohomology group of the manifold M. An element of this
group is a class of closed forms differing from one another only by a differ-
ential.

ProsLEM 14, Show that for the circle 87 we have HY{S' B) = 2.

The dimension of the space H5(M, R) is called the k-th Betti number of M.

ProsLes 15 Find the first Betti number of the torus 72 = §' x §°.

The flux of an incompressible fluid (without sources) over the surfaces of
two concentric spheres is the same. In general, when integrating a closed form

[/

Figure 165 Homoiogous cycles

over a k-dimensional cycle, we can replace the cycle with another one pro-
vided that their difference is the boundary of a (k + 1)-chain (Figure 165):

J.w" = fw",
g b
ifa — b = dcy,y and do* = 0.

Poincaré called two such cycles a and b homologous.
With a suitable definition® of the group of chains on a manifold M and its

% For this our group {c,} must be made smaller by identilying picces which differ only by the
choice of parametrization { or the choice of polyhedron D. In particular. we may assume that
D i1s always onc and the same simplex or cube. Furthermore, we musi take every degenerate
k-cell (D, f, Orltobe zeroae (D, £ Or)y = 0il f = [, - f|.where f,: D — D and D" has dimension
smaller than &
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7: Differentiat forms

subgroups of cycles and boundaries (i.e., cycles homologous to zero), the
guotient group

{cycles}

{boundaries] H(M)

is called the k-th homology group of M.
An element of this group is a class of cycles homologous to one another.
The rank of this group is also equal to the k-th Betti number of M (“De
Rham's Theorem”).
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Symplectic manifolds

A symplectic structure on a manifold is a closed nondegenerate differential
2-form. The phase space of a mechanical system has a natural symplectic
structure.

On a symplectic manifold, as on a riemannian manifold, there is a natural
isomorphism between vector fields and 1-forms. A vector field on a sym-
plectic manifold corresponding to the differential of a function is called a
hamiftonian vector field. A vector field on a manifold determines a phase
flow, i.e., a one-parameter group of diffeomorphisms. The phase flow of a
hamiltonjan vector field on a symplectic manifold preserves the symplectic
structure of phase space.

The vector fields on a manifold form a Lie algebra. The hamiltonian
vector fields on a symplectic manifold also form a Lie algebra. The operation
in this algebra is called the Poisson bracket.

37 Symplectic structures on manifolds

We define here symplectic manifolds. hamiltonian vector fields, and the standard symplectic
structure on the cotangent bundle.

A Definition

Let M2" be an even-dimensional differentiable manifold. A symplectic
structure on M?” is a closed nondegenerate differential 2-form w? on M?":

do? =0 and VE#O0IM G #£0 (& neTM)
The pair (M?", w?) is called a symplectic manifold.
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ExampLE, Consider the vector space R with coordinates p,, ¢, and let w? = ¥ dp; ~ dy;.

PROBLEM. Verily that (R?", @?) is a symplectic manifold. For v = 1 the pair (R?, ?) is the pair
(the plane, area).

The following example explains the appearance of symplectic manifolds
in dynamics. Along with the tangent bundle of a differentiable manifeld, it is
often useful to look at its dual—the cotangent bundle.

B The cotangent bundle and its symplectic structure

Let V be an n-dimensional differentiable manifold. A !-form on the tangent
space to V at a point x is called a cotangent vector to V at x. The set of all
cotangent vectors to ¥ at x forms an n-dimensional vector space, dual to
the tangent space TV,. We will denote this vector space of cotangent vectors
by T*V, and call it the cotangent space to V at x.

The union of the cotangent spaces to the manifold at all of its points is
called the cotangent bundle of V and is denoted by T*V. The set T*V has a
natural structure of a differentiable manifold of dimension 2n. A point of
T*V is a 1-form on the tangent space to V at some point of V. If q1s a choice
of n local coordinates for points in V, then such a form is given by its n com-
ponents p. Together, the 2n numbers p, q form a collection of local coordinates
for points in T*V.

There is a natural projection f: T*V — V (sending every 1-formon TV to
the point x). The projection [ is differentiable and surjective. The pre-image
of a point x € ¥ under f is the cotangent space T*V,.

Theorem. The cotangent bundle T*V has a natural symplectic structure. In the
local coordinates described above, this symplectic structure is given by the
formula

w? =dp A dq =dp, ~dg, + -+ dp, A dg,.

Proor. First, we define a distinguished 1-form on T*¥. Let e T(T*V), be
a vector tangent to the cotangent bundle at the point p € T*V, (Figure 166).
Thederivative f,: T(T*V) - TV of the natural projection f: T*V — V takes
g to a vector f, & tangent to V at x. We define a 1-form ' on T*V by the
relation @*(&) = p(f, &). In the local coordinates described above, this form
is w! = pdg. By the example in 4, the closed 2-form w? = dw' is non-
degenerate. O

Remark. Consider a lagrangian mechanical system with configuration manifold V' and
lagrangian function L. [1 is casy to see that the lagrangian “generalized velocity™ § is a tan-
gent vector to the configuration manifold V¥, and the “generalized momentum”™ p = 2L/2q
is a cotangent vector, Therefore, the *p. 4" phase space of the lagrangian system is the cotangent
bundle of the configuration manifold. The theorem above shows that the phase space of a
mechanical problem has a natural symplectic manifold structure.
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T¥V,
3 T*V
r
f"r
X I

Sk
Figure 166 The 1-form p dq on the cotangent bundle

ProBLEM, Show that the Legendre transform does not depend on the coordinate system: it
takes a function L: T+ — R on the tangent bundie to a function H: TV — R on the cotangent
bundle.

C Hamiltonian vector fields

A riemannian structure on a manifold establishes an isomorphism between
the spaces of tangent vectors and I1-forms, A symplectic structure establishes
a similar isomorphism.

Definition. To each vector &, tangent to a symplectic manifold (M?", w?) at
the point X, we associate a 1-form w{ on TM, by the formula

wym) = 0’M, &)  ¥ne TM,.

Prosiem, Show that the correspondence & — o 1s an isomorphism between the 2n-dimensional
vector spaces of vectors and of |-forms.

ExampLE. in % = {(p. q)} we will identify vectors and I-forms by using the cuclidean structure
(x, X) = p* + q°. Then the correspondence & — w! determines a transformation R*" - R,

PropLEM. Calculate the matrix ol this transformation in the basis p, q.

A!\'SWER.( 0 E
-E 0

We will denocte by I the isomorphism I': T*M, — T M, constructed above.
Now let H be a function on a symplectic manifold M?". Then dH is a differ-
ential 1-form on M, and at every point there is a tangent vector to M as-
sociated 1o it. In this way we obtain a vector field I dH on M.

Definition. The vector field I dH is called a hamiltonian vector field; H is
called the hamiltonian function.
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B: Symplectic manifolds

ExampLE. [f M2" = R?" = {{(p. q)]. then we obtain the phase velocity vector field of Hamilton's
canonical equations:

3H H
%= [dHOO o p= — = and §=—o.
dq ap

38 Hamiltonian phase flows and their integral
invariants

Liouville’s theorem asserts that the phase flow preserves volume. Poincare found a whole
series of differential forms which are preserved by the hamiltonian phase flow.

A Hamiltonian phase flows preserve the symplectic structure

Let (M*", w*) be a symplectic manifold and H: M?" — R a function. Assume
that the vector field I dH corresponding to H gives a 1-parameter group of
diffeomorphisms g': M?" —+ M*":

d r
a r=ogx = IdH(x).

The group g' is called the hamiltonian phase flow with hamiitonian function H.

Theorem. A hamiltonian phase flow preserves the symplectic structure:

(9‘)'0_)2 = wl‘

In the case n = 1, M?" = R?, this theorem says that the phase flow ¢'
preserves area (Liouville’s theorem).

For the proof of this theorem, it is useful to introduce the following nota-
tion (Figure 167).

Let M be an arbitrary manifold, ¢ a k-chain on M and g": M — M a one-
parameter family of differentiable mappings. We will construct a (k + 1)-
chain Je on M, which we will call the track of the chain ¢ under the homotopy
g 0=t <t

Let (D, f, Or) be one of the cells in the chain ¢. To this cell will be associated
acell (D, f7, Or') in the chain Jc, where D' = [ x D is the direct product of
the interval 0 < ¢ < ¢ and D; the mapping f': D'—= M is obtained from
f:D — M by the formula f'(t, x) = ¢'f(x); and the orientation Or’ of the

g'c ~t o
AT A5k
ac ;L
S
¢

k=2 k=1
Figure 167 Track of a cycle under homotopy
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space R** ! containing I¥ is given by the frame €4, e, ..., e,, where e, is the
unit vector of the ¢ axis, and e,, . .., €, is an oriented frame for D.

We could say that Jc is the chain swept out by ¢ under the homotopy ¢',
0 <t < ©. The boundary of the chain J¢ consists of “end-walls™ made up
of the initial and final positions of ¢, and “side surfaces™ filled in by the
boundary of c.

It is easy to verify that under the choice of orientation made above,

(1) oJey) = g'ex — ¢, — J Oy

Lemma. Let y be a l-chain in the symplectic manifold (M?", w?). Let g be a
phase flow on M with hamiltonian function H. Then

4 w? = j dH.

dr Jy 97y

Proor. It 1s sufficient to consider a chain y with one cell f: [0, 1] - M. We
introduce the notation

] [ F af
f'is, £) = g'f(s), £ = 2 and n= a eTMp.

By the definition of the integral

L o = Ll L (&, n)dt ds.

But by the definition of the phase flow, q is a vector (at the pont f'(s, t}) of
the hamiltonian field with hamiltonian function H. By definition of a hamil-
tonian field, w?(&, ) = dH(&). Thus

[, o= o0 e :

Corollary. If the chain y is closed (8y = 0), then _[‘,? w? =0
Proor. |, dH = [5, H = 0. O

PrOOF OF THE THEOREM. We consider any 2-chain ¢. We have

0 dw’éj wzé(J‘ —J.~J. )wzéJ‘wZ—J‘wz
Je ate gt € Jéc 3¢ c

(1 since @® is closed, 2 by Stokes’ formula, 3 by formula (1), 4 by the corollary
above with y = d¢). Thus the integrals of the form w? on any chain ¢ and on
its image g°c are the same. O

PROBLEM. 15 every one-parameter group of diffeomorphisms of M*" which preserves the sym-
plectic structure a hamiltonian phase flow?
Hint. CF. Section 40.
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B Integral invariants

Let g: M — M be a differentiable map.

Definition. A differential k-form w is called an inregral invariant of the map g
if the integrals of ro on any k-chain ¢ and on its image under g are the same:

Jo=lo

ExampLe. I[f M = R? and w® = dp A dy is the area clement. then «? is an integral invariant of
any map g with jacobian 1.

PROBLEM. Show that a form «* is an integral invartant of a map g if and only if g** = o*.

PropLem. Show that if the forms o and o' are integral invariants of the map g. then the form
w* A w'is also an integral invariant of g.

The theorem in subsection 4 can be formulated as follows:

Theorem. The form w? giving the symplectic structure is an integral invariant
of a hamiltonian phase flow,

We now consider the exterior powers of w2,

@P = rwt (WP =wre’rol....

Corollary. Each of the forms (w0*)?, (w?), (w?)%, .. . is an integral invariant of a

hamiltonian phase flow.

ProBLEM. Suppose that the dimension of the symplectic manifold {(M?2", w?) is 2n. Show that
(«w?¥ = Ofor k > n, and that (w?)" is a nondegenerate 2n-form on M2

We define a volume element on M?" using (®w?)". Then, a hamiltonian
phase flow preserves volume, and we obtain Liouville’s theorem from the
corolary above.

ExampLe. Consider the symplectic coordinate space M?*" = R*" = {(p, @)},
w? =dp A dq =Y dp; A dg;. In this case the form (w?)* is proportional 1o
the form

2k

w* =Y dp, A Adpy Adg, A A dg,,

The integral of w?* is equal to the sum of the oriented volumes of projections
onto the coordinate planes (p;,, ..., Pi,s @i - +» i)

A map g: R?*" — R?" s called canonical if it has w? as an integral invariant.
A canonical map is generally called a canonical transformation. Each of the
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forms w*, ®®%, ..., w*" is an integral invariant of every canonical transforma-

tion. Therefore, under a canonical transformation, the sum of the oriented areas
of projections onto the coordinate planes (p;, ..., Pu. iy - - G5, | <k < n,
is preserved. In particular, canonical transformations preserve volume.

The hamiltonian phase flow given by the equations p = —dH/dq, 4 =
JdH /dp consists of cancenical transformations g'.

The integral invariants considered above are also called absolute integral
invariants.

Definition. A differential k-form w is called a relative integral invariant of the
map g: M - M if [, @ = |, w for every closed k-chain c.

Theorem. Let w be a relative integral invariant of a map g. Then dw is an ab-
solute integral invariant of g.

PrROOF. Let ¢ be a k + 1-chain. Then

J.dwé.l‘wéj w%J‘wéJ. dw.
¢ [ gdc dye #e

{1 and 4 are by Stokes’ formula, 2 by the definition of relative invariant, and
3 by the definition of boundary). O

EXAMPLE. A canonical map g: B*" — R*" has the i-form

H
w! =pdg = Z pi dg; as a relative integral invariant.
i=1
In fact, every closed chain ¢ on R*” is the boundary of some chain &, and we find

fwl L f ol 2 f w! & J- dewt £ fdw' kS J wb & fw’;

qc ai fge g 7
(1 and 6 are by definition of 7, 2 by definition of &, 3 and 5 by Stokes’ formula, and 4 since y
is canonical and dew' = dp dy) = dg » dg = ).

PROBLEM. Let de* be an absolute integral invariant of the map g: M — M. Does it follow that
w* Is a relative integral invariant?

ANsweR. No, if there is a closed k-chain on M which is not a boundary.

C The law of conservation of energy

Theorem. The function H is a first integral of the hamiltonian phase flow with
hamiltonian function H.

ProOF. The derivative of H in the direction of a vector  is equal to the value
of dH on 1. By definition of the hamiltonian field 4 = 7 dH we find

dH(m) = o*(m, I dH) = o’(,n) = 0. O

ProBLEM. Show that the 1-form 4H is an integral invariamt of the phase flow with hamiltonian
function H.
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39 The Lie algebra of vector fields

Every pair of vector fields on a manilold determines a new vector field, called their Poisson
bracket.”® The Poisson bracket operation makes the vector space of infinitely differentiable
vector fields on a manifold into a Lie algebra.

A Lie algebras

One example of a Lie algebra is a three-dimensional oriented euclidean
vector space equipped with the operation of vector multiplication. The
veetor product is bilinear, skew-symmetric, and satisfies the Jacobi identity

[[4.B],C]1+ [[B.C}, A+ [IC, 4], B] = 0.

Definition. A Lie algebra is a vector space L, together with a bilinear skew-
symmetric operation L x L — L which satisfies the Jacobi identity.

The operation is usually denoted by square brackets and called the
commtitator.

ProBLEM. Show that the set ol n x n matrices becomes a Lic algebra if we define the commutator
by [A, B] = AB - B4

B Vector fields and differential operators

Let M be a smooth manifold and A a smooth vector field on M: at every
point xe M we are given a tangent vector A(x)e TM,. With every such
vector field we associate the foliowing two objects:

1, The one-parameter group of diffeomorphisms or flow A": M — M for which
A is the velocity vector field (Figure 168):5!

I —
i A'x = A(X).

i=0

2. The first-order differential operator L, . We refer here to the differentiation
of functions in the direction of the field A: for any function ¢: M — R
the derivative in the direction of A is a new function L, ¢, whose value
at a point X is

@(A'x).

=0

d
(Laptx) =

¢ Or Lie bracket [Trans. note].

61 By theorems of existence, unigueness, and differentiability in the theory of ordinary dif-
ferential equations, the group A is defined if the manifold M is compact. In the general case
the maps A' are defined only in a neighborhood of x and only for small 1 this is enough for the
following comstructions.
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39: The Lie algebra of vector fields

Figure 168 The group of diffeomorphisms given by a vector field

PROBLEM, Show that the operator L, 18 linear:
Laldypy + A0, =4 L, + 4, L0 (4.4, e R).
Also, prove Leibniz's lormula Lo 0,) = ¢, Lawp; + 92 Lagy.
ExaMPLE, Let {x,. .- ., x,) be local coordinates on M. In this coordinate system the vector A(x)

is given by its components (4,(x), ..., A,{x)}: the flow A" is given by the system of differential
equarions

£ = AyX) .. R = AX)
and. therefore, the derivative of ¢ = @{x,.....x,}in the direction A is

£ i

We could say that in the coordinates (x,. . ... x,) the operator L, has the form
) I p ¢
= ot —,
" : 'y, " Ax
this is the general form of a first-order linear differential operator on coordinate space.
PROBLEM. Show that the correspondences between vector fields A, flows A', and diflerenniations
L, are oneg-to-one.

C The Poisson bracket of vector fields

Suppose that we are given two vector fields A and B on a manifold M. The
corresponding flows 4' and B® do not, in general, commute: A'B* # B*A’
{Figure 169).

ProsLEM. Find an example.
Sofution. The fieids A = ¢, B = x,¢, on the (x,, x,} plane.

B'x

A'Bx
BA'x
B
A
x
A'x

Figure 169 Non-commutative flows
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To measure the degree of noncommutativity of the two flows 4' and B® we
consider the points A'B*x and B°A’x. In order to estimate the difference
between these points, we compare the value at them of some smooth functien
¢ on the manifold M. The difference

Alt; s, x) = (A'Bx) — (B A'x)

is clearly a differentiable function which is zero for s = 0 and for ¢ = 0.
Therefore, the first term different from O in the Taylor series in s and ¢ of A
at 0 contains st, and the other terms of second order vanish. We will calculate
this principal bilinear term of A at 0.

Lemma 1. The mixed partial derivative 3*A/0s 8t at 0 is equal to the com-
mutator of differentiation in the directions A and B:
2

{@(A'B'x) — @(B°A'x)} = (Lg Ly ¢ — La Lgp)(x).

050t {;—(=0
Proor. By the definition of L,
d _
| o(A'Bx) = (L,p)(B*%).
‘=0

If we denote the function L, p by i, then by the definition of Ly
d

3 h(Bx) = (LeW¥)x.
5

§=0

Thus,
a2

Fren @(A'B’x) = {LgL.9)x. O

s=t=0

We now consider the commutator of differentiation operators LglL, —
L, Lg. At first glance this is a second-order differential operator.

Lemma 2. The operator LyL. — Ly Lg is a first-order linear differential
operator.

PrOOF. Let (A4,,..., 4,) and (B,, ..., B,) be the components of the fields

A and B in the local coordinate system (x;, ..., x,) on M. Then
a L3 n "1 L] 62(0
= Bid; .
L“LA(P ZBI@ Z a ;zl -Oxj(p +|-‘jz=1 Jaxiax}-

If we subtract L,Lpo, the term with the second derivatives of ¢ vanishes,
and we obtain

# 8B\ do
- — A, .
(Lol —Lale) Z:‘l ( ﬁx, 'ﬁx,-) 0x; H

Ej

210



39: The Lie algebra of vector fields

Since every first-order linear differential operator is given by a vector
fietd, our operator Lgl., — L, Ly also corresponds to some vector field C.

Definition. The Poisson bracket or commutator of two vector fields A and
B on a manifold M2 is the vector field C for which
Le= Lgly — LyLg.
The Poisson bracket of two vector fields is denoted by
C=[A,B]
ProeLem. Suppose that the vector fields A and B are given by their components 4;, 8, in coor-

dinates x;. Find the components of the Poissen bracket.
Sofution. In the proof of Lemma 2 we proved the formula

LI | ‘B
A B) =) B —— 4
(A. B], Z. e T AE

ProBlEM, Let A, be the linear vector field of velocities of a rigid body rolating with angular
velocily @, around 0, and A, the same thing with angular velocity w, . Find the Poisson bracket
[Al' l"‘2]

D The Jacobi identity

Theorem, The Poisson bracket makes the vector space of vector fields on a
manifold M inte a Lie algebra.

PrROOF. Linearity and skew-symmetry of the Poisson bracket are clear. We
will prove the Jacobi identity. By definition of Poisson bracket, we have

L[IA‘B].C} = LCL{A.B] - L[J\.B]LC
= LchLa - LCL‘LB + LALIILC _ LBLJ‘\LC‘

There will be 12 terms in all in the sum L“‘.\_B]_C] + L[[B.C],AI + L”Q Al H]-
Each term appears in the sum twice, with opposite signs. Ul
E A condition for the commutativity of flows

Let A and B be vector fields on a manifold M.

Theorem. The two flows A' and B® commute if and only if the Poisson bracket

of the corresponding vector fields [A, B] is equal to zero.

Proor. If A'B* = B*A', then [A, B] = 0 by Lemma 1. If [A, B] = O, then,
by Lemma |,

p(A'Bx) — (B A'X) =o(s* + %), s—0andt—0

%2 In many books the brackel is given (he opposite sign. Our sign agrees with the sign of the
commulator in the theory of Lie groups (cl. subsection F).
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8: Symplectic manifolds

for any function @ at any point x. We will show that this implies ¢(A'B°x) =
¢@{B*A'x) for sufficiently small s and ¢. If we apply this to the local coordinates
(¢ = x1,....¢ = x,), we obtain A'B° = B°A’.

Consider the rectangle 0 <1 < 1y, 0 € 5 < 5, (Figure 170) in the r, s-plane. To every path
going from (0, 3) 1o (2, 5p) and consisting of a finite number of intervals in the coordinate direc-
tions, we associate a product of transformations of the lows A* and B®. Namely, (o gach interval
I, <1 <ty weassociate A", and 1o each interval 5, € 5 < 5, we associale 87 the (rans-
formations are applied in the order in which the intervals occur in the path, beginning a1 (0, 0.
For example, the sides (0 <t < (5,5 = 0)and (t = 14,0 < 5 < 54) corresponds to the product
B4 and the sides (r = 0,0 < 5 < s)and (s = 55,0 <t < ;) to the product 4*B*.

¥
‘
|
! . %a

Sof

-

! f
I ig

Figure 171 Curvilinear quadrilateral fydex

In addition, we associate to each such path it the (¢, s}-plane a path on the mantfold M
starting at the point x and composed of trajectories of the Rows A and B* (Figure 171). I a
path in the (¢, s)-plane corresponds o the product A"B* -+ 4A™B™, then on the manifold M
the corresponding path ends at the point A"B* --- 4™ B*x. Our goal will be to show that ali
these paths actually terminate at the one point 4"8%x = B=4'x,

We parlition the intervals 0 <t < 1, and 0 < 5 < 5, into N equal parts, so that the whole
rectangle is divided into N? small rectangles. The passage from the sides (0, 0} — {ty, 0) — (ty. So)
to the sides (0, 0) — (0, 5,) — {tg. 5¢) can be accomplished in N2 steps, in each of which a pair
of neighbering sides of a small rectangle is exchanged for the other pair (Figure 172} In gencral,
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39 The Lie algebra of vector ficlds

Figure 172 Going from one pair of sides 1o the other,

this small rectangle corresponds to 2 non-ciosed curvilinear quadrilateral fvdcx on the manifold
M (Figure 171} Consider the distance® between its vertices x and # corresponding to the largest
values of ¥ and 1. As we saw earlier, p(z, i) < C,N % (where the constant €, > 0 does not
depend on N3 Using the theorem of the differentiability of solutions of differential equations
with respect to the initial data, it s not difficult to derive from this a bound on the distance
between the ends = and f of the paths x4788 and xdexy’ on M p(a’, §) < C, N3, where the
constant C, > 0 again does not depend on N. But we broke up the whole journey from B*4"x
1o A"87x inte N? such pieces. Thus, p{4“B%®x, B*A"x) < NI(, N~3YN. Therefore,
ABOx = BeA'x, 0

F Appendix. Lie algebras and Lie groups

A Lie group is a group G which is a differentiable manifeld, and for which the
operations {product and inverse) are differentiable maps G x ¢ = ¢ and
G—G.

The tangent space, TG,, to a Lie group G at the identity has a natural
Lie algebra structure; it is defined as follows:

Foreach tangent vector A € TG, there is a one-parameter subgroup 4’ < G
with velocity vector A = (d/dt)|,_ A"

The degree of non-commutativity of two subgroups A" and B' is measured
by the product A'B°4 "B~ It turns out that there is one and only one
subgroup C' for which

PA'BPA'B™, C*) = ofs* + t?) assandi—0.

The corresponding vector C = (d/dr)|,.oC" is called the Lie bracket
C = [A, B] of the vectors A and B. It can be verified that the operation of
Lie bracket introduced in this way makes the space TG, into a Lie algebra
(i.c,, the operation is bilinear, skew-symmetric, and satisfies the Jacobi
identity). This algebra is called the Lie algebra of the Lie group G.

ProsLEM. Compute the bracket operation in the Lie algebra of the group SO(3) of rotations in
three-dimensional euclidean space.

Lemma { shows that the Poisson bracket of vector fields can be defined
as the Lie bracket for the “infinite-dimensional Lie group” of all diffeo-
morphisms®* of the manifold M.

3 In some riemannian metric on M.

% Qur choice of sign in the definition of Poisson bracket was determined by this correspondence.
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8: Symplectic manifoids

On the other hand, the Lie bracket can be defined using the Poisson
bracket of vector fields on a Lie group G. Let g € G. Right transiation R, is
the map R,;: G — G, R,h = hg. The differential of R, at the point e maps
TG, into TG,. In this way, every vector A € TG, corresponds to a vector
field on the group: it consists of the right translations (R,), A and is called a
right~invariant vector field. Clearly, a right-invariant vector field on a group
is uniquely determined by its value at the identity.

ProsLEM. Show that the Poisson bracket of right-invariant vector fields on a
Lie group G is a right-invariant vector field, and its value at the identity of
the group is equal to the Lie bracket of the values of the original vector fields
at the identity.

40 The Lie algebra of hamiltonian functions

The hamiltonian vector fields on a symplectic manifold form a subatgebra of the Lie algebra of
all fields, The hamiltonian functions also form @ Lie algebra: the operation in this algebra is
called the Poisson bracket of functions. The first integrals of 2 hamiltonian phase flow form a
subalgebra of the Lic algebra of hamilionian functions.

A The Poisson bracket of two functions

Let (M*", »?) be a symplectic manifold. To a given function H: M?" - R
on the symplectic manifold there corresponds a one-parameter group
g : M*™ — M?" of canonical transformations of M2"—the phase flow of the
hamiltonian function equal to H. Let F: M2" —» R be another function on M2,

Definition. The Poisson bracket (F, H) of functions F and -H given on a
symplectic manifold (M?", w?) is the derivative of the function F in the
direction of the phase flow with hamiltonian function H:

d
(F,H)(x) = =) Flgh(x)).
t =0
Thus, the Poisson bracket of two functions on M is again a function on M.
Corollary 1. A function F is a first integral of the phase flow with hamiltonian

Sunction H if and only if its Poisson bracket with H is identically zero:
(F, H)=0.

We can give the definition of Poisson bracket in a slightly different form
if we use the isomorphism [ between 1-forms and vector fields on a symplectic
manifold (M2", w?). This isomorphism is defined by the relation (cf. Section
3N

w*(n, Io') = o'().
The velocity vector of the phase flow g} is I dH. This implies
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40: The Lie algebra of hamiltonian functions

Corollary 2. The Poisson bracket of the functions F and H is equal to the
value of the 1-form dF on the velocity vector I dH of the phase flow with
hamiltonian function H:

(F, H) = dF(I dH).

Using the preceding formula again, we obtain

Corollary 3. The Poisson bracket of the functions F and H is equal to the
“skew scalar product™ of the velocity vectors of the phase flows with hamil-
tonian functions H and F:

(F, H) = w*(I dH, 1 dF).

It is now clear that

Corollary 4. The Poisson bracket of the functions F and H is a skew-symmetric
bilinear function of F and H:

(F,H)= —(H, F)
and
(H, i Fy + Ay Fy) = A, (H, Fy) + 2;(H, F3) (4 e R).

Although the arguments above ate obvious, they lead to nontrivial
deductions, including the following generalization of a theorem of E. Noether.

Theorem. If a hamiltonian finction H on a symplectic manifold (M*", w?)
admits the one-parameter group of canonical transformations given by a
hamiltonian F, then F is a first integral of the system with hamiltonian
Sunction H.

Proor, Since H is a first integral of the flow g}, (H, F) = 0 (Corollary 1).
Therefore, (F, H) = 0 {Corollary 4) and F is a first integral (Corollary 1). O

ProsLeM | Compute the Poisson bracket of two lunctions F and H in the canonical coordinate
space B*" = {(p, 9)}, w’(& 0} = (J& ).
Sodwtion. By Corollary 3 we have
" CHAF éH AF
(F-H)=Z - -
o CRUY g,

{we use the fact that [ s symplectic and has the lorm
o -
(3 7Y
E 0

ProBrEM 2. Compute the Poisson brackets of the basic functions p, and g,.
Solution. The gradients ol the basic functions form 2 “symplectic basis™: their skew-scalar
products are

in the basis (p, q)}.

op)=(pg)=(g4)=0 GIFr£N  {g.p)=—{p.q)=1
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8: Symplcctic manifolds

ProBLEM 3. Show that the map 4: R?*" — R2" sending (p, q) — (P(p. q). Q{p. q)) is cancnical if
and only il the Poisson brackets of any two functions in the variables (p, q) and (P, }) coincide:

F.H, . = CHOF GHOF OHOF QHOF "
TR 2paq g dp AP AQ QP =F ke

Solution. Let A be canonical. Then the symplectic structures dp ~ dg and dP ~ dQ coincide.
But the definition of the Poisson bracket (F, H) was given invariantly in terms of the symplectic
structure ; it did not involve the coordinates. Therefore,

(F.Hlp q = {F. H) = (F, H)p q.
Conversely, suppose that the Poisson brackets (P;. ¢;), , have the standard form of Problem 2.
Then, clearly, dP ~ dQ = dp » dq, i.c., the map 4 is canonical,
ProBLEM 4. Show that the Poisson bracket of & product can be calculated by Leibniz's rule:
(FiFy H) = F\(Fy, HY + FolF,, H).

Hint. The Poisson bracket (F F,. H) is the derivative of the product F, F, in the dircction
of the field T dH.
B The Jacobi identity

Theorem. The Poisson bracket of three functions A, B, and C satisfies the
Jacobi identity:

((4,B),C) + {((B, (). 4) + ((C, 4), B) = 0.

Corollary (Poisson’s theorem). The Poisson bracket of two first integrals

F, F; of asystem with hamiltonian function H is again a first integral.
PROOF OF THE COROLLARY. By the Jacobi identity,

(Fy, Fo),H)y = (F,(Fy, H} + (F3, (H,F ) =0+ 0,

as was to be shown. O

In this way, by knowing two first integrals we can find a third, fourth, etc.
by a simple computation. Of course, not all the integrals we get will be
essentially new, since there cannot be more than 2n independent functions

on M?". Sometimes we may get functions of old integrals or constants,
which may be zero. But sometimes we do obtain new integrals.

ProniEM, Calculate the Poisson brackets of the components py, p;. py. M, M. M, of the
linear and angular momentum vectors of a mechanical system.

ANSWER. (M, M,) = M5, (M, p,) =0 (M, pa) = p3. (M, ps} = —p,. This implies

Theorem. If two components, M| and M . of the angular momentum of some mechanical problem
are conserved, then the third component is alsa conserved.

PrOOF OF THE JACOBI IDENTITY. Consider the sum
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40: The Lie algebra of hamiltonian functions

This sum is a “linear combination of second partial derivatives” of the
functions A, B, and C. We will compute the terms in the second derivatives
of A:

((4,B),C) + ((C,A), B) = (LcLs — Ly L),

where L, is differentiation in the direction of § and F is the hamiltonian
field with hamiltonian function F.

But, by Lemma 2, Section 39, the commutator of the differentiations
Lelg — LgLe is a first-order differential operator. This means that none
of the second derivatives of A are contained in our sum. The same thing is
true for the second derivatives of B and C. Therefore, the sum is zero. [J

Corollary 5. Let B and C be hamiltonian fields with hamiltonian functions
B and C. Consider the Poisson bracket [B,C] of the vector fields. This
vector field is hamiitonian, and its hamiltonian function is equal to the
Poisson bracket of the hamiltonian functions (B, C).

ProoF. Set (B, C) = D. The Jacobi identity can be rewritten in the form
(4, D} = (A, B).C) — ({4,C), B),
Lp = Lelg — Lale Lp = Lig ¢,
as was to be shown. O
C The Lie algebras of hamiltonian fields,

hamiltonian functions, and first integrals

A linear subspace of a Lie algebra is called a subaigebra if the commutator
of any two elements of the subspace belongs to it. A subalgebra of a Lie
algebra is itself a Lie algebra. The preceding corollary implies, in particular,

Corollary 6. The hamiltonian vector fields on a symplectic manifold form a
subalgebra of the Lie algebra of all vector fields.

Poisson’s theorem on first integrals can be re-formulated as

Corollary 7. The first integrals of a hamiltonian phase flow form a subalgebra
of the Lie algebra of all functions.

The Lie algebra of hamiltonian functions can be mapped naturally onto
the Lie algebra of hamiltonian vector fields. To do this, to every function H
we associate the hamiltonian vector field H with hamiltonian function H.

Corollary 8. The map of the Lie algebra of functions onto the Lie algebra of
hamiltonian fields is an algebra homomorphism. Its kernel consists of the
locally constant functions. If M*" is connected, the kernel is one-dimensional
and consists of constants.
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Proor. Our map is linear. Corollary 5 says that our map carries the Poisson
bracket of functions into the Poisson bracket of vector fields. The kernel
consists of functions H for which I'dH = 0. Since I is an isomorphism,
dH = O0and H = const, O

Corollary 9. The phase flows with hamiltonian functions H, and H, commute
if and only if the Poisson bracket of the functions H, and H, is (locally)
constant.

ProoF. By the theorem in Section 39, E, it is necessary and sufficient that
[H,, H;] = 0, and by Corollary 8 this condition is equivalent to d(H,, H;)
=qQ. 0

We obtain yet another generalization of E. Noether’s theorem: given a
flow which commutes with the one under consideration, one can construct
a first integral,

D Locally hamilionian vector fields

Let (M?", w?) be a symplectic manifold and g': M?" — M 2" a one-parameter group of diffeo-
morphisms preserving the symplectic structure. Will ' be a hamiltonian flow?

ExaMpLE. Let M2" be a two-dimensional torus T2, a point of which is given by a pair of co-
ordinates (p, ¢)mod 1. Let w? be the usval area element dp ~ dq. Consider the family of trans-
lations g'(p, g} = {p + . q) (Figure 173). The maps ¢* preserve the symplectic structure (i.c.,
arca). Can we find a hamiltonian function corresponding to the vector field (p = 1, § = 0)?
Ifp = —dHiSyand § = dH 8p, we would have #Hjdp = Oand dH/dq = —1ie.H= —g + C.
But g is only a local coordinate on T2: there is no map H: T? — R for which ¢H;dp = 0 and
JH{dq = 1. Thus ¢’ is not a hamiltonian phase flow,

£

g
Figure 173 A locally hamiltonial field on the torus

Definition. A localfy hamilronian vector field on a symplectic manifold (M?", w?) is the vector
field frs®, where 2’ is a closed 1-form on M",

Locally, a closed 1-form is the differential of a function, w! = dH. However, in attempting
10 extend the function H to the whole manifold M2” we may obtain a * many-valued hamiltonian
function.” since a closed [-form on a non-simply-connected manifold may not be a differential
(for example, the form dg on T2). A phase flow given by a locally hamiltenian vector field is called
a locally humiltonian flow.

PROBLEM. Show that a one-parameter group of diffeomorphisms of 4 symplectic manifold pre-
serves the sympleclic structure if and only if it is a locally hamiltonian phase fiow.
Hinr. CI. Section 38A.
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ProsiEm. Show that in the symplectic space B?", every one-parameter group of canonical
diffeomorphisms {preserving dp ~ dq) is a hamiltonian flow.
Hint, Every closed 1-form on [22"js the differential of a function.

ProBLEM. Show that the locally hamiltonian vector fields form a sub-algebra of the Lie algebra
of all vector fields. In addition, the Poisson bracket of two locally hamiltonian fields is actualty
a hamiltonian field, with a hamiltonian function uniquely®? determined by the given ficlds §
and 0 by the formula H = w(&, 0. Thus, the kamiltonian fields form an ideal in the Lie algebra
of locally hamillonian fields.

41 Symplectic geometry

A euclidean structure on a vector space is given by a symmetric bilinear form. and a symplectic
structure by a skew-symmetric one. The geometry of a symplectic space is different from that of
a euclidean space, although there are many similarities.

A Symplectic vector spaces

Let R*" be an even-dimensional vector space.

Definition. A symplectic linear structure on R*" is a nondegenerate®® bi-
linear skew-symmetric 2-form given in R?". This form is called the
skew-scalar product and is denoted by [, ] = —[w, &]. The space R?",
together with the symplectic structure [ , 1, is called a symplectic vector
space.

ExampLe. Let (py, ..., Ps. 4. - .-+ 4,) be coordinate functions on R?", and
@? the form

wzzplAQI+"'+Pn’\qn-

Since this form is nondegenerate and skew-symmetric, it can be taken for a
skew-scalar product: {&,n] = w*&, ). In this way the coordinate space
R2" = {(p,q)} receives a symplectic structure. This structure is called the
standard symplectic structure. In the standard symplectic structure the
skew-scalar product of two vectors & and q is equal to the sum of the oriented
areas of the parallelogram (&, n) on the » coordinate planes (p;, g,).

Two vectors & and n in a symplectic space are called skew-orthogonal
(€ < n) if their skew-scalar product is equal to zero.

PrROBLEM. Show that & < &: every vector is skew-orthogonal to itself.

The set of all vectors skew-orthogonal to a given vector 1 is called the
skew-orthogonal complement to x.

6% Not just up to a conslant,
%6 A 2-form [ , ]on R*"is nondegenerate if ([, q] = 0, ¥} == (£ = 0).
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PROBLEM. Show that the skew-orthogonal complement to nis a 2n — 1-dimensional hyperplane
containing .
Hinr. If all vectors were skew-orthogonal to w, then the form [ . ] would be degenerate.

B The symplectic basis

A euclidean structure under a suitabie choice of basis (it must be ortho-
normal) is given by a scalar product in a particular standard form. In exactly
the same way, a symplectic structure takes the standard form indicated
above in a suitable basis.

Proprem. Find the skew-scalar product of the basis vectorse, ande, (i = | ..., n)intheexample
presented above.
Solution. The relations

(m le,.e;) = [e,. 8] =[e,.e3=0 fe, e]=1

follow from the definition of p, A g, + -+« + p, A Gy,

We now return to the general symplectic space.

Definition. A symplectic basis is a set of 2n vectors, e,, e, (i=1,...,n)
whose scalar products have the form (1).

In other words, every basis vector is skew-orthogonal to all the basis
vectors except one, associated to it; its product with the associated vector
isequal to +1.

Theorem. Every symplectic space has a symplectic basis. Furthermore, we can
take any nonzero vector e for the first basis vector,

ProoF. This theorem ts entirely analogous to the corresponding theorem in
euclidean geometry and is proved in almost the same way.

Since the vector e is not zero, there is a vector f not skew-orthogonal to it
(the form [ , ] is nondegenerate). By choosing the length of this vector, we
can insure that its skew-scalar product with e is equal to . In the case n = 1,
the theorem is proved.

If n > 1, consider the skew-orthogonal complement D (Figure 174) to
the pair of vectors e, . D is the intersection of the skew-orthogonal comple-
ments to e and f. These two 2r — l-dimensional spaces do not coincide,

Figure 174 Skew-orthogonal complement
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since € is not in the skew-orthogonal complement to f. Therefore, their inter-
section has even dimension 2n - 2.

We will show that D is a symplectic subspace of R®", ie., that the skew-
scalar product [ , ] restricted to D is nondegenerate, If a vector E€ D
were skew-orthogonal to the whole subspace D, then since it would also be
skew-orthogonal to e and to f, § wouid be skew-orthogeonal to R?", which
contradicts the nondegeneracy of [ , Jon R*”. Thus D?"~ 2 is symplectic.

Now if we adjoin the vectors e and f to a symplectic basis for D"~ 2 we
get a sympletic basis for R?", and the theorem is proved by induction on #.

]

Covollary. All symplectic spaces of the same dimension are isomorphic.

If we take the vectors of a symplectic basis as coordinate unit vectors,
we obtain a coordinate system p,, g; in which [ , ] takes the standard
form p; A g, + -+ + p, A g, Such a coordinate system is called sym-
plectic.

C The symplectic group

To a euclidean structure we associated the orthogonal group of linear map-
pings which preserved the euclidean structure. In a symplectic space the
symplectic group plays an analogous role.

Definition. A linear transformation S:R*" — R?" of the symplectic space
R2" to itself is called symplectic if it preserves the skew-scalar product:

[S&.Sn) =[&nl  VEneR™

The set of all symplectic transformations of R?” is called the symplectic
group and is denoted by Sp(2n).

It is clear that the composition of two symplectic transformations is
sympiectic. To justify the term symplectic group, we must only show that a
symplectic transformation is nonsingular; it is then clear that the inverse is
also symplectic.

Proacem. Show that the group Sp(2) is isomorphic to the group of real two-by-two matrices
with determinant 1 and is homeomorphic to the intertor of a solid three-dimensional torus.

Theorem. A rransformation S:R* — R of the standard symplectic space
(p, 9} is symplectic if and only if it is linear and canonical, i.e., preserves the
differential 2-form

w? =dp, Adg, +--- +dp, » dg,.

ProoF. Under the natural identification of the tangent space to R?" with
R the 2-form w? goesto [ , 1. O
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Corollary. The determinant of any symplectic transformation is equal to 1.

Proor. We already know (Section 38B) that canonical maps preserve the
exterior powers of the form w?. But its n-th exterior power is (up to a constant
multiple) the volume ¢lement on R?". This means that symplectic trans-
formations S of the standard R*® = {(p, q)} preserve the volume element,
so det § = 1. But since every symplectic linear structure can be written down
in standard form in a symplectic coordinate system, the determinant of a
symplectic transformation of any symplectic space is cqual to 1. O

Theorem. A linear transformation S: R*" — R" is symplectic if and only if it
takes some {and therefore any) symplectic basis into a sympiectic basis.

Proor. The skew-scalar product of any two lincar combinations of basis vec-
tors can be expressed in terms of skew-scalar products of basis vectors. If the
transformation does not change the skew-scalar products of basis vectors,
then it does not change the skew-scalar products of any vectors. Ul

D Planes in symplectic space

In a euclidean space all planes are equivalent: each of them can be carried into
any other one by a motion. We will now look at a symplectic vector space
from this point of view.

ProBLEM. Show that 4 nonzero vector in & symplectic space can be carried into any other non-
Zero vector by a symplectic transformation.

PropLeM. Show that not every two-dimensional plane of the symplectic space R*" can be
obtained from a given 2-plane by a symplectic transformation.
Hint. Consider the planes (py. p;) and (p. g4,).

Definition. A k-dimensional plane (i.e., subspace) of a symplectic space is
called nuli®” if it is skew-orthogonal to itself, i.e., if the skew-scalar product
of any two vectors of the plane is equal to zero.

ExaMprLE. The coordinate plane (p..... P in the sympleclc coordinate system p, q 15 null
{Prove it

ProsLes. Show that any non-null two-dimensional plane can be carried into any other non-
null two-plane by a symplectic transformation.

For calculations in symplectic geometry it may be useful to impose some
euclidean structure on the symplectic space. We fix a symplectic coordinate
system p, q and introduce a euclidean structure using the coordinate scalar
product

(x,X) =) pi +qf, wherex =73 pe, + g.e,.

% Null planes are also called isotropic, and for k = n, lagrangion.

222
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The symplectic basis e,, e, is orthonormal in this euclidean structure. The
skew-scalar preduct, like every bilinear form, can be expressed in terms of
the scalar product by

(2} (&l = (&

where 1: B* — B> is some operator. It follows from the skew-symmetry of
the skew-scalar product that the operator / is skew-symmetric,

ProBLEM. Compute the matrix of the operator / in the symplectic basis e, . e, .

ANSWER.

where £ is the n o nidentity matrix,

Thus, for n = 1 (in the p, g-plane), I is simply rotation by 90°, and in the
general case [ is rotation by 90° in each of the n planes p,, ¢;.

PROBLEM. Show that the operator [ is symplectic and that {* = —E, .

Although the euclidean structures and the operator f are not invariantly
associated to a symplectic space, they are often convenient.
The following theorem follows directly from (2).

Theorem. A piane = of a symplectic space is nult if and only if the plane In is
orthogonal to n.

Notice that the dimensions of the planes # and Ix are the same, since [ is
nonsingular. Hence

Corollary. The dimension of a null plane in R*" is less than or equal to n.

This follows since the two k-dimensional planes # and Im cannot be
orthogonal H &k > n.

We consider more carefully the n-dimensional null planes in the symplectic
coordinate space R?". An example of such a plane is the coordinate p-plane.
There are in all (3") n-dimensional coordinate planes in R2" = {(p, q}}.

ProBLEM. Show that there are 2° null plancs among the {I') n-dimensional coordinate planes:
to each of the 2* partitions of the set (1. ... A1 IO Lwo parts (6, ..., [T P Jn_p ) We ass0-
ciate the null coordinate plane p, . ..., Pl s 4o

In order to study the generating functions of canonical transformations
we need
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Figure 175 Construction of a coordinate plane o transversal to a given plane w.

Theorem. Every n-dimensional null plane n in the symplectic coordinate space
R2" is transverse®® to at least one of the 2" covrdinate null planes.

Prook, Let P be the null plane py, ..., p, (Figure 175). Consider the inter-
section T = 1 n P. Suppose that the dimension of 71sequalto k,0 < k < n.
Like every k-dimensional subspace of the n-dimensional space, the plane 7 is
transverse to at least one {(n — k)-dimensional coordinate plane in P, let us
say the plane

n="_0pi,. ..., ) t+n=P1tnn=40
We now consider the null n-dimensional coordinate plane
G = (Diys s Piy o Gir - i) n=agnPp,
and show that our plane & is transverse 10 o
nro =0
We have

- s
tenr=n=t R}::-(‘[-I—?‘,')‘(Rﬁa’)::-P‘(ﬂﬁﬂ')‘
nco,g<o=np<g

But P1s an n-dimensional null plane. Therefore, every vector skew-orthogonal
to P belongs to P (cf. the corollary above). Thus (7 n o) = P. Finalily,

rnao=@ENAP)A(anPy=1nn =1,

4s was to be shown, |

ProeLEM. Let , and n, be (wo k-dimensionat planes in symplectic 22" [s it always possible to
carty 1, to @, by a symplectic transformation? How many classes of planes are there which
cannol be carricd one into another?

ANSwER. (k2] ~ Lifk = mi [(Cn — KY2] + Lilk 2 0

E Symplectic structure and complex structure

Since I* = —E we can introduce into our space R*" not only a symplectic
structure [ , ] and euclidean structure { , ), but also a complex structure,

by defining multiplication by i = \;’:T to be the action of [. The space R*"

8 Two subspaces L, and L, of a vector space L are transverse il L, + I, = L. Two n-dimen-
sional planes in B*" are transverse if and only if they intersect only in 0.
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42: Parametric resonance int systems with many degrees of freedom

is identified in this way with a complex space C" (the coordinate space with
coordinates z, = p, + ig,). The linear transformations of B?" which preserve
the euclidean structure form the orthogonal group O{2n); those preserving
the complex structure form the complex linear group GL(», C).

PropLEM. Show that transiormations which are both orthogonal and symplectic are complex,
that those which are both complex and erthogonal are symplectic, and that those which are
bath symplectic and complex are orthogonal: thus that the intersection of two of the three
groups is equal te the intersection of sll three:

O(2n) - Spi2n) = Spi2n) N GL{n. €) = GL(n, C} ~ O(Zn).

This intersection is called the unitary group Ufn).

Unitary transformations preserve the hermmtian scalar product (€, n) +
i[€,n]; the scalar and skew-scalar products on R?" are its real and imaginary
parts.

42 Parametric resonance in systems with many degrees
of freedom

During our investigation of oscillating systems with periodically varying parameters (cf. Scetion
25). we caplained that parametric resonance depends on the behavior of the cigenvaines of a
certain lincar transformation (" the mapping at a penod ™). The dependence consists of the fact
that an equlibrium position of a system with periodically varying parameters s stable if (he
eigenvalues of the mupping at 4 period have modutus less than 1. and unstable il at least one of
the cigenvalues his modulus greater than 1.

The mapping at & peried obtained rom a system of Hamilton's equations with periodic
coefficients is symplectic. The investigation in Section 25 of parametric resonance in a sysiem
with one degree of lreedom relied on our unalysis of the behavior of the eigenvalues of symplectic
transformations of the plane. In this paragraph we will analyze. in an analogous way, the behavior
of the cigenvalues ol symplectic translormations in a phase space of any dimension. The results
of this analysis (due to M. G Krein) can be appited to the study of conditions for the appearance
of parametric resonance in mechanical systems with many degrees of freedom.

A Symplectic matrices

Consider a linear transformation of a symplectic space, S: R*" — R?". Let
Pls vy Pl §1s - ... 4q DE @ symplectic coordinate system. In this coordinate
system, the transformation i1s given by a matrix §S.

Theorem. A transformation is symplectic if and only if its matrix § in the sym-
plectic coordinate system (p, q) satisfies the relation

S5 =1,

=(; 7o)

where

and §' is the transpose of S.
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Proor. The condition for being symplectic ([SE, Sn] = [&, n] for all € and i)
can be written in terms of the scalar product by using the operator I, as
follows:

(ISE, Sm) = (&), V&
or

(S'ISE, ) = (J€,m), V&,
as was to be shown. U

B Symmetry of the spectrum of a symplectic
transformation
Theorem. The characteristic polyromial of a symplectic transformation
p(4) = det(§ — LAE)
is reflexive, i.e., p(1) = A*"p(1/A).

ProOF. We will use the facts that det S =det f = 1, I = —E,and det A" =
det A. By the theorem above, § = — IS~ !. Therefore,

p1) = det(S — AE) = det(—IS"~'I — AE) = det(—S'~! + AE)
= det(— E + AS)

1 1
= A2" det (s -3 E) = Az"p(I). 0O

Corollary. If 4 is an eigenvalue of a symplectic transformation, then 1/4 is also
an eigenvalue.

On the other hand, the characteristic polynomial is real; therefore, if 4
is a complex eigenvalue, then 1 is an eigenvalue different from 4. It follows
that the roots A of the characteristic polynomial lie symmetrically with
respect to the real axis and to the unit circle (Figure 176). They come in
4-tuples,

|| —

I

» yiy (Ij‘|:f£11[m1'—1’é0)1

b

and pairs lying on the real axis,

¥

| —

!
i

®9 & reflexive polynomial is a polynomial apx™ + a,x™ "' + -~ + g, which has symmetric
coefficients ay = @p. @) = - 10+ -
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42: Parametric resonance in systems with many degrees of freedom

Figure 176 Distribution of the eigenvalues of a symplectic transformation

or on the unit circle,

It is not hard to verify that the multiplicities of all four points of a 4-tuple {or
both points of a pair) are the same.

C Stability

Definition. A transformation § is called stable if
Ye>0,36>0:|x| <d=|5%|<g VYN0

ProprEm. Show that if at least one of the sigenvalues of 2 symplectic transformation § does not
lie on the unit circle, then § is unstable.

Hint. In view of the demenstrated symmetry, if one of the eigenvalues does not lie on the
unit circle, then there exists an eigenvalue outside the unit circle | 4] = 1; in the corresponding
invariant subspace, § is an “expansion with a rotation.”

PrROBLEM. Show that if all the eigenvalues of a linear transformation are distinet and lie on the
unit circle, then the transformation is stable,
Hine. Change to a basis of eigenvectors.

Definition. A symplectic transformation § is called strongly stable if every
symplectic transformation sufficiently close™ to S is stable.

In Section 25 we established that S: R? — R? is strongly stable if A, , =
e*™and 4, # 1,.

Theorem. If ail 2n eigenvalues of a symplectic transformation § are distinct
and lie on the unit circle, then S is strongly stable.

PrOOF. We enclose the 2n eigenvalues 1in 2n non-intersecting neighborhoods,
symmetric with respect to the unit circle and the real axis (Figure 177). The
2r roots of the characteristic polynomial depend continuously on the ¢le-
ments of the matrix of S. Therefore, if the matrix §, is sufficiently close to S,

0 8, is “sufficiently close™ Lo S if the elements of the matrix of §, in a fixed basis differ from the
elements of the matrix of § in the same basis by less than a sufficiently small number &.
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Figure 177 Behavior of simple cigenvalues under a small change of the symplectic
transformation

exactly one eigenvalue 1, of the matrix of §, will li¢ in each of the 2n neigh-
borhoods of the 2n points of A. But if one of the points 4, did not lie on the
unit circle, for example, if it lay outside the unit circle, then by the theorem in
subsection B, there would be another point 1,,]4,| < 11n the same neighbor-
hood, and the total number of roots would be greater than 2a, which is not

possible.
Thus all the roots of S, lic on the unit circle and are distinct, so §; is
stable. O

We might say that an eigenvalue 4 of a symplectic iransformation can
leave the unit circle only by colliding with another eigenvalue (Figure 178},
at the same time, the complex-conjugate eigenvaiues will collide, and from
the two pairs of roots on the unit circle we obtain one 4-tuple (or pair of

real A).
Figure 178 Behavior of multiple cigenvalues under a small change of the symplectic
transformation

It follows from the results of Section 25 that the condition for parametric
resonance to arise in a linear canonical system with a periodicaily changing
hamilton function is preciscly that the corresponding symplectic transforma-
tion of phase space should cease to be stable. It is clear from the theorem
above that this can happen only after a collision of eigenvalues on the unit
circle. In fact, as M. G. Krein noticed, not every such collision is dangerous.

It turns out that the eigenvalues A with [4] = 1 are divided into two classes:
positive and negative. When two roots with the same sign collide, the roots
“go through one another,” and cannot leave the unit circle. On the other
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hand, when two roots with diflerent signs collide, they generally leave the
unit circle.

M.G. Krein's theory goes beyond the limits of this book ; we will formulate
the basic results here in the form of problems.

ProrLem. Let A and 4 be simple {multiplicity 13 eigenvalues of a symplectic transformation §
with || = 1. Show that the two-dimensiona!l invariant plane n; corresponding to 4, 4, is non-
null.

Hint. Let &, and £, be complex eigenvectors of S with eigenvalues »; and A, Thenif 2, 4, # 1,
the vectors &, and &, are skew-orthogonal: [§,,5,] =0

Let £ be a real vector of the plane n,. where Im A = 0 and | 4| = 1. The cigenvalue 4 is called
positive if [SE, £} = O,

ProBeLEM. Show that this definition is correct, i.e., it does not depend on the choicc of § # 0 in
the plane =, .
Hint. Il the plane =, contained two non-collinear skew-orthogonal vectors, it would be null.

In the same way, an eigenvalue A of multiplicity k with [4] = 1 is of definitc sign if the quad-
ratic form [SE, £] is {positive or negative) definite on the invariant 2k-dimensional subspace
corresponding to 4, 7,

PROBLEM. Show that S is strongly stable if and only if all the cigenvalues 4 lie on the ynit circle
and are of definite sign,
Hint. The quadratic form [SE, £] is invariant with respect to §.

43 A symplectic atlas

In this paragraph we prove Darboux's theorem, according to which every symplectic manifold
has local coordinates p, g in which the symplectic structure can be written in the simplest way:
w* = dp ~ dq.

A Symplectic coordinates

Recall that the definition of manifold includes a compatibility condition for
the charts of an atlas. This is a condition on the maps ¢; '¢; going from one
chart to another. The maps ¢, '@, are maps of a region of coordinate space.

Definition. An atlas of a manifold M?" is called symplectic if the standard
symplectic structure w”® = dp ~ dq is introduced into the coordinate
space B?" = {(p, )}, and the transfer from one chart to another is realized
by a canonical (i.c., w’-preserving) transformation™ ¢; '¢,.

PrOBLEM. Show that a sympiectic atlas defings a symplectic structure on M2".

The converse is also true: every symplectic manifold has a symplectic
atlas. This follows from the following theorem.

"' Complex-analytic manifolds, for example, are defined analogously; there must be a complex-
analytic structure on coordinate space, and the transfer from one chart to another must be
complex analytic.
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B Darboux’s theorem

Theorem. Let w® be a closed nondegenerate differential 2-form in a neighbor-
hood of a point X in the space R?". Then in some neighborhood of x one can
choose a coordinate system (P, ..., Ppi ¢y, - - -, §a) Such that the form has the
standard form:

w? = Y dp;, » dg;.

i=1

This theorem allows us to extend to all symplectic manifolds any assertion
of a local character which is invariant with respect to canonical transforma-
tions and is proven for the standard phase space (R?", w? = dp A dy).

C Construction of the coordinates p, and g,

For the first coordinate p, we take a non-constant linear function (we could
have taken any differentiable function whose differential is not zero at the
point x). For simpiicity we will assume that p,(x) = 0.

Let P, = I dp, denote the hamiltonian field corresponding to the function
p, (Figure 179). Note that P, (x} # 0; therefore, we can draw a hyperplane
N#"=1 through the point x which does not contain the vector P,(x) (we
could have taken any surface transverse to P,(x) as N2" " 1),

Figure 179  Construction of symplectic coordinates

Consider the hamiltonian flow P with hamiltonian function p,. We
consider the time ¢ necessary to go from N to the point 2 = Pi(Y) (ve N}
under the action of P} as a function of the point z. By the usual theorems in
the theory of ordinary differential equations, this function is defined and
differentiable in a neighborhood of the point x € R?". Denote it by g,. Note
that 4, = D on N and that the derivative of ¢, in the direction of the field P,
is equal to 1. Thus the Poisson bracket of the functions ¢, and p, we con-
structed is equal to 1:

(g.p1) =L
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D Construction of symplectic coordinates by
induction on n

If n = 1, the construction is finished. Let n > 1. We will assume that Dar-
boux’s theorem is already proved for R*"~ 2. Consider the set M given by the
equations p, = g, = 0. The differentials dp, and d¢, are linearly independent
at x since w*(f dp,, Idg,) = (g,,p,) = 1. Thus, by the implicit function
theorem, the set M is a manifold of dimension 2n — 2 in a neighborhood of
x; we will denote it by M?" 2.

Lemma. The symplectic structure o® on R*" induces a symplectic structure on
some neighborhood of the point x on M?" ™2,

Proor. For the proof we need only the nondegeneracy of w® on TM,.
Consider the symplectic vector space TRZ". The vectors P,(x} and Q,(x)
of the hamiltonian vector fields with hamiltonian functions p, and ¢, belong
to TR2". Let £e TM,. The derivatives of p, and ¢, in the direction § are
equal to zero. This means that dp, (&) = ©*(&, P,) = 0 and dq,(E} = 0*(&, Q,)
= 0. Thus TM, is the skew-orthogonal complement to P,(x), Q,(x}). By
Section 41B, the form w? on TM, is nondegenerate. O

By the induction hypothesis there are symplectic coordinates in a neigh-
borhood of the point x on the sympiectic manifold (M2"" 2. w?|,,). Denote
themby p,. g, (i = 2,....n). Weextend the functions p,, .. ., g, to a neighbor-
hood of x in R*" in the following way. Every point z in a neighborhood of
x in R* can be uniquely represented in the form z = P{Q5w, where
we M?* 2 and s and 1 are small numbers. We set the values of the coor-
dinates p,., ..., 4, at z equal to their values at the point w (Figure 179). The
2n functions py, ..., p,, 4y, - - -, 4, thus constructed form a local coordinate
system in a neighborhood of x in R2".

E Proof that the coordinates constructed are
symplectic

Denote by Piand Q) (i = 1, ..., n) the hamiltonian flows with hamiltonian
functions p; and ¢;, and by P, and @, the corresponding vector fields. We will
compute the Poisson brackets of the functions p, ..., ¢,. We already saw in
C that(g,. p,) = 1. Therefore, the flows P!, and @' commute: PLQ5 = Q5 P.

Recalling the definitions of p,, . . ., g, we see that each of these functions is
invariant with respect to the flows P and Q. Thus the Poisson brackets of
py and g with all 2n — 2 functions p;, g; (i > 1) are equal to zero.

The map P Q] therefore commutes with all 2n — 2 flows P}, Qf (i > ).
Consequently, it leaves each of the 2n — 2 vector ficlds P, Q, (i > 1) fixed.
P, Q7 preserves the symplectic structure w? since the flows P and Q3 are
hamiltonian; therefore, the values of the form w? on the vectors of any two
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of the 2n — 2 fields P;, Q; (i > 1)are the same at the points z = P4 Q5 we R*"
and we M?"~ 2, But these values are equal to the values of the Poisson brack-
eis of the corresponding hamiltonian functions. Thus, the values of the
Poisson bracket of any two of the 2n — 2 coordinates p,, ¢, {i > 1} at the
points z and w are the same if z = P{Q%w.

The functions p, and g, are first integrals of each of the 2n — 2 Rows
Pt QG {i > 1) Thereiore, each of the 2n — 2 fields P,, Q, is tangent to the
level manifold p, = q, = 0. But this manifold is M*"~ % Therefore, each of
the 2n — 2 fields P;, Q, (i > 1) is tangent to M?*"~ % Consequently, these
fields are hamiltonian fields on the sympiectic manifold (M?" "2, @*|,), and
the corresponding hamiltonian functions are p,ly., g,{y (i > 1). Thus, in the
whole space (R*", w?), the Poisson bracket of any two of the 2n — 2 co-
ordinates p,, g; (i > 1) considered on M?"" % 15 the same as the Poisson
bracket of these coordinates in the symplectic space (M*"™ %, w? ).

But, by our induction hypothesis, the coordinates on M2 (p, |u, Gilaes
i > 1) are symplectic. Therefore, in the whole space R*", the Poisson brackets
of the constructed coordinates have the standard values

(PP} =(Pna)=10q,9;)=0 and {g,p)=1

The Poisson brackets of the coordinates p, @ on R*" have the same form if
? = Y dp; A dg;. But a bilinear form w?® is determined by its values on
pairs of basis vectors. Therefore, the Poisson brackets of the coordinate
functions determine the shape of w? uniquely. Thus

w2=dpl Ad(}l +"'+dp,‘f\dq,”

and Darboux’s theorem is proved. Il
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The coordinate point of view will predominate in this chapter. The technigue
of generating functions for canonical transformations, developed by
Hamilton and Jacobi, is the most powerful method available for integrating
the differential equations of dynamics. In addition to this technique, the
chapter contains an “odd-dimensional™ approach to hamilionian phase
flows.

This chapter is independent of the previous one. It contains new proofs
of several of the results in Chapter 8, as well as an explanation of the origin
of the theory of symplectic manifolds.

44 The integral invariant of Poincaré-Cartan

In this section we look at the geometry of 1-forms in an odd-dimensional space.

A A hydrodynamical lemma

Let v be a vector field in three-dimensional oriented euclidean space R3,
and r = curl v its curl. The integral curves of r are called vortex lines. If 3,
is any closed curve in R® (Figure 180), the vortex lines passing through the
points of », form a tube called a vortex tube.

Let y, be another curve encircling the same vortex tube, so that v, — v, =
do, where o is a 2-cycle representing a part of the vortex tube. Then:

Stokes’ lemma. The field v has equal circulation along the curves v, and y,:

Eﬁ vdl = 3[; vdl
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9. Canonical formalism

Figure 180 Vortex tube

PrOOF. By Stokes’ formula, |, vdl — [, vdl = [[,curl v dn = 0, since curl v
is tangent to the vortex tube. O

B The multi-dimensional Stokes’ lemma
It turns out that Stokes’ lemma generalizes to the case of any odd-dimensional
manifold M?"* ! (in place of R*). To formulate this generalization we replace
our vector field by a diflerential form.

The circulation of a vector field v is the integral of the l-form '
(w'(8) = (v, )). To the curl of v there corresponds the 2-form w? = dw!
(dw(E, ) = (r, &, q)). Tt is clear from these formulas that there is a direction

4

\

7

Figure I8! Axis invariantly connected with a 2-form in an odd-dimensiconal space

at every point (namely, the direction of r, Figure 181), having the property
that the circulation of v along the boundary of every “infinitesimal square”
containing r is equal to zero:

do'ib) =0, ¥n

In fact, dw*(r, ) = (r,r, ) = 0.

Remark. Passing from the 2-form w? = dw' to the vector field r = curl v
is not an invariant operation: it depends on the euclidean structure of R*.
Only the direction’? of r is invariantly associated with w? (and, therefore,
with the 1-form w'). It is easy to verify that, if r # 0, then the direction of r
is uniquely determined by the condition that w*(r, y) = 0 for alln.

"2 Le.., the unoriented line in TR with direction vector r.
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The algebraic basis for the multi-dimensional Stokes' lemma is the
existence of an axis for every rotation of an odd-dimensional space.

Lemma. Let »»? be an exterior algebraic 2-form on the odd-dimensional vector
space R*"* 1 Then there is a vector & # O such that

wXE ) =0, VYneRI"I
ProoF. A skew-symmetric form w? is given by a skew-symmetric matrix A4

(€, ) = (A&, n)
of odd order 2n + 1. The determinant of such a matrix is equal to zero, since
A=-4 det 4 =det 4' = det(—A) = (—=1)*"" 1 det A = —det A.

Thus the determinant of A4 is zero. This means A has an eigenvector & # 0
with eigenvalue 0, as was to be shown. O

A vector & for which w*(§, n) = 0, ¥nyis called a null vector for the form w?.
The null vectors of w? clearly form a linear subspace. The form ? is called
nonsingular if the dimension of this space is the minimal possible (ie., 1
for an odd-dimensional space R*"*! or 0 for an even-dimensional space).

ProbLeM. Consider the 2-form w? =dp, » dg, + -~ + dp, ~ dg, on an even-dimensional
space R*" with coordinates p/\ . ... Py gq. .. .. 4. Show that »® is nonsingular.

ProBLEM. On an odd-dimensional space 2*"* ! with coordinates p,. .. .. Pl ens G, 1. con-
sider the 2-form ew? =¥ dp, & dg, — 2" A di, where w! isany [-form on R ' Show that w? is
nonsingular.

If w? is a nonsingular form on an odd-dimensional space R®"*!, then
the null vectors & of w? all lie on a line. This line is invariantly associated to
the form e?.

Now let M?***! be an odd-dimensional differentiable manifold and w!
a 1-form on M. By the lemma above, at every point x € M there is a direction
(ie., a straight line {c&} in the tangent space TM,)} having the property
that the integral of w' along the boundary of an “infinitesimal square
confaining this direction” is equal to zero:

do'(E,n) =0, VvVneTM,.

Suppose further that the 2-form do' is nonsingular. Then the direction &
is uniquely determined. We call it the “vortex direction ™ of the form '.
The integral curves of the field of vortex directions are called the vortex
lines {or characteristic lines) of the form w!,
Let y, be a closed curve on M. The vortex lines going out from points
of y, form a “vortex tube.” We have
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The multi-dimensional Stokes’ lemma. The integrals of a }-form @' along any
two curtes encircling the same vortex tube are the same: {,, ' = |, 0",
if v, — v, = 0o, where 6 is a piece of the vortex tube.

ProOF. By Stokes’ formula

Elg w‘—§w’=J~w1=J.dw“
1 ¥ 2a a

But the value of dis' on any pair of vectors tangent to the vortex tube 1s equal
to zero. (These two vectors lie in a 2-plane containing the vortex direction,
and de' vanishes on this plane.) Thus, |, dw' = 0. )

C Hamilton’s equations

All the basic propositions of hamiltonian mechanics follow directly from
Stokes’ lemma.

For M*"*! we will take the “extended phase space R*"*'” with co-
ordinates py, ..., P.i Gy - --» 4 t. Suppose we are given a function H =
H(p, q. t). Then we can construct’? the [-form

w' =pdq— Hdt  (pdq=p,dg, + -+ p.dq,)
We apply Stokes’ lemma to w! (Figure 182).

q
A

{)
(—Hg, Hy, 1)

f

Figure 182 Hamiltonian field and vortex lines of the form pdq — H dt.

Theorem. The vortex lines of the form @' = pdq — Hdt on the 2n + 1-
dimensional extended phase space B, q, t have a one-to-one projection onto
the t axis, i.e., they are given by functions p = Mit), q = q(t). These functions
satisfy the system of canonical differential equations with hamiltonian
Junction H:

) dp _ OH dq _éH
d  dq’ dt  dp’

In other words, the vortex lines of the form p dq — H dt are the trajectories

of the phase flow in the extended phase space, 1.e., the integral curves of the

canonical equations (1).

*3 The form o' seems here te appear out of thin air. In the following paragraph we will see how
the idea of using this form arose from optics.
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44: The integral invariant of Poincaré-Cartan

Proor. The differential of the form p dq — H dr is equal to

2 oH dH
dwl = (d i M d F _d P dt - _'_d P d[).
|'=Zl P 1 Ip; P a4, 4
It is clear from this expression that the matrix of the 2-form de'! in the
coordinates p, q, t has the form

0 —E H,
A= E 0 H |,
-H, —H, 0
where
1
éH éH
E= JHy= — Hy= —
1 cp cq
-

(verify this!).

The rank of this matrix is 2n (the upper left 2n-corner is non-degenerate};
therefore, dw' is nonsingular. It can be verified directly that the vector
(—H,, H,, 1) is an eigenvector of A with eigenvalue 0 (do it!). This means
that it gives the direction of the vortex lines of the form pdq — H dt. But the
vector (—H,, H,, 1) is also the velocity vector of the phase flow of (1). Thus
the integral curves of (1) are the vortex lines of the form p dq — H dt, as was
to be shown. O

D A theorem on the integral invariant of
Poincare—Cartan

We now apply Stokes’ lemma. We obtain the fundamental

Theorem. Suppose that the two curves y, and y, encircle the same tube of
phase trajectories of (1). Then the integrals of the form pdq — H dt along
them are the same:

Sg pdq — Hdt = i{; pdq — H dt.
h 12

The form p dq — H dt is called the integral invariant of Poincaré-Cartan.”®

Proor, The phase trajectories are the vortex lines of the form p dq — H dt,
and the integrals along closed curves contained in the same vortex tube are
the same by Stokes’ lemma. ]

"* In the calculus of variations ‘I‘ p g — H dris calted Hilhert's invariant integral.

[~
td
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9: Canonical formalism

i [

Ly i

Figure 183  Poincaré’s integral invariant

We will consider, in particular, curves consisting of simultaneous states,
ie, lying in the planes ¢t = const (Figure 183). Along such curves, dt = 0
and § pdq — Hdt = § pdq. From the preceding theorem we obtain the
important:

Corollary 1. The phase flow preserves the integral of the form pdq =
pdg, + - + p, dq, on clased curves.

ProoF. Let gi!: R*" — R*" be the transformation of the phase space (p, q)
realized by the phase flow from time ¢, to ¢, (i€, ¢;.(Po. q0) is the solution
to the canonical equations (1) with initial conditions p{ty) = pg, () = 45)-
Let y be any closed curve in the space R*™ < R¥"*! (¢ = t,). Then gj}y
is a closed curve in the space R?* { = 1,), contained in the same tube of
phase trajectories in R?"*!. Since df = 0 on 7 and on ¢!y we find by the
preceding theorem that §. p dq = f‘i:,_r p dq. as was to be shown. O

The form p dq is called Poincaré’s relative integral invarignt. It has a
simple geometric meaning. Let o be a two-dimensional criented chain and
v = da. Then, by Stokes’ formula, we find

fi; pdqz."J. dp ~ dq.
K -

Thus we have proved the important:

Corollary 2. The phase flow preserves the sum of the oriented areas of the
projections of a surface onto the n coordinate planes (p;, 4,):

fjdpAdq:J dp A dq.
z g::]a

In other words, the 2-form w* = dp A dq is an absolute integral invariant
of the phase flow.

ExaMmpPLE. For n = 1, @? is area, and we obtain Liouville’s theorem: the
phase flow preserves area.
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44: The integral invariant of Poincaré-Cartan

E Canonical transformations
Let g be a differentiable mapping of the phase space R*" = {(p, q)} to R2".

Definition. The mapping g is called canonical, or a canonical transformation,
if g preserves the 2-form w? = Y dp; » dg;.

It is clear from the argument above that this definition can be written
in any of three equivalent forms:

L. g*w? = w? (g preserves the 2-form ¥ dp; A dq));

2. [, @* = [|,, w?, Yo (g preserves the sum of the areas of the projections
of any surface);

3. §,pdq =}, pdq(the form p dq is a relative integral invariant of g).

ProsLEM. Show that definitions (1) and (2) are equivalent to (3) il the domain of the map in
question is a simply connected region in the phase space F°"; in the gencral case 3= 2= 1.

The corollaries above can now be formulated as:

Theorem. The transformation of phase space induced by the phase flow is
canonical.”®

Let g: R*" —» R2" be a canonical transformation: g preserves the form w?.
Then g also preserves the exterior square of w?:

2 Aw? and gMo?) = (0

g*w? A 0?) =
The exterior powers of the form Y dp, A dg, are proportional to the forms

w* =Y dp; A dp; A dg; A dg;,
i=j
wh = ) dp A Adp, Adgy Ao A dg,

LA

Thus we have proved

Theorem. Canonical transformations preserve the integral invariants

w, ..o

Geometrically, the integral of the form w?** is the sum of the oriented
volumes of the projections onto the coordinate planes (p; ,. .., pi. . ¢i,. - - - 4u)-
In particular, w?" is proportional to the volume element, and we obtain:

Corollary. Canonical transformations preserve the volume element in phase
space:
the volume of gD is equal to the volume of D, Jor any region D.

73 The proof of this theerem which is presented in the excellent book by Landau and Lifshitz
{Mechanics, Pergamon., Oxford, 1960} is incorrect.
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9: Canonical formalism

In particular, applying this to the phase flow we obtain

Corollary. The phase flow (1) has as integral invariants the forms

w2, w*, ..., o™

The last of these invariants is the phase volume, so we have again proved
Liouville’s theorem.

45 Applications of the integral invariant of

Poincaré-Cartan
In this paragraph we prove that canonical transformations preserve the form of Hamilion's
cquations, that a first imegral of Hamilton's equations allows us to reduce immediately the order

of the system by two and that motion in a natural lagrangian system proceeds along geodesics
of the configuration space provided with a certain ricmannian metric.

A Changes of variables in the canonical equations

The invariant nature of the connection between the form p dq — H df and
its curl lines gives rise 10 a way of writing the equations of motion in any
system of 2n + 1 coordinates in extended phase space {(p, q, ©)}.

P.q.t Xivw e - X2n4t

EVANE

Figure 184 Change of vanables in Hamilton’s equations

Let (x,,..., x;,4+,) be coordinate functions in some chart of extended
phase space (considered as a manifold M?"*!, Figure 184). The coordinates
(p. 9, t) can be considered as giving another chart on M. The form ! =
pdg — H dt can be considered as a differential 1-form on M. Invariantly
associated (not depending on the chart) to this form is a family of lines on M —
the vortex lines. In the chart {p, g, t), these lines are represented as the tra-
jectories of the phase flow

1 dp _ _0H dq_0H
0 dt g dt  dp

with hamiltonian function H(p, q, 1).
Suppose that in the coordinates (x,, ..., x3,4 () the form w! is written as

pdq—Hd!=X1dx1 +"‘+X2"+1dx2"+1‘
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45: Applications of the integral invariant of Poincaré-Cartan

Theorem. In the chart (x,), the trajectories of (1) are represented by the vortex
lines of the form Y. X, dx;.

Proot. The curl lines of the forms 3 X, dx; and p dq — H dt are the images
in two different charts of the vortex lines of the same form on M. But the
integral curves of (1) are the vortex lines of p dq — H dtr. Thus, their images
in the chart (x;) are the vortex lines of the form } X, dx;,. O

Corollary. Let (P,.....P,:Q.,..., Q. T) be a coordinate system on the
extended phase space (p,q,t) and K(P,QT) and S(P,Q, T) functions
such that '

pdg—~ Hdt =PdQ — KdT +dS

(the left- and right-hand sides are forms on extended phase space).
Then the trajectories of the phase flow (1) are represented in the chart
(P, Q, T) by the integral curves of the canonical equations

5 dP 0K dQ dK
) dT =~ 6Q 4T 0P’

ProoF. By the theorem above, the trajectories of (1) are represented by the
vortex lines of the form PdQ — K dT + dS. But dS has no influence on
the vortex lines (since ddS = 0). Therefore, the images of the trajectories of (1)
are the vortex iines of the form P dQ — K dT. According to Section 44C,
the vortex lines of such a form are integral curves of the canonical equations

). O

In particular, let g: R*" — R?" be a canonical transformation of phase
space taking a point with coordinates (p, q) to a point with coordinates
(P, Q). The functions P(p, q) and Q(p, ¢) can be considered as new co-
ordinates on phase space.

Theorem. fn the new coordinates (P, Q) the canonical equations (1) have
the canonical form™®

P K dQ K

® &" T o

with the same hamiltonian function: K(P, Q, t) = H(p, q, t).

7 In some textbooks the property of preserving the canonical form of Hamilton's equations is
laken as the definition of a canonical transformation, This definition is not equivalent to the
generatly accepted one mentioned above. For example. the transformation P = 2p, Q = g,
which is not canonical by our definition, preserves the hamiltonian form of the equations of
motion. This confusion appears even in the excellent textbook by Landau and Lifshitz (Mechanics,
Ouxford, Pergamon, 1960}, in Section 45 of this book they show that every transformation which
preserves the canomical equations is canonical in our sense,
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9: Canonical formalism

2.4

Pa. qo

e p

Figure 185 Closedness of the form p dq — P dQ

Proor. Consider the 1-form pdq — P 4Q on R?". For any closed curve 7
we have (Figure 185)

fﬁpdq——PdQ= ﬁpdq— £PdQ =0

since g is canonical. Therefore, 7. o p dq — P 4Q = S does not depend on

the path of integration but only on the endpoint {p,, g,) (for a fixed initial
point (Py. qo))- Thus dS = pdq — P dQ). Consequently, in the extended
phase space, we have

pdq— Hdr =PdQ — Hdr + dS.
Thus, the theorem above is applicable, and (2) is transformed to (3). J

PrOBLEM. Let gir): #2" — 122" be a canonical transformation of phase space depending on the
parameter 1, g{f)(p. q) = (P(p. q. t}. Q(p, q. 1)) Show that in the vanables P, Q, ¢ the canonical
equations (1} have the canonical form with new hamiltonian functicn

as
K(P,Q.0= Hp.q,.0+ =,
ot

where

Py.q
5(p;.q.. 1} = J. pdg — P4Q (dQior fixed 1)

Po. QU

B Reduction of order using the energy integral

Suppose now that the hamiltonian function H(p, g} does not depend on time.
Then the canonical equations (1) have a first integral: H(p{r), q(r)) = const.
It turns out that by using this integral we can reduce the dimension (2n + 1)
of the extended phase space by two, thereby reducing the problem to in-
tegration of a system of canonical equations in a (2n — 1)-dimensional space.

We assume that (in some region) the equationh = H(py, ..., paiG1s- -+ 1 dn)
can be solved for p,:

p, = K. Q, T; ),
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45: Applications of the integral invariant of Poincaré Cartan

where P = (p2,....0.): Q = (g3, ... g.); T = —¢,. Then we find
pdq — Hdt =PdQ — KdT — d{Hr) + 1 dH.

Now let y be an integral curve of the canonical equations (1) lying on the
2n-dimensional surface H(p, q) = k in R*"**, Then y is a vortex line of the
formp dq — H dr (Figure 186), We project the extended phase space R?** ! =
{{p, q, t}} onto the phase space B*" = {(p, q)}. The surface H = k is pro-
jected onto a (2n — 1)-dimensional manifold M2"~': H(p, q) = & in R,
and y is projected to a curve § lying on this submanifold. The variables
P, Q. T form local coordinates on M2~ 1,

,H_?rr 4

Figure 186 Lowering the order of a hamiltonian system

PROBLEM. Show that the curve 7 is a voriex line of the form pdq = P dQ — K T on M1,
Hint d{Hty does not affect the vortex lines, and dH is zero an M.

But the vortex lines of P dQ — K 4T satisfy Hamilton’s equations (2).
Thus we have proved

Theorem. The phase trajectories of the equations (1} on the surface M?" ™1,
H = h, satisfy the canonical equations

—_ = — = - -—, 1:2,...,?3),

dg, 9dq; dq, p; (
where the function K(p,, ..., ppiqs, ..., q.; T, k) is defined by the equation
HK.pzo...ops =T gy .. q,) = b

C The principle of least action in phase space

In the extended phase space {(p. g, t)}, we consider an integral curve of the
canonical equations (1) connecting the points (py, 4, 1o) and (py, 4, ).

Theorem. The integral jp dq — H dt has y as an extremal under variations
of v for which the ends of the curve remain in the n-dimensional subspaces
([ = [0, q = qo) and (t = Il!q = ql)

Prook. The curve y is a vortex line of the form p dq — H dt (Figure 187).
Therefore, the integral of p dq — H dt over an “infinitely small parallelogram
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9: Canonical formalism

to. 4o

t

Figure 187 Principle of least action in phase space

passing through the vortex direction” is equal to zero. In other words, the
increment |, — [, pdq — H dt is small to a higher order in comparison with
the difference of the curves 4 and ¥, as was to be shown.

If this argument does not seem rigorous enough, it can be replaced by the
computation

JH JoH
5[@ - Hydt = f (qép + 04— 50 - an)d:

; - _[ [( - %H)ép - (ﬁ + %%)5:.]@:_

We see that the integral curves of Hamilton's equations are the only
extremals of the integral | pdq — H dr in the class of curves y whose ends
lie in the nr-dimensional subspaces (f =15, 9 =9q,) and (t =1, q = q,)
of extended phase space. t

pdq

Remark. The principle of least action in Hamillon's form is a particular case of the principle
considered above, Along extremals, we have

[

LI U]

pa'q—Hdr=f(p¢j—H)d:= [ Lt
LI} b

fo

(since the tagrangian L and the hamiltonian A are Legendre transforms of one another). Now
fet ¥ (Figure 188) be the projection of the extremal ¢ onto the q, ¢ plane. To any nearby curve 7
connecting the same points {ry. q,) and {r,, q,} in the q.; plane we associale a curve ;' in the

P

4 1 gy

0
fa, qo

t

Figure 188 Comparison curves for the principles of least action in the configuration
and phase spaces
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45: Applications of the integral invariant of Poincaré-Cartan

phase space (p, q. 1) by setting p — fL/q. Then, along 7. wo. [ pdg — Hdt = j L dt. But
by the theorem above. 8 [, p dq - H dr = Ofor any variation curve + (with boundary condilions
{t =t,.q =q,)and {(t = ¢;, q = q,}. [n particular, this is true for variations of the special form
taking v te o Fhus 5 is an extremai 0[_[ L dt, as was to be shown,

In the theorem above we are allowed to compare 7 with a significantly
wider class of curves y" than in Hamilton’s principle: there are no restrictions
placed on the relation of p with §. Surprisingly, one can show that the two
principles are nevertheless equivalent: an extremal in the narrower class of
variations {p = dL/?q) is an extremal under all variations. The explana-
tion is that, for fixed 4, the value p = JL/6q is an extremal of pq — H (cf. the
definition of the Legendre transform, Section 14).

D The principle of least action in the
Maupertuis—Euler—Lagrange—Jacobi form

Suppose now that the hamiltonian function H(p, q) does not depend on time.
Then H{p, q) is a first integral of Hamilton's equations (1). We project the
surface H(p, q) = h from the extended phase space {(p. q. t)} to the space
{(p, @)}, We obtain a (2n — 1)-dimensional surface H(p,q) = h in R?"
which we already studied in subsection B and which we denoted by M2*~ 1,

The phase trajectories of the canonical equations (1) beginning on the
surface M>*~! lie entirely in M?"~ ', They are the vortex lines of the form
pdq=PdQ — K dT (in the notation of B) on M?"~!, By the theorem in
subsection C, the curves (1) on M?"~! are extremals for the variational
principle corresponding to this form. Therefore, we have proved

Theorem. If the hamiltonian function H = H(p, q) does not depend on time,
then the phase trajectories of the canonical equations (1) lying on the surface
M* 1 H(p, q) = h are extremals of the integral | pdq in the class of
curves {ving on M?" ™! and connecting the subspaces § = qq and q = q,.

We now consider the projection onto the g-space of an extremal lying
on the surface M?"~': H(p, q) = h. This curve connects the points g, and
q;- Let ¢ be another curve connecting the points q, and q, {Figure 189).
The curve y is the projection of some curve 4 on M2""!. Specifically, we

g

Figure 189 Maupertuis’ principle

[~2
oy
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9: Canonical formalism

parametrize y by 1, a < 7 < b, ¥{a) = qq, ¥{b) = q,. Then at every point ¢
of 7 there is a velocity vector § = dy(t)/dr, and the corresponding momentum
p = 2L/6q. If the parameter t is chosen so that H{p, ) = A, then we obtain
acurve §:q = y(1), p = dL/3q on the surface M?"~'. Applying the theorem
above to the curve $ on M2" !, we obtain

Corollary., Ameng all curves q = (1) connecting the two points g and q, on
the plane q and parametrized so that the hamiltonian function has a fixed
value H(EL/24q, q) = h, the trajectory of the equations of dynamics (1) is
an extremal of the integral of “reduced action”

Lpdq - qu gt = f ‘;—’; (H(D) de.

This is also the principle of least action of Maupertuis (Euler-Lagrange-
Jacobi).”" 1t is important to note that the interval @ < T < b parametrizing
the curve y 1s not fixed and can be different for different curves being com-
pared. On the other hand, the energy (the hamiltonian function) must be
the same. We note also that the principle determines the shape of a trajectory
but not the time: in order to determine the time we must use the energy
constant.

The principle above takes a particularly simple form in the case when the
system represents inertial motion on a smooth manifold.

Theorem. A point muss confined to a smooth riemannian manifold moves along
geodesic lines (i.e., along extremals of the length | ds).

Proor. In this case,
1 {ds\? L ds\?
= £ = e b - = 2 = —_— N
H=L=T 2({“) and 6(‘1q T (d‘r)

Therefore, in order to guarantee a fixed value of H = h, the parameter must

be chosen proportional to the length dt = ds;’\/ﬁ, The reduced action
mtegral 1s then equal to

J%%da: f\/ﬁds=\/2—hjds;
v H ¥

therefore, extremals are geodesics of our manifold. D

In the case when there is a potential cnergy, the trajectories of the equa-
tions of dynamics are also geodesics in a certain riemannian metric,

77 *In almost all textbooks, even the best, this principle is presenled so that it is impossible to
understand.” (C. Jacobi. Lectures on Dynamics, 1842-1843). T do not choose to break with
tradition. A very interesting * prool ™ of Maupertuis® principle is in Section 44 of the mechanics
textbook of Landau and Lifshitz {Mechanics, Oxford. Pergamon, 1960).
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45: Applications of the integral invariant of Poincaré-Cartan

Let ds? be a riemannian metric on configuration space which gives the
kinetic energy (so that T = L{ds/dt)?). Let h be a constant.

Theorem. In the region of configuration space where U(q} < h we define
a riemannian metric by the formula

dp = Jh — Uq) ds.

Then the trajeciories of the system with kinetic energy T = A(ds/dt),
potential energy U1q), and total energy h will be geodesic lines of the metric
dp.

Proof. In this case L=T-U, H=T+ U, and (¢L/é§)q=2T =
(ds/dt)* = 2(h — U). Therefore, in order to guarantee a fixed value of
H = h, the parameter T must be chosen proportional to length: di =
ds{/2(h — U). The reduced action integra! will then be equal to

%er=j./2(h— U)ds=\/§jdp.
T Y ¥

By Maupertuis’ principle, the trajectories are geodesics in the metric dp,
as was to be shown. Ol

Remark i. The metric dp is obtained from ds by a “stretching” depending
on the point q but not depending on the direction. Therefore, angles in the
metric dgp are the same as angles in the metric ds. On the boundary of the
region U < h the metric dp has a singularity: the closer we come to the
boundary, the smaller the p-length becomes. In particular, the length of any
curve lying in the boundary (U = h) is equal to zera.

Remark 2. If the Initial and endpoints of a geodesic y are sufficiently close,
then the extremum of length is a minimum. This justifies the name “principle
of least action.” In general, an extremum of the action is not necessartly a
minimum, as we see by considering geodesics on the unit sphere (Figure 190).
Every arc of a great circle is a geodesic, but only those with length less than =
are minimal: the arc NS'M is shorter than the great circle arc NSM.

s

Figure 190 Non-minimal geodesic
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9: Canonical formalism

Remark 3. 1f his larger than the maximum value of U on the configuration
space, then the metric dp has no singularities; therefore, we can apply
topological theorems about geodesics on riemannian manifolds to the study
of mechanical systems. For example, we consider the torus T2 with some
riemannian metric. Among all closed curves on T? making m rotations

° ()

Figure 191  Periodic motion of a double pendulum

around the parallel and n around the meridian, there exists a curve of shortest
length (Figure 191). This curve is a closed geodesic (for a proof see books
on the calculus of variations or “Morse theory™). On the other hand, the
torus T2 is the configuration space of a planar double pendulum. Therefore,

Theorem. For any integers m and n there is a periodic motion of the double
pendulum under which one segment makes m rotations while the other
segment makes n rotations.

Furthermore, such periodic motions exist for any sufficiently large values
of the constant h (h must be larger than the potential energy at the highest
position).

As a last example we consider a rigid body fastened at a stationary point
and located in an arbitrary potential field. The configuration space (SO(3))
is not simply connected: there exist non-contractible curves in it. The above
arguments imply

Theorem. In any potential force field, there exists at least one periodic motion
of the body. Furthermore, there exist periodic motions for which the total
energy h is arbitrarily large.

46 Huygens’ principle

The fundamemal notiens of hamiltonian mechanics {momenta, the hamiltoman function H,
the form pdq — H dr and the Hamilten - Jacobi cquations, all of which we will be coneerned
with below) arose by the transforming of several very simple and natural netions of geometric
optics, guided by a particular variational principle - that of Fermal, into general vanational
principles (and in particular into Hamilton's principle of stationary action, & | L dt = 0},
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46: Huygens' principle

A Wave fronts

We consider briefly’® the fundamental notions of geometric optics. According
to the extremal principle of Fermat, light travels from a peoint qq to a point
q, in the shortest possible time. The speed of the light can depend both on the
point q (an “inhomogenecus medium™) and on the direction of the ray
(in an “anisotropic medium,” such as a crystal). The characteristics of a
medium can be described by giving a surface (the “indicatrix ) in the tangent
space at each point q. To do this, we take in every direction the velocity vector
of the propagation of light at the giver point in the given direction (Figure

oo

@489

Figure 192  An anisotropic, inhomogeneous medium

Now let t > 0. Welook at the set of all points q to which light from a given
point q, can travel in time less than or equal to r. The boundary of this set,
O, (1), is called the wave front of the point q, after time ¢ and consists of points
to which light can travel in time t and not faster.

There is a remarkable refation, discovered by Huygens, between the wave
fronts corresponding to different values of ¢. (Figure 193)

Huygens’ theorem. Let @, (t) be the wave front of the point qq after time 1.
For every point q of this front, consider the wave front after time s, @,(s).
Then the wave front of the point q, after time s + t, D, (s + 1), will be the
envelope of the fronts ®,(s), q € @, (1),

Proor. Let q,,, € @ (r + s). Then there exists a path from q, to q,, , along
which the time of travel of light equals ¢ + s, and there is none shorter. We
look at the point ¢, on this path, to which light travels in time t. No shorter
path from q, to q, can exist; otherwise, the path qq, ., would not be the
shortest. Therefore, the point g, lies on the front @ (¢). In exactly the same
way light travels the path q,q,., in time s, and there is no shorter path from
q, to q,.,. Therefore, the point q,, , lies on the front of the point g, at time s,
®,(s). We will show that the fronts @, (s) and @, (t + 5) are tangent. In

¥ We will not pursue rigor here, and will assume that all determinants are different from zero.
ete. The proofs of the subsequent theorems do not depend on the semi-heuristic arguments of
this paragraph. [t should be noted that the appropriate lagrangian for geometric optics is
hemogeneous of order | in the velocities. Te apply the Legendre transform, and to make the
analogy with mechanics in the following section, we should square this lagrangian, which does
not affect the indicatrix surface where the value is 1. In fact, the real meaning of Huygens principle
is best expressed in contact geometry (see Appendix 4 or the avthor's Singularities of Caustics
und Wave Fronts, Kluwer 1990,
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Figure 193  Envelope of wave lronts

fact, if they crossed each other (Figure 194), then it would be possible to
reach some points of @, (¢ + s) from q, in time less than s, and therefore
from q, in time less than s + ¢, This contradicts the definition of ® (1 + s);
and so the fronts ®, (s) and @, (¢ + s) are tangent at the point q,,, as was
to be proved. Il

O O T

& (5) [P,
qr

Figure 194 Proof of Huygens' theorem

The theorem which has been proved s called Huygens' principle. It is
clear that the pomt g, could be replaced by a curve, surface, or, in general,
by a closed set, the three-dimensional space {g¢} by any smooth manifold,
and propagation of light by the propagation of any disturbance transmitting
itself “locally.”

Huygens’ principle reduces to two descriptions of the process of prop-
agation. First, we can trace the rays, i.e., the shortest paths of the propagation
of light. In this case the local character of the propagation is given by a
velocity vector q. If the direction of the ray is known, then the magnitude
of the velocity vector is given by the characteristics of the medium (the
indicatrix),

On the other hand, we can trace the wave fronts. Assuming that we are
given a riemannian metric on the space {q}, we can talk about the velociry
of motion of the wave front. We look, for example, at the propagation of
light in a medium filling ordinary euclidean space. Then one can characterize
the motion of the wave front by a vector p perpendicular to the front, which
will be constructed in the following manner.
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46. Huygens' principle

Direction of the ray

p=grad 5§
Direction of motion
of the front

Front
Sy la) =1

Figure 195 Direction of a ray and direction of motion of the wave front

For every point q, we define the function S, (q) as the optical length of
the path from q, to q, i.e., the least time of the propagation of light from q,
to q. The level set {q: S,,(q) = ¢} is nothing other than the wave front @ (1)
(Figure 195). The gradient of the function § {(in the sense of the metric
mentioned above) is perpendicular to the wave front and characterizes the
moticn of the wave front. In this connection, the bigger the gradient, the
siower the front moves. Therefore, Hamilton called the vector

_ o8
p= o
the vector of normal slowness of the front.

The direction of the ray q and the direction of motion of the front p de not
cotncide in an anisotropic medium. However, they are related to one another
by a simple relationship, easily derived from Huygens' principle. Recall
that the characteristics of the medium are at every point described by a
surface of velocity vectors of light—the indicatrix.

Definition. The direction of the hyperplane tangent to the indicatrix at the
point v is called conjugate to the direction v {Figure 196).

Theorem. The direction of the wave front @ (t) at the point §, is conjugate
to the direction of the ray 4.

Proor. We look (Figure 197) at points q, of the ray q,9,, 0 < ¢ <t. Take &
very small. Then the front @, _(e) differs by quantities of order O(?) from
the indicatrix at the peint q,, contracted by e. By Huygens’ principle, this
front @, (¢)is tangent to the front ®, () at the point q,. Passing to the imit
as ¢ — 0, we obtain the theorem. O

v

e Conjugate
direction

Figure 196 Conjugate hyperplane
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‘b‘%(!)

Indicatrix of

the point ¢ Direction of the ray

Direction of motion
of the front

Front @4,(f)

Figure 197 Conjugacy of the direction of a wave and of the front

If the auxiliary metric used to define the vector p is changed, the natural
velocity of the motion of the front, i.e. both the magnitude and direction of
the vector p, will be changed. However, the differential form pdq = dS
on the space {q} = R? is defined in a way which is independent of the
auxiliary metric; its value depends only on the chosen fronts (or rays). On the
hyperplane conjugate to the velocity vector of a ray, this form is equal to
zero, and its value on the velocity vector is equal to 1.7°

B The optical-mechanical analogy

We return now to mechanics. Here the trajectories of motion are also
extremals of a variational principle, and one can construct mechanics as
the geometric optics of a many-dimensional space, as Hamilton did ; we will
not develop this construction in full detail, but will only enumerate those
optical concepts which ied Hamilton to basic mechanical concepts.

Optics Mechanics

Optical medium Extended configuration space {(q, £)}
Fermat’s principle Hamilton's principle d | L dt = 0
Rays Trajectories g(r)

Indicatrices Lagrangian L

Normal slowness vector p Momentum p

of the front

Expression of p in terms of Legendre transformation
the velocity of the ray, q

1-form p dq |-formpdq ~ H dr

"® In this way, the vectors pcorresponding to various fronts passing through a given point are not
arbitrary, but are subject 1o one condition: the permissible values of p fill a hypersurface in
{p}-space which is dual to the indicatrix of velocities,
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The optical length of the path S, (q) and Huygens’ principle have not yet
been used. Their mechanical analogues are the action function and the
Hamilton-Jacobi equation, to which we now turn.

C Action as a function of coordinates and time

Definition. The action function S(q, t) is the integral

Sao 10l 1) = .fL dt
7
along the extremal y connecting the points (q,, ,} and (q, ).

In order for this definition to be correct, we must take several precautions:
we must require that the extremals going from the point (qq, ¢,) do not inter-
sect elsewhere, but instead form a so-called “central field of extremals™
(Figure 198). More precisely, we associate to every pair (o, t) a point (q, ¢)
which is the end of the extremal with initial condition q(0) = q,, 4(0) = q,.
We say that an extremal y is contained in a central field if the mapping
(4. 1) — (g, £} is nondegenerate (at the point corresponding to the extremal
v under consideration, and therefore in some neighborhood of it).

4

ty

|fo~t?r,=
|

Figure 198 A central field of extremals -

P

It can be shown that for |1 — 1;| small enough the extremal y is contained in
a central field.%°

We now look at a sufficiently small neighborhood of the endpoint (q, ¢)
of our extremal. Every poiut of this neighborhood is connected to (q,, £p)
by a unigue extremal of the central field under consideration. This extremal
depends differentiably on the endpoint (g, t). Therefore, in the indicated
neighborhood the action function is correctly defined

Saorol@ 1) = jL dt.

I3

In geometric optics we were looking at the differential of the optical
length of a path. It is natural here to look at the differential of the action
function.

5 Promcim. Show that this is not true for large ¢ — ¢y, Himt. §j = — g (Figure 199).
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Figure 199 Extremal with a focal point which is not contained in any central field

Theorem. The differential of the action function (for a fixed initial point) is
equal to

dS =pdq— H dt

where p = dL/0§ and H = pq — L are defined with the help of the terminal
velocity q of the trajectory y.

Proor, We lift every extremal from (g, £)-space to the extended phase space
{(p, q, t)}, setting p = AL/@q, i.e., replacing the extremal by a phase trajectory.
We then get an n + 1-dimensional manifold in the extended phase space
consisting of phase trajectories, .., characteristic curves of the form
pdq — H dt. We now give the endpoint (q,t) an increment (Aq, At), and
consider the set of extremals connecting (q,, t,) with points of the segment
q + BAq,t + BA:, 0 < 8 < 1 (Figure 200). In phase space we get a quadrangle
a composed of characteristic curves of the form p dq — H dt, the boundary
of which consists of two phase trajectories y, and v,, a segment of a curve x
lying in the space (q = g4, t = t,), and a segment of a curve f projecting
to the segment (Aq, At). Since ¢ consists of characteristic curves of the
form pdq — H dr, we have

0=.Ua'(pdq—Hdr)= pdq — Hdt

a
[ [ [raa-na
71 ¥1 8 «

But, on the sepment , we have dq = 0, dt = 0. On the phase trajectories y, and
72, Pd — Hdt = L di (Section 45C). So, the difference [,, — [,, pdq — H dt

Figure 200 Calculation of the differential of the action function
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is equal to the increase of the action function, and we find
J;p dq — Hdr = S(q + Aq, t + Ar) — S(q, 1).
If now Aq — 0, Ar — 0, then
J;p dq — Hdt = pAq — HAt + o(At, Aq)
which proves the theorem. O

The form p dq — H dr was formerly introduced to us artificially. We see
now, by carrying out the optical-mechanical analogue, that it arises from
examining the action function corresponding to the optical length of a path.

D The Hamilton-Jacobi equation

Recall that the “ vector of normal slowness p” cannot be altogether arbitrary:
it is subject to one condition, p¢ = 1, following from Huygens’ principle.
An analogous condition restricts the gradient of the action function S.

Theorem. The action function satisfies the equation

as a8
(1) B, H(éa, . r) _o.

This nonlinear first-order partial differential equation is called the
Hamilton-Jacobi equation.

Prook, Tt is sufficient to notice that, by the previous theorem,

o8 a8

i —H(p.q,1) "=a_q‘

U]

The relation just established between trajectories of mechanical systems
(“rays”) and partial differential equations (“wave fronts”) can be used in
two directions.

First, solutions of Equation (1) can be used for integrating the ordinary
differential equations of dynamics. Jacobi’s method of integrating Hamilton's
canonical equations, presented in the next section, consists of just this,

Second, the relation of the ray and wave points of view allows one to
reduce integration of the partial differential equations (1) to integration
of a hamiltenian system of ordinary differential equations.

Let us go into this in a little more detail. For the Hamilton—Jacobi
equation (1), the Cauchy problem is

as a5
¥ $(q, 1) = S4(q) 5t H(ﬁ’ q, r) = 0.
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In order to construct a solution to this problem, we look at the hamiltonian
system

JH . OH

a T

We consider the initial conditions (Figure 201);

88,
q(t0) = 4o plto) 2 |,
The solution corresponding to these equations 1s represented in (q, ¢)-space
by the curve q = q(¢), which is the extremal of the principle 6 { L dt = 0
(where the lagrangian L(q, 4, ¢} is the Legendre transformation with respect
to p of the hamiltonian function H(p,q,?)). This extremal is called the
characteristic of problem (2), emanating from the point q.

If the value ¢, is sufficiently close to ¢, then the characteristics emanating
from points close to g, do not intersect for 1, <t <ty, [ — Qo] < R.
Furthermore, the values of q, and ¢ can be taken as coordinates for points
in the region |q — qq4) < R, 1y <t < ¢, (Figure 201),

gy fp 12 i3

Figure 201  Characteristics for a solution of Cauchy’s problem for the Hamilton-
Jacobi equation

We now construct the “action function with initial condition S,™:
A

3) S(A) = So(fo) + j L(g, 4, t)dt

Q. 1o

(integrating along the characteristic leading to A).

Theorem. The function (3} is a selution of problem (2).

Proor. The initial condition is clearly fulfilled. The fact that the Hamilton-
Jacobi equation is satisfied is verified just as in the theorem on differentials
of action functions (Figure 202).

By Stokes lemma, |, — [, = [, — |, pda — I dr = 0. Buton x. Hdt = Oand p = £8,/dq.

1%

Joda— = [paa - [ asy - suao + a0 - Sytan

“1
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Figure 202 The action function as a solution of the Hamilton Jacobi equation
Further, 7, and ;75 are phase (rajectories, so

J. pdq - Hdr = [ L dr.

I

So
J‘pdq — Hdt = {Sn[qu + Aq) + j L er - [SU(q(,) + J. i d:]
" ) n
=5{A4 + AAd) — S(A.
For At, Aq — 0, we get 85/ét = — H, 85/0q = p, which proves the theorem, O

PrOBLEM. Show the uniqueness of the solution to problem (2).
fiint. Differentiate § along the characteristics.

PronLim. Solve the Cauchy problem (2) for

bt
[

=1
Bl

H='0  S=

bt |

PrOBLEM. Draw a graph of the multiple-valued “ functions™ S(g} and pig}for r = «5 (Figure 201).

Answer. CIL Figure 203,

—

Figure 203 A typical singularity of u solution of the Hamilton--Jacobi equation
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The point of self-intersection of the graph of § corresponds on the graph of p to the Maxwelt
line: the shaded areas are equal. The graph of S{g, ¢) has a singularity called a swallowtail at the
point (0, t,).

47 The Hamilton-Jacobi method for integrating
Hamilton’s canonical equations

[n this paragraph we define the generating function of a free canonical transformation.

The idea of the Hamilton-Jacobi method consists of the following. Under
cancnical changes of coordinates, the canonical form of the equations of
motion is preserved, as is the hamiltonian function (Section 45A), Therefore,
if we succeed in finding a canonical transformation which reduces the
hamiltonian function to a form such that the canonical equations can be
integrated, then we can also integrate the original canonical equations. It
turns out that the problem of constructing such a canonical transformation
reduces to the determination of a sufficiently large number of solutions to
the Hamilton-Jacob: partial differential equation. The generating function
of the desired canonical iransformation must satisfy this equation.

Before turning to the apparatus of generating functions, we remark
that it is unfortunately noninvariant and it uses, in an essential way, the co-
ordinate structure in phase space {(p, q)}. It is necessary to use the apparatus
of partial derivatives, in which even the notation is ambiguous.®"

A Gencrating functions

Suppose that the 2n functions P(p, q) and Q(p, q) of the 2n variables p and q
give a canonical transformation g: R2” — R2" Then the 1-form p dg — P 4Q
1s an exact differential (Section 45A):

(1) pdq — P dQ = dS(p. q).

ProOBLEM. Show the converse: if (his form is an exact differential. then the transformation is
canonical.

We now assume that, in a neighborhood of some point (p,, qg), we can
take (Q, q) as independent coordinates. In other words, we assume that
the following jacobian is not zero at (pg, q,):

WD _ 422 20,

det
a(p, Q) op

5110 1s important W note that the quantity &w/fx on the x, y-plane depends not only on the
function which is taken for x, but also on the choice of the function y: in new variabies (x, o)
the value of &uid'x will be different. One should write
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Such canonical transformations will be called free. In this case, the function §
can be expressed locally in these coordinates:

Definition. The function S,(Q, q) is called a generating function of our
canonical transformation g.

We emphasize that §, is not a function on the phase space R*®; it is a
function on a region in the direct product Ry x Rg of two n-dimensional
coordinate spaces, whose points are denoted by q and Q. It follows from (1)
that the “partial derivatives” of 5, are

05,(Q. 9) _ 95:4Q. 9 _
T_p an aQ =

Conversely, every function §, gives a canonical transformation g by
formulas (2).

@) ~P.

Theorem. Let S,(Q, q) he a function given on a neighborhood of some point
(Qq. 90) of the direct product of rwo n-dimensional euclidean spaces. If

s,
aQ aq Q0. 90

then S, is a generating function of some free canonical transformation.

det

# 0,

Proor. Consider the equation for the Q coordinates:
05,(Q.9) _
oq

By the implicit function theorem this equation can be solved to determine a
function Q(p, q) in a neighborhood of the point

_ {95.(Q. q)
(qo’ Po = ( oq ) Qo.tm)
(with Q{pg. Qo) = Qo). In fact, the determinant we need here is
9°$.1(Q. @)
det(ila Qo

and this is different from zero by hypothesis.
We now consider the function

s
Qu. 90

m@m=—%&@m,
and set
P(p. q} = P,(Q(p. q}. q).
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3. Canonical formalism

Then the local map g: R** — R?" sending the point (p,q) to the point
{P(p, q), Q(p, q)) will be canonijcal with generating function S,, since by
construction

05,(Q, @) 05,(Q. q)
——— dq + - — - dQ.
0Q

It is free, since det(0Q/op) = det{é?S,(Q, 9)/8Q éq)~ ' # 0. O

pdq — PdQ =

The transformation g: R*" —» R*" is given in general by 2 functions of
2r variables. We see that a canonical transformation is given entirely by
one function of 2r variables—its generating function. It i1s easy to see how
useful generating functions are in all calculations related to canonical trans-
formations. This becomes even more so as the number of variables, 2n,
becomes large.

B The Hamilton-Jacobi equation for generating functions

We notice that canonical equations in which the hamiltonian function
depends only on the variable Q are casy to integrate. If H = K((Q, ¢), then the
canonical equations have the form

. . 8K
(3) Q=0 P=p
from which we have immediately
"iK
Q0 =0Q0)  P=PO+| ol
¢Q Qo)

We will now took for a canonical transformation reducing the hamiltonian
H(p. q) to the form K(Q). To this end we will lock for a generating function
of such a transformation, S(Q. q). From (2) we obtain the condition

H (@S(Q, Q)

4  RB{==Z L4.t) = K(Q,
(4) q qf) Q. 1)

where after differentiation we must substitute (P, Q) for q. We notice that
for fixed Q, Equation (4) has the form of the Hamilton -Jacobi equation.

Jacobi’s theorem. ff « solution S(Q, Q) is found to the Hamilton-Jacobi equa-
tion (4), depending on n parameters®® Q; and such that det(8*5/0Qdq) # 0,
then the canonical equations

¢H éH
5 = — —— d =
(5) p 2q and g

can be solved explicitly by quadratures. The functions Q(p, q) determined
by the equations 08(Q, q)/dq = p are first integrals of the eguation (5).

*2 An p-parameter lamily of solutions of (4} is called & complere integraf of the equation,
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Proor. Consider the canonical transformation with generating function
$(Q. q). By (2) we have p = (d8/8q)(Q, q), from which we can determine
Q(p, q). We calculate the function H(p. q) in the new coordinates P, Q.
We have H(p.q) = H({(85/8q)(Q, q), q). [n order to find the hamiltonian
function in the new coordinates we must substitute into this expression
(after differentiation) for q its expression in terms of P and Q. However,
by (4), this expression does not depend on P at all, so we have simply

H(p.q) = K(Q).

Thus, in the new variables, Equation (3} has the form (3), from which Jacobi’s
theorem follows directly. O

Jacobi’s theorem reduces solving the system of ordinary differential
equations (35) to finding a complete integral of the partial differential equation
(4). It may appear surprising that this “reduction™ from the simple to the
complicated provides an effective method for solving concrete problems.
Nevertheless, 1t turns out that this s the most powerful method known for
exact integration, and many problems which were solved by Jacobi cannot be
solved by other methods.

C Examples

We consider the problem of attraction by two fixed centers. Interest in this
problem has grown recently in connection with the study of the motion of
artificial earth satellites. It is fairly clear that two close centers of attraction
on the z-axis approximate attraction by an ellipsoid slightly extended along
the z-axis. Unfortunately, the earth is not prolate, but oblate. To overcome
this difficulty, one must place the centers at imaginary points at distances + ie
from the origin along the z-axis. Analytic formulas for the solution are true,
of course. in the complex region. In this way we obtain an approximation
to the earth’s field of gravity, in which the equations of motion can be exactly
integrated and which is closer to reality than the keplerian approximation
in which the earth is a point.

For simplicity we will consider only the planar problem of attraction by
two fixed points with equal masses. The success of Jacobi's method is based
on the adoption of a suitable coordinate system, called elliptic coordinates.
Supposc that the distance between the fixed points O, and O, is 2¢ (Figure

Figure 204 Elliptic coordinates
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Figure 205 Confocal ellipses and hyperbolas

204), and that the distances of a moving mass from them are r, and r;, re-

spectively. The elliptic coordinates £, # are defined as the sum and difference
of the distances to the points O, and O,: {=r, + ry. 0 =r; — 7;.

ProsriM. Express the hamiltonian function in elliptic coordinates.
Sodution. The lines & = const are eliipses with fociat O, and O,:the lines y = const arc hyper-
bolas with the same foci (Figure 205). They are mutually orthogonal: therefore,

ds? = a2 dZ + pdn.

We will find the coefficients «# and b. For motion along an ellipse we have dr, = s cos x and
dr; = —dscos 2 so dn = 2 cos 3 ds. For motion along 3 hyperbola we have dr, = dysin x
and dr, = dssin . sod? = 2sin 2 ds. Thusa = (2sin 2)" ! and b = {2 cos x)™ ' Furthermore.
from the triangle O, MQ. we find i + r3 + 2r r; cos 22 = 4¢% which implies

'
2 " de? — rd — 5
COS™ ¥ — SIN“ X = -+ = e ——

Xrirsy
LT
. RIS
cos® 2 + sind x = ———,
RIS
z 41'2—("1_"2)2 2 (f'1+’_’)2_4"2
CO8" % = SINS % = - - emmme -
drirs 4k, 1

But il ds? = 3 a? dgi. (hen

32 :
T = Zrif q—‘) pi=alg. H =Y i

= *u
Thus,
gop oAl LA o ol kK
: 2rirs P 2rr; oo

Bute, + ¢y =&ry — ry =it 4rr; = 2 — j2 Therelore, finally,

g, 4¢ — 42 Hed

o N

We will now solve the Hamilton-Jacobi equation.

Definition. If, in the equation

o8 lGAY
o —, ..., —
l(aqla saq

n

;qla"'aqn)=0!
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the variable g, and derivative 85/2q4, appear only in the form of a combina-
tion @(d5/8q,, q,), then we say that rthe variable g, is separable.

In this case it is useful to look for a solution of the equation of the form

§S=S{q,)+ 5. ....q.)

By setting @(85,/0q,. 4,) = ¢, in this equation, we obtain an equation for §'
with a smaller number of variables

a8 a8’
o, {2 2 g ) =0
2(aq2 aq" Q2 q Cl)

Let 8 = 8(9;.-...¢,: ¢, €} be a family of solutions to this equation
depending on the parameters ¢;. The functions §,(g, ¢,;} + §' will satisfy
the desired equation if S, satisfies the ordinary differential equation
@(48,/8q,, ;) = ¢;. This equation is easy to solve; we express 85,/0q,
in terms of ¢, and ¢, to obtain 85,/0q, = ¥{q,, ¢,). from which § =
Iq’ Ylqy, c1)dg;.

If one of the variables, say g,, is separable in the new equation (with O,)
we can repeat this procedure and (in the most favorable case) we can find
a solution of the original equation depending on » constants

Silgiien) + Sylgaicnnca) + -+ Sy C1s oo s G

In this case we say that the vanables are completely separable.

If the variables are compietely separable, then a solution depending on n
parameters of the Hamilton Jacobi equation, &,(45/8q, q) = 0, is found by
quadratures. But then the corresponding system of canonical equations can
also be integrated by quadratures (Jacobi's thecorem).

We apply the above to the problem of two fixed centers. The Hamilton-
Jacobi equation (4) has the form

(a_s) —42}+(a)(4c — 1%y = K(&* — n?) + 4k

&<

We can separate variables by, for instance, setting

o

(S) (£* — 4c®) — 4ké - K& = ¢,
and

(-:S) 4c? — ) + Kn? C1.
on

Then we find the complete integral of Equation {4) in the form

c'?é_ﬁk'g ¢ —¢
Snienen = [ [ ol f\f 2”
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Jacobis theorem now gives an explicit expression, in terms of elliptic
integrals, for motion in the problem of two fixed centers. A more detailed
investigation of this metion can be found in Charlier's book *“ Die Mechanik
des Himmels,” Berlin, Leipzig, W. de Gruyter & Co., 1927,

Another application of the problem of the attraction of two fixed centers is
the study of motion with fixed pull in a field with one attracting center.

This is a question of the motion of a point mass under the action of a
newtonian atiraction of a fixed center and one more force (“pull™) of con-
stant magnitude and direction. This problem can be looked at as the limiting
case of the problem of attraction by two fixed centers. In the passage 1o
the limit, one center goes off to infinity in the direction of the thrust force
{during which its mass must grow propoertionally to the square of the distance
moved in order to guarantee constant pull).

This limiting case of the problem of the attraction of two fixed centers
can be integrated explicitly (in elliptic functions). We can convince ourselves
of this by passing to a limit or by directly separating variables in the problem
of motion with constant pull in a field with one center. The coordinates
in which the variables are separated mn this problem are obtained as the
limit of elliptic coordinates as one of the centers approaches infinity. They
are called parabolic coerdinates and are given by the formulas

Uu=r—x vt=r+ X

{the pull is directed along the x-axis).

A description of the trajectorics of a motion with constant pull (many
of which are very intricate) can be found in V. V. Beletskii's book “Sketches
on the motion of celestial bodies,” Nauka, 1972.

As onc more example we consider the problem of geodesics on a triaxial
ellipsoid.®* Here Jacobi's elliptic coordinates 4,, 4,, and A, are heipful, where
the 4; are the roots of the equation

x3 x3 x3

a + A apt+ A oay+ A

1, AL > Ay > A5

X;, X3, and x4 are cartesian coordinates. We will not carry out the computa-
tions showing that the variables are separable (they can be found, for example,
in Jacobi’s “Lectures on dynamics™), but will mention only the result: we
will describe the behavior of the geodesics.

The surfaces A, = const, i, = const, and A; = const are surfaces of
second degree, called confocal quadrics. The first of these is an ¢liipsoid, the
second a hyperboloid of one sheet, and the third a hyperboloid of two sheets,
The ellipsoid can degenerate into the intecior of an ellipse, the one-sheeted
hyperboloid either into the exterior of an ellipse or into the part of a plane

¥3 The problem of geodesics on an cllipsoid and the closely reluted problem of ellipsoidal
billiards have found application in a series of recent results in physics connected with laser
devices.
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between the branches of a hyperbola, and the two-sheeted hyperboloid
either into the part of a plane outside the branches of a hyperbola or into a
plane.

Suppose that the ellipsoid under consideration is one of the ellipsoids
in the family with semi-axes a > b > ¢. Each of the three ellipses x, = 0,
x; =0, and x; = 0 is a closed geodesic. A geodesic starting from a point
of the largest ellipse (with semiaxes ¢ and &) in a direction close to the
direction of the ellipse (Figure 206), is alternately tangent to the two closed
lines of intersection of the ellipsoid with the one-sheeted hyperboloid of our
family A = const.?* This geodesic is either closed or is dense in the area

Figure 207 Geodesics emanating from an umbilical point

between the two lines of intersection. As the slope of the geodesic increases,
the hyperboloids collapse down to the region “inside” the hyperbola which
intersects our ellipsoid in its four “umbilical points.” In the limiting case
we obtain geodesics passing through the umbilical points (Figure 207).

It is interesting to note that all the geodesics starting at an umbilical
point again converge at the opposite umbilical point, and all have the same
length between the two umbilical points. Ounly one of these geodesics is closed,
namcly, the middle ellipse with scmi-axes ¢ and ¢. If we travel along any
other geodesic passing through an umbilical point in any direction, we will
approach this ellipse asymptotically.

Finally, geodesics which intersect the largest ellipse even more “steeply”
(Figure 208) are alternately tangent to the two lines of intersection of our

84 These lines of intersection of the confocal surfaces are also fines of curvature of the ellipsoid.

265



9. Canonical formalism

Figure 208 Geodesics of an ellipsoid which are tangent to a two-shected hyperbolod

ellipsoid with a {wo-sheeted hyperboloid.¥® In general, they are dense in the
region between these lines. The small ellipse with semi-axes b and ¢ is among
these geodesics,

“The main difficulty in integrating a given differential equation lies in
introducing convenient variables, which there is no rule for finding. There-
fore, we must travel the reverse path and after finding some notable substitu-
tion, look for problems to which it can be successfully applicd.” (Jacobi,
*Lectures on dynamics™).

A list of problems admitting separation of variables in spherical, elliptic,
and parabolic coordinates is given in Section 48 of Landau and Lifshitz’s
*Mechanics” (Oxford, Pergamon, 1960).

48 Generating functions

In this paragraph we construct the apparatus of generating functions for non-free canonical
transformations.

A The generating function S5,(P, q)

Let f: R?" — R*" be a canonical transformation with g(p. ¢) = (P, Q). By
the definition of canonical transformation the differential form on R2”

pdq — P dQ = dS

is the total differential of some function S(p, q). A canonical transformation is
free if we can take q, Q as 2r independent coordinates. In this case the
function § expressed in the coordinates q and Q 1s called a generating function
$,(q9. Q). Knowing this function alone, we can find all 2» functions giving the
transformation from the relations

_0560Q i op-_95@Q
éq aQ
It is far from the case that all canonical transformations are free. For

example, in the case of the identity transformation q and Q = q are dcpen-
dent. Therefore, the identity transformation cannot be given by a generating

(1)

#3 These are also lines of cunvature.
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48: Generating functions

function S,{(q, Q). We can, however, obtain generating functions of another
form by means of the Legendre transformation. Suppose, for instance,
that we can take P, q as independent local coordinates on B?" (i.e., the
determinant det(8(P, q)/8(p, )) = det(éP/3p) is not zero). Then we have

pdq— PdQ =dS and pdq + QdP = d(PQ + 5

The quantity PQ + S, expressed in terms of (P, q), is also called a generating
functicon

$,(P,q) = PQ + S(p. 9).
For this function, we find

p = d8,(P, q) and Q= 25,(P, ‘I).

@ dq P

Conversely, if S,(P, ¢) is any function for which the determinant

aZSZ(P’ ‘l)
det ( TP

Pa.qo

is not zero, then in a neighborhood of the point

° aq Podlo, o

we can solve the first group of equations (2) for P and obtain a function
P(p, qQ) (where P(py. qo) = P;). After this, the second group of equations (2)
determine Q(p, q). and the map (p, q) — (P, Q) is canonical (prove this!).

ProaLeEM. Find a penerating function S, for the identity map P = p, Q = q.
Answer, Pq.

Remark. The generating [unction $,(P, g} is convenient also because there are no minus
signs in the formuias {2). and they are easy to remember if we remember that the generating
function of the identity transformation is Pq.

B 2" generating functions

Unfortunately, the variables P, q cannot always be chosen for local co-
ordinates cither; however, we can always choose some set of n new co-
ordinates

Pi = (PI':!""‘P"&) Qj=(le""’an—k)

so that together with the old q we obtain 2» independent coordinates,
Here (i), ..., i)(j1, .-, fa—y) 15 any partition of the set (1,...,n) into
two non-intersecting parts; so there are in all 2" cases.
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9: Canonical formalism

Theorem. Let g:R*" —» R*" be a canonical transformation given by the
functions P(p, Q) and Q(p, q). In a reighborhood of every point (py, Q,) at
least ane of the 2" sets of functions (P;, Q;. q) can be taken as independent
coordinates on R*":

P, Q;, q) AP, Q)
i = d J
(pi. P;- Q) . ap;. p))

In a neighborhood of such a point, the canonical transformation g can be
reconstructed from the function

det £ 0.

S4(P, Q;, ) = (P,Q)) + j pdq— P dQ

by the relations
a8, AR
p= —a;l“, - a—QJ
Conversely, if S3(P;, Q;,q) is any function for which the determinant

det(825,/éP aQ)lp, o, (P = P, Q;) is not zero, then the relations (3) give a
canonical transformation in a neighborhood of the point pg, 4p.

_ o5,

(3) = %P,

Q,‘ and P_; =

Proor. The proof of this theorem is almost the same as the one carried out
above in the particular case k = n. We need only verify that the determinant
det[(a(P;, Q;)/d(p;, )] is not zere for one of the 2"sets (P;, Q;, q).

We consider the differential of our transformation g at the point (pg. 4g). By identifying the
tangent space to " with B*", we can consider dy as a symplectic transformation §: R — 22",

Consider the coordinate p-plane £ in R*"(Figure 209). This is a null n-plane, and its image SP
15 also a null plane. We project the plane SP onto the coordinate plane o = {(p;, g;)} parallel to
the remaining coordinate axes, e, in the direction of the n-dimensional null coordinale plane
& = {(p;. 9,}}. We denote the projection operator by TS: P — a.

The condition det(Z(P;, Q)/(p,. p)) # Omeans that T: $P - ¢isnonsingular. The operator
§ is nonsingular. Therefore, TS is nonsingular if and only if T: §P — g is nonsingular. [n other
words, the null plane $P must be transverse o the null coordinate plane 4. But we showed in

Figure 208 Checking non-degeneracy
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48: Generating functions

Section 41 that at least one of the 2" null coordinate planes is transverse to SP. This means that
one of our 2”7 determinants is nonzero, as was to be shown. [}

PROBLEM. Show that this sysiem of 27 types of generating functions is minimal: given any one of
the 2" determinants, there exists a canonical transformation for which only this determinant is
nonzero.®®

C Infinitesimal canonical transformations

We now consider a cancnical transformation which is close to the identity.
Its generating function can be taken close to the generating function Pq
of the identity. We look at a family of canonical transformations g, depending
differentiably on the parameter ¢, such that the generating functions have
the form
as o8

4 Pq + e5(P,q; ¢ =P +e— =q+¢—.
4 q +eS(P,q;e)  p % Q=q+e55

An infinitesimal canonical transformation is an equivalence class of families
4., two families g, and h, being equivalent if their difference is smalt of higher
than first order, |g, — h,| = O(e?), e = 0.

Theorem. An infinitesimal canonical transformation satisfies Hamilton's
differential equations

dP 8H  dQ oH

Ee=0&_"5“i’ de £=0_E
with hamiltonian function H(p, q) = S(p, q, 0).
Proor. The result follows from formula (4): P - pasc — 0. O
Corollary. A one-parameter group of transformations of phase space R*"

satisfies Hamilton’s canonical equations if and only if the transformations
are canonical.

ol 4
Figure 210 Geometric meaning of Hamilton's function

%% The number of kinds of gencrating functions in different textbooks ranges from 4 to 4”.
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9: Canonical formalism

The hamiltontan function H is called the “generating function of the
infinitesimal canonical transformation.” We notice that unlike the generating
function S, the function H is a function of points of phase space, invariantly
associated to the transformation.

The function H has a simple geometric meaning. Let x and y be two points
in R*" (Figure 210), v a curve connecting them, and éy = y — x. Consider
the images of the curve y under the transformations g., 0 < 1 < &; they
form a band o(¢). Now consider the integral of the form w? =) dp, ~ dg,
over the 2-chain o, using the fact that do = g,y — y + g.x — g.¥.

PROBLEM. Show that

lim % J-J-am w? = H({x)— H(y)

=0

exists and does not depend on the represemtative of the class g, .
From this result we once more obtain the well-known

Corollary. Under canonical transformations the canonical equations retain
their form, with the same hamiltonian function.

ProoF. We compuied the variation of the hamiltonian function using only
an infinitesimal canonical transformation and the symplectic structure of
R2"—the form . C
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Introduction to perturbation theory

Perturbation theory consists of a very useful collection of methods for finding
approximate solutions of “perturbed™ problems which are close to com-
pletely solvable “unperturbed” problems. These methods can be easily
justified if we are investigating motion over a small interval of time. Relatively
little is known about how far we can trust the conclusions of perturbation
theory in investigating motion over large or infinite intervals of time.

We will see that the motion in many “unperturbed” integrable problems.
turns out to be conditionally periodic. In the study of unperturbed problems,
and even more so in the study of the perturbed problems, special symplectic
coordinates, called “action-angle™ variables, are useful. In conclusion, we
will prove a theorem justifying perturbation theory for single-frequency
systems and will prove the adiabatic invariance of action variables in such
systems.

49 Integrable systems

[n order to integrate a system of 2n ordinary differential equations, we must know 2n first
integrals. It turns out that il we are given a canonical system of differential equations, it is olten
sufficient to know only s first integrals  each of them allows us to reduce the order of the system
not just by one, but by two.

A Liouville’s theorem on integrable systems

Recall that a function F is a first integral of a system with hamiltonian
function H if and only if the Poisson bracket

(H,F)=0

is identically equal to zero.
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10: Introduction to perturbation theory

Definition. Two functions F; and F, on a symplectic manifold are in involution
if their Poisson bracket is equal to zero.

Liouville proved that if, in a system with n degrees of freedom (i.e., with
a 2n-dimensional phase space), n independent first integrals in involution
are known, then the system is integrable by quadratures.

Here is the exact formulation of this theorem: Suppose that we are given n
functions in involution on a symplectic 2r-dimensional manifold

Fl,....,F" (F‘,FJ)EO., f,j=1,2,...,?‘!‘

Consider a level set of the functions F;
My={x:F{x}=fi,i=1...,n}

Assume that the # functions F; are independent on M, (i.e., the n l-forms
dF; are linearly independent at each point of M,). Then

1. M; is a smooth manifold, invariant under the phase flow with hamiltonian
function H = F,.

2. If the manifold M; is compaci and connected, then it is diffeomorphic
to the n-dimensional torus

T = {(¢y, ..., pmod 2x}.

3. The phase flow with hamiltonian function H determines a conditionally
periodic motion on My, Le, in angular coordinates @ = (@, ..., ¢@,)
we have

de

I , o = o{b.

4, The canonical equations with hamiltonian function H can be integrated
by quadratures.

Before proving this theorem, we note a few of its corollaries.

Corollary 1. [f, in a canonical system with two degrees of freedom, a first
integral F is known which does not depend on the hamiltonian H, then the
system is integrable by quadratures, a compact connected two-dimensional
submanifold of the phase space H = h, F = [ is an invariant torus, and
motion on it is conditionally periodic.

Proor. F and H are in involution since F is a first integral of a system with
hamiltonian function H. O

As an example with three degrees of freedom, we consider a heavy sym-
metric Lagrange top fixed at a point on its axis. Three first integrals are
immediately obvious: H, M,, and M. It is easy to verify that the integrals
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49 Integrable systems

M, and M, are in involution. Furthermore, the manifold H = h in the phase
space is compact. Therefore, we can immediately say, without any calcula-
tions, that for the majority of initial conditions®’ the motion of the top is
conditionally periodic: the phase trajectories fill up the three-dimensional
torus H = ¢,, M, = ¢, M, = ¢,. The corresponding three frequencies are
called frequencies of fundamental rotation, precession, and nutation.

Other examples arise from the following observation: if a canonical
system can be integrated by the method of Hamilton-Jacobi, then it has n
first integrals in involution. The method consists of a canonical transformation
(p. q) — (P, Q) such that the @, are first integrals. But the functions Q,
and @, are clearly in involution.

In particular, the observation above applies to the problem of attraction
by two fixed centers. Other examples are easily found. In fact, the theorem
of Liouville formulated above covers all the problems of dynamics which
have been integrated to the present day.

B Beginning of the proof of Liouville’s theorem

We turn now to the proof of the theorem. Consider the level set of the
integrals:

JM"= {XfFi= i = l,...,?‘l}-

By hypothesis, the n |-forms dF,; are linearly independent at each point of
M, ; therefore, by the implicit function theorem, M, is an n-dimensional
submanifold of the Zn-dimensional phase space.

Lemma 1. On the n-dimensional manifold M, there exist n tangent vector
fields which commute with one another and which are linearly independent
at every point.

Proor. The symplectic structure of phase space defines an operator / taking
1-forms to vector fields. This operator [ carries the l-form dF; to the field
I dF; of phase velocities of the system with hamiltonian function F;. We
will show that the n fields I dF, are tangent to M,, commute, and are inde-
pendent.

The independence of the I dF at every point of M, lollows from the inde-
pendence of the ¢F, and the nonsingularity of the isomorphism I. The
fields I dF; commute with one another, since the Poisson brackets of their
hamiltonian functions (F;, F}) are identically 0. For the same reason, the
derivative of the function F; in the direction of the field ! dF ; is equal to zero
foranyi,j = 1, ..., n. Thus the fields I 4F, are tangent to M,, and Lemma 1
is proved. O

" The singular level sets, where the integrals are not functionally independent, constitute the
exceplion.
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10: Introduction to perturbation theory

We notice that we have proved even more than Lemma 1:

1. The manifold M, is invariant with respect to each of the n commuting
phase flows g} with hamiltonian functions F;: ¢ig} = ¢ig:.
17. The manifold M, is null (ie., the 2-form w? is zero on TM,|,).

This is true since the n vectors I dF;|, are skew-orthogonal to one another
{((Fi, F;) = 0) and form a basis of the tangent plane to the manifold M, at
the point x.

C Manifolds on which the action of the group
R" is transitive

We will now use the following topological proposition (the proof is completed
in Section D).

Lemma 2. Let M" be a compact connected differentiable n-dimensional mani-
Jold, on which we are given n pairwise commutative and linearly independent
at each point vector fields. Then M" is diffeomorphic to an n-dimensional
torus.

Proor. We denote by ¢i, i = 1, ..., n, the one-parameter groups of diffeo-
morphisms of M corresponding to the n given vector fields. Since the fields
commute, the groups g; and g} commute. Therefore, we can define an action g
of the commutative group R* = {t} on the manifold M by setting
gM-M g =g"--g t={t,....t)eR".
Clearly, gt™* = g'g% t, s € R". Now fix a point x, € M. Then we have a map
g R > M g(t) = g'x,.

(The point x4, moves along the trajectory of the first ftow for time ¢, along
the second flow for time t,, etc.)

PROBLEM 1, Show that the map g (Figure 211) of a sufficiently small neighborhood V of the
point (¢ R" gives a chart in a neighborhood of x;: every point x, e M has a neighborhood
Uixy e U = M) such that g maps V diffecomorphically onto £,

Hint. Apply the implicit function theorem and use the linear independence of the fields at x,.

ProBLEM 2. Show that g: B" — M is onlo.

Figure 211 Problem !
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49: Intcgrable systems

Figure 212 Problem 2

Hint. Connect a point x € M with x; by 4 curve (Figure 212), cover the curve by a finite
number of the neighborhoods U of the preceding problem and define t as the sum of shilis ;
corresponding 1o pieces of the curve.

We note that the map g: R"— M" cannot be one-to-one since M” is
compact and R" is not. We will examine the set of pre-images of x, € M".

Definition. The stationary group of the point x, is the set I of points t € R”
for which g'xy = x,.

ProBLEM 3. Show that T is a subgroup of the group R, independent of the point x,.
Solution. W g%, = x5 and ¢'xy = x5, then ¢*''xy = ¢*g'xy = %%y = X, and g 'x, =

4 'g'xq = xy. Therefore. T is a subgroup of B" If x = ¢'x; and 1T, then g'x = ¢'*'x, =
gg'xe = g'v = X

In this way the stationary group [ is a well-defined subgroup of R”
independent of the point x,. In particular, the point t = 0 clearly betongs
toI.

PROBLEM 4. Show thal, in a sufficiently small neighborhood ¥ of the point 0 € B7, there is no
point of the stationary group other thant = .
fline. The map g: V = U is a difflcomorphism.

PROBLEM 3. Show that, in the neighborhood t + V of any point t & T <= R”, there is no point of
the stationary group [ other than t. (Figure 213}

Thus the points of the stationary group I lie in R* discretely. Such sub-
groups are called discrete subgroups.

@

Figure 213 Problem 5
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10: Introduction to perturbation theory

e

ey

Figure 214 A discrete subgroup of the plane

ExaMPLE. Let e, ..., € be k linearly independent vectors in R, 0 < k < n.
The set of all their integral linear combinations {Figure 214)

m181+"-+mkek, m‘-EZ=(.‘.,—‘2,‘—1,0,1,..A)

forms a discrete subgroup of R”. For example, the set of all integral points
in the plane is a discrete subgroup of the plane,

D Discrete subgroups in R"

We will now use the algebraic fact that the example above includes all discrete
subgroups of R”. More precisely, we will prove

Lemma 3. Let I be a discrete subgroup of R". Then there exist k (0 £ k < n)
linearly independent vectors €, ..., €, € I such that T is exactly the set of
all their integral linear combinations.

PrOOF. We will consider R" with some euclidean structure. We always
have 0 e I'. If I' = {0} the lemma is proved. If not, there is a point e; e I,
¢, # 0 (Figure 215). Cousider the line Re,. We will show that among the
elements of I" on this line, there is a point e, which is closest to 0. In fact,
in the disk of radius je, | with center 0, there are only a finite number of points
of I' (as we saw above, every point x of I has a neighborhood V of standard
size which does not contain any other point of I'). Among the finite number
of points of I inside this disc and lying on the line Re,, the point closest to 0
will be the closest point 1o 0 on the whole line, The integral multiples of this
point e, (me,, me Z) constitute the intersection of the line Re, with T
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In fact, the points me, divide the line into pieces of length |e, |. If there were
a point eel inside one of these pieces (me,, (m + 1)e,), then the point
e — me, € I’ would be closer to O than e.

If there are no points of I off the line Re,, the lemma is proved. Suppose
thereisa pointe € I', e ¢ Re,. We will show that there is a point e, € I closest
to the line Re, (but not lying on the line). We project e orthogonally onto Re,.
The projection lies in exactly one interval A= {le;}, m<Ai<m+ L
Consider the right circular cylinder € with axis A and radius equal to the
distance from A to e. In this cylinder lie a finite {(nonempty) number of points
of the group I'. Let e, be the closest one to the axis Re, not lying on the axis.

PrOBLEM 6. Show that the distance lrom this axis to any point € of ' not lying on [Be| 18 greater
than or cqual to the distance of e, from He,.
Hint. By a shift of me| we can move the projection of e onto the axis interval A

The integral linear combinations of e, and e, form a lattice in the plane
Re, + Re,.

PrOBLEM 7. Show that there are no points of T on the plane Re, + Re, other than integrai
lincar combinations of e, and e;.

Hint. Partition the plane into parallelograms (Figure 218) A = {i,e; + 4,e,},
My = A, < m; + 1 iftherewereane s Awithe # m e, + m;€,, thenthe pointe — m e, — mi e,
would be closer to Be, than ¢,

Figure 216 Problem 7

If there are no points of I outside the plane Re;, + Re,, the lemma is
proved. Suppose that there is a point e e I' outside this plane. Then there exists
a point e; el closest to Re, + Re,; the points me; + mye, + mye,
exhaust T in the three-dimensional-space Re, + Re, + Re,. If T is not
exhausted by these, we take the closest point to this three-dimensional
space, etc.

PROBLEM 8. Show that this closest point always cxists.
Hinr. Take the closest of the finite number of points in a “cylinder™ €.

Note that the vectors e, e,, e4, ... arc lincarly independent. Since they all
lic in K", there are & < # of them.
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10: Introduction to perturbation theory

PropLEM Y. Show that T is exhausted by the integral linear combinations of e. ... €.

Iinr. Partition the plane e, + - + Re, into parallelepipeds A and show that there cannot
be a pomt of T in any A Il there is an e e T outside the plane Re, + - + Re,, the consiruction
is nat finished.

Thus Lemma 3 is proved. a

It is now easy to prove Lemma 2: M, is diffeomorphic to a torus T".
Consider the direct product of k circles and n — k straight lines:

T*x R ={(¢).... @i Vi » Yu-dh @ mod 27,

together with the natural map p: R¥" — T+ x R"°%,

p(®, ¥) = (@ mod 2x, y).

The points f,. ..., f, e R" {f; has coordinates ¢, = 2n, ¢, =0, y = 0) are
mapped to 0 under this map.

Let e,,..., ¢, €I’ < R" be the generators of the group I (cf. Lemma 3}.
We map the vector space R" = {{¢@, ¥)} onto the space B" = {t} so that the
vectors f, go to e,. Let A: R" — R" be such an isomorphism.

We now note that R" = {(@, ¥)} gives charts for T* x R""* and R" = {t}
gives charts for our manifold M,.

ProBLEM 0. Show thal the map of charts AR = 2" gives a  diffeomorphism
Aot mh oM,

But, since the manifold M, is compact by hypothesis, k = n and M, is an
n-dimensional torus. Lemma 2 is proved. l

In view of Lemma 1, the first two statements of the theorem are proved.
At the same time, we have constructed angular coordinates ¢, ..., ¢, mod 2n
on M.

PrRoBLEM [1. Show that under the action of the phase flow with hamiitonian H the angular
courdinates @ vary uniformily with time

@y = = off) @) = (0) + o

In other words, motion on the invariant torus M, is conditionally periodic.
Hing = A7,

Of all the assertions of the theorem, only the last remains to be proved:
that the system can be integrated by quadratures.
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50 Action-angle variables

We show here that, under the hypotheses of Liouville's theorem, we can find symplectic co-
ordinates (1. @) such that the first integrals F depend only on I, and ¢ are angular coordinaltes
on the torus M,

A Description of action-angle variables

In Section 49 we studied one particular compact connected level manifold
of the integrals: M; = {x: F(x} = f}; it turned out that M, was an n-di-
mensional torus, invariant with respect to the phase flow. We chose angular
coordinates ¢; on M so that the phase flow with hamiltonian function H = F,
takes an especially simple form:

a
d—‘f o) o) = o0 + or.

We will now look at a neighborhood of the n-dimensional manifold M,
in 2n-dimensional phase space.

PrOBLEM. Show that the manifold M, has a neighborhood diffeomorphic to the direct product
ol the n-dimensional torus T" and the disc D" in n-dimensional cuclidean space.

Hint. Take the functions F, and the angles ¢; constructed above as coordinates. In view of
the linear independence of the dF;, the functions Fand ¢, (i == |, .. .. n) give a difeomorphism
of a neighborhood of M onto the direct product T" x D",

In the coordinates (F, ) the phase flow with hamiltonian function H = F,
can be written in the form of the simple system of 2n ordinary differential
equations

F
dF_ o do_

(1 e 5 = b,

which is easily integrated: F(t} = F(0), @(t) = ¢(0) + o(F(0)):.

Thus, in order to integrate explicitly the original canonical system of
differential equations, it is sufficient to find the variables @ in explicit form.
It turns out that this can be done using only quadratures. A construction of
the variables ¢ is given below.

We note that the variables (F, @) are not, in general, symplectic co-
ordinates. It turns out that there are functions of F, which we will denote
by I = I(F), I =({,..., 1), such that the variables (I, @) are symplectic
coordinates: the original symplectic structure w? is expressed in them by
the usual formula
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10: Introduction 1o perturbation theory

The variables I are called action variables;*® together with the angle variables
@ they form the action-angle system of canonical coordinates in a ncighbor-
hood of M;.

The quantities f; are first integrals of the system with hamiltonian function
H = F, since they are functions of the first integrals F;. In turn, the variables
F; can be expressed in terms of I and, in particular, H = F; = H(I). In
action-angie variables the differential equations of our flow (1) have the form

dar

de _
)] L=0 —-=o

ProsreM. Can the functions a{[) in (2} be arbitrary?

Solution. In the variables (1, @). the equations of the flow {2) have the canonical form with
hamittonian function H(1}. Therefore, o(1) = CH 0L thus if the number of degrees of Ireedom
is = 2. the functions w{[) are not arbitrary, but satisfy the symmetry condition ée'cf | =

e,

Action-angle variables are especially important for perturbation theory;
in Section 52 we will demonstrate their application to the theory of adiabatic
invariants.

B Construction of action-angle variables in the
case of one degree of freedom

A system with one degree of freedom in the phase plane (p, ¢) 1s given by the
hamittonian function H(p. q).

2

ExampLe 1. The harmonic oscillator H = 1p? + 14%; or, more generally,

H = 3a’p* + 3b*¢*.

ExaMpLE 2. The mathematical pendulum H = 1p? — cos g. In both cases
we have a compact closed curve M, (H = h), and the conditions of the
theorem of Section 49 for n = 1 are satisfied.

In order to construct the action-angle variables, we will look for a
canonical transformation (p, ¢) — (I, ¢) satisfying the two conditions:

1. I = Ih),

(3)
2. do = 2n.

My
ProeLem. Find the action-angle vaniables in the cuse ol the simple harmonic oscillator
H="1p + g%
Sodution. If r. @ are polar coordinates. then dp A dy = rdr & dp = d(r?2) A do. There-
fore.] = # =ip’ + 4732

#5011 is not hard to see that | has the dimensions of action.
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50: Action-angle variables

In order to construct the canonical transformation p, g — I, ¢ in the
general case, we will look for its generating function S(/, g):

U, ) _ st Sg 3 _
e T A H( % ’q)_h(”'

We first assume that the function A(I) is known and invertible, so that every
curve M), is determined by the value of I (M), = M,;,). Then for a fixed
value of I we have from (4)

4

dS|I=c0nsl =p dq'

This relation determines a well-defined differential 1-form dS on the curve
Integrating this 1-form on the curve M, ;, we obtain (in a neighborhood
of a point ¢,) a function

4q
S(1,q) = f pdq.

qa

This function will be the generating function of the transformation (4) in
a neighborhood of the point (1, g4). The first of the conditions (3) is satisfied
automatically: [ = I(h). To verify the second condition, we consider the
behavior of S(1, g) “in the large.” After a circuit of the closed curve M, the
integral of p dg increases by

AS(Iy = i{; p dg,

My

equal to the area IT enclosed by the curve M,,,. Therefore, the function §
is a “multiple-valued function™ on M, : it is determined up to addition
of integral multiples of [1. This term has no effect on the derivative 48(7, §)/8g;
but it leads to the multi-valuedness of ¢ = 35/21. This derivative turns out
to be defined only up to multiples of d AS{(I)/dI. More precisely, the formulas
(4) define a 1-form do on the curve My, and the integral of this form on
M1, is equal to d AS(I)/dI.
In order to fulfill the second condition, §,,, d¢ = 2, we need that

o AS 11
di ASI) = 2m 2n 2%

where I1 = {,, pdq is the area bounded by the phase curve H = h.

Definition. The action variable in the one-dimensional problem with
hamiltonian function H(p, ¢) is the quantity I(h) = (1,/2m)[1(h).

Finally, we arrive at the following conclusion. Let d1/dh # 0. Then the
inverse I(h} of the function k(I) ts defined.
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10: Introduction to perturbation theory

Theorem. Set S{{.q) = |4 pdqly_ny,. Then formulas (4) give a canonical

q4;
transformation p, g — I, o satisfying conditions (3).

Thus, the action-angle variables in the one-dimensional case are con-
structed.

ProeLEm. Find § and I for a harmonic oscillator,
ANswer. Il H = a’p? + 1p%g? (Figure 217), then M, is the ellipse bounding the
area TI(h) = n(\;'?h,.-"a)(\_,-"'2!1,.-"!7) = 2rhiab = 2xhiw, Thus for a harmonic oscillator the action

variable is the ralio of energy to [requency. The angle variable ¢ is, of course, the phase of
oscillation.

4

\/Ef T

/_
T1{41)
H=4

Figure 217 Action variable for a hamonic oscillator
PrOBLEM. Show that the period T of motion along the closed curve H = # on the phase plane
p. ¢ 1s equal to the derivative with respect to 4 of the area bounded by this curve:

_dn(h)
Todr

T

Solurion. In action-angle variables the equations ol motion (2) give

__c?H_(cH)‘l_z(dH)“ Tu2n__dl'l
T \w T\ S dn

C Construction of action-angle variables in R*"

We turn now to systems with n degrees of freedom given in R?" = {(p, q)}
by a hamiltonian function H(p, q) and having » first integrals in involuticn
F,=H, F,, ..., F, We will not repeat the reasoning which brought us to
the choice of 2nf = § p dgqin the one-dimensional case, but will immediately
define n action variables 1.

Let y,..., 7, be a basis for the one-dimensional cycles on the torus M,
(the increase of the coordinate ¢; on the cycle y; is equal to 2r if i = j and
Oif i # j). We set

1
© 10 =5 ¢ pda
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50: Action-angle variables

Figure 218 Independence of the curve of integration for the action variable

ProBLEM. Show that this integral does not depend on the choice of the curve y, representing
the cycle (Figure 218}

Hint. In Section 49 we showed that the 2-form w?® = } dp, ~ dy, on the manifold M, is
equal.lo zero. By Stokes' formula,

(f)— 5Epdq=ﬂ dp ~odg =0,
X " N

]

where fe = ¢y — 5.

Definition. The n quantities I,(f) given by formula (5) are called the action
variables.

We assume now that, for the given values f; of the n integrals F;, the n
quantities f; are independent: det(0l/0f}|; # 0. Then in a neighborhood
of the torus M, we can take the variables I, ¢ as coordinates.

Theorem. The transformation p, ¢ — L, @ is canonical, i.e.,

de,- A dg; = Zdli ~ de,.

We outline the proof of this theorem. Consider the differential 1-form
p dq on M. Since the manifold M, is nutl (Section 49) this 1-form on M,
is closed: its exterior derivative w? = dp » dq is identically equal to zero
on M,. Therefore (Figure 219),

S(x) = f P dq] vy

X

Figure 219 Independence of the path for the integral of p dq on M,
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10: lntroduction to perturbation theory

does not change under deformations of the path of integration (Stokes’
formula). Thus S(x) is a “multiple-valued function™ on M,, with periods
equal to

AS = 'f dS = 2al,.
Yi

Now let x, be a point on M,, in a neighborhood of which the n variables
q are coordinates on My, such that the submanifold My < R*" is given by n
equations of theformp = p(l, ¢}, q(x,) = q,. Inasimply connected neighbor-
hood of the point g, a single-valued function is defined,

q
S(Lq) = J. M1, q)dg,

and we can use it as the generating function of a canonical transformation
pa— Lo

s a8
P=% P71

It is not difficult to verify that these formulas actually give a canonical
transformation, not only in a neighborhood of the point under consideration,
but also “in the large” in a neighborhood of M. The coordinates ¢ will be
multiple-valued with periods

as ¢ d .

I J

ijs
as was to be shown. O

We now note that all our constructions involve only “algebraic™
operations (inverting functions) and “quadrature”—calculation of the
integrals of known functions. In this way the problem of integrating a
canonical system with 2n equations, of which n first integrals in involution
are known, is solved by quadratures, which proves the last assertion of
Liouville’s theorem (Section 49), ]

Remark 1. Even in the one-dimensional case the action-angle varables
are not nniquely defined by the conditions (3). We could have taken
I' = I + const for the action variable and ¢ = @ + ¢(I) for the angle
variable.

Remark 2. We constructed action-angle variables for systems with phase
space R%". We could also have introduced action-angle variables for a system
on an arbitrary symplectic manifold. We restrict outselves here to one simple
example (Figure 220).
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51: Averaging

Figure 220 Actien-angle variables on a sympiectic manifold

We could have taken the phase space of a pendulum (H = 1p* - cos g)
to be. instead of the plane {{(p. g)}, the surface of the cylinder R! x S!
obtained by identifying angles g differing by an integral multiple of 2.

The critical level hnes H = %1 divide the cylinder into three parts,
A, B, and C, each of which is diffeomorphic to the direct product R* x §'.
We can introduce action-angle variables into each part. In the bounded part
(B) the closed trajectories represent the oscillation of the pendulum; in
the unbounded parts they represent rotation.

Remark 3. In the general case, as in the example analyzed above, the
equations F; = f;cease to be independent for some values of f;, and M, ceases
to be a manifold. Such critical values of f correspond to separatrices dividing
the phase space of the integrable problem into parts corresponding to the
parts A, B, and C above. In some of these parts the manifolds M, can be
unbounded {parts 4 and C in the plane {{p, g)}); others are stratified into
n-dimensional invariant tori M;; in a neighborhood of such a torus we
can introduce actien-angle variables.

51 Averaging

In this paragraph we show that time averapes and space averages are equal for systems under-
going conditionally periodic motion.

A Conditionally periodic motion

In the carlier sections of this book, we have frequently encountered condi-
tionally periodic motion: Lissajous figures, precession, nutation, rotation of
a top, ete.

Definition. Let T” be the n-ditmensional torus and ¢ = (¢,, ..., ¢,) mod 2r
angular coordinates. Then by a conditionally periodic motion we mean a
one-parameter group of diffeomorphisms 7% — T" given by the dif-
ferential equations (Figure 221):

P = w, = (w,, ..., w,) = const.
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10: Introduction to perturbation theory

PR

Figure 221 Conditionally periodic motion

These differential equations are easily integrated:
(1) = ¢(0) + o
Thus the trajectories in the chart {¢} are straight lines. A trajectory on the

torus is called a winding of the torus.

Examere. Let v = 2 W en ray =k, k.. the trajectories are closed: if ey o, s irrational, then
Lrajectories on the torus are dense (el Section 16),

The quantitics @y, ..., w, are called the frequencies of the conditionally
periodic metion. The frequencies are called independent if they are linearly
independent over the field of rational numbers: if k € Z"®° and (k, @) = 0,
thenk = 0,

B Space average and time average

Let f{@) be an integrable function on the torus T"

Definition. The space average of a function f on the torus T is the number

in 2n

f={2”)_"_[ o) f(@)de, - do,.

Q a

Consider the value of the function f() on the trajectory ¢{t) = @, + ot
This is a function of time, (@, + w:). We consider its average.

Definition. The time average of the function § on the torus T" is the function

1

:
f00) = Jim f @y + ondi

{defined where the limit exists).

Theorem on the averages. The time average exisis everywhere, and coincides
with the space average if [ is continuous (or merely Riemann integrable)
and the frequencies w; are independent.

ho=(k k. with integral &,.
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51: Averaging

PropieM. Show that if the lreguencies are dependent, then the time average can difler from the
SPUCE average.

Corollary 1. If the frequencies are independent, then every trajectory {@(t)}
is dense on the torus T".

PROOF. Assume the contrary. Then in some neighborhood P of some point
of the torus, there is no point of the trajectory @(¢). It is easy to construct a
continuous function f equal to zero outside D and with space average equal
to 1. The time average f*(g,) on the trajectory @{f) is equal to 0 # 1.
This contradicts the assertion of the theorem. (]

Corollary 2. If the frequencies are independent, thern every trajectory is
uniformly distributed on the torus T".

This means that the time the trajectory spends in a neighborhood D is
proportional to the measure of D.

More precisely, let D be a (Jordan) measurable region of T". We denote
by 1,(T) the amount of time that the interval 0 < r < T of the trajectory
@(r) is inside of D. Then

lim ot _ mes D
g T (2ny

ProoF. We apply the theorem to the characteristic function f of the set D
(f is Riemann integrable since D is Jordan measurable). Then (7 f(@(0)dt =
t5(T), and f = (2n) " mes D, and the corollary follows immediagety from
the theorem. i

Corollary. Ia the seqguience
24 81,36 1.2,5 1.2 ..

of fiest digits of the sumbers 27, the mumber 7T appears (log 8 — log T.(log 9 — log B) rimes as
often as K.

The theorem on averages may be found implicitly in the work of Laplace,
Lagrange, and Gauss on celestial mechanics; it is one of the first “ergodic
theorems.” A rigorous proof was given only in 1909 by P. Bohl, W. Sierpiaski,
and H. Weyl in connection with a problem of Lagrange on the mean motion
of the earth’s perihelion. Below we reproduce H, Weyl’s proof.

C Proof of the theorem on averages
Lemma 1. The theorem is true for exponentials { = ¢"™*® ke 77,

Proor. [fk = 0, then f = f = f* = 1 and the theorem is obvious. If k # 0,
then f = 0. On the other hand,

T ei{ﬂ.m]f -1
J ei{k,fpn + ) dt = ei{k.ﬂin] i
4] l(k? m}
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10: Introduction to perturbation theory

Therefore, the time average is
e'-(l‘-‘P:rJ el'(k.m}T -1

I - -0 [l
ke T

Lemma 2. The theorem is Lrue for trigonometric polynomials

f= Y fewe.

k|<=N

Proor. Both the time and space averages depend linearly on f, and therefore
agree by Lemma 1. O

Lemma 3. Let f be a real continuous (or at least Riemann integrable) function.
Then, for any ¢ > 0, there exist two trigonometric polynomials P, and P,
such that P, < [ < Py and (1/2r)") {4 (Py — P))de < &.

Prook. Suppose first that { is continuous. By the Weierstrass theorem, we
can approximate f by a trigonometric polynomial P with |f — P| < =
The polynomials P, = P — 4z and P, = P + 3¢ are the ones we are looking
for.

If 1 is not continuous but Riemann integrable, then there are two continu-
ous functions f, and £, such that f, < f < fyand 2r)™" [ (f; — f)dp < 3¢
(Figure 222 corresponds te the characteristic function of an interval).
By approximating f; and f, by polynomials P, < f; < f;, < Py,
(2m)~" [ (Py — fo)do < 3e, 2r) 7" [ (fy — Pdg < je, we obtain what we
need. Lemma 3 is proved. O

Figure 222 Appreximation of the function f by trigonometric polynomials P, and P,

It is now easy to finish the proof of the theorem. Let & > 0. Then,
by Lemma 3, there are trigonometric polynomials P, < f < P, with
(2m)~" { (P, — P)do < e.

For any T, we then have

1 LT Lt
= f Pyt < j Floon: < - f Po@(O)dt.
By Lemma 2, for T > Ty(e),

_ 1 T _
P, - T J; Pgp())dt| < & (i=1,2).
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Furthermore, P, < f< P, and P, — P, < & Therefore, P, — f< ¢ and
f — P, < g; therefore, for T' > Ty(e),

T
iJ. f(@{)dt — f‘ < Ze,
Tty
as was to be proved. U

PrOBLEM. A two-dimensional oscillator with kinetic energy 7 = 1%* + 412 and potential
encrgy UF = §x7 + y? performs an oscillation with amplitudes «, = | and u, = . Find the
time average of the kinetic energy.

PROBLEM.?® Let ty, be independent, g, > 0. Cakeulate
3

o z )
lim - arg 3 6™
r—= ! k=1

ANSWER. {myt) 4+ 01,2, + myxa}m, where %, 5. and %, are the angles of the triangle with
sides g, (Figure 223},

o T - 3]

Figure 223 Problem on mcan motion of perihelia

D Degeneracies

So far we have considered the case when the frequencies @ are independent.
An integral vector ke Z” is called a relation among the frequencies if

k, @) = 0.

PrOBLEM. Show that the set of all relations between a given set of frequencies w is a subgroup
I" of the lattice £

We saw in Section 49 that such a subgroup consists entirely of linear
combinations of r independent vectors k;, 1 < r < n. We say that there are
r (independent) relations among the frequencies.”!

#¢ Lagrange showed that the investigation of the average motion of the perihelion of a planet
reduces (0 4 similar problem. The solution of this prablern can be found in the work of H. Weyl,
The cocentricity of the earth's orbit varies as the modulus of an analogous sum. Ice ages appear
to be related to these changes in eccentricity.

* Show that the number r does not depend on the choice of independent vectors k, .
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10: Introduction to perturbation theory

ProaLem. Show that the closure of a trajectory {@(f) = ¢, + wt} (on T") is a torus of dimen-
sion n — rif there are r independent relations among the frequencies w; in this case the motion
on 777" is conditionally periodic with # — r independent frequencies.

We turn now to the integrable hamiltonian system given in action-angle
variables I, ¢ by the equations
. oH
I1=0 ¢ = o(l), where 1) = i
Every n-dimensional torus I = const in the 2n-dimensional phase space is
invariant, and motion on it is conditionally periodic.

Definition. A system is called nondegenerate if the determinant

Jw J*H
det 5= det e

i$ not zero.

ProBLEM. Show that. il a sysiem is nondegenerate, then in any neighborhood of any point there
is a conditionally periodic motion with n frequencies, and also with any smaller number of
frequencies.

Hinr. We can lake the lrequencies o themsclves instead of the variables 1as local coordinates.
In the space of collections of lrequencies. the set of points @ with any number of relations
HO =+ = n)is dense.

Corollary. If a system is nondegenerate, then the invariant tori 1 = const
are uniquely defined, independent of the choice of action-angle coordinates
1, @, the construction of which always involves some arbitrariness.®?

Proor. The tori I = const can be defined as the closures of the phase tra-
jectories corresponding to the independent w. 0

We note incidentally that, for the majority of values I, the frequencies
o will be independent.

ProBLEM. Show that the set of 1 for which the frequencies wil) in a nondegenerate system are
dependent has Lebesgue measure equal to zero.
Hint. Show first that

mes jo0: Ik # 0 {w k) =0} =0,

On the other hand, in degenerate systems we ¢an construct systems of
action-angle variables such that the tori I = const wiil be different in dif-
ferent systerns. This is the case because the closures of trajectories in a
degenerate system are ton of dimension k < n, and they can be contained
in different ways in n-dimensional tori.

*? Far cxample, we can always write the substitution I' = L ¢ =@ + §(1) or .1,
W@y~ dien e — 0
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52: Averaging of perturbations

ExaMpLE 1. The planar harmonic oscillator ¥ = —x; n = 2, k = 1. Separa-
tion of variables in cartesian and polar coordinates leads to different action-
angle variables and different tori.

ExaMmpLE 2. Keplerian planar motion (U = —1/r), n =2, k = I. Here,
too, separation of variables in polar and in elliptic coordinates leads to
different 1.

52 Averaging of perturbations

Here we show the adiabatic invariance of the action variable in & system with one degree of
freedom.

A Systems close to integrable ones

We have considered a great many integrable systems (one-dimensional
problems, the iwo-body problem, small oscillations, the Euler and Lagrange
cases of the motion of a rigid body with a fixed poimnt, etc.). We studied the
characteristics of phase trajectories in these systems: they turned out to be
“windings of tori,” densely filling up the invariant tori in phase space; every
trajectory is uniformly distributed on this torus.

One should not conclude from this that integrability is the typical
situation. Actually, the properties of trajectories in many-dimensional
systems can be highly diverse and not at all similar to the properties of
conditionally periodic motions. In particular, the closure of a trajectory
of a system with n degrees of freedom can fill up complicated sets of dimension
greater than n in 2n-dimensional phase space; a trajectory could even be
dense and uniformly distributed on a whole (2n — 1)-dimensional manifold
given by the equation H = A.°® One may call such systems “nonintegrable”
since they do not admit single-valued first integrals independent of H.
The study of such systems is still far from complete; it constitutes a problem
in “ergodic theory.”

One approach to nonintegrable systems is to study systems which are
close to integrable ones. For example, the problem of the motion of planets
around the sun is close lo the integrable problem of the motion of non-
mnteracting points around a stationary center; other examples are the prob-
lem of the motion of a slightly asymmetric heavy top and the problem of
nonlinear oscillations close to an equilibrium position {the nearby integrable
problem is linear). The following method is especially fruitful in the in-
vestigation of these and stmilar problems.

B The averaging principle
Let I, @ be action-angle variables in an integrable (“unperturbed™) system

with hamiltonian function Hy(1):

i oH
i=0 ¢=wb (u(l)=a—l°.

*3 For example. inertizl motion on a manifoid of negative curvature has this property.
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10: [ntroduction to perturbation theory

As the nearby “perturbed” system we take the system
(1) p=ol) +0¢ [=cal o)

where e € 1.

We will ignore for a while that the system is hamiltonian and consider
an arbitrary system of differential equations in the form (1} given on the direct
product T* x G of the k-dimensional torus T = {¢@ = (¢4, ..., ¢,) mod 2x}
and a region G in I-dimensional space G < R' = {I = (J,,...,1)}. For
& = 0 the motion in {1) #s conditionally periodic with at most & frequencies
and with k-dimensional invariant tori.

The averaging principle for system (1} consists of its replacement by
another system, called the averaged system:

2m

in
@ d=ad) g(J)=(2n)-*f jg(J,w)dqol,‘..,dcpk
0 O

in the I-dimensional region G = R' = {J = {J,, ..., J)}.

We claim that system (2) is a “ good approximation™ to system (1).

We note that this principle is neither a theoretn, an axiom, nor a definition,
but rather a physical proposition, ie., a vaguely formulated and, strictly
speaking, untrue assertion. Such assertions are often fruitful sources of
mathematical theorems.

This averaging principle may be found explicitly in the work of Gauss
(in studying the perturbations of planets on one another, Gauss proposed
to distribute the mass of each planet around its orbit proporticonally to time
and to replace the attraction of each planet by the attraction of the ring so
obtained). Nevertheless, a satisfactory description of the connection between
the solutions of systems (1) and (2} in the general case has not yet been found.

In replacing system (1) by system (2) we discard the term eg(l, @) =
eg(l, @) — eg(I) on the right-hand side. This term has order ¢ as does the
remaining term &g, In order to understand the different roles of the terms
g and g in g. we consider the simplest example.,

ProBLEM . Consider the case k == 1,
p=w#0 [=cgo)
Show that for 0 < ¢ < l/e,
[I(t) — J(t)| < ce, where J(t) = 0) + egt.

Solution

1(r) - I0) = J. eqlo, + wt)dt = .fag dt + = .f J@Mo = &gt + = hlwr)
o 0 W o

]
where h(¢) = [§§(¢)de is a periodic, and therefore bounded, function.
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JEp—

HO gy

i | . €t
!

Figure 224 Evolution and oscillation

Thus the variation in { with time consists of two parts: an oscillation of
order & depending on § and a systematic “evolution™ with velocity &g
(Figure 224).

The averaging principle is based on the assertion that in the general
case the motion of system (1) can be divided into the “evolution™ (2) and
small oscillations. In its general form, this assertion is invatid and the principle
itself ts untrue. Nevertheless, we will apply the principle te the hamiltonian
system (1):

)

. ? .
¢ = — S (HD +sH, (L) 0= EO(B(HO(]) + 2H (1, ).

For the right-hand side of the averaged system (2) we then obtain

2x & I
g=2m)"" —H =10
B= (0" [ 2o H(L ok =0
In other words, there is no evolution in 2 nondegenerate hamiltonian system.

One variant of this entirely nonrigorous deduction leads to the so-
called Laplace theorem: The semi-major axes of the keplerian ellipses of
the planets have no secular perturbations.

The discussion above suffices to convince us of the importance of the
averaging principle; we now formulate a theorem justifying this principle
In one very particular case-—that of single-frequency oscillations (k = 1).
This theorem shows that the averaging principle correctly describes evolution
over a large interval of time (0 < t < 1/¢).

C Areraging in a single-frequency system

Consider the system of I + 1 differential equations

o = o) + & (1, @) o mod 2r e 8!,
= el @) le G c R,

where f{I, ¢ + 2n) = (L, ) and g(L, ¢ + 2r) = g(1, ¢), together with the
“averaged” system of { equations

(1)

. 1 3
) J = g(J), where g(J) = o J g(d, @)do.
T Jo
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(—f

Figure 225 Theorem on averaging

We denote by 1{z), ¢(t) the solution of system (1) with initial conditions
I{0), p{0), and by J(t) the solution of system (2) with the same initial con-
ditions J(0) = I{0) (Figure 225).

Theorem, Suppose that:

1. the functions w, f, and g are defined for 1in a bounded region G, and in
this region they are bounded, together with their derivatives up to second

order:
lew, £, 8lcae s < €13

2. in the region G, we have
o) > ¢ > 0;

3. for0 <t < 1/e, aneighborhood of radius d of the point J(t) belongs to G
JeG -4

Then for sufficiently small ¢ (0 < ¢ < £;)

o | -

[I(t) — J(e) < cqe, forall 0 <t <

[l

where the constant ¢q > 0 depends on ¢, ¢, and d, but not on &.

Some applications of this theorem will be given below (“adiabatic in-
variants™). We remark that the basic idea of the proof of this theorem
{(a change of variables diminishing the perturbation) is more important than
the theorem itself; this is one of the basic ideas in the theory of ordinary
differential equations; it is encountered in elementary courses as the “method
of variation of constants.”

D Proof of the theorem on averaging
In place of the variables I we will introduce new variables P
(3) P=1+:Kl @),

where the function k, 2n-periodic in ¢, will be chosen so that the vector P
will satisfy a simpler differential equation.
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By (1) and (3), the rate of change of P(¢) is

. . k. ’k ik ck ck
=1 e @ =g — 2 — 2 f.
4 P +€EJII+£3@[P s[g{l,go)+a(Pw(I)]+f‘ alg+s aq}f

We assume that the substitution (3) car be inverted, so that
(5) I="P + zhiP, o, &)

{where the functions h are 2n-periodic in ¢).
Then (4) and (5) imply that P(¢) satisfies the system of equations

© P = s[g(P, o+ 5 w(P)] +R

where the “remainder term™ R is small of second order with respect to ¢:
N IR| < ¢ €% caley, 3, €4) > 0,

if only

B Nolez<e, Ifllce<ey lgllex<cp [kllez <cy  [hl¢cz < cy.

We will now try to choose the change of variables (3) so that the term
involving ¢ in (6) becomes zero. For k we get the equation

-k 1

do @ &

In general, such an equation is not solvable in the class of functions k
periodic in ¢. In fact, the average value (with respect to ¢) of the left-hand side
is always equal to 0, and the average value of the right-hand side can be
different from 0. Therefore, we cannot choose k in such a way as to kill the
entire term involving ¢ in (¢). However, we can kill the entire * periodic”
part of g,

by setting
8P, p)
~ ) Sam 4

So we define the function k by formula (9). Then, by hypotheses 1. and
2. of the theorem, the function k satisfies the estimate |k|q. < ¢y, where
c3(cy, €) > 0. In order to establish the inequality (8), we must estimate h.
For this we must first show that the substitution (3) is invertible.

Fix a positive number «.

9) kP, ¢) =

Lemma. If ¢ is sufficiently small, then the restriction of the mapping (3)°*
I =14 ck, where |K|ezg < ca,

** For any lixed value of the parameter .
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to the region G — w« (consisting of points whose a-neighborhood is contained
in G) is a diffeomorphism. The inverse diffeomorphism (5) in the region
G — 2a satisfies the estimate ||h||c: < ¢4 with some constant ¢,(z, ¢5) > 0,

Proor. The necessary estimate follows directly from the implicit function
theorem. The only difficulty is in verifying that the map I — I + ¢k is one-
to-one in the region G — . We note that the function k satisfies a Lipschitz
condition (with some constant I{x,¢,)) in G — % Consider two points
I, I, in G — = For sufficiently small & (namely, for Le < 1) the distance
between :k(I,) and ¢k(I,) will be smaller than |I, — I,|. Therefore,
I, +:ck(I,} # I, + «k(I,). Thus the map (3} is one-to-one on G — &, and
the lemma is proved. O

It follows from the lemma that for & small enough all the estimates (8)
are satisfied. Thus the estimate (7) is also true.
We now compare the system of differential equations for J

(2) J = cg(J)
and for P: the latter, in view of (9), takes the form
(6) P =g(P) + R

Since the difference between the right sides is of order < & (cf. (7)), for time
t < l/sthedifference |P — J| between the selutions is of order e (Figure 226).
On the other hand, |1 — P| = ¢|k| £ ¢ Thus, for 1 £ l/e, the difference
[l — J|is of order <&, as was to be proved. W]

iy - P(0)

)

Figure 226 Proof of the theorem on averaging

To find an accurate estimalte. we introduce the quantity
(10) = = Pl - Jw
Then (67 and {9) imply

b — Wg(P) — 2} + R = & ‘f.) z+R.
(]

where |R'| < ¢,&° + ¢,¢|2z| if the segment (P, J) lics in G — x Under this assumption we find

{1 |2] < coulz]l + ey {where ey, = g + ¢}

[2(0)] =< eqn
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52: Averaging of perturbations

Lemma, [f |Z| < alz| + b and 12(0)| < d for a, b.d, t > 0, then |2{t)| < (d + bt)e™.

PRrOOF. |zi(1)| is no greater than thc solution p(t) of the equation i = ay + h, W0) = d. Solving
this equation, we find p = Ce™, Ce™ = b, C = ¢ ™h, O =d, C < d + b, ]

Now [rom (11) and the assumplion that the segment (P, J) liesin G — = (Figurc 226), we have
|2le}| < (epe + o 6200,
From this it follows that, for 0 < ¢ < |/,
{#(1)| < ¢-¢ Cr =ty + o)™

We see that, if % = d/3 and ¢ is small enough, the entire segment {P(), J{r))t < 1) lies inside
G — z and, therefore,

1
[Pt} — () < eqe forallO g1 = -
I

On the other hand, |P{r) — It} < tek| < ¢ye Thus, for all ¢ with 0 < 1 < 1z,
[It) — J(e)) < eqe o =0y ey =)

and the theorem is proved. O

E Adiabatic invariants

Consider a hamiltonian system with one degree of freedom, with hamiltonian
function H{p, q; 1) depending on a parameter 4, As an example, we can take
a pendulum:

2 qZ

H= T Ig 3
as the parameter A we can take the length ! or the acceleration of gravity g.
Suppose that the parameter changes slowly with time. It turns out that in
the limit as the rate of change of the parameter approaches 0, there is a
remarkable asymptotic phenomenon: two quantities, generally independent,
become functions of one another.

Assume, for example, that the length of the pendulum changes slowly
(in comparison with its characteristic oscillations). Then the amplitude
of its oscillation becomes a function of the length of the pendulum. If we
very slowly increase by a factor of two the length of the pendulum and then
very slowly decrease it to the original vaiue, then at the end of this process
the ampiitude of the oscillation will be the same as it was at the start.

Furthermore, it turns out that the ratio of the energy H of the pendulum
to the frequency @ changes very little under a slow change of the parameter,
although the energy and frequency themselves may change a lot. Quantities
such as this ratio, which change little under slow changes of parameter,
are called by physicists adiabatic invariants.

It is easy to see that the adiabatic invariance of the ratio of the energy
of a pendulum to its frequency is an assertion of a physical character, i.¢., it is
untrue without further assumptions. In fact, if we vary the length of a
pendulum arbitrarily slowly, but chose the phase of oscillation under which

?
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2 ‘

e
Figure 227 Adiabatic change in the length of a pendulum

the length increases and decreases, we can set the pendulum swinging
(parametric resonance). In view of this, physicists have suggested formulating
the definition of adiabatic invariance as follows: the person changing the
parameters of the system must not see what state the system is in (Figure 227).
Giving this definition a rigorous mathematical meaning is a very delicate
and as yet unsolved problem. Fortunately, we can get along with a surrogate.
The assumption of ignorance of the internal state of the system on the part
of the person controlling the parameter may be replaced by the requirement
that the change of parameter must be smooth, ie., twice continuously
differentiable.

More precisely, let H{(p, q; 1) be a fixed, twice continuously differentiable
function of 4. Set A = & and consider the resulting system with slowly
varying parameter 4 = &t:

oH . OH

=—, H = H{p, g; st).
w T (p. q: 1)

*) p=

Definition. The quantity I(p, q; A) is an adiabatic invariant of the system (*)
if for every k > O there is an &, > O such thatif 0 < e < gyand 0 <t < 1/,
then

H(p(e), q(1); sy — H{p(0), g(0); 0)] < .

Clearly, every first integral is also an adiabatic invariant. It turns out that
every one-dimensional system (*) has an adiabatic invariant. Namely, the
adiabatic invariant is the action variable in the corresponding problem
with constant coeficients.

Assume that the phase trajectories of the system with hamiltonian
H(p, q; A) are closed. We define a function I(p, g; 4) in the following way.
For fixed A there is a phase portrait corresponding to the hamiltenian function
H(p, g; A) (Figure 228). Consider the closed phase trajectory passing through
a point {(p, g). It bounds some region in the phasc plane. We denote the area
of this region by 2rnl(p, q; 4). I = const on every phase trajectory (for
given 4). Clearly, I is nothing but the action variable (cf. Section 50).

Theorem. If the frequency w(l, 1) of the system (*} is nowhere zero, then
I(p, q; A) is an adiabatic invariant.
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A tixed
Py

'l

Figure 228  Adiabatic invariant of a one-dimensional system

F Proof of the adiabatic invariance of action

For fixed A we can introduce action-angle variables I, ¢ into the system (*)
by a canonical transformation depending on A:p,g— I, ¢; ¢ = w(l, ),
I=0;0(, 1) = 0Hy/@IL Hy = Hy(l, A).

We denote by S(1, g; A} the (multiple-valued) generating function of this
transformation:

s s
P=5% YT ar

Now let 1 = ¢t. Since the change from variables p, g to variables I, ¢ is now
performed by a time dependent canonical transformation, the equations of
motion in the new variables I, ¢ have the hamiltonian form, but with
hamiltonian function (cf. Section 45A)

oS és

K=H0+a—t=Ho+Ea.

ProBLEM. Show that 88(1, 4 4)/24 is & single-valued function on the phase pianc.
Hint. S is determined up to the addition of meltiples of 2xf.

In this way we obtain the equations of motion in the form

s o)+ Ui d) S =
@ =, &, ¢, = aran’
RN
b= eg(l, p; A - 9>
eg{l, 5 A) g G0 00
i=c¢

Since w # 0, the averaging theorem (Section 52C) is applicable. The
averaged system has the form
J=g A=s
But g = (8/0¢)(8S/04), and 85/84 is a single-valued function on the circle
I = const. Therefore, § = (27) "' [ g dp = 0, and in the averaged system J
does not change at all: J(r) = J(O).
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10: Introduction to perturbation theory

By the averaging theorem, [I(t) — H{0)| < c¢ for all £ with 0 <1 < 1/e,
as was to be proved. O

ExAaMpLE. For a harmonic oscillator (cf. Figure 217),

2 b? 1 J2hJ/2h h
H=a—pz+--—qr2 i 7= a = ab,
2 2 b @

i.e., the ratio of energy to frequency is an adiabatic invariant.

T2z a

;
T
|
\

i

o

£
|

Figure 229 Adiabatic invariant of an absolutely elastic ball betwecn slowly changing
walls

ProBLEM. The length of a pendulum is slowly doubled (! = Io(1 + 1),
0 < t < 1/e). How does the amplitude g,,,, of the oscillations vary?
Solution. I = }P2¢g*2q2, . ; therefore,

3/4
Gsl®) = mae(0) (“0)) .

(D)

As a second example, consider the motion of a perfectly elastic rigid ball
of mass 1 between perfectly elastic walls whose separation [ slowly varies
(Figure 229). We may consider that a point is moving in an “infinitely deep
rectangular potential well,” and that the phase trajectories are rectangles
of area 2vl, where v is the velocity of the ball. In this case the product uf
of the velocity of the ball and the distance between the walls turns out to be
an adiabatic invariant.®® Thus if we make the walls twice as close together,
the velocity of the ball doubles, and if we separate the walls, the velocity
decreases.

%S This does not formally follow from the theorem, since the theorem concerns smooth systems

without shocks. The prool of the adiabatic invariance of of in this system is an instructive elemen-
tary problem.
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From a sheet of paper, one can form a cone or a cylinder, but it is impossible
to obtain a piece of a sphere without folding, stretching, or cutting. The reason
lies in the difference between the “intrinsic geometrics™ of these surfaces: no
part of the sphere can be isometrically mapped onto the plane.

The invariant which distinguishes riemannian metrics is called riemannian
curvature. The riemannian curvature of a planc 1s zero, and the curvature of
a sphere of radius R is equal to R™ % If onc¢ ricmannian manifold can be iso-
metrically mapped to another, then the riemannian curvature at correspond-
ing points is the same. For example, since a cone or cylinder 1s locally i1so-
metric to the plane, the riemannian curvature of the cone or ¢ylinder at any
point is equal to zero. Therefore, no region of a cone or cylinder can be mapped
isometrically to a sphere.

The riemannian curvature of a manifold has a very important influence
on the behavior of geodesics on it, t.e, on motion in the corresponding
dynamical system. If the riemannian curvature of a manifold is positive (as
on a sphere or ellipsoid), then nearby geodesics oscillate about one another
in most cases, and if the curvature is negative (as on the surface of a hyper-
boloid of one sheet), geodesics rapidly diverge from one another.

In this appendix we define riemannian curvature and briefly discuss the
properties of geodesics on manifolds of negative curvature. A further treat-
ment of riemannian curvature can be found in the book, “Morse Theory”
by John Milror, Princeton University Press, 1963, and a treatment of
geodesics on manifolds of negative curvature in D. V. Anosov’s book,
“Geodesic flows on closed riemanntan manifolds with negative curvature,”
Proceedings of the Steklov Institute of Mathematics, No. 90 (1967), Am.
Math. Soc., 1969.

A Paralle!l transiarion on surfaces

The definition of riemannian curvature is based on the construction of parallel
translation of vectors along curves on a riemannian manifold.

We begin with the case when the given riemannian manifold is two-
dimensional, i.e., a surface, and the given curve is a geodesic on this surface.
[See do Carmo, Manfredo Perdigao, * Differential Geometry of Curves and
Surfaces,” Prentice-Hall, 1976, (Translator’s note) ]

Parallel translation of a vector tangent to the surface along a geodesic on
this surface is defined as follows: the point of origin of the vector moves along
the geodesic, and the vector itself moves continuously so that its angle with
the geodesic and its length remain constant. By translating to the endpoint
of the geodesic all vectors tangent to the surface at the initial point, we obtain
a map from the tangent plane at the initial point to the tangent plane at the
endpoint. This map 1s lincar and isometric.

We now define parallel translarion of a vector on a surfuce along a broken
line consisting of several geodesic arcs (Figure 230). In order to translate a
vector along a broken line, we translate it from the first vertex to the second
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Figure 230  Parallel translation ulong a broken geodesic

along the first geodesic arc, then translate this vector along the second arc
to the next vertex, etc.

PrOBLEM. Given a vector tangent o the sphere at one vertex of a spherical triangle with three
right angles, translate this vector around the triangle and back to the same vertex.

ANSWER. As 4 result of this translation the tangent plane to (he sphere at the initial vertex will
be turned by a right angle.

Finally, paraile! translation of a vector along any smooth curve on a surface
is defined by a himiting procedure, in which the curve 1s approximated by
broken lines consisting of geodesic arcs.

PropLeM. Translate 2 vector divected towards the North Pole and located al Teningrad (lautude
A = 60"y uround the 60h parallel and back to Leningrad, moving to the east.

ANsweRr. The vector turns through the angle 2= {1 — sin 4), i.e, approximately 50° to the west.
Thus the size of the angle of rowation is proportional to the area bounded by our parallel. and
the direction of rotation coincides with the direction the origin of the vector is going around the
Narth Pole.

Hine. 10 is sufficient to translate the vector along the same circle on the cone formed by the
tangent lines to the meridian, going through 2l the points of the parallel (Figure 231). This cone
then can be unrolled onio the plane, after which parallel (ranslation on its surface becomes
ordinary parallel transiation on the plane.

Figure 231  Parallel translation on the sphere
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ExampLE, We consider the upper half-plane y = 0 ol the plane of complex numbers z = x + iy
with the metric

dx? + dy?
=

ds?
¥

It is casy to compute that the geodesics of this two-dimensional riemannian manifold are circles
and straight lines perpendicular to the x-axis. Linear fractional transformations with real
coefficients
az+ b
- —

oz +";J’

are isometric transformations of our manifold, which is calied the Lobachevsky plane.

ProBLEM. Transiate a vector directed along the imaginary axis at the point z = { to the point
z =t + [ along the horizontal line (dy = 0) {Figure 232).

Axnswer. Under translation by ¢ the vector turns t radians in the direction from the y-axis towards
the x-axis.

\f

\N/ B

Figure 232 Parsllel translation on the Lobachevsky plane

B The curvature form

We will now define the riemannian curvature at each point of a two-dimen-
sional riemannian manifold (1.e., a surface). For this purpose, we choose an
orientation of our surface in a neighborhood of the point under consideration
and consider parallel translation of vectors along the boundary of a small
region D on our surface. It is easy to calculate that the result of such a trans-
lation is rotation by a smafl angle. We denote this angle by (D) (the sign of the
angle is fixed by the choice of orientation of the surface).

If we divide the region D into two parts D and D,, the result of parallel
translation along the boundary of D can be obtained by first going around
onc part, and then the other. Thus,

®(D) = @(Dy) + o(D,),

i.e., the angle ¢ is an additive function of regions. When we change the direc-
tion of travel along the boundary, the angle ¢ changes sign. It is natural
therefore to represent ¢(D) as the integral over D of a suitable 2-form, Such
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a 2-form in fact exists; it is called the curvature form, and we denote it by Q.
Thus we define the curvature form Q by the relation

(1) 9(D) = LQ.

The value of £ on a pair of tangent vectors &, # in TM, can be defined in the
following way. We identify a neighborhood of the point 0in the tangent space
to M at x with a neighborhood of the point x on M {using, for example,
some local coordinate system). We can then construct on M the parallelogram
I'l, spanned by the vectors &£, en, at least for sufficiently small .

Now the value of the curvature form on cur vectors is defined by the
formula

i1,
@ o, n) = lim 25

e—0

In other words, the value of the curvature form on a pair of tangent vectors
13 ¢qual to the angle of rotation under translation along the infinitely small
parallelogram determined by these vectors.

ProBLEM. Find the curvature forms on the plane, on a sphere of radius R, and on the Lobachevsky
plane.

ANSWER. §2 =0, 2= R™?48, 2 = —d§, where the 2-form 4§ is the area element on our
oriented surface.

PrOBLEM. Show that the function defined by formula {2)is really a differential 2-form, independent
of the arbitrary cheice involved in the construction, and that the rotation of a vector under
translation along the boundary of a finite oriented region D is expressed. in terms of this form,
by formula (1}.

ProBLEM. Show that the integral of the curvature form over any convex surface in three-dimen-
sional euclidean space is equal 1o 4z,

C The riemannian curvature of a surface

We note that every differential 2-form on a two-dimensional oriented
riemannian manifold M can be wriiten in the form pdS, where dS is the
oriented area element and p is a scalar function uniquely determined by the
choice of metric and orientation.

In particular, the curvaturc form can be written in the form

Q = KdS,

where K: M — Ris a smooth function on M and 45 is the area element.
The value of the function K at a point x is called the riemannian curvature
of the surface at x.

ProsLEM. Calculate the riemannian curvature of the euclidean space, the sphere of radius R,
and the Lobachevsky plane.
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ANSWER. K =0, K =R 2L K = -1,

ProrLrM. Show that the riemannian curvature docs not depend on the orientation of the mani-
fold. but only on its metric.
Hint. The 2-forms £} and 4§ both change sign under a change of orientation.

ProBLEM. Show that, for surfaces in ordinary three-dimensional euclidean space, the riemannian
curvature at every point is equal to the product of the inverses of the principal radii of curvature
{(with minus sign il the centers of curvature lic on opposite sides of the surface),

We note that the sign of a manifold’s curvature at a point does not depend
on the orientation of the manifold ; this sign may be defined without using the
orientation at all.

Namely, on manifolds of positive curvature, a vector parallel translated
arcund the boundary of a small region turns around its origin in the same
direction as the point on the boundary goes around the region; on manifolds
of negative curvature the direction of rotation is opposite.

We note further that the value of the curvature at a point is determined
by the metric in a neighborhood of this point, and therefore is preserved
under bending: the curvature is the same at corresponding points of iso-
metric surfaces. Hence, riemannian curvature is also called intrinsic curvature.

The formulas for computing curvature in terms of components of the
metric in some coordinate system involve the second derivatives of the metric
and are rather complicated: cf. the problems in Section G below.

D Higher-dimensional parallel translation

The construction of parallel translation on riemannian manifolds of di-
mension greater than two is somewhat more complicated than the two-
dimensional construction presented above. The reason is that in these
dimensions the direction of the vector being translated is no longer determined
by the condition that the angle with a geodesic be invariant. In fact, the vector
could rotate around the direction of the geodesic while preserving its angle
with the geodesic,

The refinement which we must introduce into the construction of parallel
translation along a geodesic is the choice of a two-dimensional plane passing
through the tangent to the geodesic, which must contain the translated vector.
This choice s made in the following (unfortunately complicated) way.

At the initial point of a geodesic the needed plane is the plane spanned by
the vector to be translated and the direction vector of the geodesic. We look
at all geodesics proceeding from the initial point, in directions lying in this
plane. The set of all such geodesics (close to the initial point) forms a smooth
surface which contains the geodesic along which we intend to translate the
vector (Figure 233).

Consider a new point on the geodesic at a small distance A from the initial
point. The tangent plane at the new point to the surface described above
contains the direction of the geodesic at this new point. We take this new
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Figure 233 Parallei translation in space

point as the initial point and use its tangent plane to construct a new surface
(formed by the bundle of geodesics emanating from the new point). This
surface contains the original geodesic. We move along the original geodesic
again by A and repeat the construction from the beginning.

After a finite number of steps we can reach any point of the original geo-
desic. As a resuit of our work we have, at every point of the geodesic, a tangent
plane containing the direction of the geodesic. This plane depends on the
length A of the steps in our construction. As A — 0 the family of tangent
planes obtained converges (as can be calculated) to a definite limit. As a
result we have a field of two-dimensional tangent planes along our geodesic
containing the direction of the geodesic and determined in an intrinsic
manner by the metric on the manifold.

Now parallel translation of our vector along a geodesic is defined as in the
two-dimensional case: under translation the vector must remain in the planes
described above; its length and its angle with the direction of the geedesic
must be preserved. Parallel translation along any curve is defined using
approximations by geodesic polygons, as in the two-dimensional case.

PropLEM. Show thal parallel translation of vectors from one point of a riemannian manifold
to another along a fixed path is a linear 1sometric operator from the tangent space at the first
point to the tangent space at the second peint.
ProBLEM. Parallel translate any vector along the line

Xy =1 Xy =10 y=1 N=gsrg1)
in a Lobachevsky space with metric
ety dad v by

¥

ds®

ANSWER. Yeclors in the directions of the x, and y axcs are rotated by angle rin the plane spanned
by them {rotation is in the direction from the y-axis towards the x,-axis); vectors in the x,-direc-
tion are carried parallel to themselves in the sense of the cuclidean metric.

E The curvature tensor

We now consider, as in the two-dimensional case, parallel translation along
small closed paths beginning and ¢nding at a point of a riemannian manifold.
Parallel translation along such a path returns vectors to the original tangent
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space. The map of the tangent space 1o itself thus obtained is a small rotation
{an orthogoenal transformation close to the identity).

In the two-dimensional case we characterized this rotation by one number --the angle of rotation
to. In higher dimensions a skew-symmetric operator plays the role of ¢o. Namely, any orthogonal
operator A which is close to the identity can be writlen in a natural way in the form

4

-] i
4 & E+d 4+ — + o,
where & is a small skew-symmctric operalor,

ProBLEM. Compute @ if 4 is a rotation of the plane through a small angle ¢,

.4=[ Cj:)srp Smfp) tD=( 0 (_ﬁ)‘
—sin p  COS @ —p 0

Unlike in the two-dimensional case, the function 4 is not generally additive (since the
orthogonal group of n-space for n > 2 15 not commutative). Nevertheless, we can construct a
curvature form using @, describing the “infinitely small rotation caused by parallel (ranslation
around an infinitely smali parallelogram™ in the sume way as in the two-dimensional case, i.e.,
using formula (2).

ANSWER.

Thus, let £ and # in TM, be veetors tangent to the riemannian manifold
M at the point x. Construct a small curvilinear parallelogram Tl, on M (the
sides of the parallelogram I, are obtained from the vectors &€ and ey by a
coordinate identification of a neighborhood of zero in TM, with a neighbor-
hood of x in M). We will look at parailel translation along the sides of the
parallelogram I1, (we begin the circuit at ).

The result of translation will be an orthogonal transformation of TM_,
close to the identity. It differs from the identity transformation by a quantity
of order ¢? and has the form

ALE, ) = E + £2Q + o(e?),

where (2 is a skew-symmetric operater depending on & and 5. Therefore, we
can define a function Q of pairs of vectors &, # in the tangent space at x with
values in the space of skew-symmetric operators on TM, by the formula
. AL~ E
Qe n) = lim 24N~ £
€

At

PrOELEM. Show thal the function © s a differential 2-form (with values in the skew-symmetric
operators on TM,) and does not depend on the choice of coordinates we used to identify TM,
and M.

The form Q is called the curvature tensor of the riemannian manifold.
We could say that the curvature tensor describes the infinitesimal rotation
in the tangent space obtained by parallel translation around an infinitely
small parallelogram.
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F Curvature in a two-dimensional direction

Consider a two-dimensional subspace L in the tangent space to a riemannian
manifold at some point, We take geodesics emanating from this peint in
all the directions in L. These geodesics form a smooth surface close to our
point. The surface constructed lies in the riemannian manifold and has an
induced riemannian metric.

By the curvature of a riemannian manifold M in the direction of a 2-plane
L in the tangent space to M at a point x, we mean the riemannian curvature at
x of the surface described above.

ProBLeM. Find the curvatures of a three-dimensional sphere of radius R and of Lobachevsky
space in all possible two-dimensional directions.

ANSWER. R72%, — L.

In general, the curvatures of a riemannian manifold in different two-
dimensional directions arc different. Their dependence on the direction is
described by formula (3) below.

Theorem. The curvature of a riemannian manifold in the two-dimensional
direction determined by a pair of orthogonal vectors &, vt of length | can he
expressed in terms of the curvature tensor Q by the formula

(3) K = {UE e, ),

where the brackets denote the scalar product giving the riemannian metric.

The proof is obtained by comparing the definitions of the curvature tensor and of curvature
in a two-dimensicnal direction. We will not go into it in a rigorous way. It is possible to 1ake
formula (3) for the definition of the curvature .

G Covariant differentiation

Connected with parallel translation along curves in a riemannian manifold
1s a particular differential calculus—so-called covariant differentiation, or
the riemannian connection. We define this differentiation in the following
way.

Let ¢ be a vector tangent to a riemannian manifold M at a point x, and v
a vector field given on M in a neighborhood of x. The covariant derivative
of the field v in the direction £ is defined by using any curve passing through x
with velocity £ After moving along this curve for a small interval of time ¢,
we find ourselves at a new point x(t). We take the vector field v at this point
x{t) and parallel translate it backwards along the curve to the original point
x. We obtain a vector depending on ¢ in the tangent space to M at x. For
t = 0 this vector is v(x), and for other ¢ it changes according to the non-
parallelness of the vector field v along our curve in the direction &.
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Consider the derivative of the resulting vector with respect to t, evaluated
att = 0. This derivative is a vector in the tangent space TM . It 1s called the
covariant derivative of the field v along £ and is denoted by V,u. It is easy to
verify that the vector Vv does not depend on the choice of curve specified in
the definition, but only on ¢ and ».

ProBLEM 1. Prove the following properties of covariant differentiation:

1. ¥.uis a bilinear function of { and ».

2. Vv = (LS + f(x)V,0, where f is a smooth function and L, f is the derivative of f in the
direction of the vector £ inTM .

3 Lo w)y = (Vo wx)y + {olx), Vowd .

4 Vaaw — Ve = [w, e]ix) (where Ly, ,, = L,L, - L,L,)

ProBLEM 2. Show that the curvature tensor can be expressed in terms of covariant differentiation
in the following way:

Q&g o)e = =V, 9,0 + VYV 0 4V, o0,
where £, n, { are any vector fields whose values at the point under consideration are {,. . and ¢,

PrOBLEM 3. Show that the curvature tensor satisfies the following identities:
YE A + QK + UL M =0
CCYE, mpx, By = Qo f) m).

ProBLEM 4, Suppose that the riemannian metric is given in local coordinates x,,. .., x, by the
symmetric matrix g,;.

ds? =Y g,;dx.dx;.

Denote by e,, .. ., e, the coordinate vector fields (so that differentiation in the direction e, is
d; = 8/2x;} Then covariant derivatives can be calculated using the formulas in Problem 1 and
the following formulas:

Ve = Z r?jek r?j = Z i‘(aigﬂ + &gy — algij)gﬂ‘
3 i

where (g%} is the inverse matrix (o (gy)-

By using the expression for the curvature tensor in terms of the connection in Problem 2,
we also obtain un explicit formula for the curvature. The numbers R;,, = {Qe;, e, ¢, are
called the components of the curvature tensor.

H The Jacobi equation

The riemannian curvature of a manifold is closely connected with the be-
havior of its geodesics. In particular, let us considet a geodesic passing
through some point.in some direction, and alter slightly the initial conditions,
i.e, theinitial point and initial direction. The new initial conditions determine
a new geodesic. At first this geodesic differs very little from the original geo-
desic. To investigate the divergence it is useful to linearize the differential
equation of geodesics close to the original geodesic. The second-order linear
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differential equation thus obtained (*the variational equation” for the equa-
tion of geodesics) is called the Jacebi equation; it is convenient to write
it in terms of covariant derivatives and curvature tensors.

We denote by x{t) a point moving along a gecdesic in the manifold M
with velocity {of constant magnitude) v{t)e TM,,. If the initial condition
depends smoothly on a parameter «, then the geodesic also depends smoothly
on the parameter. Consider the motion corresponding to a value of o, We
denote the position of a point at time ¢ on the corresponding geodesic by
x(t, ®) € M. We will assume that the initial gecodesic corresponds to the zero
value of the parameter, so that x(t, 0) = x(z).

The vector field of geodesic variation s the derivative of the function
x(t, @) with respect to «, evaluated at o = 0; the value of this field at the point
x(¢) is equal {0

4 x(t,0) = {()e TM,,,.
dx =0

To write the variational equation, we define the covariant derivative with
respect to t of a vector field {(r) given on the geodesic x(¢). To define this, we
take the vector {(t + h), parallel translate it from the point x(t + ) to
x(¢) along the geodesic, differentiate the vector obtained in the tangent space
TM,,, with respect to h and evaluate at h = 0. The result is a vector in
TM . which is called the covariant derivative of the field {(¢) with respect
to ¢, and denoted by D{/Dt.

Theorem The vector field of geodesic variation satisfies the second-order linear
differenrial equation

D¢
@) :

F = _Q(Uy é)us

where (2 is the curvature tensor, and v = u(t) is the velocity vector of motion
along the original geodesic.

Conversely, every solution of the differential equation (4} is a field of
variation of the original geodesic.

Equation (4} is called the Jacobt equation.
ProBLEM, Prove the theorem above.

ProaLEM. Let M be a surface, y(7) the magnitude of the component of the vector £(f) in the direc-
tion normal to a given geodesic. and let the length of the vector o(i) be equal to 1. Show that v
satishes the differential equation

5 j= —Ky.

where K = K{r} is the riemannian curvature at the point x{1)

PropreM. Using Equation (3), compare the behavior of geodesics close 10 a given one on the
sphere (K = +R %) and on the Lobachevsky plane (K = —1).
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I Investigation of the Jacobi equation

In investigating the variational equations, it is useful to disregard the trivial
variations, i.e., changes of the time origin and of the magnitude of the initial
velocity of motion. To this end we decompose the variation vector € into
components parallel and perpendicular to the velocity vector v. Then (since
Q(v, v) = 0 and since the operator v, ) is skew-symmetric) for the normal
component we again get the Jacobi equation, and for the parallel component
we get the equation

b _

D2 0.

We now note that the Jacobi equation for the normal component can be
written in the form of * Newton’s equation”

D¢ d U

— = —grad U,
D¢? &
where the quadratic form U of the vector & is expressed in terms of the curva-
ture tensor and is proportional to the curvature K in the direction of the
(<, v) plane:

U€) = 30w, v, &> = 3K{E £ <, v).

Thus the behavior of the normal component of the variation vector of a
geodesic with velocity 1 can be described by the equation of a (non-auteno-
mous) linear oscillator whose potential energy is equal to the product of the
curvature in the direction of the plane of velocity vectors and variations with
the square of the length of the normal compenent of the variation.

In particular we consider the case when the curvature is negative in all
two-dimensional directions contaming the velocity vector of the geodesic
(Figure 234). Then the divergence of nearby geodesics from the given one in

Figure 234 Nearby geodesics on manifolds of positive and negative curvature
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the normal direction can be described by the equation of an oscillator with
negative definite {and time-dependent) potential energy. Therefore, the
normal component of divergence for nearby geodesics behaves like the di-
vergence of a ball, located near the top of a hill, from the top. The equilibrivm
position of the ball at the top is unstable. This means that geodesics near the
givern geodesic will diverge exponentially from it

IT the potential energy of the newtonian eguation we obtained did not depend on time, our
conclusion would be rigorous. Let us assume fucther that the curvature in the different dirce-
tions containing v is in the interval

—g? = K < —b% wherel < b < a

Then solutions to the Jacobi equation for normal divergence will be lincar combinations of
exponential curves with exponenl +4,, where (he positive numbers 4; are between ¢ and h.
Therefore, every solution to the Jacobi equation grows at least as fast as ¢™* as either

t = + % ort — — % :most solutions grow cven faster, with rate "',

The instability of an equilibrium position under negative definite potential
caergy is intuitively obvious also in the non-autonomous case. It can be
proven by comparison with a corresponding autonomous system. As a
resuit of such a comparison we may convince ourselves that under motion
along a geodesic, all solutions of the Jacobi equation for normal divergence
on a manifold of negative curvature grow at least as fast as an exponential
function of the distance traveled, whose exponent is equal to the square
root of the absolute value of the curvature in the two-dimensional direction
for which this absolute value i1s minimal. In fact, most solutions grow even
faster, but we cannot now assert that the exponent of growth for most solu-
tions is determined by the direction in which the absolute value of the nega-
tive curvature is largest.

In summary, we can say that the behavior of geodesics on a manifold of
ncgative curvature is characterized by exponential instability. For numerical
estimates of this instability, it is useful to define the characteristic path length
s as the average path length on which small errors in the initial conditions
are increased e times.

More precisely, the characteristic path length s can be defined as the inverse
of the exponent A which characterizes the growth of the solution to the Jacobi
equation for normal divergence from the geodesic proceeding with velocity 1:

-1 . 1
A =lim —max max In|&(t) 5=,
Texo ! i <T 150} =1 A

In gencral, the cxponent A and the path s depend on the initial geodesic.

If the curvature of our manifold in all two-dimensional dircctions is
bounded away from zero by the number —b?, then the characteristic path
length is less than or equal to &~ . Thus as the curvature of a manifold gets
more negative, the characteristic path length s, on which the instability of
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geodesics is reduced to e-fold growth of error, gets smaller. in view of the
exponential character of the growth of error, the course of a geodesic on a
manifold of negative curvature is practically impossible to predict.

Assume, for example, that the curvature is negative and bounded away
from zero by —d4m ™2, The characteristic path length is less than or equal to
half a meter, i.e., on a geodesic arc five meters long the error grows by approxi-
mately e'® ~ 10%. Therefore, an error of a tenth of a millimeter in the initial
conditions shows up in the form of a one-meter difference at the end of the
geodesic.

J Geodesic flows on compact manifolds of
Rregative curvature

Let M be a compact ricmannian manifold whose curvature at every point
in every two-dimensional direction is negative. {Such manifolds exist.)
Consider the inertial motion of a point of mass 1 on M, without any external
forces. The lagrangian function of this system is equal to the kinetic energy,
which is equal to the total energy and is a first integrat of the equations of
motion.

If M has dimension s, then each energy level manifold has dimension
2n — 1. This manifold is a submanifold of the tangent bundle of M. For
example, we can fix the value of the energy at + (which corresponds to initial
velocity 1). Then the velocity vector of the point has length constantly equal
to 1, and our level manifold turns out to be the fiber bundle

LM< TM

consisting of the unit spheres in the tangent spaces to M at every point.

Thus, a peint of the manifold T, M is represented as a vector of length
| at a point of M. By the Maupertuis- Jacobi principle, we can describe the
motion of a point mass with fixed initial conditions in the following way:
the point moves with velocity | along the geodesic determined by the indi-
cated vector.

By the law of conservation of energy the manifold T, M is an invariant
manifold in the phase space of our system. Therefore, our phase flow de-
termines a one-parameter group of diffeomorphisms on the (2n — 1)-
dimensional manifold T, M. This group is called the geodesic flow on M,
The geodesic low can be described as follows: the transformation at time ¢
carries the unit vector ¢ € T, M located at the point x, to the unit velocity
vector of the geodesic coming from x in the direction £, located at the point
at distance ¢ from x. We note that there is a naturally defined volume element
on T, M and that the geodesic flow preserves it (Liouville’s theorem).

Up to now we have not used the negative curvature of the manifold M.
But if we investigate the trajectories of the geodesic flow, it turns out that the
negative curvature of M has a strong impact on the behavior of these tra-
jectories (this is related to the exponential instability of gecodesics on M).
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Here are some properties of geodesic flows on manifolds of negative
curvature (for further details, see the book of D. V. Anosov cited earlier).

1. Almost all phase trajectories are dense in the energy level manifold (the
exceptional non-dense trajectories form a set of measure zero).

2. Uniform distribution: the amount of time which almost every trajectory
spends in any region of the phase space T, M is proportional to the volume
of the region.

3. The phase flow ¢’ has the mixing property: if A and B are two regions, then

lim mes[(g'4) m B] = mes A mes B

I—ao

{where mes denotes the volume, normalized by the condition that the
whole space have measure 1).

From these properties of trajectories in phase space follow analogous
statemenis about geodesics on the manifold itself Physicists call these
properties “stochastic”: asymptotically for large ¢ the trajectories behave as
if the point were random. For example, the mixing property means that the
probability of turning up in B at a time ¢ long after exiting from A is propor-
tional to the volume of B.

Thus, the exponential instability of geodesics on manifolds of negative
curvature leads to the stochasticity of the corresponding geodesic flow.

K Other applications of exponential instability

The exponential instability property of geodesics on manifolds of negative
curvature has been studied by many authors, beginning with Hadamard (and,
in the case of constant curvature, also by Lobachevsky), but especially by
E. Hopf. An unexpected discovery of the 1960s in this area was the surprising
stability of exponentially unstable systems with respect to perturbations of the
systems themselves.

Consider, for example, the vector field giving the geodesic flow on a com-
pact surface of negative curvature. As we showed above, the phase curves
of this flow are arranged in a complicated way: almost every one of them is
dense in the three-dimensional energy icvel manifold. The flow has infinitely
many closed trajectories, and the set of points on closed trajectories is also
dense in the three-dimensional energy level manifold.

We now consider a nearby vector field. It turns out that, in spite of the
complexity of the picture of phase curves, the entire picture with dense
phase curves and infinitely many closed trajectories hardly changes at all if
we pass to the ncarby field. In fact, there is a homeomorphism close to the
identity transformation which takes the phase curves of the unperturbed
flow to the phase curves of the perturbed flow.

Thus our complicated phase flow has the same property of “structural
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stability™ as a limit ¢ycle, or a stable focus in the plane. We note that neither
a center in the plane nor a winding of the torus has this property of structural
stability: the topological type of the phase portrait in these cases changes
for arbitrarily small changes in the vector field.

The existence of structurally stable systems with complicated motions,
each of which is in itself exponentially unstable, is one of the basic discoveries
of recent years in the theory of ordinary differential equations (the con-
jecture that geodesic flows on manifolds of negative curvature are structurally
stable was made by S. Smale in 1961, and the proof was given by D. V.
Anosov and published in 1967; the basic results on stochasticity of these
flows were obtained by Ya. G. Sinai and D. V. Anosov, also in the 1960s).

Before these works most mathematicians believed that in systems of
differential equations in “general form™ only the simplest stable limiting
behaviors were possible: equilibrium positions and cycles. If a system was
more complicated (for example, if it was conservative), then it was assumed
that after a small change in its equations (for example, after imposing small
non-conservative perturbations) complicated motions are “dispersed” into
simple ones. We now know that this is not so, and that in the function space
of vector fields there are whole regions consisting of fields with more com-
plicated behavior of phase curves.

The conclusions which follow from this are relevant to a wide range of
phenomena, in which “stochastic” behavior of deterministic objects is
observed,

Namely, suppose that in the phase space of some (non-conservative)
system there is an attracting invariant manifold (or set)} in which the phase
curves have the property of exponential instability. We now know that
systems with such a property are not exceptional: under small changes of the
system this property must persist. What is s¢en by an ¢xperimenter observing
motions of such a system?

The approach of phase curves to an attracting set will be interpreted as
the establishment of some sort of limiting conditions. The further motion of a
phase point near the attracting set will involve chaotic, unpredictable changes
of “phase™ of the limiting behavior, perceptible as “stochasticity™ or
“turbulence.”

Unfortunately, no convincing analysis from this point of view has yet
been developed for physical examples of a turbulent character. A primary
example is the hydrodynamic instability of a viscous fluid, described by the
so-called Navier-Stokes equations. The phase space of this problem is
infinite-dimensional (it is the space of vector fields with divergence 0 in the
domain of fluid flow), but the infinite-dimensionality of the problem is
apparently not a serious obstacle, since the viscosity extinguishes the high
harmonics (small vortices) faster and faster as the harmonics are higher and
higher. As a result, the phase curves from the infinite-dimensional space
seem to approach some finite-dimensional manifold (or set), to which the
limit regime also belongs.
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For large viscosity, we have a stable attracting equilibrium position in the
phase space (“stable stationary flow ™). As the viscosity decreases it loses sta-
bility; for example, a stable limit cycle can appear in phase space (** periodic
flow™) or a stable equilibrium position of a new type (“secondary stationary
flow™).?% As the viscosity decreases further, more and more harmonics come
into play, and the limit regime can become ever higher in dimension.

For small viscosity, the approach to a limit regime with exponentially
unstable trajectories seems very likely. Unfortunately, the corresponding
calculations have not yet been carried out due to the limited capacity of
existing computers. However, the following general conclusion can be drawn
without any calculations: turbulent phenomena may appear even if solutions
exist and are unique; exponrential instability, which is encountered even in
deterministic systems with a finite number of degrees of freedom, is sufficient,

As one more example of an application of exponential instability we men-
tion the proof announced by Ya. G. Sinai of the “ergodic hypothesis™ of
Boltzmann for systems of rigid balls. The hypothesis is that the phase flow
corresponding to the motion of identical absolutely elastic balls in a box with
elastic walls is ergodic on connected energy level sets. (Ergodicity means that
almost every phase curve spends an amount of time in every measurable
picce of the {evel set proportional to the measure of that piece.)

Boltzmann’s hypothesis allows us to replace time averages by space
averages, and was for a long time considered te be necessary to justify
statistical mechanics. In reality, Boltzmann’s hypothesis {in which it is a
question of a limit as time approaches infinity) is not necessary for passing
to the statistical limit (the number of pieces approaches infinity). However,
Boltzmann’s hypothesis inspired the entire analysis of the stochastic proper-
ties of dynamical systems (so-called ergodic theory), and its proof serves as a
measure of the maturity of this theory.

The exponential instability of trajectories in Boltzmann’s problem arises
as a result of collisions of the balls with one another, and can be explained
in the following way. For simplicity, we will consider a system of only two
particles in the plane, and will represent a square box with reflection off the
walls by the planar torus {(x, y)mod 1}. Then we can consider one of the par-
ticles as stationary (using the conservation of momentum); the other particle
can be considered as a point,

In this way we arrive at the mode! problem of motion of a point on a toral
billiard table with a circular wall in the middle from which the point is re-
flected according to the law “the angle of incidence is equal to the angle of
reflection™ (Figure 235).

To investigate this system we look at an analogous billiard table bounded
on the outside by a planar convex curve {e.g., the motion of a point inside an
ellipse). Motion on such a billiard table can be considered as the limiting
case of the geodesic flow on the surface of an ellipsoid. Passage to the limit

% A more detailed account of loss of stability is given in “Lectures on bifurcations and versal
families.” Russian Math. Surveys 27, no. 5 (1972, 55-123.
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Figure 235 Torus-shaped billiard table with scattering by 4 circular wall

consists of decreasing the smallest axis of the ellipsoid to zero. As a result,
geodesics on the ellipsoid become billiard trajectories on the ellipse. We
discover from this that the ellipse can reasonably be thought of as two-sided
and that, under every reflection, the geodesic goes from one side of the ellipse
to the other.

We now return to our toral billiard table. Motion on it can be looked at as
the limiting case of the geodesic flow on a smooth surface. This surface is
obtained from looking at the torus with a hole as a two-sided surface, giving
it some thickness and slightly smoothing the sharp edge. As a result wehave a
surface with the topology of a pretzel (a sphere with two handles).

After blowing up the ellipse into the cllipsoid we obtain a surface of
positive curvature; after blowing up the torus with a hole we get a surface of
negative curvature (in both cases the curvature is concentrated close to the
edge, but the blowing up can be done 30 that the sign of the curvature does
not change). Thus motion in our toral billiard table can be looked at as the
limiting case of motion along geodesics on a surface of negative curvature.

Now, to prove Boltzmann’s conjecture (in the simple case under con-
sideration) it is sufficient to verify that the analysis of stochastic properties
of geodesic flows on surfaces of negative curvature holds in the indicated
limiting case.

A more detailed presentation of the proof turns out to be very complicated;
it has been published only for the case of systems of two particles (Ya. G.
Sinai, Dynamical systemns with elastic reflections, Russian Mathematical
Surveys, 25, no. 2 (1970), 137-189).
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and the hydrodynamics of ideal fluids

Eulerian motion of a rigid body can be described as motion along geodesics
in the group of rotations of three-dimensional euclidean space provided with
a left-invariant riemannian metric. A significant part of Euler’s theory
depends only upon this invariance, and therefore can be extended to other
groups.

Among the examples involving such a generalized Euler theory are motion
of a rigid body in a high-dimensional space and, especially interesting, the
hydrodynamics of an ideal (incompressible and inviscid) fluid. In the
latter case, the relevant group is the group of volume-preserving diffeo-
morphisms of the domain of fluid flow. In this example, the principle of least
action implies that the motion of the fluid is described by the geodesics in the
metric given by the kinetic energy. (If we wish, we can take this principle to be
the mathematical definition of an ideal fluid.) It is easy to venfy that this
metric is {right) invariant.

Of course, extending results obtained for finite-dimensional Lie groups
to the infinite-dimensional case should be done with care. For example, in
three-dimensional hydrodynamics an existence and unigueness theorem for
solutions of the equations of motion has not yet been proved. Nevertheless,
it is interesting to se¢ what conclusions can be drawn by formally carrying
over properties of geodesics on finite-dimensional Lie groups to the infinite-
dimensional case. These conclusions take the character of a priori statements
(identities, inequalities, etc.) which should be satisfied by all reasonable
solutions. In some cases, the formal conclusions can then be rigorously
justified directly, without infinite-dimensional analysis.

For example, the Euler equations of motion for a rigid body have as their
analogue in hydrodynamics the Euler equations of motion of an ideal fluid.
Euler’s theorem on the stability of rotations around the large and small axes
of the inertia ellipsoid corresponds in hydrodynamics to a slight generaliza-
tion of Rayleigh’s theorem on the stability of flows without inflection points
of the velocity profile.

It is also easy to extract from Euler's formulas an explicit expression for
the riemannian curvature of a group with a one-sided invariant metric.
Applying this to hydrodynamics we find the curvature of the group of dif-
feomorphisms preserving the volume element. It is interesting to note that in
sufficiently nice two-dimensional directions, the curvature turns out to be
finite and, in many cases, negative. Negative curvature implies exponential
instability of geodesics (cf. Appendix 1). In the case under consideration, the
geodesics are motions of an ideal fluid; therefore the calculation of the
curvature of the group of diffeomorphisms gives us some information on the
instability of ideal fluid flow, In fact, the curvature determines the character-
istic path length on which differences between initial conditions grow by e.
Negative curvature leads to practical indeterminacy of the flow: on a path
only a few times longer than the characteristic path length, a deviation in
initial conditions grows 100 times larger.
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In this appendix, we will briefly set out the results of calculations related
to geodesics on groups with one-sided (right- or left-) invariant metrics.
Proofs and further details can be found in the following places:

¥. Arnold, Sur la géométrie differentielle des groupes de Lie de dimension infinie et ses applica-
tions a Chydrodynamique des fluides parfaits. Annales de I'lnstitut Fourier, XYL no. 1
{1966}, 319-361.

V. 1. Arnold. An a pricri estimate in the theory of hydrodynamic stability. 1zv. Vyssh. Uchebn.
Zaved. Matematika 1966, no. 5 {54}, 3-5. (Russian)

V. 1. Arnold, The Hamiltonian nature of the Euler equations in the dynamics of a rigid body and
of an ideal fluid, Uspekhi Matematicheskikh Nauk, 24 {1969), no. 3 (147} 225-226.
{Russian)

L. A Dikii, A remark on Hamiltonian systems connected with the rotation group, Functional
Analysis and Its Applications, 6:4 (1972) 326-327.

D. G. Ebin, J. Marsder, Groups of diffeomorphisms and the motion of an incompressible fluid,
Annals of Math, 92 no. 1 (1970, 102-163,

Q. A. Ladyzhenskaya. On the local solvahility of non-stationary problems for incompressible
ideal and viscous fluids and vanishing viscosity, Boundary problems in mathematical
physics, v. 3 (Zapiski nauchnikh seminarov LOML v, 21), * Nauka,” 1971. 65 78. (Russian)

A S, Mishchenko, [nteprals of geodesic flows on Lic groups, Funclional Analysis and [ts Ap-
plications. 4, no. 3 (1970}, 232- 235.

A. M. Obukhov, On integral invariants in systems of hydrodvnamic type. Droklady Acad. Nauk.
184, no. 2 (1969), (Russian)

L. D. Faddeey, Towards a stablity theory of stationary planar-parailel flows of an ideal fluid,
Boundary problems in mathematical physics. v. 5 (Zapiski nauchnikh seminarov LOMI,
v. 21), " Nauka,” 1971, 164-172. (Russian)

A Notation: The adjoint and co-adjoint representations

Let G be a real Lie group and g its Lie algebra, i.e., the tangent space to the
group at the identity provided with the commutator bracket operation

[’ ]'

A Lie group acts on itself by left and right translation: every element g
of the group G defines diffeomorphisms of the group onto itself:

L,G-G Lh = gh R,=G—-G R, b= hg.
The induced maps of the tangent spaces will be denoted by
Loy TGy TG, and Ry, TG,— TGy,

for every A in G.

The diffeomorphism R,-: L, is an inner automorphism of the group. It
leaves the group identity element fixed. Its derivative at the identity 1s a
linear map from the algebra (1.e., the tangent space to the group at the
identity) to itself. This map is denoted by

Ady;:g—> g Ady = (R;-1 L),
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and is called the adjoint representation of the group. It is easy to verify that
Ad, 1s an algebra homomorphism, i.e., that

Ad[E.n] = [Ad, ¢, Adyn),  Coneg.

It is also clear that Ad,, = Ad, Ad,.
We can consider Ad as a map of the group into the space of linear operators
on the algebra:

Ad(g) = Ad,.

The map Ad is differentiable. Its derivative at the identity of the group is a
linear map from the algebra g to the space of linear operations on g. This
map is denoted by ad, and its image on an clement ¢ in the algebra by ad..
Thus ad, is an endomorphism of the algebra space, and we have

d

ad = Ad,. g - Endg ad: = — |  Ad,s,

dt =0
where €' is the one-parameter group with tangent vector . From the formula
written above it is easy to deduce an expression for ad in terms of the algebra
alone:

aden = {E 1]

We now consider the dual vector space g* to the Lie algebra g. This is
the space of real linear functionals on the Lie algebra. In other words, g*
is the cotangent space to the group at the identity, g* = T*G,. The value
of an element & of the cotangent space to the group at some point g on an
element # of the tangent space at the same point will be denoted by round
brackets:

(&, meR, (eT*G,neTG,

Left and right translation induce operators on the cotangent space dual
to L,y and R,,. We denote them by

LY: T*G,— T*G, and Rj:T*Gy — T*G,
for every h in G. These operators are defined by the identities
(L:é? rf) = (éy Lg* r!l) and (Rgfa rll) = (é! Rg* rl’)'

The transpose operators Ad¥, where g runs through the Lie group G, form
a representation of this group, ie., they satisfy the relations

Ad%, = AdEAdY.

This representation is called the co-adjoint representation of the group and
plays an important role in all questions related to (left) invariant metrics on
the group.

Consider the derivative of the operator Ad¥ with respect 1o g at the identity.
Thisderivative is a linear map from the algebra to the space of linear operators
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on the dual space to the algebra. This linear map is denoted by ad*, and its
image on an element £ in the algebra is denoted by ad¥. Thus ad* is a linear
operator on the dual space to the algebra,

ad®: g* — g*.
It is easy to see that ad¥ is the adjoint of ad,:
(adfn, 0} = (0, adl) forallyeg* {eq.
It is sometimes convenient to denote the action of ad* by braces:

adfn = {&,n}, whereéeg,negt

Thus braces mean the bilinear function from g x g* to g*, related to com-
mutation in the algebra by the identity

({&nh O = (1, [, (D).

We consider now the orbits of the co-adjoint representation of the group
in the dual space of the algebra, At each point of an orbit we have a natural
symplectic structure (called the Kirillev form since A. A. Kirillov first used it
to investigate representations of nilpotent Lie groups). Thus, the orbits of
the co-adjoint representation are always even-dimensional. We also note
that we obtain a series of examples of symplectic manifolds by looking at
different Lie groups and all possible orbits.

The symplectic structure on the orbits of the co-adjoint representation is
defined by the following construction, Let x be a point in the dual space to
the algebra and ¢ a vector tangent at this point to its orbit. Since g* is a
vector space, we can consider the vector £, which really belongs to the tangent
space to g* at x, as lying in g*.

The vector ¢ can be represented (in many ways) as the velocity vector of
the motion of the point x under the co-adjoint action of the one-parameter
group e* with velocity vector g € g. In other words, every vector tangent to
the orbit of x in the co-adjoint representation of the group can be expressed
in terms of a suitable vector a in the algebra by the formula

§={a,x}, aEg,xe‘g*_

Now we are ready to define the value of the symplectic 2-form Q on a pair
of vectors &,, £, tangent to the orbit of x, Namely, we express £, and &, in
terms of algebra elements a; and a, by the formula above, and then obtain
the scalar

Q(él& ‘fz) = (x, [als ﬂz])s Xe Q*a a;€9.

It is easy to verify that (1) the bilinear form (}is well defined, i.e., its value does
not depend on the choice of g;; (2) Q is skew-symmetric and therefore gives
a differential 2-form £ on the orbit; and (3) Q is nondegenerate and closed
(the proofs can be found, for instance, in Appendix 5). Thus the form Q is a
symplectic structure on an orbit of the co-adjoint representation.

321



Appendix 2: Geodesics of lefi-invariant metrics on Lie groups

B Left-invariant metrics

A riemannian metric on a Lie group G is called left-invariant if it is preserved
by all left translations L,, i.e., if the derivative of left translation carries every
vector to a vector of the same length.

It is sufficient to give a left-invartant metric at one point of the group, for
instance the identity; then the metric can be carried to the remaining points
by ieft translations. Thus there are as many left-invariant riemannian metrics
on a group as there are euclidean structures on the algebra.

A euclidean structure on the aigebra is defined by a symmetric positive-
definite operator from the algebra to its dual space. Thus, let A:g — g* be
a symmetric positive linear operator:

(A, ny = (An, &), forallé, ning.

(It is not very impertant that 4 be positive, but in mechanical applications
the quadratic form (A¢, §) is positive-definite.)
We define a symmetric operator A,: TG, —» T*G, by left translation:

Agé - L;."-IALR- 33 C:.

We thus obtain the following commutative diagram of linear operators:

Ady
fff\
8T TG, R, 9

|
Al A,
| !

We will denote by angled brackets the scalar product determined by the
operator A,

oy = (A8 n)y = (Agn, &) = {m, O,

This scalar product gives a riemannian metric on the group G, invariant under
left translations. The scalar product n the algebra will be denoted simply by
{ ,>. Wedefine an operation B:g x g — g by the identity

fa,b],c> = {Blc,a) b), forallbing.

Clearly, this operation B is bilinear, and for fixed first argument is skew-
symmetric in the second:

{Blc,a).b> + {B{c,b)ay =0
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C Example

Let G = 80(3) be the group of rotations of three-dimensional ¢uclidean
space, i.e. the configuration space of a rigid body fixed at a point. A motion
of the body is then described by a curve g = g{r) in the group. The Lie algebra
of G is the three-dimensional space of angular velocities of all possible
rotations. The commutator in this algebra is the usual vector product.

A rotation velocity g of the body is a tangent vector to the group at the
point g. To get the angular velocity, we must carry this vector to the tangent
space of the group at the identity, ie. to the algebra. But this can be done in
two ways: by left and right translation. As a result, we obtain two different
vectors in the algebra:

w.=L,,gea and o, =R, geq.

These two vectors are none other than the “angular velocity in the body™ and
the “angular velocity in space.”

An element g ol the group & corresponds to & position of the body obtained by the motion g
from some initial state {corresponding 1o the identity element of the group and chosen abritrar-
ily). Let e be an element of the algebra.

Let ¢™ be a one-parameter group of rotations with angular velosity e w is the tangent
vector to this one-parameler group at the identity. Now we look at the displacement

-

¢y, wherey = g(t)e G, meg. and 1 € 1,

obtained from the displacement g by a rotation with angular velocity w alter a small time 7.
[f the vector g comaides with the vector

then o is calied the angrdar relocity refative ro space and is denoted by w,. Thus w, is obtained
from g§ by right transtation. In an analogous way we can show that the angular velocity in
the body is the left transiate of the vector ¢ in the algebra.

The dual space g* to the algebra in our example 1s the space of angular
momenta.

The kinetic energy of a body is determined by the vector of angular velocity
in the body and does not depend on the position of the body in space. There-
fore, kinetic energy gives a left-invariant riemannian metric on the group.
The symmetric positive-definite operator 4,: TG, — T*G, given by this
metric is called the moment of inertia operator (or tensor). 1t is related to the
kinetic energy by the formula T = 34, §>, = ¥m. 0> = H{Aw,, w) =
A 4. §). where A:q — g* is the value of 4, for g = e. The image of the
vector ¢ under the action of the moment of inertia operator A, is cailed the
angular momentum and is denoted by M = 4,4. The vector M lies in the
cotangent space to the group at the point g, and it can be carried to the co-
tangent space to the group at the identity by both left and right translations.
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We obtain two vectors

.'Wr = L;:\’f = g*
and

M, = R*Meg*

These vectors in the dual space to the algebra are none other than the
angular momentum relative to the body (M) and the angular momentum
relative to space {(M,). This follows casily from the expression for kinetic
energy in terms of momentum and angular velocity:

T =4M. w) =M. g

By the principle of least action. the motion of a rigid body under inertia
{(with no external forces) is a geodesic in the group of rotations with the left-
invariant metric described above.

We will now look at a geodesic of an arbitrary left-invariant riemannian
metric on an arbitrary Lie group as a motion of a * generalized rigid body™
with configuration space G. Such a “rigid body with group G ™ is detcrmined
by its kinetic energy, i.¢., a positive-definite quadratic form on the Lie algebra.
More precisely. we will consider geodesics of a left-invariant metric on a
group G given by a quadratic form {w, @) on the algcbra as motions of a
rigid body with group G and kinetic cnergy {w, /2.

To every motion f — g(t) of our gencralized rigid body we can associatc
four curves:

t = mltyeq t = mft)eq

t —+ M(eqg* t = MJ{the g*.

called motions of the vectors of angular velocity and momentum in the body
and in space. The differential equations which these curves satisfy were found
by Euler for an ordinary rigid body. However, they are true in the most general
case of an arbitrary group G, and we will call them the Euler equations for a
generalized rigid body.

Remark. In the ordinary theory of a rigid body six different three-dimen-
sional spaces R>, R**, g, g*. TG,. and T*G, are identified. The fact that the
dimensions of the space R* in which the body moves and of the Lie algebra g
of its group of moticns are the same is an accident related to the dimension 3;
in the n-dimensional case. q has dimension n(n — 1)/2.

The identification of the Lie algebra q with 1ts dual space q* has a more
profound basis. The fact is that on the group of rotations there exists (and is
unigue up to multiplication) a two-sided invariant riemannian metric. This
metric gives once and for all a preferred isomorphism of the vector spaces g
and g* (and also of TG, and T*G,). It allows us therefore to consider the
vectors of angular velocity and momentum as lying in the same euclidean
space. With this identification, the operation { , } is simply the commutator
of the algebra. taken with a minus sign.
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A two-sided invariant metric cxists on any compact Lie group. Therefore,
to study mottons of rigid bodies with compact groups we may identify the
spaces of angular velocities and momenta. However, we cannot make this
identification for applications to non-compact {or infinite-dimensional)
groups of difftomorphisms.

D Euler's equation

The results of Euler (obtained by him in the particular case G = SO(3}) can
be formulated as the following theorems on the motion of the vectors of
angular velocity and momentum of a generalized rigid body with group G.

Theorem 1. The vector of angular momentum relative to space is preserved
uhder motion:
aM

f=0.
dt

Theorem 2. The vector of angular momentum relative to the body satisfies
Euler’s eguation

-d::ff = {ew,, M.

These theorems are proved for a generalized rigid body in the same way as
for an ordinary rigid body.

Remark 1. The vector of angular velocity in the body, w,, can be cxpressed
linearly in terms of the vector of angular momentum in the body, M_, by
using the inverse of the inertia operator: w, = A~ 'M,.. Therefore, Euler’s
equation can be considered as an equation for the vector of angular mo-
mentum in the body alone; its right-hand side is quadratic in M.

We can also express this result in the following way. Consider the phase
flow of our rigid body. (Its phase space T*G has dimension twice the dimen-
sion n of the group G or the space of angular momenta g*.) Then this phase
flow in a 2n-dimensional manifold factors over the flow given by Euler’s
equation in the n-dimensional vector space g*.

A factorization of a phase flow 4" on a manifold X over 4 phase fow f7 on a manifold ¥
is 2 smooth mapping 1 of X onto ¥ under which motians ¢' are mapped ¢ motions 7, so that
the following diagram commutes {i.c., ng' = f*x):
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In our case. X = TG is the phase space of the body, ¥ = g* is the space of angular momenta.
The projection 7t T*G — ¢* is defined by left translation {nM = LFM lor M e T*G)). 4 is
the phasc flow of the body under consideration on the 2n-dimensional space T*G, and 7 is the
phase flow of the Euler equation in the n-dimensional space of angular momenta g*.

In other words, a motion of the vector of angular momentum relative to
the body depends only on the initial position of the vector of angular mo-
mentum relative to the body and does not depend on the position of the
body in the space.

Remark 2. The law of conservation of the vector of angular momentum
relative to space can be expressed by saying that every component of this
vector in some coordinate system on the space g* 1s conserved. We thus
obtain a set of first integrals of the equations of motion of the rigid body. In
particular, to every element of the Lie algebra g there corresponds a linear
function on the space g* and, therefore, a first integral. The Poisson brackets
of first integrals given by functions on g* are themselves functions on g*, as
can be seen easily. We thus obtain an (infinite-dimensional) extension of the
Lie algebra g, consisting of all functions on g*. g itself is included in this
extension as the Lie algebra of linear functions on g*. Of course, of all these
first integrals of the phase flow in a 2n-dimensional space only » are func-
tionally independent. As the n independent integrals we can take, for example,
#n linear functions on g* which form a basis in g.

Because of possible infinite-dimensional applications, we would like to
avoid coordinates and formulate statements about first integrals intrinsically.
This can be done by reformulating Theorem 1 in the following way.

Theorem 3. The orbits of the co-adjoint representation of a group in the dual
space to the algebra are invariant manifolds for the flow in this space given
by Euler’s equation.

PrOOF. M (1) is obtained from M (t) by the action of the co-adjoint repre-
sentation, and M () remains fixed.

ExaMpLE. In the case of an ordinary rigid body, the orbits of the co-adjoint
representation of the group in the space of momenta arc the spheres
M? + M3 + M3 = const. In this casc Theorem 3 is reduced to the law of
conservation of the length of the angular momentum. It consists of the fact
that, if the initial point M_ lies on some orbit (i.e., in the given case on the
sphere M2 = const), then all the points of its trajectory under the action of
Euler's equation lie on the same orbit.

We now return to the general case of an arbitrary group G and recall that
each orbit of the co-adjoint representation has a symplectic structure (cf.
subsection A). Furthermore, the kinetic energy of the body can be expressed
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in terms of the angular momentum relative to the body, As a result we obtain
a quadratic form on the space of angular momenta

T =4M,, A 'M).

Let us fix some one orbit ¥ of the co-adjoint representation. We consider the
kinetic energy as a function on this orbit:

H:V-R, H(M) =M., A" 'M,).

Theorem 4. On every orbit V of the co-adjoint representation, Euler’s equation
is hamiftonian with hamiltonian function H.

ProOF. Every vector < tangent to F al a point M has the form & = {f, M} where feq. In
particular, the vector field on the right side of Euler’s equation can be written in the form
X = {dT. M} (here the differential of the function T at a point M of the vector space g* is
considered as a vector of the dual space to g*.i.e., as an ¢lement of the Lie algebra a). [1 follows
from the definitions of the symplectic structure £ and the operation { , | {(cf. subsection A)
that for every vector < tangent to V at M.

QUE X)) = (ML dTD = (T4 f M) = (dH, 9. g

Euler’s equation can be carried over from the dual space of the algebra to
the algebra itself by inversion of the moment of inertia operator. As a result
we obtain the fellowing formulation of Euler’s equation in terms of the
operation B (section B).

Theorem 5. The motion of the vector of angular velocity in the body is deter-
mined by the initial position of this vector and does not depend on the initial
position of the bady. The vector of angular velocity in the body satisfies an
equation with quadratic right-hand side:

o, = Blw,, ).

We will call this equation Euler’s equation for angular velocity. We
notice that, under the action of the operator A~ '; g* — g, the orbits of the
co-adjoint representation are carried to invariant manifolds of Euler’s
equation for angular velocity; these manifolds have symplectic structure, etc.
However, unlike orbits in g*, these invariant manifolds are not determined
by the Lie group G itself, but depend also on the choice of rigid body (i.e.,
moment of inertia operator).

From the law of conservation of energy we have

Theorem 6. Euler’s equations{ for momentum and angular velocity} have a
quadratic first integral, whose value is equal to the kinetic energy

T =M., A™'M,) = HAw,, w.).
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E Stationary rotations and their stability

A stationary rotation of a rigid body is a rotation for which the angular
velocity in the body is constant (and thus also the angular velocity in space;
it is easy to see that one implies the other). We know from the theory of an
ordinary rigid body in R? that stationary rotations are rotations around the
major axes of the moment of inertia ellipsoid. Below, we formulate a general-
ization of this theorem to the case of a rigid body with any Lie group. Wenote
that stationary rotations are geodesics of left-invariant metrics which are one-
parameter subgroups. We note also that the directions of the major axes of
the inertia ellipsoid can be determined by locking at the stationary points of
the kinetic energy on the sphere of vectors of momentum of fixed length.

Theorem 7. The angular momentum (vespectively, angular velocity) of a
stationary rotation with respect to the body is a critical point of the energy
on the orbit of the co-adjoint representation (respectively on the image of the
orbit under the action of the operator A~'), Conversely, every critical point
of the energy on an orbit determines a stationary rotation.

The proof is a straightforward computation or application of Theorem 4.

We note that the partition of the space of momenta into orbits of the co-
adjoint representation cannot be so easily constructed in the case of an
arbitrary group as it was in the simple case of an ordinary rigid body: in that
case it was the partition of three-dimensional space into spheres with center
(0 and the point O itself. In the general case, the orbits can have different
dimensions, and the partition into orbits at some points may not be a
fibering; such a singularity already appeared in the three-dimensional case
at the point 0.

We call a point M of the space of angular momenta a regular point if the
partition of a neighborhood of M into orbits is diffeomorphic to a partition
of euclidean space into parallel planes (in particular, all orbits near the point
M have the same dimension). For example, for the group of rotations of
three-dimensional space all points of the space of angular momenta are
regular except the origin.

Theorem 8. Suppose that a regular point M of the space of angular momenta is
a critical point of the energy on an orbit of the co-adjoint representation,
and that the second differential of the energy d*H at this point is a (positive-
or negative-)definite form. Then M is a (Liapunov) stable equilibrium position
of Euler’s equations.

Prook. It follows from the regularity of the orbits near this point that on
every neighboring orbit there exists near M a point which is a conditional
maximum or minimum of energy. 0
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Theorem 9. The second differential of the kinetic energy, restricted to the image
of an orbit of the co-adjoint representation in the algebra, is given at a
critical point we g by the formula

24°H oy = <B(, f), Blw, /)> + {[f, 0], B(w, [,

where £ is a tangent vector to this image, expressed in terms of [ by the
Jormula

¢ =Blwf) fea

F Riemannian curvature of a group with
left-invariant metric

Let G be a Lie group provided with the left-invariant metric given by a
scalar product { , > in the algebra. We note that the riemannian curvature
of the group G at any point is determined by the curvature at the identity
(since left translation maps the group to itself isometrically). Therefore, it is
sufficient to caleulate the curvature for two-dimensional planes lying in the
Lie algebra.

Theorem 10. The curvature of a group in the direction determined by an
orthonormal pair of vectors &, v in the algebra is given by the formula

Keq=1<6,0) + 2{a, B> — 3{xt,a) — 4{B;, B>,

where 26 = B(E, ) + By, &), 28 = B({, n) — B(y, &), 20 = [&, 0], 2B, =
B(Z, £), 2B, = B(n, n), and where B is the operation defined in section B.

The proof is a tedious but straightforward calculation. {t is based on the
easily verifted formula for covariant derivative

(Ven) = K& 1] - BE ) — B, O)),

where ¢ and 5 on the left are left-invartant vector fields and on the right are
their values at the identity.

Remark 1. In the case of a two-sided invariant metric, the formula for
curvature has the particularly simple form

K‘f-"-’ = é( [é& r!']! [és ?‘,'] >

Remark 2. The formula for the curvature of a group with a right-invariant
riemannian metric coincides with the formula for the left-invariant case. In
fact, a right-invariant metric on a group is a left-invariant metric on the
group with the reverse multiplication law (g, * g, = ¢,g,). Passage to the
reverse group changes the signs of both the commutator and the operation B
in the algebra. But, in every term of the formula for curvature, there is a
preduct of two operations changing the sign. Therefore, the formula for
curvature is the same in the right-invariant case,
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In Euler's equation the right-hand side changes sign under passage to the
right-invariant case.

G Application to groups of diffeomorphisms

Let D be a bounded region in a riemannian manifold. Consider the group of
diffcomorphisms of D which preserve the volume element. We will denote
this group by SDiff D.

The Lie algebra corresponding to the group SDiff D consists of all vector
fields with divergence 0 on D, tangent to the boundary (if it is not empty). We
define the scalar product of two elements of this Lie algebra (i.e., two vector
fields) as

vy, 020 = j(vl - vy X,

where () is the scalar product giving the riemannian metric on D, and dx
1s the riemannian volume element.

We now consider the flow of a uniform ideal (incompressible, non-
viscous) fluid on the region D. Such a flow is described by a curve t — g, in
the group SDiff D. Namely, the diffeomorphism g, is the map which carries
every particle of the fluid from the place it was at time 0 to the place it is at
time r. It turns out that the kinetic energy of the moving fluid is a right-
invariant riemannian metric on the group of diffeomorphisms SDiffD.

Indeed, suppose that after time ¢ the flow of the fluid gives a diffecomorphism g,, and that
the velocity at this moment of time is given by the vector field v. Then the diffeomorphism
realized by the flow after time r + 7 {where 1 is small) will be ¢y, up to a quantity smal in
companison with t (here ¢ is the one-parameter group with vector o, i.e.. the phase Aow of the
differential equation given by the field v} Thercfore, the field of velocities v is obtained lrom the
vector ¢ tangent to the group at the point g by right translation. This atso implies the right-
invariance of the kinetic energy, which is by definition equal (o

T = oo

(we assume the density of the fluid 1o be 1)

The principle of least action (which in mathematical terms is the definition
of an ideal fluid) asserts that flows of an ideal fluid are geodesics in the right-
invariant metric just described on the group of diffeomorphisms.

Strictly speaking, an infinite-dimensional group of diffeomorphisms is net a manifold.
Therefore the exact formulation of the definition above requires additional work: we must
choose suitable functional spaces, prove a theorem on existence and uniqueness of solutions,
etc. Up to now this has been done only in the case when the dimension of the region of the flow D
is equal to 2. However, we will proceed as if these difficultics connected with infinite dimensions
did not exist. Thus the following arguments are heuristic in character. It turns out that many
of the results can be proved rigorously, independently of the theory of infinite-dimensional
manifolds.

We will now indicate the form that the general formulas introduced above
take in the case G = SDiffD, where D is a connected region with finite
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volume in a three-dimensional riemannian manifold. To do this we must
first describe explicitly the bilinear operation B:g x g — g defined in
section B by the formula

<[a, b]. e = {Blc, a), b.

It is easy to verify that in the three-dimensional case the vector field
B(c, a) can be expressed in terms of the vector fields g and ¢ of our Lie atgebra
by the formula

Blc,a) = (curl ¢) ~ a + grad =z,

where ~ denotes the vector product, and « the single-valued function on D
which is uniquely (up to a constant summand) determined by the condition
B e g(ie., the conditions div B = 0 and B is tangent to the boundary of D).

We note that the operation B does not depend on the choice of orientation,
since the vector product and curl both change sign with a change of orienta-
tion,

Stationary flows. Euler's equation for “angular velocity” in the case
G = SDiff D has the form ¢ = — B(v, »), since the metric is right-invariant.
Therefore, in the case of the group of diffeomorphisms of three-dimensional
space, it takes the form of “the equations of motion in Bernoulli’s form™

oo )

a—[=ux\curlv+gradnc, divp = 0.
Euler's equation for momentum is written in the form of the *vorticity

equation”
deurl v

at

In particular, the vorticity of a stationary flow commutes with the field of
velocities.

This remark leads quickly to a topological classification of stationary
flows of an ideal fluid in three-dimensional space.

= [, curl v].

Fheorem 11, Assume that the region D is bounded by a compact analytic surface,
and that the field of velocities is analytic and not everywhere collinear with
its curl. Then the region of the flow can be partitioned by an analytic sub-
manifold into a finite number of cells, in each of which the flow is constructed
in a standard way. Namely, the cells are of two types: those fibered into tori
inpariant under the flow and those fibered into surfaces invariant under the
flow, diffeomorphic to the annulus R x S'. On each of these tori the flow
lines are either all closed or all dense, and on each annulus all the flow lines
are closed.

To prove this theorem we lock at the “Bernoulli surfaces,” i.e., the level
surfaces of the function «. It follows from the condition for a flow to be
stationary (v ~ curl v = —grad «) that both the flow lines and the vortex
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lines lie on the Bernoulli surface. Since the fields of velocity and vorticity
commute, the group R? acts on the closed Bernoulli surface, and it must be a
torus (cf. the proof of Liouwville’s theorem in Section 49). An analogous
calculation for the boundary conditions on the boundary of D shows that the
non-closed Bernoulli surfaces consist of annuli with closed flow lines.

Remark. The analyticity of the field of velocities is not very essential, but
it is important that the fields of velocity and vorticity not be collinear.
Computer experiments conducted by M. Hénon show more complicated
behavior than described in the theorem for the flow lines of a stationary flow
on the three-dimensional torus; this field is given by the formulas

v, = Asinz + Ccosy v, = Bsinx + Acos z,
v, = Csin y + Bcos x.

The formulas are selected so that the vectors v and curl » are collinear. The
results of Hénon’s calculations suggest that some flow lines densely fill up a
three-dimensional region.

I Isovorticial fields

Two-dimensional hydrodynamics differs sharply from three-dimensional
hydrodynamics. The essence of this difference is contained in the difference
in the geometries of the orbits of the co-adjoint representation in the two-
and three-dimensional cases. In the two-dimensional case the orbits are in
some sense closed and behave, for example, like a family of level sets of a
function (more precisely of several functions: actually even an infinite number
of functions). In the three-dimensional case the orbits are more complicated;
in particular, they are unbounded (and perhaps dense). The orbits of the co-
adjoint representation of the group of difeomorphisms of a three-dimensional
riemannian manifold can be described in the following way. Let v, and v; be
two vector fields of velocities of an incompressible fluid in the region D.
We say that the fields v, and v, are isovorticial if there is volume-preserving
diffeomorphism ¢: D — D which carries every closed contour y in [ to a new
contour such that the circulation of the first field along the original contour
is equal to the circulation of the second field along the new contour:

§01 = § g,
¥ a

It 1s easy to verify that the image of an orbit of the co-adjoint representation
in the algebra (under the action of the inverse of the inertia operator, 4™ ') is
none other than the set of fields isevorticial to the given field,

In particular, Theorem 3 now takes the form of the following law of con-
servation of circulation:

Theorem 12. The circulation of a field of velocities of an ideal fluid over a closed
Sfluid contour does not change when the contour is carried by the flow to a
new position.
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We note that if two fields of velocities of a three-dimensional ideal fluid
on D are isovorticial, then the corresponding diffeomorphism carries the curl
of the first field inte the curl of the second:

g, curl vy = curl v,.

Furthermore, the isovorticity of twoe fields can be defined as the equivalence
of the fields of vorticity, if the region of the flow is simply connected. Therefore,
the probiem of the oribits of the co-adjoint representation in the three-
dimensional case includes the problem of classifying vector fields with
divergence zero up to volume-preserving diffecomorphisms. This last problem
in three dimensions is hopelessly difficult.

We now consider the two-dimensional case. First, we translate the basic
formulas into notation convenient for considering the two-dimensional case.
We assume that the region D of the Row is two-dimensional and oriented.
The metric and orientation give a symplectic structure on D; the vector field
of velocities has divergence zero and is therefore hamiltonian. Therefore, this
field is given by a hamiltonian function (many-valucd, in general, if the region
D is not simply connected). The hamiltonian function of a field of velocities
is cailed the stream function in hydrodynamics, and is denoted by . Thus

v = I grad ¢,

where [ is the operator of clockwise rotation by 90°.

The stream function of the commutator of two fields turns out to be the
Jacobian (or the Poisson bracket of hamiltonian formalism) of the stream
functions of the original fields

l}J[m.uz] = J(wli ‘!IIZ)

The vector field B(c, a) is given, in the two-dimensional case, by the formula
B = — (A )grad v, + grad 2,

where ¢, and ¥, are the stream functions of the fields ¢ and ¢, and A =
div grad is the laplacian.

In the particular case of the euclidean plane with cartesian coordinates x
and y, the formulas for stream function, commutator and laplacian take the
particularly simple form

o oy
B, = — = — —
T dy ¢ ax
d] = allt’v[ 6{1102 _ awu[ adjvz
w2l = gy gy dy  0x
e
A=—m+ 55
¢ dy
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The vorticity (or curl) of a two-dimensional field of velocities is the scalar
function r such that the integral around any oriented region ¢ in D of the
product of r with the oriented area element is equal to the circulation of the
field of velocities around the boundary of o:

.[rdS= j{; L.
a A

It is easy 10 compute an expression for the vorticity in terms of the stream
function:
r= —4Ay.

In the two-dimensional simply connected case, isovorticity of fields v,
and v, means simply that the functions r, and r, (the vorticities of these
fields) are carried to one another under a suitable volume-preserving dif-
feomorphism.

Under such conditions the two functions r, and r, have the same distribu-
tion function, i.e.,

mes{xe D:ir(x) € ¢} = mes{xeD:r,(x) <},

for any number ¢. Therefore, if two fields are in the image of the same orbit
of the co-adjoint representation, then a whole series of functionals are equal;
for example, the integrals of all powers of the vorticity

J-r’idSZ J.r'ﬁdS.
b b

In particular, Euler’s equations of motion of a two-dimensional ideal fluid

{;E-FLVL‘— —grad p dive =0,

7t

have an infinite collection of first integrals. For example, the integral of any
power of the vorticity of the field of velocities

I, = Jf (6&2 &;) dx ~ dy

is such a first integral.

The existence of these first integrals (i.c., the relatively simple structure of
orbits of the co-adjoint representation) allows us to prove theorems on
existence and uniqueness, etc. in the two-dimensional hydrodynamics of an
ideal (and also of a viscous) fluid; the complicated geometry of orbits of the
co-adjoint representation in the three-dimensional casc {or, perhaps, in-
sufficient information about these orbits) makes the foundations of three-
dimensional hydrodynamics a very hard problem.
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Y Siability of planar stationary flows

Here we formulate general theorems about stationary rotations (Theorems
7, 8, and 9 above) for the case of a group of diffeomorphisms. We obtain in
this way the following assertions:

1, A stationary flow of an ideal fluid is distinguished from all flows is0-
vorticial to it by the fact that it is a conditional extremum (or critical point)
of the kinetic energy.

2. 1f (1) the indicated critical point is actually an extremum, i.e., a local con-
ditional maximum or minimum, (i1} it satisfies certain (generally satisfied)
regularity conditions, and (i) the extremum is non-degenerate (the
second differential is positive- or negative-definite), then the stationary
flow is stable (1.e., 15 a Liapunov stable equilibrium position of Euler's
equation).

3. Theformula for the sccond differential of the kinetic energy, on the tangent
space to the manifold of fields which are isovorticial to a given one, has the
following form in the two-dimensional case. Let D be a region in the
cuclidean plane with cartesian coordinates x and y. Consider a stationary
flow with stream function ¥ = y(x, y). Then 24%H =[], (év)> +
(A VAYYSr)? dx dy, where v is the variation of the field of velocities
(i.e., a vector of the tangent space indicated above), and dr = curl de.

We note that for a stationary flow, the gradient vectors of the stream
function and its laplacian are collinear. Therefore the ratio Viji/VAy makes
sense. Furthermore, in a ncighborhood of every point where the gradient of
the vorticity is not zero, the stream function is a function of the vorticity
function.

The assertions introduced above lead to the conclusion that the positive-
or negative-definiteness of the quadratic form 42H is a sufficient condition
for stability of the stationary flow under consideration. This conclusion does
not formally follow from Theorems 7, 8, and 9 since the application of any of
our formulas in the infinite-dimensional case requires justification. Fortu-
nately, we can justify the final conclusion about stability without justifying
the intermediate constructions. Thus we can rigorously prove the following
a priori bounds (expressing the stability of a stationary flow in terms of small
perturbations of the initial velocity field).

Theorem 13. Suppose that the stream function of a stationary flow, f = {( x, y),
inaregion D is a function of the vorticity function (i.e., of the function Afr) not
only locally, but globally. Suppose that the derivative of the stream function
with respect to the vorticity satisfies the inequality

Vi

SWSC' where O < ¢ < ( < x,

[

L
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Let W + @(x, v, t) be the stream function of another flow, not necessarily
stationary. Assume that, at the initial moment, the circulation of the velocity
field of the perturbed flow (with flow function  + @) around every boundary
component of the region D is equal to the circulation of the original flow (with
stream function ). Then the perturbation ¢ = @(x, y, t) at every moment
of time is bounded in terms of the initial perturbation @, = @(x, y, 0) by the
Jformula

.”. (Vo) + c(Ap)? dx dy < .U (Vo) + ClA@y) dx dy.
D n

If the stationary flow satisfies the inequality

cﬁ—%sa 0<c<C<x,

then the perturbation @ is bounded in terms of ¢, by the formula

J:L)C(AQJ’}‘2 — (Vo) dxdy < ijC(A‘Po)Z — (Voo)? dx dy.

This theorem implies the stability of a stationary flow in the case of a
positive-definite quadratic form

v
[[vor + g or axdy

with respect to Vg (where @ is a constant function on every component of the
boundary of D whose gradient flow is zero over every boundary component),
and also in the case of a negative definite form

Vv
JAJ.D(Vr,o)2 + (max K%)(Atp)z dx dy.

ExampLE 1. Consider a planar parallel flow in the strip ¥, < y < Y, in the
(x, y)-plane with velocity profile o(y) (i.e., with velocity field (v(y), 0)). Such
a flow is stationary for any velocity profile. To make the region of the flow
compact, we impose the condition that the velocity fields of all flows under
consideration be periodic with period X in the x-coordinate.

The conditions of Theorem 13 are fulfilled if the velocity profile has no
points of inflection (i.e., if d*v/dy* # 0). We come to the conclusion that
planar parallel flows of an ideal ftuid with no inflection points in the velocity
profile are stable.

The analogous proposition in the linearized problem is called Rayleigh's
theorem.
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We emphasize that in Theorem 13 it is not a4 question of stability “in a lincar approxima-
tion,” but of actual strict Liapunov stability (ie.. with respeet to finite perturbations in the
nonlinear problem}. The difference between these two [orms of stability is substantial in this
case, since our problem has a hamiltonian character (¢f. Theorem 4): for hamiltonian systems
asymptotic stability is impossible, so stability in a linear approximation is always neuatral and
msufficient for a conclusion about the stability of an equitibrium position of the nonlinear
problem.

ExaMpLE 2. Consider the planar-parallel flow on the torus

{(x, y), x mod X, y mod 2}

with velocity field v = (sin y, 0), paratlel to the x-axis. This field is deter-
mined by the stream function ¥ = —cos y and has vorticity r = —cos y.
The velocity profile has two inflection points, but the stream function can
be expressed as a function of the vorticity. The ratio Vi/VA is equal to
minus one. By applying Theorem 13 we can convince ourselves of the
stability of cur stationary flow in the case when

2m X In X
J. f (ApY dx dy > J‘ f (Vo) dx dy
O 4] 1] L]

for all functions ¢ of period X in x and 2z in y. It is easy to calculate that the
last incquality is satisfied for X < 2x and violated for X > 27.

Thus Theorem 13 implies the stability of a sinusoidal stationary flow on a
short torus, when the period in the direction of the basic flow (X) is less than
the width of the flow (27). On the other hand, we can dircctly verify that on a
long torus (for X > 27) our sinusoidal flow is unstable®” Thus, in this
example, the sufficient condition for stability from Theorem 13 turns cut to
be necessary.

We should note that in general an indefinite quadratic form 4% H does nol imply instability
of the corresponding flow. In general, an cquilibrium position of @ hamiltonian system can be
stable even though the hamiltonian function at this position is neither a maximum nor a mini-
mum. The gquadratic hamilionian B = p! + g7 — p3 — g3 is the simplest example of this kind.

K Riemannian curvature of a group of diffeomorphisms

The expression for the curvature of a Lie group provided with a one-
sided-invariant metric, introduced in subsection E, makes sense also for the
group SDiff D of diffeomorphisms of a riemannian domain D. This group is
the configuration space for an ideal fluid filling the domain D. The kinetic
energy defines a right-invariant metric on SDiff'D. The number which we
obtain by formally applying the formula for the curvature of a Lie group to

¥ Ci, for cxample, the article of L. D. Meshalkin and Ya. G. Sinai, “ [nvestigation of the stability

of a stationary solution of a system of equations for the plane movement of an incompressible
viscous liquid.” J. Applied Math. Mech. 25 {1962}, 1700 1705.
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this infinite-dimensional greup is naturally called the curvature of the group
SDifD.

Calculation of the curvature of a group of diffeomorphisms has been
carried out completely only in the case of a flow on the two-dimensional
torus with euclidean metric. Such a torus is obtained from the euclidean
plane R? by identifying points whose difference lies in some lattice (a discrete
subgroup of the plane). An example of such a lattice is the set of points with
mntegral coordinates. In general, to obtain an arbitrary lattice I' we may
replace the square lying at the basis of this special lattice by any parallelogram.

Now consider the Lie algebra of vector fields with divergence zero on the
torus with a single-valued stream function. The corresponding group
SoDiff T* consists of volume-preserving diffeomorphisms which leave the
center of mass of the torus fixed. It is embedded in the group SDiff T2 of all
volume-preserving diffeomorphisms as a totally geodesic submanifold (i.e.,
a submanifold such that each of 1ts geodesics is a geodesic in the ambient
manifold).

The proof consists of the fact that if, at the initial moment, a velocity
field of an ideal fluid has a single-valued stream function, then at all other
moments of time the stream function will also be single-valued; this follows
from the law of conservation of momentum.

We will now investigate the curvature of the group S, Biff T2 in all pos-
sible two-dimensional directions passing through the identity of the group
{the curvature of the group SDiff T? in every such direction is the same, since
the submanifold S, Diff T2 is totally geodesic).

Choose an orientation on R2. Then elements of the Lie algebra of the
group SoDiff T# can be thought of as real functions on the torus having
average value zero (a ficld with divergence zero is obtained from such a
function by considering it to be a stream function). Therefore, a two-dimen-
sional direction in the tangent space to the group S, Diff T2 is determined by
a pair of functions on the torus with average vajue zero.

We will give such a function by the set of its Fourier coefficients. It is con-
venient to carry out all caleulations with Fourier series in the complex do-
main. We let ¢, (where &, called a wave vector, is a point of the euclidean
plane) denote the function whose value at a point x of our plane is equal to
¢'® ) Such a function determines a function on the torus if it is T-periodic,
i.e., if adding a vector from the lattice I to x does not change the value of the
function.

In other words, the scalar product (k, x) must be a multiple of 2= for all
x e I, All such vectors k belong to a lattice I'* on R2. The functions e;, where
k e T*, form a complete system in the space of complex functions on the torus.

We now complexify our Lie algebra, scalar product { , », commutator
[ . ] and operation B in the algebra, as well as the riemannian connection
and curvature tensor , so that all these functions become {multi-) linear in
the complex vector space of the complexified Lie algebra. The functions e,
(where ke I'*, k # 0) form a basis of this vector space.
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Theorem 14. The explicit formulas for the scalar product, commutator, opera-
tion B, connection, and curvature of a right-invariant metric on the group
So Diff T* have the following form:

{ey,ep =0 fork +1+£0,
<eks e—k) = P'(?'S:
Ler, el = (b ~ Deys;

k2
Ble,, e) = bk,tek+h where bk,! =k Al (k'+—f)2’
Vekel=d1‘“;e“;, where du.l_i:(v—A-Lfg(u—.v‘);

v

Ritmn=0ifk+14+m+n#0ifk+1+m+n=0then Ry pmn=
(ainakm - almakn)ss where Ay = (H M U)z/lu + Ull-

In these formulas, § is the area of the torus, and u# ~ v the area of the
parallelogram spanned by « and ¢ (with respect to the chosen orientation of
R?). The parentheses denote the euclidean scalar product in the plane, and
angled brackets denote the scalar product in the Lie algebra.

The proof of this theorem is in the first article listed in the introduction to
this appendix.

The formulas above allow us to calculate the curvature in any two-
dimensional direction. These calculations show that in most directions the
curvature is negative, but in a few it is positive. Consider, for instance, some
fluid flow, 1.¢. a geodesic of our group. By Jacobi’s equations, the stability of
this geodesic is determined by the curvatures in the directions of all possible
two-dimensional planes passing through the velocity vector of the geodesic
at each of its points.

Assume now that the Aow under consideration is stationary. Then the geo-
desic 1s a one-parameter subgroup of our group. From this it follows that the
curvatures in the directions of all planes passing through velocity vectors of
the geodesic at all of its points are equal to the curvatures in the corresponding
planes going through the velocity vector of this geodesic at the initial moment
of time (Proof: right translate to the identity clement of the group). Thus the
stability of a stationary flow depends only on the curvatures in the direétions
of those two-dimensional planes in the Lie algebra which contain the vector
of the Lic algebra which is the velocity field of the stationary flow.

Consider, for example, the simplest parallel sinusoidal stationary flow.
Such a flow is given by the stream function

v _ Gt e
ST

Consider any other real vector of the algebra, 5 =} x,¢; (s0 x_; = %;). We
deduce easily from Theorem 14 that
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Theorem 15. The curvature of the group SoDiff T2 in any two-dimensional
plane containing the direction ¢ is non-positive. Namely,

R
KUE )y = — a Z af 1% + Xpl®
1

From this formula it follows, in particular, that

1. The curvature is equal to zero only for those two-dimensional planes which
consist of parallel flows in the same direction as &, so that [£, n] = 0

2. The curvature in the plane defined by the flow functions ¢ = cos kx,
n = cosixis

2, 52
K= k—‘-‘%i sin? a sin? B,
where S 1s the area of the torus,  is the angle between k and {, and f 1s the
angle between k + land &k — [;

3. In particular, the curvature of the group of diffeomorphisms of the torus
{(x. ¥) mod 27} in directions determined by the velocity fields (sin y, 0)
(0, sin x) is equal to

-1

K=g .

L Discussion

it is natural to expect that the curvature of a group of diffcomorphisms is
related to the stability of geodesics in this group (i.e. to the stability of flows
of an ideal fluid) in the sume way as the curvature of a finite-dimensional Lie
group is related to the stability of geodesics on it. Namely, negative curvature
causcs exponential instability of geodesics. The characteristic path length
(the average path length in which errors in the initial conditions grow ¢
times) has order of magnitude 1/,/ — K. Thus, knowing the curvatures of a
group of diffeomorphisms allows us to estimate the time for which we can
predict the development of the flow of an ideal fluid by means of an approxi-
mate initial velocity field before the error grows to a large order.

It should be emphasized that instabihty of a Row of an ideal uid is here understood dif-
ferently than in section K: it is a question of exponentiat instability of the motion of the fluid,
not of its velocity field. 1t is possible for a stationary Row to be a Liapunov stable solution of
Euler's equation while the corresponding motion of the fluid is exponentially unstable. The
reason is that 4 small change in the velocity field of 4 fluid can induce an exponentially growing
change in the motion of the fluid. In such a case (stability of the solution of Euler's equation
and negative curvature of the group) we can predict the velocity field. bul we cannot predict
the motion of the Auid mass without a great loss of acouracy.

The formulas mentioned above for curvature can be used even for rough
estimates of the time over which a long-term dynamical prediction of the
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weather is impossible, if we agree to a few simplifying assumptions. These
simplifying assumptions consist of the following:

1. The carth has the shape of a torus obtained by factoring the plane by a
square lattice,

2. The atmosphere is a two-dimensional homogeneous incompressible
inviscid fluid.

3. The motion of the atmosphere is approximately a "tradewind current,”
parallel to the equator of the torus and having sinusoidal velocity profile.

To calculate the characteristic path length we must then estimate the
curvature of the group S, Diff T? in directions containing the “tradewind
current” & from Theorem 15. To do this we will look at T2 as {(x, y) mod 2=},
k = (0, 1). In other words, we look at 2z-periadic flows on the (x, y)-plane
close to a stationary flow, parallel to the x-axis and with sinusoidal velocity

profile
v = (sin y, Q).

It is easy to see from the formula in Theorem 15 that the curvature of the
group S, Diff T? in the plancs containing our tradewind current ¢ varies
within the limits

— — < K <0, where § = 4n? is the area of the torus.

h)
Here the lower limit is obtained by a rather crude estimate. However, a
direction with curvature K = —1/25 certainty exists, and there are many

other dircctions with curvature of approximately the same size. In order to
make a rough estimate of the characteristic path length, we make the rough
guess K, = —1/28 as value of the “mean curvature.”

If we agree to start from this value K, of the curvature, we obtain the
characteristic path length

s=(/ Ky ' = /28

The velocity of motion with respect to the group which corresponds to
our tradewind current is equal to \_f"iS‘_,.fZ {since the average square value of
the sine 1s 3}. Therefore. the time it takes for our flow to travel the characteristic
path length is equal to 2. The fustest particles of the fluid go a distance of 2 gfter
this time, i.e., |/n of the entire orbit around the torus.

Thus, if we take our value of the mean curvature, then the error grows by
e™ = 20 after the time of one orbit of the fastest particle. Taking the value
100 km/hr as the maximal velocity of the tradewind current, we get 400 hours
for the time of orbit, i.e., less than three weeks.

Thus, if at the initial moment the state of the weather was known with
small error ¢, then the order of magnitude of the error of prediction after »
months would be

30-24
100, where k ~ 200 nlog,,ex 2.5

341



Appendix 2: Geodesics of lelt-invariant metrics on Lie groups

For example, to predict the weather two months in advance we must have
initial data with five more digits of accuracy than the prediction accuracy.
Practically, this means that calculating the weather for such a period is

impossible.
It is clear that the estimates mentioned here are not very sharp, and the

model we took 1s very simplified. The choice of the value of “ mean curvature™
also requires justification.
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The symplectic manifolds of classical mechanics are most often phase spaces
of lagrangian mechanical systems, i.e., cotangent bundles of cenfiguration
spaces.

An entirely different scrics of symplectic manifolds arises in algebraic
geometry.

For example, any smoocth complex algebraic manifold (given by a system
of polynomial equations in complex projective space) has a natural symplectic
structure.

The construction of & symplectic structure on an algebraic manifold is
based on the fact that complex projective space itself has a particular sym-
plectic structure, namely the imaginary part of its hermitian structure.

A The hermitian structure of complex
projective space

Recall that n-dimensional complex projective space CP” is the manifold of all
complex lines passing through the point 0 in an (s + 1)-dimensionat com-
plex vector space C"*'. To construct a symplectic structure on CP" we use
the hermitian structure in the corresponding vector space C"™',

Recall that a hermition scafar preduct (or hermitian structure) on a complex vector space
is 4 complex linear function on pairs of vectors, which {1} is lincar in the first and and-linear
in the seeond variabie, (2) changes its value Lo the complex conjugate when the arguments ure
interchanged. and {3} beconmes a positive-definite real quadratic form if we take the arguments
cyqual:

Qémy =iy =g GH =0
fur I # 0.

An example of o hermitian scalar product is
(1) Loy = Y S,
where &, and gy, are the coordinates of the vectors 2 and »in some basis.

A basis for which @ hermitiun scalar product has the form (1) always exists, and is called a
hermttian-orthonormal basis,

The real and imaginary parts of a4 hermitian scatar product are real bilinear forms. The
first ts symmetric, and (he second skew-symmetric, and buoth are nondegencerate:

Gop =+l Em=080  [Lal= -l

The quadratic form (£, I} ts positive-delinite.

Thus a hermitian structure < . > on a complex vector space gives it a cuclidean structure
{ . JYand asymplectic structure [ . ] These two structures are related to the complex structure
by the relation

[Som] = (i)

We will now define a riemannian metric on complex projective space.
To do this, consider the unit sphere
§Fl = el i) = 1}

in the corresponding vector space T “'. This sphere inherits the riemannian
metric from C"*'. Every complex linc intersects our sphere in a great circle.
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Definition. The distance between two points of complex projective space is
the distance between the two corresponding circles on the unit sphere.

We note that these two circles are parallel in the sense that the distance
from any point of one of the circles 10 the other is the same (Proof: multiplica-
tion of z by ¢ preserves the metric on the sphere). This circurastance allows
us at once to write down an explicit formula {2) for the ricmannian metric on
the complex projective space given by the construction defined above.

In fact, let p denote the mapping

p:CPH0 S P

taking a point z # 0 of the vector space €"*! to the complex line passing
through 0 and z.

Every vector ¢ tangent to CP” at the point pz can be represented (in many
ways) as the image of a vector at the point z: under this map

;:P*Cja éETC;H—I.

Theorem. The squure of the length of a vector {in the riemannian meiric
defined above is given by the formula

aBa D — (6 S
B (z,2)? )

ProoF. Assume first that the point = lies on the unit sphere §37°!.

Decompose the vector & into two components: one in the complex line determined by the
veelor z and the other in the hermilian-orthogonal direction. Note that hermitian-orthogonal
to the vector = means euclidean-orthogonal (o the veclors - and iz, The veclor = is a cuclidean
normal vector to the sphere $*7*' at . The vector iz is a vector tangent to the circle in which
the sphere intersects the complex line passing through - Thus the component # of the vector £
which is hermitian-orthingonal Lo z s tanpent (o the sphere $2"! and euclidean-orthogonal
to the aircle in which the sphere mtersects the line pz.

By the definition of the metric on CP", the riemannian square of the length of the vector
1s equal o the euchidean square length of the component n of £ which is hermitian-orthogonal
o :.

We caleulate the component pofl 2. herminan-orthogonal to -, We write our decomposition as

(2) ds*(0)

I =z + 1. where nzy =0,
By hermitian multiplication with =, we find
Sozy =l 2

50

—(:.z

Czozpd - (s
H=—- .
Calculating the hermilian square of the vector y. we find {#. 43 = (n. 1> and

ENR T SN I -3 T I

{z.25

Ay =

Thus, formula (2} is proved for points z of the unitsphere. The general case follows from looking
at the homothelie transformation - — 2/ zj. O
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Note that our censtruction allows us to define not only a euclidean
structure (2), but also a hermitian structure on the tangent space to CP",
Consider the hermitian-orthogonal complement H to the direction of the
vector z in the space TC:'!, where z € $°°*!. The map p,: H - T(CP"),,
maps H isecmorphically {as we showed above) onto the tangent space to CP
and carries over the hermitian structure from H.

It1s clear that the scalar square defined by this hermitian structure is given
by formuia (2). Therefore, the formula for the hermitian scalar product in
the tangent space to CP" can be written down without further calculations:

G 8aa 2 — G255
2oy

(3} <':1 t:z> =

for any vectors £y, £, in TC; ™ satisfying the relation p, & = {, & T(CP"),,.
We note that in formufa (3) the point z does not necessarily lie on the unit
sphere.

The euclidean and hermitian structures (2) and (3) constructed on the
tangent spaces to CP" are not invariant under all projective transformations
of the manifold CP?, but are invariant under those which are given by unitary
(preserving the hermitian structure) linear transformations of the vector
space "~ ",

B The symplectic siructure of complex
projective space

We consider the imaginary part of the hermitian form (3), taken with co-
cflicient — 17 (the reason for taking this coefficient is explained in Problem 1,
Section C):

. . ! . .
(4) Q(:l, w2l = - - Im('ﬂ- Cad

Like the imaginary part of any hermitian form, the real bilinear form Q on
the tangent space to complex projective space is skew-symmetric and non-
degenerate.

Theorem. The differential 2-form Q gives a symplectic structure on complex
projective space.

Proor. We need only verily that the lorm Q is closed.

Consider the exterior derivative df) of the form . This differential 3-form on CF" is invariant
with respect (o mappiags induced by unitary transformations of the space 2777, It follows from
this that it is equal to zero,

To see this, we look at a hermitian-orthonormal basis ¢,. .., ¢, of the tangent space to
CP" at some point 2. Then the veclors ey, ..., &, fe, ..., je, form a euclidean-orthonormal
R-hasis, We will show that the value of the form JQ on any triple of these ®-busis vectors is
cqual to zero. (We assume that # > 1t for n = 1 there is nothing o prove.)

Note that in any iriple of R-basis vectors at least one s hermitian-orthogonal to the wo

FaLAmt

othets. Denote this vector by ¢ 1Uis easy 1o construct a unitary transformation of the space &
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inducing a motion on {P" which fixes the point z and the hermitian-orthogonal complement
1o ¢, and changes the dircetion of ¢.

The value of the form €2 on our three vectors. . f, and ¢ is equal to its value on the triple
—e&, f.and g by the invariance of the form £, and is hence cqual 1o zero. O

Remark. Another method of constructing the same symplectic structure
on complex projective space consists of the following. Consider small oscil-
lations of a mathematical pendulum with an (n + 1)-dimensional configura-
tion space. We make use of the integral of energy to decrease by 1 the degree of
freedom of the system. The phase space obtained after this operation is CP",
and the symplectic structure on it agrees with the form € described above up
to a factor.

One other method of constructing a symplectic structure on TP" uses the fact that this
space may be represented as one of the orbits of the co-adjoint representation of a Lie group,
and on every such orbit there is always a standard symplectic structure (of. Appendix 2, Sec-
tion A). For the Lie group we can take the group of unitary (preserving the hermitian metric)
operalors in an (n + 1)-dimensional complex space. The orbits of the co-adjoint representation
in this case are the same as of the adjoint representation, In the adjoint representation the operator
of reflection through a hyperplane (which changes the sign of the first coordinatc and leaves
the others fixed) has TP" as its orbit, since the reflection operator is uniquely determined by
the complex line orthogonal (0 the hyperplane,

C Symplectic structure on algebraic manifolds

We will now obtain a symplectic structure on any complex submanifold M
of complex projective space. Let j: M — CP" be an embedding of the complex
manifold M into complex projective space. The riemannian, hermitian, and
symplectic structures on projective space induge corresponding structures on
M. For example, the symplectic structure on M is given by the formula

Q, = j*.

Theorem. The differential form (2, gives a symplectic structure on the manifold
M.

Proor. The nondegeneracy of the 2-form £, follows from the fact that M
is a complex submanifold, In fact, the quadratic form

(6, Q) = Qul&, i)

is positive-definite (it is induced by the riemannian metric on CP"). Therefore,
the bilinear form (¢, ) = Qu(&, i) is nondegenerate. This means that the
form €, 15 also nondegenerate. The form Q, is closed since the form € is

closed. ]

Remark. In the same way as for complex projective space, we define a
hermitian structure on the tangent spaces of its complex submantolds; the
symplectic structure is the imaginary part,
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A complex manifold with a hermitian metric whose imaginary part is a
closed form (i.e. a symplectic structure) is called a Kdhier manifold and its
hermitian metric a Kdhler metric. Many important results have been
obtained in the geometry of Kihler manifolds; in particular, they have
remarkable topological properties {(cf, for example, A. Weil, “Variétés
Kihlériennes,” Hermann, 1958).

Not all symplectic manifolds admit a Kdhler structure.

PrOBLEM 1. Calculate the sympiectic structure € in the affine chart w = z,: 2, of the projective
line CPL

Answir. € = (1/m)idx A dn){l + x* + y*), where w=x +iy. The coefficient in the de-
finition of the form £ is chosen to obtain the useal orientation of the complex line (dx ~ dy)
and so that the integral of the form 2 along the whole projective line is equal to L.

ProBLEM 2. Show that the symplectic structure £ in the affine chart w, = z,zg 'tk = L, ..., n)
of the projective space TP = {(z,: 2,7 ...: z,)} is given by the formula

L ZOsk <15n(wk dw, — Wld‘f"'k}(ﬁ‘.k dwy — w,dW,)
In (¥ h-olwm,))?

Q=

By convention, wy = 1.

Remark. Differential forms on a complex space with complex values (such as dw, and dw,)
are defined as complex linear functions of tangent vectors: if w, = x, + iy,, then

dw, = dx, + idy, dw, = dx, — idy,.

The space of such forms in C" has complex dimension 2n;the 2nformsdw,, dw, (k = 1, ..., n},
for example, form a C-basis, or the 2» forms dx,., dy,.
Exterior multiplication is defined in the usuai way and obeys the usual rules. For example,

dw ~ dw = {dx + idy) » (dx — idy) = =2idx ~ dy.

Let f be a real-smooth function on C* (with complex values, in general). An example of
such a fuaction is |w|? = } w, #,. The differential of the function f is a complex 1-form. There-
fore, it can be decomposed in the basis dw,, d,. The coeflicients of this decomposition are
called the partial derivatives “with respect to w, " and “ with respect to w,™:

Y -

In calculating exterior derivatives it is also convenient to separate into differentiation '
with respect to the variable w and d” with respect to the variable #,so that d = d' + d".
For example, for a function f

¥ o

df
For the differential 1-form
w= Za,‘.'.i'vml + b, dw,,
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the operators & and o arc defined analogously:
der=Y d'ag ~ dw, + d'b ~ dW,

f"w = Zd"u,‘ Adwy, + d'h A di

PROBLEM 3, Show that the symplectic structure S on the affine chart (w, = ;o5 ') of the projective
space CP" is given by the formula

. h
i
- 2
Q=_ dd In'¥} |w, |2
2r =

k=0
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An odd-dimensional manifold cannot admit a symplectic structure. The
analogue of a symplectic structure for odd-dimensional manifolds is a little
less symmetric, but also a very interesting structure  the contact structure.

The source of symplectic structures in mechanics are phase spaces (i.e.,
cotangent bundles to configuration manifolds), on which there is always a
canonical symplectic structure. The source of contact structures are mani-
folds of contact ¢lements of configuration spaces.

A contact element to an sa-dimensional smooth manifeld at some point is
an (n — 1)-dimensional plane tangent to the manifold at that point (1.e., an
{n — l)-dimensional subspace of the »-dimensional tangent space at that
point).

The set of all contact elements of an #-dimensional manifold has a natural
smooth manifold structure of dimension 2n — 1. It turns out that there is an
interesting additional * contact structure™ on this odd-dimensional manifold
(we describe this below).

The manifold of contact elements of a riemannian n-dimensional manifold
is closely related to the (2n — 1)-dimensional manifold of unit tangent vectors
of this riemannian n-dimensional manifold, or to the (2n — 1)-dimensional
cnergy level manifold of a point mass moving on the riemannian manifoid
undcr inertia. The contact structures on these (2n — 1)-dimensienal mani-
folds are closely related to the symplectic structure on the 2n-dimensional
phase space of the point (i.c, the cotangent bundle of the original n-dimen-
sional riemannian manifold).

A Definition of contact structure

Definition. A contact structure on a manifold is a smooth field of tangent
hyperplanes®® satisfying a nondegeneracy condition which will be formu-
lated later.

To formulate this condition we examine what a ficld of hyperplanes looks
like in general in a neighborhood of a poeint in an N-dimenstonal manifold.

ExampLr. Let N = 2. Then the manifold is a surface and a field of hyper-
planes is a field of straight lines. Such a field in & neighborhood of a point is
always constructed very simply, namely, as a field of tangents to a family
of parallel lines in a plane. More precisely, one of the basic results of the local
theory of ordinary differential equations is that it is possible to change any
smooth field of tangent lines on a manifold into a field of tangents to a family
of straight lines in euclidean space by using a diffcomorphism in a sufficiently
small neighborhood of any point of the manifold.

If N > 2, then a hyperplane is not a line, and the question becomes
significantly more complicated, For ¢xample, most fields of two-dimensional
** A hyperplane in a veclor space is a subspace of dimension 1 less than the dimension of the
space {i.c., the zero level sct ol a linear lunction which is not identicaily zero). A tangent hyper-

plane ts a hyperplane in a tangent space,
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tangent planes in ordinary three-dimensional spacc cannot be diffeo-
morphically mapped onto a field of parallel planes. The reason is that there
exist fields of tangent planes for which it is impossible to find “integral sur-
faces,” ie., surfaces which have the prescribed tangent planc at cach point.

The nondegeneracy condition for a field of hyperplanes which enters into
the definition of contact structure consists of the stipulation that the field of
hyperplanes must be maximally far from a field of tangents to a family of
hyperplanes. In order to measure this distance, as well as to convince our-
selves of the existence of fields without integral hypersurfaces, we must make
a few constructions and calculations.®®

B Frobenius® integrability condition

We will consider some point on an N-dimensional manifold and try to
construct a surface passing through this point and tangent to a given field
of (N — 1)-dimensional planes at each point {an integral surface).

To this end we introduce a coordinate system onto a neighborhood of
this point so that at the point itself one coordinate surface is tangent to a
plane of the field. We will call this plane the horizontal plane, and will call
the coordinate ax:s not lying in it the vertical axis,

Construction of an integral surfuce. An integral surface, if one exists, is the
graph of a function of N — 1 variables near the origin. To construct jt, we
can take some smooth path on the horizontal plane. Then the vertical lines
over this path form a two-dimensional surface (cylinder); our field of planes
intersects its tangent planes in a field of tangent lines. The integral surface
we are looking for, if it exists, intersccts this cylinder in an integral curve of the
field of lines, starting at the origin. Such an integral curve always exists
independent of whether an integral surface exists. Thus we can construct an
integral surface over the horizontal plane by moving along smooth curves in
the latter.

In order to obtain a smooth integral surface from all the integral curves
we need the result of our construction to be independent of the path, deter-
mined only by its eadpoint. In particular, for a circuit of a closed path in a
neighborhood of the origin in the horizontal plane, the integral curve on the
cylinder must close up.

It 1s casy to construct examples of fields of planes for which such closure
does not take place and, therefore, for which an integral surface does not
exist. Such fields of planes are called nonintegrable.

Example of a nonintegrable field of planes. In order to give a field of planes
and measure numerically the deviation from closure, we introduce the follow-
ing notation. We note first of all that a field of hyperplanes can be given locally
by a differential I-form; a plane in the tangent space gives a J-form up to
*? From now on. we will omil the prefix “hyper-". Il we wish, we may assume that we are in
three-dimensional space and a hypersurface is an ordinary surface. The higher-dimensional

case s analogous to the three-dimensional case.
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multiplication by a nonzero constant. We will choose this constant so that
the value of the form on the vertical basic vector is equal to 1.

This condition ¢an be satisfied in some neighborhood of the origin since
the plane of the field at zero does not contain the vertical direction, This
condition determines the form uniquely (given the field of planes).

A field of planes in ordinary three-space which does not have an integral
surface can be given, for example, by the 1-form

w = xdy +dz,

where x and y are the horizontal coordinates and = is the vertical. The proof
of the fact that this field of planes is nonintegrable will be given betow.

Construction of a 2-form measuring nonintegrability. With the help of the
form giving the field, we can measure the degree of nonintegrability. This is
done using the following construction (Figure 236).

Figure 236 Integral curves constructed for a non-integrable field of planes

Consider a pair of vectors emanating from the origin and lying in the
horizontal plane of our coordinate system. Construct a parallelogram on
them. We obtain two paths from the origin to the opposite vertex. Over each
of these two paths we can construct an integral curve (with two sections) as
described above. As a result, in general, there arise two different points over
the vertex of the parallelogram opposite to the origin. The difference in the
heights of these points is a function of our pair of vectors, This function is
skew-symmetric and equal to zero if one of the vectors is equal to zero. Thus
the linear part of the Taylor series of this function is zero at zero, and the
quadratic part of its Taylor series is a bilinear skew-symmetric form on the
horizontal plane.

If the field is integrable, then this 2-form is equal to zero. Therefore, this
2-form can be considered as a measure of the nonintegrability of the field.

The 2-form is well defined. We constructed the 2-form above with the help
of coordinates. However, the value of our 2-form on a pair of tangent vecters
does not depend on the coordinate system, but only on the |-form used to
give the field.

To convince ourselves of this, it is enough to prove the following.

Theorem. The 2-form defined above agrees with the exterior derivative of the
I-form w, dw), g, on the nyll space of w.
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Proor, We will show that the difference in the heights of the (wo points obtained as a result
ol our two motions along the sides of the paralleiogram is the same as the mtegral of the 1-form
over Lhe four sides of the parallelogram, up to & quantity small of third order with respect to
the sides of the parallelogram.

To this end we note that the height of the tise of an integral curve along any path of length £
emanating from the origin has order £, since at the origin the plane of the field is horizontal.
Therefore, the integrals of the 2-Torm der over all four vertical arcas over the sides of the paral-
lelogram bounded by the integral curves and the horizontal plane, have order «* if the sides
are of arder ¢

The integrals of the form o along integral curves are exactly equal to zero. Thereflore, by
Stokes’ formula, the increase in height along the integral curve lving over any of the sides of the
parallelogram is equal to the mtegral of the 1-form o slong this side up 1o a quantity of third-
order smallness.

Now Lhe theorem follows directy from the definition of exterior differentiation.

—1

Sorme arbitrariness remains in the choice of the 1-form s which we used to
construct our 2-form. Namely, the form w is defined by the field of pianes
only up to multiphication by a function /' which 1s never zero. In other words,
we could have started with the form fw. Then we would have obtained the
2-form

dfo = fdw + df ~ w,

which, on our plane, differs from the 2-form do by multiplication by the
nonzero number f(0).

Thus the 2-form constructed on the plane of the ficld is defined invanantly
up to multiplication by a nonzero constant.

Condition for integrability of a field of planes
Theorem. If a field of hyperplanes is integrable, then the 2-form constructed

above on a plane of the field is equal to zero. Conversely, if the 2-form con-
structed on every plane of the field is equal to zero, then the field is integrable.

Prook. The first assertion of the theorem is clear by the construction of the 2-form. The proof
of the second assertion can be carried out by exactly the same reasoning we used to prove the
commutativity of phase flows for which the Poisson bracket of the velocity fields was equal Lo
zero. We can simply refer Lo this commutativity, applying it (o the integral curves ansing over
the lines of the coordinate directions in the horizontal plane. O
Theorem. The integrability condition for a field of planes,
do =0 for w=0
is equivalent to the following condition of Frobenius:

tw o do =10,

Proor. We consider the value of the 3-form above on any three distinet coordinate vectors.
Only one of these vectors can be the vertical. Therefore. of all the terms entering into the defini-
tion of the valug of the exterior product of the three vectors, only one is nonzero: the product of
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the value of the torm «r on the vertical vector with the value of the form dis an the pair of
horizontal veetors. 17 the field given by the form is integrable, then the second factor is zero.
su our 3-form s zero on arbitrary triples of vectors.

Caonversely, if the 3-form is equal to zero for any vectors. then it is cqual o zero for any
triple of coordinate vectors, of which one is vertical and the other two horizontal. The value
af the 3-form on such a triple is equal to the product of the value of « on the vertical vector
with the value of de on he pair of horizontal vectors, The lirst factor is not zero, so the second
must be zero. and thus the form dio is zero on a plane of the field. J

C Nondegenerate fields of hvperplanes

Definition. A field of hyperplancs is said to be nondegenerate at a point if the
rank of the 2-form dw|, - 1n the plane of the field passing through this
point is equa! to the dimension of the plane.

This means that for any nonzere vector in our plane, we can find another
vector in the plane such that the value of the 2-form cn this pair of vectors
1s not zero.

Definition. A field of planes is called nondegenerate on a manifold if it is non-
degenerate at every point of the manifold.

Note that on an even-dimensional manifold there cannot be a nondegen-
erate field of hyperplanes; on such a manifold a hyperplane is odd-dimen-
sional, and the rank of cvery skew-symmectric bilinear form on an
odd-dimensional space is less than the dimension of the space (cf. Section 44).

Nondegenerate fields of hyperplanes do exist on odd-dimensional mani-
folds.

ExaMpLE. Consider a euclidean space of dimension 2m + 1 with coordinates
x, ¥, and z {where x and y are vectors in an m-dimensional space and z is a
number), The 1-ferm

w=xdy+dz

defines a field of hyperplanes. The plane of the field passing through the origin
has equation dz = 0. We take x and y as coordinates in this hyperplane,
Therefore, in this plane of the field our 2-form can be written in the form

dwl,—¢ =dx ~n dy =dx, A dy, + - + dx, » dyy,.

The raink of this form is 2m, so our field is rondegenerate at the origin, and
thus also in a neighborhoed of the ongin (in fact, this ficld of planes is
nondegenerate at all points of the space}).

Now, finally, we can give the definition of a contact structure on a mani-
fold: a contact structure on a manifold is a nondegenerate field of tangent
hyperplanes.

T
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D The manifold of contact elements

The term “contact structure” stems from the fact that there is always such a
structure on a manifold of contact elements of a smooth n-manifold.

Definition. A hyperplane (dimension » — 1) tangent to a manifold at some
peint is called a contact element, and this point the peint of contact.

The set of all contact elements of an n-dimensional manifold has the strug-
ture of a smooth manifold of dimension 2n — 1.

In fact. the set of contact clements with a fixed point of contact is the set of all {n — 1)-dimen-
sional subspaces of an n-dimensional veclor space, L.e.. 4 projective space of dimension n — 1.
To give a contact element we must thercfore pive the a1 coordinates of the point of contact
together with the # — | coordinates defining a point of an (1 — 1)-dimensional projective
space  2n — 1 coordinates in all,

The manifold of all contact elements of an n-dimensional manifold is a
fiber bundle whose base is our manifold and whose fiber 18 (n — 1)-dimen-
sional projective space.

Theorem. The bundle of contact elements is the projectivization of the cotangent
bundle: it can be obtained from the cotangent bundle by changing every
cotangent n-dimensional vector space into an (n — 1)-dimensional pro-
jective space {(a point of which is a line passing through the origin in the
cotangent space).

Proor. A contlact glement is given by a I-form on the tangeny spage, for which this element is
a zero level sct. This form is not zero, and it is determined up to multiplication by 1 nonzero
number, But a form on the tangent space is a vector of the cotangent space. Therelore. a
nonzero form on the tangent space. determined up to a multiplication by a nonzero number,
15 a nonzero vector of the cotangent space, determined up to a mulliplication by a nonzero
number, i.c.. 2 point of the projectivized colangent space. O

The contact structure on the manifold of contact elements. In the tangent
space to the manifold of contact elements there is a distinguished hyperplane.
It is called the contact hyperplane and is defined in the following way.

We fix a point of the (2n — 1)-dimensional manifold of contact elements
on an n-dimensional manifold. We can think of this point as an (r — 1)-
dimensional plane tangent to the original n-dimensional manifold.

Definition. A tangent vector to the manifold of contact elements at a fixed
point belongs to the contact hyperplane if its projection onto the n-
dimensional manifold lies in the (n — 1)-dimensiona! plane which is the
given point of the manifold of contact elements.
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In other words, a displacement of a contact element is tangent to the
contact hyperplane if the velocity of the point of contact belongs to this
contact element, no matter how the element turns.

ExaMpLE. We take some submanifold of our r-dimensional manifold and
consider all (n — 1)-dimensional planes tangent to it {(i.e., contact elements).
The set of all such contact elements forms a smooth submanifold of the
{2n — 1)-dimensional manifold of all contact ¢lements. The dimension of
this submanifold is ¢qual 10 » — 1, no matter what the dimension of the
original submanifold (which could be (n — 1)-dimensional, or have smaller
dimension, down 1¢ a curve or even a point).

This (n — 1)-dimensional submanifold of the (2rn — l)-dimensional
manifold of all contact elements is tangent at each of its points to the field of
contact hyperplanes (by the definition of contact hyperpiane). Thus the
field of (2n — 2)-dimensional contact hyperplanes hasan(n — 1)-dimensional
integral manifold.

PropLEM. Dacs this field of planes have integral manifolds of higher dimensions?
ANswiER. No.

ProBLEM. [8 it possible to give the field of contact hyperplanes by a differential I-form on the
manifold of all contact elements?

ANSWER. No. even if the underlying s-dimensional manifold 15 4 euclidean space (for example.
the ordinary two-plane).

We will show below that the field of contact hyperplanes on the (2n — 1)-
dimensional manifold of all contact elements of an n-dimensional manifold is
nondegenerate. The proof uses the symplectic structure of the cotangent
bundle. The manifeld of contact elements is related by a simple construction
to the space of the cotangent bundle (the projectivization of which is the
manifold of contact elements). Moreover, the nondegeneracy of the field of
contact planes of the projectivized bundle is closely related to the non-
degeneracy of the 2-form giving the symplectic structure of the cotangent
bundle.

The construction we are concerned with will be carried out below in a
somewhat more general situation. Namely, for any odd-dimensional mani-
fold with a contact structure we can construct its “symplectification™—a
symplectic manifold whose dimension is one larger. The inter-retation be-
tween these two manifolds—the odd-dimensional contact manifold and the
even-dimensional symplectic manifold-—is the same as between the manifold
of contact elements with its contact structure and the cotangent bundle with
its symplectic structure,
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E Symplectification of a contact manifold

Consider an arbitrary contact manifold, i.e., a manifold of odd dimension ¥
with a nondegeneraic field of tangent hyperplanes (of even dimension N — 1).
We will call these planes contact planes. Every contact plane is tangent to
the contact manifotd at one point. We will call this point the point of contact.

Definition. A conract form is a linear form on the tangent space at the point of
contact of the manifold such that its zero set is the contact plane.

It should be emphasized that the contact form 1s not a differential form
but an algebraic linear form on one tangent space.

Definition. The symplectification of a contact manifold is the set of all contact
forms on the contact manifold, provided with the structure of a sym-
plectic manifold as defined below.

We note first of all that the set of all contact forms on a contact manifold
has a natural structure of a smooth manifold of even dimension N + 1,
Narnely, we can consider the set of all contact forms as the space of a bundle
over the original contact manifold. Projection onto the base is the mapping
associating the contact form to the point of contact.

The fiber of this bundle is the set of contact forms with a common point of
contact. All such forms are obtained from one another by multiplication by a
nonzero number (so that they determine the same contact plane), Thus the
fiber of our bundle is one-dimensional: it is the line minus a point.

We also note that the group of nonzero real numbers acts on the manifold
of all contact forms by the operation of multiplication, i.e., the product of a
contact form and a nonzero number is again a contact form. In this way the
group acts on our bundle, leaving every fiber fixed (upon multiplication of a
form by a number the point of contact is not changed).

Remark. So far we have not used the nondegeneracy of the field of planes.
Nondegeneracy is needed only to insure that the manifold obtained by
symplectification is symplectic.

ExampLt. Consider the manifeld (of dimension 2n — {)ofall contact elements
of an n-dimensional smooth manifold. On the manifold of elements therc is a
ficld of hyperplanes {(which we defined above and called the contact hyper-
planes). Therefore, we can symplectify the manifold of contact elements.

As a result of symplectification we obtain a 2x-dimensional manifold.
This manifold is the space of the cotangent bundle of the original a-dimen-
sional manifold without zero vectors. The action by the multiplicative group
of real numbers on the fiber reduces to multiplication of vectors of the co-
tangent space by a number.
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On the cotangent bundle there is a distinguished 1-form “p dg.” There is
an analogous 1-form on any manifold obtained by symplectification from a
contact manifold.

The canonical 1-form on the symplectified space

Definition. The canonical 1-form in the symplectified space of a contact
manifold is the differential 1-form > whose value on any vector € tangent
to the symplectified space at some point p (Figure 237) is equal to the value
on the projection of the vector & onto the tangent plane to the contact
manifold of the 1-form on this tangent planc which is the point p:

%S} = pln, Q).

where n is the projection of the symplectified space onto the contact
manifold.

Figure 237  Symplectification of 4 contact manifold

Theorem. The exterior derivative of the canonical |-form on the symplectified
space of a contact manifold is a nondegenerate 2-form,

Corollary. The symplectified space of a contact manifold has a symplectic
structure which is canonically (i.e., uniquely, without arbitrariness) deter-
mined by the contact structure of the underlying odd-dimensional manifold.

PrOOF o THEOREM. Since the assertions of the theorem are local, it ts sufficient to prove it in
a small neighborbouod of a point of the manifold. ina small neighborhood of 4 point on a contact
manifold, a ficld of contact planes can be given by a differential form e on the contact manifold.
We fix such a 1-form .

By the same token we ean represent the symplectified space of the contact munifold over
our neighborhood as the direct product of the neighberhood and the line minus a point. Namely,
we associate o the pair (x, £} where x s a pomnt of the contact manifold and 4 15 & nonzero
number  the contact form given by the differential I-form Aes on the tangent space at the point x.
Thus in the parl of the symplectified space we are considering, we have defined a function 2
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whose values are nonzero numbers. 1t should be emphasized that 2 is only 2 local coordinate on
the symplectified manifold and (hat this coordinate is not defined canonically: it depends on
the choice of differential 1-form e, The canonical 1-form x can be written in our notation as

% = Am*is
and dous net depend on the choice of . The exterior dertvative of the [-form x thus has the form
dx = dAi n w% 4 At

We will show that the 2-form fx is nondegencrate. ic., that for any vector & tangent to
the symplecttfication, we can find a vector 5 such that dx(Z 7} 2 (. We select from veciors
tangent to the symplectification, those of the following type. We call o vector § rertical if it
is tangent to the liber, e, il 7,2 = 0. We call the vector § horizonial if it is tangent 10 a level
surface of the function A Le. iTdA(Z) = 0. We call the vector £ a comtact vector il its projection
onto the contact manifold iies in the contact plane. Le. if e 2} = 0@in other words, if () = 0).

We caleulate the value of the form dz on a pair of vectors (2 y):

d2(I, ) = (da A wedd ) + Grrdwd Dog),

Assume that £ s not a contact vector. For i take a nonzera vertical vector, so that mp = 0.
Then the second tertm s equal to zero, and the hirst term is equal to

—dA{mein, )

which i$ not zero since | is @ nonzero vertical vector and £ is not a contact vector. Thus if &
15 noL a contact veclor, we have lound an g for which dx(3, ) # 0.

Now assume that J is a contact vector and not vertical. Then for  we lake any contact
vector, NMow the first term is entirely zero. and the sccond {and therefore the sum} is reduced
to A dedn, Lor, . Since {is not vertical, the vector m, & lying io the contact plane is not zero.
But the 2-form dew is nondegenerate on the contact plane (by the definttion of contact structure).
Thus there is a conlact vector # such that defm, & omgq) £ 00 Since A4 # 0, we have found a
vector # for which dx(&, gy # O

Finally. if the vector £ is nonzero and vertical, then for ¥ we can take any vector which is
not a contact vector. O

Remark. The constructions of the I-form x and the 2-form dx are valid
for an arbitrary manifold with a field of hyperplanes, and do not depend on
the condition of nondegeneracy. However, the 2-form do will define a
symplectic structure only in the case when the field of planes is nondegenerate,

Proor, Assume that the feld is degenerate. ie. that there exists @ nonzero veetor ' in a plane
of the ficld such that da(Z’, #) = 0 lor all vectors #° in this plane. For such a &, the quantity
deo{< 'Y as a function of #' is a lincar form. identically equal Lo 2ero on the piane of the field.
Therefore there s a number ¢ not dependent on i such that

deal ) = pealy’)
for all vectors 4" of the tangent space.
We now take for J a tangent vector to the symplectified manifold for which =, ¢ = ' Such
a vector & isdetermimed up 1o addition of a vertical summand., and we will show that for a suitable

chaice of this summand we will have

dxfE, My =10 foraily
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The first term of the formula for dx is equal to JAE)Ws{n, 1) (since wfr, 2} = 0). The sccand
term is equal to A doin, & x4} — Auw(r, 1), We choose the vertical component of the vector &
so that dA(Z) = Au Then & will be skew-orthogonal o all vectors #.

Thus if da is a symplectic structure, then the underlying field of hyperplancs is a contact

structurc. —

Corollary. The field of contact hyperplanes defines a contact structure on the
manifold of all contact elements of any smooth manifold.

Proor. The symplectification of the (2n — 1)-dimensional manifold of all
contact elements on an n-dimensitonal smooth manifold, constructed with
help of the field of (2n — 2)-dimensional contact planes, is by construction
the space of the cotangent bundle of the underlying n-dimensional manifold
without the zero cotangent vectors. The canonical I-form x on the sym-
plectification is, by its definition, the same 1-form on the cotangent bundle
that we called “p dg” and which is fundamental in hamilton mechanics (cf.
Section 37). Its derivative dx is thercfore the form “dp ~ dg" defining the
usual symplectic structure of a phase space. Therefore the form d« is non-
degenerate, and, by the preceding remark, the field of contact hyperplanes is
nondegenerate.

F Contact diffeomorphisms and vector fields

Definition. A diffcomorphism of a contact manifold to itself is called a
contact diffeomorphism if it preserves the contact structure, ie., carries
¢very plane of a given structure of a fieid of hyperplanes to a plane of the
same field.

ExameLe. Consider the (2n — 1)-dimensional manifold of contact elements
of an p-dimensional smooth manifold with its usual contact structure. To
each contact element we can ascribe a “positive side” by choosing one of the
halves into which this element divides the tangent space to the n-dimensional
manifold.

We will call a contact element with a chosen side a (transversally) oriented
contact element.

The oriented contact elements on our n-dimensional manifold form a
(2n — 1)- dimensional smooth manifold with a natural contact structure (it
is a double covering of the manifold of ordinary nonoriented contact
elements).

Now assume that we are given a riemannian metric on the underlying
n-dimensional manifold. Then there is a * geodesic flow 7% on the manifold
of oriented contact elements. The transformation after time ¢ by this flow
is defined as follows, We go out from the point of contact of a contact element
along the geodesic orthogonal to it and directed to the side orienting the
element. In the course of time r we wili move the point of contact along the
' Strictly speaking, we need to require that the riemannian manifold be complete, i e.. geodesics
csn be continued without limit.
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geodesic, keeping the element orthogonal to the geodesic. After time ¢ we
obtain a new oriented element. We have defined the geodesic flow of oriented
contact ¢lements.

Theorem. The geodesic flow of oriented contact elements consists of contact
diffeomorphisms.

The proof of this theorem will not be presented since it is just a reformula-
tion in new terms of Huygens' principle (¢f. Section 46).

Definition. A vector field on a contact manifold is called a contact vector field
if it is the velocity field of a one-parameter (local) group of contact
diffeomorphisms.

Theorem. The Poisson bracket of contact vector fields is a contact vector field.
The contact vector fields form a subalgebra in the Lie algebra of all smooth
vector flelds on a contact manifold.

The proof follows directly from the definitions.

G Symplectification of contact diffeomorphisms
and fields

For every contact diffeomorphism of a contact manifold there is a canonically
constructed symplectic diffeomorphism of its symplectification. This sym-
plectic diffeomorphism commutes with the action of the multiplicative group
of real numbers on the symplectified manifold and is defined by the following
construction.

Recall that a point of the symplectified manifold is a contact form on the
underlying contact manifold.

Definition. The image of a contact form p with point of contact x under the
action of a contact diffeomorphism f of the contact manifold to itself is
the form

fir = ()" 'p.

In simple terms, we carry the form p from the tangent space at the point x
to the tangent space at f(x) using the diffeomorphism f (whose derivative at
x determines an isomorphism between these two tangent spaces). The form
f.p is a contact form since the diffeomorphism f is a contact diffeomorphism.

Theorem. The mapping f. defined above of the symplectification of a contact
manifold to itself is a symplectic diffeomorphism which commutes with the
action of the multiplicative group of real numbers and preserves the canonical
1-form on the symplectification.
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Proor. The assertion of the theorem follows from the fact that the canonical 1-form, the symp-
lectic 2-form, and the action of the group of real numbers are all determined by the contact
structure itsell {for their construction we did not use coordinates or any other noninvariant
tools), and the diffeomorphism f preserves the contact structure. It follows from this that f
preserves all that which was invariantly constructed using the contact siructure, in particular
the 1-form z, its derivative da, and the action of the group.

Theorem. Every symplectic diffeomorphism of the symplectification of a contact
manifold which commutes with the action of the multiplicative group (1)
prajects onto the underlying contact manifold as a contact diffeomorphism
and (2) preserves the canonical 1-form x.

Proor. Every diffeomorphism which commutes with the action of the multiplicative group
projects onto some diffeomorphism of the contact manifold. To show that this 15 a contact
diffeomorphism it is sufficient to prove the second assertion of the theorem (since only those
vectors for which «(¢) = 0 project onto the contact plane).

To prove the second assertion we express the integral of the form along any path y in terms

of the symplectic structure dx:
j:: = lim ”- dx,
¥ [} [£F

¥
where the 2-chain ¢(g} is obtained from 7 by multiplication by all numbers in the interval [&, 1].
The boundary of 6 contains, besides 3, two vertical intervals and the path ¢, The integrals of x
over the vertical intervals are equal to zero, and the integral over &7 approaches 0 as £ does.
Now from the invariance of the 2-form dx and the commutativity of our difleomorphism F
with multiplication by numbers it follows that lor any path y

Je= 1o

and thus the difeomorphism F preserves the I-form =. d

Definition. The symplectification of a contact vector field is defined by the
following construction. Consider the field as a velocity field of a one-
parameter group of contact diffeomorphisms. Symplectify the diffeomor-
phisms. Consider the velocity field of this group. It is called the sym-
plectification of the original field.

Theorem. The symplectification of a contact vector field is a hamiltonian vector
field. The hamiltonian can be chosen to be homogeneous of first order with
respect to the action of multiplication by the group of real numbers:

H(Ax) = 1H(x).

Conversely, every hamiltonian field on a symplectified contact manifold,
having o hamiltonian which is homogeneous of degree 1, projects onto the
underlying contact manifold as a contact vector field.
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Proor. The fact that symplectifications of contact diffeomorphisms are
symplectic implies that the symplectification of a contact field is hamil-
tonian. The homogeneity of the hamiltonian follows from the homogeneity of
symplectic diffeomorphisms (from commutativity with multiplication by A).
Thus the first assertion of the theorem follows from the theorem on sym-
plectifications of contact diflfeomorphisms. The second part follows in the

same way from the theorem on homogeneous symplectic diffcomorphisms.
O

Corollary, Symplectification of vector fields is an isomorphic map of the Lie
algebra of contact vector fields onro the Lie algebra of all locally hamiltonian
vector fields with hamiltonians which are homogeneous of degree 1.

The proof is clear.

H Darboux’s theorem for contact structures

Darboux’s theorem is a theorem on the local uniqueness of a contact struc-
ture. It can be formulated in any of the following three ways.

Theorem. All contact manifolds of the same dimension are locafly contact
diffeomorphic (i.e., there is g diffeomor phism of a sufficientty small neighbor-
hood of any point of one contact manifold onto a neighborhood of any point
of the other which carries the noted point of the first neighborhood to the
noted point of the second and the field of planes in the first neighborhood to
the field of planes in the second).

Theorem, Every contact manifold of dimension 2m — 1 is locally contact
diffeomorphic to the manifold of contact elements of m-dimensional space,

Theorem. Everydifferential |-formdefining anondegeneraie field of hyperplanes
on a manifold of dimension 2n + 1, can be written in some local coordinate
system in the “normal form™

w = xdy + dz,

where x = (xq,..., %, ¥ = (1, ..., v,) and = are the local coordinates.

It is clear that the first two theorems foilow from the third. We will deduce
the third one from an analogous theorem of Darboux on the normal form of
the 2-form giving a symplectic structure (cf. Section 43).

PrOOF 0 DARBOUX'S THEOREM, We symplectify our manifold. Om this new (2n + 2)-dimensional
symplectic manifold there are a canonical 1-form = a nondegenerate 2-form o=, a projection =
antao the underlying contact manifold and a vertical direction at every point,

The given differential 1-form ¢ on the contact manifold delines a contact form at every
point. These contact forms form a {2n + |)-dimensional submanifold of the symplectic mani-
fold. The projection 7 maps this submanifeld diffeormorphically onto the underlying contact
manifold. and the verticals intersect this submanifold st & nonzera angle.
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Consider a point in the surface just constructed (in the symplectic manifold) lying over the
point of the contacl manifold we are inleresied in. Tn the symplectic manifold we can choose a
local system of coordinates near this point such that

da = dpy ~odgy + -+ dpy A dy,
and such that the coordinate surface py, = 0 comncides with our (20 + 1)-dimensional manifold
{cl. Section 42, where in the prool of the symplectic Darboux’s theorem the first coordinate may
be chosen arbitrarily).
We nole now thal the 1-form p, dgy + - pa dy, has derivative dx Thus, locally,

2= podyg + -+ pdy, + duw,

where wois 4 lunction which can be laken to be zero at the oniging In particular, on the surface
o = 0the form x takes the form

&lp,-0 = Mdygy + oo+ podg, + dw,

The projection 7 allows us to carry the coordinates p,. ..., Paitfoitye e a 4, and the function
w onto the contact manifold. More precisely, we define functions x. v, and - by the formulas

xdmA) = (A} vimd) = gdA) {mAY = widh

where 4 is a point on the surface py = 0.
Then we obtain

o= xdy + s

and it remains only to verily that the functions (x,,....: Npl Fyvons Voo 23 form a coordinate
system. For this il is sufficient to verify that the partial derivative of w with respect to g, s not
zero. or in other words that the [-form x is not #ero on a veetor of the coordinate direction g .
The latter is equivalent to the 2-form 2z being nonzero on the pair of vectors: the basic vector
in the direction of ¢, and the vertical vector.

But a vector in the coordinate direction gy, is skew-orthogonal 1o all vectors of the coordinale
plane p, = 0. I il was also skew-orthogonal 1o the vertical vector, then it would be skew-
orthogonal to all vectors, which contradicts the nemdegencracy of dx. Thus PwiCy, # U and the
theorem is proved. -

I Contact hamiltonians

Suppose that the contact structure of a contact manifeld is given by a dif-
ferential 1-form w, and that this form is fixed.

Definition. The w-embedding of the contact manifold into its symplectification
is the map associating to a point of the contact manifold the restriction of
the form w on the tangent plane at this point.

Definition. The contact hamiftonian function of a contact vector field on a
contact manifold with fixed 1-form o is the function K on the contact
manifold whose value at each point is the value of the homogeneous
hamiltonian H of the symplectification of the field on the image of the
given point under the w-cmbedding:

K(4) = H(w],).
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Theorem. The contact hamiltonian function K of a contact vector field X on a
contact manifold with a given 1-form  is equal to the value of the form w
on this contact fleld:

K = o(X).

Proor. We use the expression for the increment of the ordinary hamiltonian function over a
path in terms of the vector field and the symplectic structure (Section 48C). For this we draw a
vertical interval [AH] U < 4 = 1. through the point B of the symplectification at which we
watil 1o caleulate the hanubtonian function. The translations of this imerval over small time
under the action of the symplectified flow defned by our field X, fill out a two-dimensional
reglon a(t). The vatue of the hamiltonian at the paint 8 is equal to the lirmit

H(B) = lim1 ! H dx

=0 gy
since H{AH) = 0 as 4 — 0. But the integral of the form «x over the region is the integral of
the {-form zalong the edge formed by the trajectory of the point #(the other parts of the boundary
give zero integrals). Therefore. the double integral is simply the integral of the 1-form x along
the interval of trajectories. and the limit is the value of x oo the veloeity vector ¥ oof the symplec-
titicd field. Thus K(zB) - THEBY = 2(¥ )} = e X ). as wus [0 by shown. []
J Computational formulas

Suppose now that we make use of the coordinates in Darboux’s theorcm in
which the form ¢ has the normal form

w = xdy + dz, X =[xy, X h ¥V=>0¥1--\ Vu)

ProsLem. Find the components of the contact field with a given contact
hamiltonian function K = K{x, v, z).

ANsweR. The equations of the contact flow have the form
x=—K, + xK,
i =K.
:=K - xK,.

Serdution, A point of the symplectification can be given by the 2n + 2 numbers x;. v, =
and A, where (x, v, chare the coordinates of a point of the contact mantfold and 4 (s the number
by which we must multiply 2 to obtain the given point of the symplectified space.

In these coordinates ¥ = Avdy + A dz. Therefore, in the coordinate system p. q. where

P =(p pok p=Av.p, = A
q = {tf. gk d - Ny = 2.
the form x takes the standurd form:
¥ =pdq dx = dp ~ dq.
The action T, of the multiplicative group ix now reduced to multiplication of p hy a number:

e Q) =tpp g
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The contact hamiltonian K can be expressed in terms of the ordinary  bamiltonian
H — Hip g, py- o) by the lormula
Kix,vz2) = oy 1oy

The funciion H & homogeneous of degree | in p. Therefore. the partial denivatives of K ot the
point {x. y. 2} are related to the derivatives of H at the point {p = x.py, = 1.4 = v.gg = =) hy
the relations

H, - K, H, =K,

H,=K, H,=K-xK,
Hamilton’s equations with hamiltonian function H therefore have the following form at the
point under consideration;

Ftva= K, A= K.

V=K, f=K-xK,.

from which we obtain the answer above.

ProBLEM. Find the contact hamiltonian of the Poisson bracket of two contact
fields with contact hamiltonians K and K’

ANSWER. (K, K') + K,EK' — K, FEK, where the brackets denote Poisson
bracket in the variables x and y and E is the Euler operator EF = F — xF,.

Sefurion.  In the netation of the solution of the preceding problem we must express the
ardinary Poisson bracket of the homogencous hamillonians A and H' at the point
p—xwpy - lg = v, 2y — zhin terms of the contact hamiltonians K and K'. We have

(H, H') = HH, — H,Hy = HH, — HyH, + Hy H,, — H, H,,
Substituting the values of the derivatives from the preceding problem. we find at the point under
constderation
LY = KK, — KK, + KK — <K'} — Ki{(K — xK,).

K Legendre manifolds

The lagrangian submanifolds of a symplectic phase space correspond in the
contact case to an interesting class of manifolds which may be called Legendre
mariifolds since they are closely related to Legendre transformations.

Definition. A Legendre submanifold of a (2n + 1)-dimensional contact mani-
fold is an n-dimensional integral manifold of the field of contact planes.

In other words, it is an integral manifold of the highest possible dimension
for a nondegenerate ficld of planes.

ExampeLe 1. The set of all contact clements tangent to a submanifold of any
dimension in an m-dimensional manifold isan (m — 1)-dimensional Legendre
submanifold of the (2m — 1)-dimensional contact manifold of all contact
elements,
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ExaMeLE 2. The set of all planes tangent to the graph of a function = ¢(x)
in an (1 + l)-dimensional euclidean space with coordinates (x,, ..., x,.; f)
is a Legendre submanifold of the (2n + 1)-dimensional space of all non-
vertical hyperptane elements in the space of the graph (the contact structure
is given by the 1-form

U)=pldxl +'”+pndxn“d,f;

the element with coordinates {p, x, f) passes through the point with co-
ordinates (x, ) parallel to the plane f = p;x, + - + p.Xx,).

The Legendre transformation can be described in these terms in the
following way.

Consider a second (2n + 1)-dimensional contact space with coordinates
(P, X, F)and contact structure given by the form

Q=P4dxX — dF.

The Legendre involution 1s the map taking a point of the first space with
coordinates (p, x, {) to the point of the second space with coordinates

P=x X=p F=px—1f

The Legendre involation, as can be easily calculated, carries the first
contact structure to the second. Clearly, we have

Theorem. A diffeomorphism of one contact manifold onto another which carries
contact planes to contact planes, carries every Legendre manifold to a
Legendre manifold.

In particular, under the action of the Legendre involution the Legendre
manifold of plane ¢clements tangent to the graph of a function is carried into a
new Legendre manifold. This new manifold is called the Legendre transform
of the original manifold.

The projection of the new manifeld onto the space with coordinates (X, F)
(parallel to the P-direction) is in general not a smooth manifold, but has
singularities. This projection is called the Legendre transform of the graph of
the function .

If the function ¢ is convex, then the projection is itself the graph of a
function ¥ = ®(X). In this case ® is called the Legendre transform of the
function .

As another example we consider the motion of oriented contact clements
under the action of the geodesic flow on a riemannian manifold. As the
“initial wave front” we take some smooth submanifold of our riemannian
manifold (the dimension of the submanifold is arbitrary). The oriented con-
tact clements tangent to this submanifold form a Legendre manifold in the
space of all contact elements, From the preceding theorem we obtain
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Corollary. The family of all elements rangent to a wave front is transformed
under the action of the geodesic flow after time t to a Legendre manifold of
the space of all contact elements.

It should be noted that this new Legendre manifold may not be the family
of all elements tangent to some smooth manifold, since a wave front may
develop singularities,

The Legendre singularities which arise in this way can be described in a
manner similar to lagrangian singularities {¢f. Appendix 12). A Legendre
Sfibration of a (2n + 1)-dimensional contact manifold is a fibration all of
whose fibers are n-dimensional Legendre manifolds. A Legendre singularity
is a singularity of the projection of an n-dimensional Legendre submanifold
of a (2r + 1)-dimensional contact manifold onto the (n + 1)-dimensional
base of the Legendre fibration.

Consider the space R***' with contact structure given by the form
a = x dy + dz, where x = (x,, ..., x,}and y = (y,, ..., y,). The projection
(x, v, 2} — (y, z) gives a Legendre fibration.

An eguivalence of Legendre fibrations is a diffeomorphism of the total
spaces of the fibrations carrying the contact structure and fibers of the first
bundle to the contact structure and fibers of the sccond bundle. It can be
shown that every Legendre bundle is equivalent to the special bundle just
described in a neighborhood of every point of the space of the bundle.

The contact structure of the total space of fibration gives the fibers a local
structure of a projective space. Legendre equivalence preserves this structure,
i.e., defines locally projective fiber transformations.

The following theorem allows us to locaily describe Legendre sub-
manifolds and maps by using gencrating functions.

Theorem. For any partition I + J of the set of indices (1, ..., n) into two dis-
Jjoint subsets and for any funcrion S(x;, y,) of n variables x;, i€ 1, je J, the
Sformulas

a8 a8 as

- = — — Z:S_Xf

8}-’ i dx i

Y= dxy
define a Legendre submanifold of R*"*'. Conversely, every Legendre sub-
manifold of B*"* ! isdefined in aneighborhood of every point by these formulas
for at least one of the 2" possible choices of the subset 1.

The prooflis based on the fact that, on a Legendre manifold,dz + xdy = 0,
sod(z + x; ¥} = yrdx; — x, dy;. O

In the formulas of the preceding theorem, we replace S by a function from
the list of the simple lagrangian singularitics given in Appendix 12. We
obtain Legendre singularities which are preserved under small deformations
of the Legendre mapping (x, y. z} — (y, =} (Le., are carried to cquivalent
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singularities for small deformations of the function §). Every Legendre
mapping for n < 6 can be approximated by a map, all of whose singularities
are locally equivalent to singularities from the list A, (1 <k < 6), D,
(¢ <k <6), E.

[n particular, we obtain a list of the singularities of a wave front in general
position in spaces of dimension less than 7.

In ordinary threc-space this list is as follows:

A §=4x2 A S=+x} Ay S=+xt+xip

where [ = {1}, J = {2},and n = 2.

The projections of the Legendre manifolds indicated here onto the base
of the Legendre bundle (i.e., onto the space with coordinates y,, y,, and z)
are: a simple point in the case of 4., a cuspidal edge in the case of 4,, and a
swallowtail (cf. Figure 246} in the case of A5.

Thus a wave front in general position in three-space has only cusps and
“swallowtail™ points as singularities. At isolated moments of time during the
motion of the front we can observe transitions of the three types A4, Dy and
D} (cf. Appendix 12, where the corresponding caustics filled out by the
singularities of the front during its motion are drawn).

PropLEM 1, Lay out an interval of length 1 on every interior normal to an ellipse in the planc.
Draw the curve obtained and investigate its singularities and its transitions as ¢ changes.

ProBLEM 2. Do the same thing for a triaxial ellipsoid in three-dimensional space.

L Contactification

Along with symplectification of contact manifolds, there is a contactification
of symplectic manifolds with symplectic structure cohemologous to zero,

The contactification E2"*! of the symplectic manifold (M?", ®?) is con-
structed as the space of a bundle with fiber R over M?*. Let U be a sufficiently
small neighborhood of a point x in M, so that there is a canonical coordinate
system p, ¢ on U with w = dp A dg. Cousider the direct product U x R
with coordinates p, ¢, z. Let V¥ x R be the same kind of product constructed
on another (or the same) neighborhood V¥, with coordinates P, Q, Z;dP ~ d(Q
= w, If the neighborhoods U and V on M intersect, then we identify the
fibers above the points of intersection in both representations so that the
form dz + pdg = dZ + P dQ = « is defined on the whole (this is possible
since P dQ — p dq is a total differential on U ~ V).

It is easy to verify that after this pasting together we have a bundie E#"**
on M?" and that the form 2 defines a contact structure on E. The manifold E
18 called the contactificarion of the symplectic manifold M. If the cohomology
class of the form ®? is integral, then we can define a contactification with
fiber S',

368



Appendix 4: Contact structures

M Integration of first-order partial differential equations

Let M2"*! be a contact manifold, and E*" a hypersurface in M2**! The
contact structure on M defines some geometric structure on E--in particular,
the field of so-called characteristic directions. An analysis of this geometric
structure can reduce the integration of gencral first-order nonlinear partial
differcutial equations to the integration of a system of ordinary differential

equations.
We assume that the manifold E" is transverse to the contact planes at all

its points. In this case, the intersection of the tangent plane to E*" at each of its
points with the contact plane has dimension 2n — 1, so that we have a field
of hyperplanes on E*". Furthermore, the contact structure on M>**! defines
on E*" a field of lines lying in these (2n — 1)-dimensional planes.

In fact, let « be a 1-form on M?"* ! locally giving the contact structure;
let w = do and let R*" be a contact plane at the point x in E2". Let & =0
be the local equation of E2" (so d® is not zero at x). The restriction of 4@ to
®2" defines a nonzero linear form on B?". The 2-form  gives B*" the structure
of a symplectic vector space and thus an isomorphism of this space with its
dual. The nonzero 1-form d®|;.:. corresponds to a nonzero vector & of R2",
so that d0(-) = w(&, -). The vector & is called the characteristic vector of the
manifold E*" at the point x. The characteristic vector £ lies in the inter-
section of R?” with the tangent plane to E*", so that d®(¢) = 0.

The vector ¢ is not uniguely defined by the manifold E*" and the contact
structure on M, but only up to multiplication by a nonzero number. In fact,
like the 2-form w on R?", the 1-form d® on R*" is defined only up to muiti-
plication by a nonzero number.

The direction of the characteristic vector (i.c., the line containing it) is
determined uniquely by the contact structure at every point of the manifold
E. Thus we have a field of characteristic directions on the hypersurface E of
the contact manifold M. The integral curves of this field of directions are
calied the characteristics.

Now suppose we are given an (n — 1)-dimensional submanifold ! of our
hypersurface E*", which is integral for the contact field (so that the tangent
plane to I at each point is contained in the contact plane),

Theorem. If at a point x of I the characteristic on E*" is not tangent to I, then
in a neighborhood of the point x the characteristics on E*" passing through
points of 1 form a Legendre submanifold L" in M2"* L,

Prook, Let € be a vector field on E*® made up of characteristic vectors. By
the homotopy formula {cf. Section 36G) we have on E*"

Lea =dig2 + i d

But i,z = 0 since the characteristic vector belongs to the contact plane.
Therefore, on E** we have L;a = i.w. But the 1-form i.w is zero on the
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intersection of the tangent plane to E** with the contact plane (since on the
contact plane i, = d®, and on the tangent plane 4 = 0). Therefore, on
the tangent plane to £2" we have i.w = ca. Thus on the hypersurface E,

Léa =

(where ¢ is a function smooth in a neighborhood of x).

Now let {g'} be the (local) phase flow of the ficld £ and # a vector tangent
to E*". Set n(t) = g'n and p(t) = 2(n(r)). Then the function y satisfies the
linear differential equation

% = o{)3{1).

If 5(0) is tangent to I, then y(0) = a{#(0)) = 0. This means y{¢) = o(n(r))
= 0, i.e., for all ¢, y(r) lies in the contact plane. Therefore, g'f is an integral
manifold of the contact field. Therefore the manifold formed by all {g'I} for
small ¢ is a Legendre manifold. O

Exampre. Consider B2**! with coordinates x,, ..., X,: Py, . ... Pa: 4 With
contact structure defined by the 1-form a = du — p dx. A function ®(x, p, u)
defines a differential equation ®(x, du/éx, 1) = 0 and a submanifold E =
®~ {0} in the space R?"*! (called the space of 1-jets of functions on R”).

An initial condition for the equation @ = @ is an assignment of a value f
to the function & on an (n — 1)-dimensional hypersurface I in the n-dimen-
sional space with coordinates x,, ..., X, -

An initial condition determines the derivatives of u in the v — 1 indepen-
dent directions at each point of I'. The derivative in a direction transverse to
I' can generally be found from the equation; if the conditions of the implicit
function theorem are fulfilled, then the initial condition is called noncharacter-
istic.

A noncharacteristic initial condition defines an (r — 1)-dimensional inte-
gral submanifold f of the form a {the graph of the mappingu = f(x),p = p(x),
x € "), The characteristics on E intersecting I form a Legendre submanifold
of B2 1 the graph of the mapping u = u(x), p = du/0x. The function u(x)
is a solution of the equation ®(x, ¢u/dx, ¥) = 0 with initial condition u|yr = f.

Note that to find the function u we need only solve the system of 2n first-
order ordinary differential equations for the characteristics on E, and perform
a series of “algebraic” operations.
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By the theorem of E. Noether, one-parameter groups of symmetries of a
dynamical system determine first integrals. If a system admits a larger group
of symmetries, then there are several integrals. Simultaneous level manifolds
of these first integrals in the phase space arc invariant manifolds of the phase
flow. The subgroup of the group of symmetries mapping such an invariant
manifold into itself acts on the manifold. In many cases, we can look at the
quotient manifold of an invariant manifold by this subgroup. This quotient
manifold, called the reduced phase space, has a natural symplectic structure.
The original hamiltonian dynamical system induces a hamiltonian system
on the reduced phase space.

The partition of the phase space into simultancous level manifolds
generally has singularities. An example is the partition of a phase plane into
energy level curves.

In this appendix we will briefly discuss dynamical systems in reduced
phase space and their relationship with invariant manifolds in the original
space, All these questions were investigated by Jacobi and Poincaré (“elimin-
ation of the nodes” in the many-body problem, “reduction of order” in
systems with symmetries, “stationary rotations™ of rigid bodies, etc.). A
detailed presentation in current terminology can be found in the following
articles: S. Smale, “Topology and mechanics,” Inventiones Mathematicae
10:4 (1970) 305-331, 11:1(1970), 45-64; and J. Marsden and A. Weinstein,
“Reduction of symplectic manifolds with symmetries,” Reports on Mathe-
matical Physics 5 (1974) 121-130.

A Poisson action of Lie groups

Consider a symplectic manifold (M?*", ®?) and suppose a Lie group G acts
on it as a group of symplectic diffeomorphisms. Every one-parameter sub-
group of G then acts as a locally hamilionian phase flow on M. In many
umportant cases, these flows have single-valued hamiltonian functions.

ExampLi. Let V¥ be a smooth manifold and & some Lie group of diffeomorphisms of V. Since
every diffeomorphism takes 1-forms on V(o 1-forms, the group G acts on the cotangent bundle
M =TV

Recall that on the cotangent bundle there is always o canonical 1-form x ("pdg™) and a
natural sympiectic structure « = % The action of the group & on M is symplectic since it
preserves the [-form % and henee also the 2-form dz.

A one-parameter subgroup {g'} of G defines a phase low on M. 1t is casy to verifly that this
phase flow has a single-valued hamiltonian function. [n Fact, the hamiltonian function is given
by the formula from Noether's theorem:
di _
Hix) = 2(2_ [ .\), where x € M.

[l ]

il

We now assume that we are given a symplectic action of a Lie group G
on a connected symplectic manifold M such that, to every element a of the
Lie algebra of G, there corresponds a one-parameter group of symplectic
diffeornorphisms with a single-valued hamiltonian H,. These hamiltonians
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are determined up to the addition of constants which can be chosen so that
the dependence of H, upon a is lincar. To do this, it is sufficient to choose
arbitrarily the constants in the hamiltonians for a set of basis vectors of the
Lie algebra of G, and to then define the hamiltonian function for each element
of the algebra as a linear combination of the basis functions.

Thus, given a symplectic action of a Lie group G and a single-valued
hamiltonian on M, we can construct a linear mapping of the Lie algebra of
G into the Lie algebra of hamilionian functions on M. The function H, ,,
associated to the commutator of two elements of the Lie algebra is equal to
the Poisson bracket (H,, H,), or else it differs from this Poisson bracket by a
constant:

H[a.b] = (Hm Hb) + C(av b)

Remark. The appearance of the constant C in this formula is a consequence of an interesting
phenomenon: the existence of a two-dimensional cohomology class of the Lie algebra of
{globally) hamiltonian fields.

The quantity Cla. b} is a bilinear skew-symmetric function on the Lie algebra, The Jacobi
identity gives us

Cila, bl ey + C[hoela) + C([e.al. kY =0,

A bilinear skew-symmctric function on a Liec atgebra with this property is called o rwa-dimensional
coryele of the Lie algebra.

If we choose the constants in the hamillonian functions differently. then the cocycle € is
replaced by €7, where

Cla. by = Cla. ) 4 p(la, B

where g is a linear function on the Lic algebra. Such a cocycle O is said to be cohiomalagous to
the cocycle €. A class of cocycles which are cohomologous to one another is called a cohomology
class of the Lie algebra.

Thus, a symplectic action of a group G for which single-valued hamiltonians exist defines a
two-dimensional cohomology class of the Lie algebra of G. This cohomology class measures
the deviation of the action from one in which the hamiltonian function of a commutator can be
chosen equal 1o the Poisson bracket of the hamiltonian functions.

Definition. An action of a connected Lic group on a symplectic manifold is
called a Poisson action H the hamiltonian functions for one-parameter
groups are single-valued, and chosen so that the hamiltonian function
depends linearly on elements of the Lie algebra and so that the hamiltonian
function of a commutator is equal to the Poisson bracket of the hamil-
tonian functions:

H{a.b] = (Ha's Hb}-

In other words, a Poisson action of a group defines a homomorphism from
the Lie algebra of this group 1o the Lie algebra of hamiltonian functions.
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FxampLE. Let ¥ be a smoath manifold and 7 a Lic group acting on Fas a group of diffeo-
morphisms, Let M = T*V be the colangent bundle of the manifold ¥V with the usual symplectic
structure e9 = fzx. The hamiltonian functions of onc-parameter groups are defined as above:

d
(1) H,(x) = x(‘

4 g’x), xeTHy,
'

=0

Theorem. This actind is Polsson.

ProoE. By definition of the I-form 2. the hamiitonian functions A, are linear “in p™ {ic, on
every cotangent space). Therelore, their Poisson brackets are also linear, Thus the function
Hiw (H, Hyislinear in p. Since it is constant, it is equal to zero. O

In the same way, we can show that the symplectification of any contact action is a Poisson
action.

ExamprLE. Let V be three-dimensional euchdean space and & the six-dimensional group of its
mations. The following six one-parameter groups form a basis of (he Lie algebra: the trans-
lations with velocity 1 along the coordinate axes ¢, ¢, . and g, and the rotations with angular
velocity 1 aroond these axes. By formula (1), the corresponding hamiltonian funetions are {in
the usual notation) py. p;.ps. M, M, M, where M, = 4,p; - g3p,. 2tc. The theorem im-
phes that the pairwise Poisson brackets of these six functions are equal to the hamilionian
fungtions of the commutators of the corresponding one-parameter groups.

A Poisson action of a group G on a symplectic manifold M defines a
mapping of M into the dual space of the Lic algebra of the group

P: M- q*

That is, we fix a point x in M and consider the function on the Lie algebra
which associates to an element « of the Lie algebra the value of the Hamil-
tonian H, at the fixed point x:

pda) = H,{x).

This p, 15 a linear function on the Lie algebra and is the element of the dual
space to the algebra associated to x:

P(x) = p,.

Following Souriau (Structure des systémes dynamigues, Dunod, 1970), we
will call the mapping P the momentum. Note that the value of the momentum
is always a vector in the space g*.

ExaMrLe. Let ¥ be a smooth manifold. G a Lie group acting an ¥ as a group of diffcomorphisms,
M = T*F the cotangent bundle and 1, the hamiltonian functions constructed above of 1he
action of G on M (cf. (1),

Then the "momentum™ mapping F: M — g* can be described in the following way. Con-
sider the map ®: & — M given by the action of all the elements of G on a fixed point x in M
{so Py} = gx). The canonical Iform 2 on M induces a 1-form @*x on . ks restriction to the
tangent space at the identity of ¢ is o linear form on the Lie algebra,

Thus to every point x in M we have assoctated a lincar form on the Lie algebra. It is casy
to verily that this mapping is the momentum of our Poisson action.
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In particular.f } is euclidean three-space and G 15 the group of rotations around (the poin i,
then the values of the momentum are the usual vectors of angular momentum: if G s the group
of ratations around an axis, then the values of the momentum are the angular momenta refative
10 this axis: if & is the group of parallel translations, then the values of the momentum are the
vectors of lingar momentum.

Theorem. Under the momentum mapping P, a Poisson action of a connected
Lie group G is taken to the co-adjoint action of G on the dual space 9™ of its
Lie algebra (cf. Appendix 2), i.e., the following diagram commutes:

M M
i P P
- Ady, 4
g* g*

Corollary. Suppose that a hamiltonian function H: M — R is invariant under
the Poisson action of a group G on M. Then the momentum is a first integral
of the sysiem with hamiltonian function H.

PROOE OF THE THEOREM The theorem asserts that the hamiltonian funcuon H, of the one-

parameter group ' is carried over by the diffeomorphism g 10 the hamilionian function H,, ,

of the one-parameter group gh'g ™'

Let 4 be 4 one-parameter group with hamiltonian function H,. 1t is sutficient to show that
the derivatives with respect to s {for 5 = 0) of the functions H,(¢"x) and H ,,,,(x) are the same.

The frst of these derivatives is the value at x of the Poisson bracket {H,. #,). The second is

H¢, m(x). Since the action is Poisson, the theorem is proved. |

PrOOF or THE cOROLLARY. The derivative, in the direction of the phase flow with hamiltonian
function . of each component of the momentum is zero, since i1 i equal to the dervative of
funchion Han the direction of the phase fow corresponding to a one-parameter subgroup of G.

d

B The reduced phase space

Suppose that we are given a Poisson action of a group G on a symplectic
manifold M. Consider a level set of the momentum, 1.¢., the inverse image of
some point p € g* under the map P. We denote this set by M,, so that
(Figure 238)

M,=P '(p)

In many important cases the set M, is a manifold. For example, this will
be so if p is a regular value of the momentum, i.e., if the differential of the map P
at each point of the set M, maps the tangent space to M onto the whole
tangent space to g*.

In general, a Lie group G acting on M takes the sets M, into one another.
However, the stationary subgroup of a point p in the co-adjoint representa-
tion {i.c., the subgroup consisting of those ¢lements g of the group G for
which Ad¥p = p) leaves M, fixed. We denote this stationary subgroup by

374



Appendix 5. Dynamical systems with symmetries

£,
: \
o
Figure 238 Reduced phase space

G,. The group G, is a Lie group, and it acts on the level set M, of the mo-
mentam.

The reduced phase space is obtained from M, by factoring by the action
of the group G,. In order for such a factorization to make sense, it is necessary
to make several assumptions. For example, it is sufficient to assume that

1. pis a regular value, so that M, is a manifold,
2. The stationary subgroup G, is compact, and
3. The elements of the group G, act on M, without fixed points.

Remark. These conditions can be weakened. For example, instead of compactness of the
group G, we can require that the action be proper {i.e.. that the inverse images of compact sets
under the mapping (g, x) — (g{x). x) are compact). For cxample, the actions of a group on
itself by left and right transtation are always proper.

If conditions (1), (2), and {3) are satisfied, then it is easy to give the set of
orbits of the action of G, on M, the structure of a smooth manifold. Namely,
a chart on a neighborhood of a point x € M, is furnished by any local trans-
versal to the orbit G, x, whose dimension is equal to the codimension of the
orbit.

The resulting manifold of orbits is called the reduced phase space of a
system with symmetry.

We will denote the reduced phase space corresponding to a value of the
momentum by F,. The manifold F, is the base space of the bundle n: M, —» F,
with fiber diffeomorphic to the group G,,.

There is a natural symplectic structure on the reduced phase space F,.
Namely, consider any two vectors ¢ and # tangent to F, at the point f. The
point f 1s one of the orbits of the group G, on the manifold M,. Let x be
one of the points of this orbit. The vectors £ and # tangent to F, are obtained
from some vectors ¢’ and »’ tangent to M, at some point x by the projection
M= F

Definition. The skew-scalar product of two vectors ¢ and # which are tangent
to a reduced phase space at the same point, is the skew-scalar product of

375



Appendix 5: Dynamical systems with symmetries

the corresponding vectors £’ and #', tangent to the original symplectic
manifold M:

[.nl, =< 7]

Theorem.!®! The skew-scalar product of the vectors & and n does not depend
on the choices of the point x and representatives & and v', and gives a
symplectic structure on the reduced phase space.

Corollary. The reduced phase space is even-dimensional.

PRrROOF OF THE THEOREM. We¢ look at the following two spaces in the tangent
space to M at x:

T(M ), the tangent space to the level manifold M, and
T(G,), the tangent space to the orbit of the group G.

[.emma. These two spaces are skew-orthogonal complements to one another
in TM.

Procr. A vector { lics in the skew-orthogonal complement 1o the tangent plane of an orbit of
the group G if and only if the skew-scalar product of the vector [ with velocity vectors of the
hamiltonian fiow of the group G is equal 1o zero (by definition). But these skew-scalar products
are equal (o the derivatives of the corresponding hamiltenian functions in the direction ¢
Therefore, the vector . lies in the skew-orthogonal complement 1o the orbiv of G il and only if
the derivative of the momentum in the direction [ is equal to zero, i, il lies in T(M ). 0

The represeniatives & and # are defined up to addition of a vector from the tangent plane
to the orbit of the group G,. But this tangent plane is the intersection of the tangent plancs 1o
the orbit £ix and Lo the manifold M, (by the last theorem of part A). Consequently, the addition
ta £ of a vector from T(G,x} does not change the skew-scalar product with any vector y” from
T{M ) (since by the lemma T{C,x) is skew-orthogonal to T(M_ ). Thus. we have shown the
independence [rom Lhe representatives £ and i’

The independence of the quantity [£, #], from the choice of the point x ol the orbit f Tollows
from the symplectic nature of the action of the group & on M and the invanance of M. Thus
we have defined a differential 2-form on F .

Qp[6~ ?if) = [Lf q}p

It is nondegenerate, since if [, ], = D for every #. then the corresponding representative
¢ is skew-orthogonal 1o all veciors in T(M ;). Therefore, I’ must be the skew-orthogonal com-
plement to T(M ) in TM. Then by the lemma e T{Gx) Le. & =0

The form §2, is closed. In order to verify this we consider a chart, 1.c.. 4 prece of submanifold
in M transversally intersecting the orbit of the group &, in one paint.

The form €, is represented in this chart by a 2-form induced from the 2-form r which defines
the symplectic structure in the whole space M. by means of the embedding of the submanifold
piece. Since the form o is closed, the induced form is ulso closed. The theorem is proved. O

'¥ The theorem was first formulated in this form by Marsden and Weinstein, Many special
cases have been considered since the time of Jacobi and used by Poincaré and his successors in
mechanics. by Kirillov and Kostant in group theory. and by Faddeev in the general theory of
relativity.
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ExaMmPLE 1, Let M = R>" be euclidean space of dimension 2n with coordin-
ates py, g and 2-form ) dp, ~ dq,. Let G = S' be the circle, and let the
action of G on M be given by the hamiltonian of a harmonic oscillator

H =3 (p? + qd).

Then the momentum mapping is simply H: R*" — R, a nonzero momen-
tum level manifold is a sphere S2"~1, and the quotient space is the complex
projective space CP" 1.

The preceding theorem defines a symplectic structure on this complex
projective space. It is easy to verify that this structure coincides (up to a

multiple) with the one we constructed in Appendix 3.

ExaMPLE 2. Let V be the cotangent bundle of a Lie group, G the same group
and the action defined by left translation. Then M, is a submanifold of the
cotangent bundle of G, formed by those vectors which, after right translation
to the identity of the group, define the same element in the dual space to the
Lie algebra.

The manifolds M, are diffeomorphic to the group itself and are right-
invariant cross-sections of the cotangent bundle. All the values p are regular.

The stationary subgroup G, of the point p consists of those elements of
the group for which left and right trarslation of p give the same result. The
actions of elements different from the identity of G, on M, have no fixed
points {since there are none by right translation of the group onto itself).

The group G, acts properly (cf. remark above). Consequently, the space
of orbits of the group G, on M, is a symplectic manifold.

But this space of orbits is easily identified with the orbit of the point p
in the co-adjoint representation. Actually, we map the right-invariant
section M, of the cotangent bundle into the cotangent space to the group at
the identity with left translations. We get a mapping

M, > g*

The image of this mapping is the orbit of the point p in the co-adjoint
representation, and the fibers are the orbits of the action of the group G,,.
The symplectic structure of the reduced phase space thus defines a symplectic
structure in the orbits of the co-adjoin? representation.

It is not hard to verify by direct calculation that this is the same structure
which we discussed 1n Appendix 2.

ExampLe 3. Let the group G = S, the circle, and let it act without fixed
points on a manifold V. Then there is an action of the circle on the cotangent
bundle M = T*V. We can define momentum level manifolds M, (of co-
dimension 1 in M) and quotient manifolds F, (the dimension of which is 2
less than the dimension of M),
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In addition, we can construct a quotient manifold of the configuration
space V by identifying the points of each orbit of the group on V. We denote
this quotient manifold by W.

Theorem. The reduced phase space F, is symplectic and diffeomorphic to the
cotangent bundle of the quotient configuration manifold W.

Prooe. Let n: ¥ — ¥ bethe factorization map, and we T*HW a 1-form on W at the point w = ar,
The form a*w on V at the point ¢ belongs to M, and projects to a point in the quotient F.
Conversely, the elements of Fy are the invariant 1-forms on ¥ which are cqual to zero on the
orbits; they define 1-forms in W, We have constructed a mapping T*W — F,. 1t is easy to see
that this is a symplectic diffeomorphism.

The case p # 0 is reduced to the case p = 0 as follows, Consider 2 riemannian metric on
V.invariant with respect to G. The intersection of M, with the cotangent plane to V at the point ¢
is a hyperplane. The quadratic lorm defined by the metric has a unique minimum point 5(¢) in
this hyperptane. Subtraction of the vector §(v) carries the hyperplane M, 7T *}. inlo
Mg~ T*F,, and we obtain a possibly nonsymplectic diffeomorphism F, — Fy.

The difference between the symplectic structures on 7* W induced by that of £, and Fgisa
2-form, induced by a 2-form on W, O

C Applications to the study of stationary rotations
and bifurcations of invariant manifolds

Suppose that we are given a Poisson action of a group G on a symplectic
manifold M let H be a function on M invariant under G. Let F, be a reduced
phase space (we assume that the conditions under which this can be defined
are satisfied).

The hamiltonian field with hamiltonian function H is tangent to every
momentum level manifold M, (since momentum is a first integral). The
induced field on M, is invariant with respect to &, and defines a field on the
reduced phase space F,. This vector field on F, will be called the reduced
field.

Theorem. The reduced field on the reduced phase space is hamiltonian. The
value of the hamiltonian function of the reduced field at any point of the
reduced phase space is equal to the value of the original hamiltonian function
at the corresponding point of the original phase space.

Proof. The relation defining a hamiltonian field X, with hamiltonian # on a manifold M
with form w
dH($) = (i Xy} foreveryg

implies an analogous relation for the reduced field in view of the definition of the symplectic
structure on F . O

ExampLe. Consider an asymmetric rigid body, fixed at a stationary point,
under the action of the force of gravity (or any potential force symmetric
with respect to the vertical axis).
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The group §?! of rotations with respect to a vertical line acts on the con-
figuration space SO{3). The hamiitonian function is invariant under rota-
tions, and therefore we obtain a reduced system on the reduced phase space.

The reduced phase space is, in this case, the cotangent bundle of the
quotient configuration space (cf. Example 3 above). Factorization of the
configuration space by the action of rotations around the vertical axis was
done by Poisson in the following way.

We will specify the position of the body by giving the position of an ortho-
normal frame (e,, e,, €;). The three vertical components of the basic vectors
give a vector in three-dimensional euclidean space. The length of this vector
is 1 (why?). This Poisson vector'®? y determines the original frame up to
rotations around a vertical line (why?).

Thus the quotient configuration space is represented by a two-dimensional
sphere $2, and the reduced phase space is the cotangent bundle T*S* with a
nonstandard symplectic structure. The reduced hamiltonian function on the
cotangent bundle is represented as the sum of the “kinetic energy of the
reduced metion,” which is gquadratic in the cotangent vectors, and the
“effective potential ” (the sum of the potential energy and the kinetic energy of
rotation around a vertical line).

The transition to the reduced phase space in this case is almost by " elimination of the ¢yclic
cootdinate ¢." The difference is that the vsual procedure of elimination requires that the con-
figuration or phase space be a direct product by the circle, whereas in our case we have only a
bundle. This bundie can be made a direct product by decreasing the size of the configuration
space (i.e., by introducing coordinates with singularities at the poles): the advantage of the
approach above is that it makes it clear that there are no real singularitics {except singularities
of the coordinate syslem) near the poles.

Definition. The phase curves in M which project to equilibrium positions in
the reduced system on the reduced phase space F, are called the relative
equilibria of the original system.

ExXAMPLE. Stationary rotations of a rigid body which is fixed at its center of
mass are relative equilibria. In the same way, rotations of a heavy rigid body
with constant speed around the vertical axis are relative equilibria.

Theorem. A phase curve of a system with a G-invariant hamiltonian function is a
relative equilibrium if and only if it is the orbit of a one-parameter subgroup
of G in the original phase space.

Proor. It is clear that a phase curve which is an orbit projects lo a point. I a phase curve x{{)
projects (0 a point, then it can be expressed uniquely in the form x{t) = g{O)x{D). and it is then
casy to see that {g(1)} is a subgroup. O

192 poisson showed that the equations of motion of a heavy rigid body can be writien in terms
of v in a remarkably simple form, the “Euler-Poisson equations ™:

dM

— —[M. w] = ugly. 1]

dy
dt 4 Er! (!J]

dt
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Corollary 1. An asymmetrical rigid body in an axially symmetric porential
Jfeld, fixed ar a point on the axis of the field, has at least two stationary
rotations ( for every value of the angular momentum with respect to the axis
af symmetry).

Corollary 2, An axially symmetric rigid body fixed at a point on the axis of
symmetry, has at least two stationary rotations ( for every value of the angular
momentun with respect to the axis of symmetry).

Both corollaries follow from the fact that a function on the sphere has at
least two critical points.

Another application of relative equilibria is that they can be used to
investigate modifications of the topology of invanant manifolds under
changes of the energy and momentum values.

Theorem. The critical points of the momentum and energy mapping
PxHM-oag*xR

on a regular momentum level set are exactly the relative equilibria.

Proor. The critical points of the mapping P x {I are the conditional extrema of H on the
momentum level manifold M, (since this level manifold is regular, e, for every x in M, we
have P,TM, = Tq}).

After factorization by G, the conditional extrema of H on M, dcfine the critical points of
the reduced hamiltonian funclmn {singe A is imvariant under G} |

The detailed study of relative equilibria and singularities of the encrgy-
momentum mapping is not simple and has not been cotnpletely carried out,
even in the classical problem of the motions of an asymmetrical rigid body
in a gravitational field. The case when the center of gravity lies on one of the
principal axes of inertia is treated in the supplement written by S. B. Katok
to the Russian translation'®? of the article by S. Smale cited in the beginning
of this appendix. In this problem the dimension of the phase space is six, and
the group is the circle; the reduced phase space T*S? is four-dimensional.

The nonsingular energy level manifolds in the reduced phase space are
{depending on the values of momentum and energy) of the following four
forms: S%, §% x §', RP3, and a “pretzel” obtained from the three-sphere S?
by attaching two “handles” of the form

S' x pb? (D? = the disc {(x, p)|x? + y> < 1}

WAL spekhi Matematicheskikh Neawk 27, no. 2{19721 78 133,
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In this appendix we give a list of normal forms to which we can reduce a
quadratic hamiltonian function by means of a real symplectic transformation.
This list was composed by D. M. Galin based on the work of J. Williamson
in “On an algebraic problem concerning the normal forms of linear dynamical
systems,” Amer. J. of Math. 58, (1936), 141-163. Williamson's paper gives
the normal forms to which a quadratic form in a symplectic space over any
field can be reduced.

A Notation

We will write the hamiltonian as
H = §(A4x, x),

where x = (py, ..., Pas §1, -+ -« 4, 15 @ vECtOr writlen in a symplectic basis
and A4 is a symmetric linear operator. The canonical equations then have the
form

x = TAx, wherel = 0 _E.
E 0

By the eigenvalues of the hamiltonian we will mean the eigenvatues of the
linear infinitesimally-symplectic operator [A4. In the same way, by a Jordan
block we will mean a Jordan block of the operator [A.

The eigenvalues of the hamiltonian are of four types: real pairs (¢, —a),
purely imaginary pairs (ib, —ib}, quadruples (+a +ib), and zero eigenvalues.

The Jordan blocks corresponding to the two members of a pair or four
members of a quadruple always have the same structure.

In the case when the reul part of an eigenvaluc is zero, we have to dis-
tinguish the Jordan blocks of even and odd order. There are an even nutnber of
blocks of odd order with zero eigenvalue and they can be naturally divided
into pairs.

A compilete list of normal forms follows.

B Hamiltonians

For a pair of Jordan blocks of order k with cigenvalues +aq, the hamiltonian
is
&

-1
> Pidjca-

i=1

k
H=—a} pq+
=1

For a quadruple of Jordan blocks of order k with cigenvalues +a + bi
the hamiltonian is
2k k 2k-2

H=—a ) pjg; + b3 (p2;-1q2; ~ P2jd2;-1) + 2, Pitdjs2-
i=1 i=1 ji=1
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For a pair of Jordan blocks of order k with eigenvalue zerc the hamiltonian
s
h-1

H=7Y pg, (fork=1H=0)
i=1

For a Jordan block of order 2k with eigenvalue zero, the hamiltonian is
of one of the following two inequivalent types:

1 k—1 13 k-1
H=4 3 (Z PiPh-; — _Z‘h‘h—jﬂ) - Z Pidj+1
i=1 i=1 =1
(for k = 1 thisis H = + 3¢%).
For a pair of Jordan blocks of odd order 2k + | with purely imaginary
eigenvalues + bi, the hamiltonian is of one of the following two inequivalent

types:

1 k
H=+ E[Z(b2p2jp2k—2j+2 + q2;42k-2j+2)

i=1

k+1 2k
- Z (bzpzj—IPZk—2j+3 + Q2j-1‘?2k—zj+3):| - Z Pidivi-
i=1 i=1
Fork =0, H = + (%} + g}

For a pair of Jordan blocks of even-order 2k with purely imaginary eigen-
values + bi, the hamiltonian is of one of the following two inequivalent types:

1| & /1
H= iz > ?QM'—IQZR—JJHI + G2;82k-2j+2

j=1

k-1
— 3 bBpyiiaPru—2jar T Pz;+2sz—2;+z)]
;=1

=

K X
- b sz,:'—thj + szjqzj—l

i=1 j=1

1/1
(fork =LH=1%3 (g q+ q%) - b'pigs + pqu)‘

Williamson’s theorem. A real symplectic vector space with a given quadratic
form H can be decomposed into a direct sum of pairwise skew orthogonal real
symplectic subspaces so that the form H is represented as a sum of forms of
the types indicated above on these subspaces.

C Nonremovable Jordan blocks

An individual hamiltonian in “general position” does not have multiple
eigenvalues and reduces to a simple form (all the Jordan blocks are of first
order). However, if we consider not an individual hamiltonian but a whole
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family of systems depending on parameters, then for some exceptional
values of the parameters more complicated Jordan structures can arise. We
can get rid of some of these by a small change of the family; others are non-
removable and only slightly deformed after a small change of the family, If
the number [ of parameters of the family is finite, then the number of non-
removable types in I-parameter families is finite, The theorem of Galin
formulated below allows us to count all these types for any fixed ..

We denote by n,(z) = ny(z) = -+ = nz) the dimensions of the Jordan
blocks with eigenvalues z # 0, and by m, >m, > - > m, and m, >
iy > --- > i, the dimensions of the Jordan blocks with eigenvalues zero,
where the m; are even and the #; are odd (of every pair of blocks of odd
dimension, only one is considered),

Theorem. In the space of all hamiltonians, the manifold of hamilionians with
Jordan blocks of the indicated dimensions has codimension

1 5(z) 1 u
€=5 > [Z(Zj— Dnfz) - 1] + 5 ¥ (2 — m;
i=1

-#0 Lj=1

¢ Y00~ i+ 11 42F Y minfm, ).

=1 k=1

(Note that, if zero is not an eigenvalue, then only the first term in the sum
is not zero.)

Corollary. In I-parameter families in general position of linear hamiltonian
systems, the only systems which occur are those with Jordan blocks such that
the number ¢ calvulated by the formula above is not greater than ! all
cases with larger ¢ can be eliminated by a small change of the family.

Corollary. In one- and two-parameter families, nonremovable Jordan blocks of
only the following 12 types nccur:

I =1:(xa), (tia)?, 02

(here the Jordan blocks are denoted by their determinants; for example,
(+a) denotes a pair of Jordan blacks of order 2 with eigenvalues a and
—a, respectively,;
[=2:(xaP (2ai), (£a £ bi)%, 0% (+a)*(+b)% (ai)*(£bi),
(£ (£5)%, (£a)’0?, (£ai)?0?
(the remaining eigenvalues are simple).
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Galin has also computed the normal forms to which one can reduce any
family of linear hamiltonian systems which depend smoothly on parameters,
by using a symplectic linear change of coordinates which depends smoothly
on the parameters. For example, for the simplest Jordan square ( +a)?, the
normal form of the hamiltonian will be

H(A) = —alprgqy + p2da) + praa + 4ipigy + Aapady

(4, and 4, are the parameters}).
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stationary points and closed trajectories

In studying the behavior of solutions to Hamilton’s equations near an
equilibrium position, it is often insufficient to look only at the linearized
equation, In fact, by Liouville’s theorem on the conservation of volume,
it is impossible to have asymptotically stable equilibrium positions for hamil-
tonian systems. Therefore, the stability of the linearized system is always
neutral: the eigenvalues of the hinear part of a hamiltonian vector field at a
stable equilibrium position all lie on the imaginary axis.

For systems of differential cquations in general form, such neutral
stability can be destroyed by the addition of arbitrarily small nonlinear
terms. For hamiltonian systems the situation is more complicated. Suppose,
for example, that the quadratic part of the hamiltonjan function at an
equilibrium position (which determines the linear part of the vector field) is
(positive or negative) definite. Then the hamiltonian function has a maximum
or minimum at the equilibriutn position. Therefore, this equilibrium positicn
is stable (in the sense of Liapunov, but not asymptotically), not only for the
linearized system but also for the entire nonlinear system,

On the other hand, the quadratic part of the hamiltonian function at a
stable equilibrium position may not be definite. A simple example is supplied
by the function H = p? + g3 — p3 — g2. To investigate the stability of
systems with this kind of quadratic part, we must take into account terms of
degree >3 in the Taylor series of the hamiltonian function (i.e., the terms of
degree =2 for the phase velocity vector field). It is useful to carry out this
investigation by reducing the hamiltonian function {and, therefore, the
hamiltonian vector field) to the simplest possible form by a suitable canonical
change of variables. In other words, it is useful to choose a canonical co-
ordinate system, near the equilibrium position, in which the hamiltonian
function and equations of motion are as simple as possible,

The analogous question for general (non-hamiltonian) vector fields can
be solved easily: there the general case is that a vector field in a neighborhood
of an equilibrium position is linear in a suitable coordinate system (the
refevant theorems of Poincaré and Siegel can be found, for instance, in the
book, Lectures on Celestial Mechanics, by C. L. Siegel and J. Moser,
Springer-Verlag, 1971.)

In the hamiltonian case the picture is more complicated. The first difficulty
is that reduction of the hamiltonian field to a linear normal form by a
canonical change of variables is gencrally not possible. We can usually kill
the cubic part of the hamiltorman function, but we cannot kill all the terms of
degree four (this is related to the fact that, in a linear system, the frequency of
oscillation does not depend on the amplitude, while in a nonlincar system it
generally does). This difficulty can be surmounted by the choice of a nonlinear
normal form which takes the frequency variations into account, As a result,
we can (in the “non-resonance™ case} introduce action-angle variables near
an equilibrium position so that the system becomes integrable up to terms of
arbitrary high degree in the Taylor series,
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This method allows us to study the behavior of systems over the course of
large intervals of time for initial conditions close to equilibrium. However,
it is not sufficient to determine whether an equilibrium position will be
Liapunov stable (since on an infinite time interval the influence of the dis-
carded remainder term of the Taylor series can destroy the stability). Such
stability would follow from an exact reduction to an analogous normal form
which did not disregard remainder terms. However, we can show that
this exact reduction is generally not possible, and formal series for canonical
transformations reducing a system to normal form generally diverge.

The divergence of these series is connected with the fact that reduction
to normal form would imply simpler behavior of the phase curves (they
would have to be conditionally periodic windings of tori) than that which
in fact occurs. The behavior of phase curves near an equilibrium position is
discussed in Appendix 8. In this appendix we give the formal results on nor-
malization up to terms of high degree.

The idea of reducing hamiltonian systems to normal forms goes back to
Lindstedt and Poincaré;!®* normal forms in a neighborhood of an equi-
tibrium position were cxtensively studied by G. D. Birkhoff (G. D. Birkhoff,
Dynamical Systems, American Math. Society, 1927).

Normal forms for degenerate cases can be found in the work of A, D.
Bruno, “Analytic forms of differential equations,” (Trudy Moskovskogo
matematicheskogo obshchestva, v. 25 and v. 26).

A Normal form of a conservative system near an
equilibrium position

Suppose that in the linear approximation an equilibrium position of a
hamiltonian system with » degrees of freedom is stable, and that all » charac-
teristic frequencies |, ..., o, are different. Then the quadratic part of the
hamiltonian can be reduced by a canonical lincar transformation to the
form

H = 3(opf + qi) + - + 10,7 + @)
(Some of the numbers w, may be negative).

Definition. The characteristic frequencies w, ..., w, satisfy a resonance
relation of order K if there exist integers k; not all equal to zero such that

ko + -+ kyw, =0, kil + -+ |k, = K.
Definition. A Birkhoff normal form of degree s for a hamiltonian is a poly-

nomial of degree s in the canonical coordinates (P, ;) which is actually
a polynomial (of degree [5/2]) in the variables 7; = (P? + Q7)/2.

L84 f H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Vol. 1, Dover, 1957,
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Forexample, for a system with onedegree of freedom the normal form of degree 2m(or2m + 1)
looks like

Hap=Hypoy = g7 + a0 4+ - + gy, = (P4 002,
and for a system with two degrees of freedom the Birkhofl normal form of degree 4 will be
Hy =T, + ity +a T8+ a7,7y + aya T3

The cocflicients ¢, and o, are characteristic frequencies, and the coefficients a,, describe the
dependence of the frequencies on the amplitude.

Theorem. Assume that the characteristic frequencies ; do not satisfy any
resonance relation of order s or smaller. Then there is a canonical co-
ordinate system in a neighborhood of the equilibrium position such that
the hamiltonian is reduced to a Birkhoff normal form of degree s up to terms
of order s + 1:

Hp,q) = H(P,Q) + R R=0(Pl +|QIyr"".

Prooe. The proof of this theorem is casy to carry out in a complex coordinate system
nEp Y W= po- g

{upon passing to this coordinate system we must muitiply the hamiltonian by —2i). 1 the terms
of degree less than & entering into the normal form are not already killed, then the transformation
with generating function Py + S.{P. ¢) (where 5y is a homogeneous polynomial of degree N}
changes only terms of degree N and higher in the Taylor expansion of the hamiltonian function.

Under this transformation the coefficient for a monomial of degree N in the hamiltonian
function having the lorm

-3

L '-':,""w’]{’---wff" (x, + - +a,+ 8, +--+f,=N)

is changed into the quantity
SaplAs (B — 2} + -+ A0, - )
where 4, = iw, and where 5, is the coeflicient for -*w? in the expansion of the lunction Sy (P. ¢}
in the variables = and w.
Under the assumptions aboul the absence of resonance, the coefficient of 5,4 in the square
brackets is not zero, cxcept in the case when our monomial can be expressed in terms of the
product z;w, = 21, {Le., when all the x, are equal to the f#,). Thus we can kill all terms ol degree N

cxcept those expressed in terms of the variables t;. Setting & == 3.4.. .., 5. we obtain the theorem.

|

To use Birkhoff's theorem, it is helpful to note that a hamiltonian in normal
form is integrable. Consider the “canonical polar coordinates™ 7, ¢, in
which P, and @, can be expressed by the formulas

P = \/21_1 COS ¢ 0, = /25 sin ¢,

Since the hamiltonian is expressed in terms of only the action variables t,,
the systern is integrable and describes conditionally periodic notions on the
tori T = const with frequencies w = dH/0t. In particular, the equilibrium
position P = @ = 0 is stable for the normal form.
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B Normal form of a canonical transformation near a stationary point

Consider a canonical (i.e. area-preserving) mapping of the two-dimensional
plane to itself. Assume that this transformation leaves the origin fixed, and
that its linear part has cigenvalue 1 = e*™ (ie., is a rotation by angle « in a
suitable symplectic basis with coordinates p, g). We will call such a trans-
formation elliptic.

Definition. A Birkhoff normal form of degree s for a transformation is a canon-
ical rransformation of the planc to itself which is a rotation by a variable
angle which is a polynomial of degree not more than m = [s5/2] - 1
in the action variable 7 of the canonical polar coordinate system:

{qu))‘_’ (ts(P + ai) + al‘E + e+ 2m‘rm)'s
where

p=./2tcosg g = \;-’E:csin Q.

Theorem 2. If the eigenvalue A of an elliptic canonical transformation is not a
root of unity of degree s or less. then this transformation can be reduced by a
canonical change of variables to a Birkhoff normal form of degree s with
error terms of degree s + 1 and higher.

The multi-dimensional generalization of an elliptic transformation is the
dircet product of n elliptic rotations of the planes (p,, g,) with eigenvalues
A, = et A Birkhoff normal form of degree s is given by the formuia

%, 0) N a8
T - | T -
4 (p 4 (p aT El
where § is a polynomial of degree not more than {s/2] in the action variables
Tiyovey Ty

Theorem 3. If the eigenvalues A, of a multi-dimensional elliptic canonical
transformation do not admit resonances

ikll..-,lﬁ":l, |k1|+"'+1kn|£s’

then this transformation can be reduced to a Birkhoff normal form of degree s
(with error in terms of degree s in the expansion of the mapping in a Taylor
series at the point p = g = 0).

C Normul form of an equation with periodic coefficients
near an equilibrium position

Let p = ¢ = 0 be an equilibrium position of a system whose hamiltenian
function depends 2z-periodically on time. Assume that the linearized equa-
tion can be reduced by a linear symplectic time-periodic transformation to an
autonomous normal form with characteristic frequencies ., ..., @
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We say that 4 system is resonant of order K > 0 if there is a relation
kla;'1 + "'+knfﬂn+k0=0

with integers kg, ky, ..., k, for which 1k, | + - + [k,| = K.

Theorem. If a system is not resonant of order s or less, then there is a ?n-
periodic time-dependent canonical transformation reducing the system in a
neighborhood of an equilibrium position to the same Birkhoff normal form
of degree s as if the system were autonomous, with only the difference that
the remainder terms R of degree s + 1 and higher will depend periodically
on time.

Finally, suppose that we are given a closed trajectory of an autonomous
hamiltonian system. Then, in a neighborhood of this trajectory, we can
reduce the system to normal form by using either of the following two
methods:

1. Isoenergetic reduction: Fix an energy constant and consider a neighbor-
hood of the closed trajectory on the (2n — 1)-dimensional energy ievel
manifold as the extended phase space of a system with n — 1 degrees of
freedom, periodically depending on time.

2. Surface of section: Fix an energy constant and value of one of the co-
ordinates (so that the closed trajectory intersects the resulting (2n — 2)-
dimensional manifoid transversally). Then phasc curves near the given
one define a mapping of this (2n — 2)-dimensional manifold to itself,
with a fixed point on the closed trajectory. This mapping preserves the
natural structure on cur (2n — 2)-dimensional manifold, and we can
study it by using the normal form in Section B.

In investigating closed trajectories of autonomous hamiltonian systems,
a phenomenon arises which contrasts with the general theory of equilibrium
positions of systems with periodic coefficients. The fact is that the closed
trajectories of an autonomous system are not isolated, but form (as a rule)
one-parameter families. The parameter of the family is the value of the energy
constant. In fact, assume that for some choice of the energy constant the
closed trajectory interscets transversally the (2n — 2)-dimensional manifold
described above in the (2n — 1)-dimensional energy level manifold. Then
for nearby values of the energy, there will exist a similar closed trajectory.
By the implicit function theorem we can even say that this closed trajectory
depends smoothly on the energy constant.

If we now wish to use the Birkhoff normal form to investigate a one-
parameter family of closed trajectorics, we encounter the following difficulty.
Asthe parameter describing the family varies, the eigenvalues of the lincarized
problem will generally change. Therefore, for some values of the parameter
we will incvitably encounter resonances, obstructing reduction to the normal
form.
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Especially dangerous are resonances of low order, since they influence
the first few terms of the Taylor series. If we are interested in a closed trajectory
for which the eigenvalues nearly satisfy a resonance relation of low order,
then the Birkhoff form must be somewhat modified. Namely, for resonance
of order N some of the expressions

ko — Eoi(By — 2) + o + (B, — x,)], la] + |B] = N,

by which we must divide to kill the terms of order N in the hamiltonian
function, may become zero. For non-resonant values of the parameter which
are close to resonance, this combination of characteristic frequencies is
generally not zero, but very small (this combination is thercfore called a
“small denominator™),

Division by a small denominator leads to the following difficulties:

1. The transformation which reduces to normal form depends discon-
tinuously on the parameter (it has poles for resonant values of the param-
eter);

2. The region in which the Birkhoff normal form accurately describes the
system contracts to zero at resonance.

In order to get rid of these deficiencies, we must give up trying to annihilate
some of the terms of the hamiltonian {(namely, those which become resonant
for resonance values of the parameter). Moreover, these terms must be
preserved not only for resonance, but also for nearby values of the param-
eter.!®3 The normal form thus obtained is somewhat more complicated than
the usual normal form, but in many cases it gives us useful information on
the behawvior of solutions near resonance.

D Example: Resonance of order 3

As a simple example, we will study what happens to a closed trajectory of an
autonomous hamiltonian system with two degrees of freedom, for which
the period of oscillation (about the closed trajectory) of neighboring trajec-
tories is three times the period of the closed trajectory itself. By what we said
above, this problem may be reduced to an investigation of a one-patameter
system of non-autonomous hamiltonian systems with one degree of freedom,
2n-periodically depending on time, in a neighborhood of an equilibrium
position. This equitibrium position can be taken as the origin for all values of
the parameter (to achieve this we must make a change of variables depending
on the parameter).

Furthermore, the linearized system at the equilibrium position can be
converted into a linear system with constant coefficients by a 2r-periodically
time-dependent linear canonical change of variables. In the new coordinates
the phase flow of the lincarized system is represented as a uniform rotation

(1R

The method indicated here is useful not only in investigating hamiltonian systems, but alse
in the general theory of differential equations. CI, for example. V. L Arnold, *Lectures on
bifurcations and versaf families.” Russian Math. Surveys 27, No. 5, 1972, 54 -123.
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around the equilibrium position. The angular velocity w of this rotation
depends on the parameter.

At the resonance value of the parameter, w = § (i.c., after time 2z, we have
gone one-third of the way arcund the origin). The derivative of the anguiar
velocity w with respect to the parameter is generally not zero. Therefore, we
can take as a parameter this angular velocity or, even better, its difference
from §. We will denote this difference by e. The quantity ¢ is called the
frequency deviation or detuning. The resonance value of the parameter is
¢ = 0, and we are interested in the behavior of the system for small s.

If we disregard the nonlinear terms in Hamilton’s equations and dis-
regard the frequency deviation &, then all trajectories of our system become
closed after making three revolutions (i.e., they have period 6z). We now
want to study the influence of the nonlinear terms and frequency deviation
on the behavior of the trajectories. It is clear that in the general case not all the
trajectories will be closed. To study their behavior, it is useful to look at
the normal form.

In the chosen coordinate system, z = p + ig, Z = p ~ ig, the hamiltonian
function has the form

+ oo
—2iH = —iwzZ + Y Y hgu e+ .
at+tfl=3 k=-wx
where the dots indicate terms of order higher than three, and where w =
&) + &
In the reduction to nermal form we can kill all terms of degree three
¢xcept those for which the small denominator

e — B) + k

becomes zero at resonance. These terms can be described also as those
which are constant along trajectories of the periodic motion obtained by
disregarding the frequency deviation and nonlinearity. They are called the
resonant terms. Thus, for resonance w = -%, the resonant terms are those for
which

x—f+ 3 =0

Of the terms of third order, only z%~# and 3%¢™ turn out to be resonant.
Thus we can reduce the hamiltonian function to the form

—2H = —iwzz + hzde™ " — hF3M 4 ...

(the conjugacy of h and k corresponds to the fact that H is real).

Note that, in order to reduce the hamiltonian function to this normal
form, we made a 2r-periodic time-dependent smooth canonical transforma-
tion which depends smoothly on the parameter, even in the case of resonance.
This transformation differs from the identity only by terms that are small of
second order relative to the deviation from the closed trajectory {and its
generating function differs from the generating function of the identity only
by cubic terms).
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Further investigation of the behavior of solutions of Hamilton’s equations
proceeds in the foltowing way, First, we throw out of the hamiltonian function
all terms of order higher than three and study the solutions of the resulting
truncated system. Then we must see how the discarded terms can affect the
behavior of the trajectories.

The study of the truncated system can be simplified by introducing a
coordinate system in the complex z-plane which rotates uniformly with
angular velocity 3, i.e., by the substitution z = {¢**. Then for the variable {
we obtain an autonomeous hamiltonian system with hamiltonian function

—2iH, = —isll + K> = D3, where . = w — (1)

The fact that, in a rotating coordinate sysiem, the truncated system is autonomous is very
good luck. The total system of Hamilton's equations {including terms of degree higher than three
in the hamiltenian) is not only not autonomous in a rotating coordinate system, but s not
even 2r-periodic (but only 6n-periedic} in time. The autonomous system with hamiltonian Hy,
is essentially the result of averaging the onginal system over closed trajectories of the linear
system with & = 0 (where we disregard terms of degree higher than three).

The coefficient s can be made real (by a rotation of the coordinate system).
Thus the hamiltonian function in the real coordinates (x, y) is reduced to
the form

P
H, = 3 (x* + y5) + alx® — 3xy?).

The coefficient a depends on the frequency deviation ¢ as on a parameter.
For ¢ = 0 this cocflicient is generally not zero. Therefore, we can make this
coefficient equal to 1 by a smooth change of coordinates depending on a
parameter. Thus we must investigate the dependence on the small parameter
& of the phase portrait of the system with hamitton function

g
Hy = E()c2 + ¥+ (° = 3xyY)

in the (x, y)-plane.
It is easy to see that this dependence consists of the following (Fig. 239).

Figure 239  Passage through resonance 3:1
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For & = 0 the zero level set of the function H,, consists of three straight lines
through 0, intersecting at angles of 60°. Under a change of & the level line
always consists of three straight lines, where these three lines are moved
forward as & changes, always forming an equilateral triangle with center at
the origin. The vertices of this triangle are saddle points of the hamiltonian
function. As & passes through zere (i.c, upon passage through resonance),
the critical point at the origin changes from a minimum to a maximum.

Thus, for a system with hamiltonian function H,, the origin is a stable
equilibrivm position for all values of the parameter cxcept at resonance,
and at resonance the origin is unstable. For values of the parameter close to
resonance, the triangle close to the origin filled by closed phase curves is
small (of order ¢}, so the “radius of stability ™ of the origin approaches zero as
& - 0: a small (of order &) perturbation of the initial condition is sufficient
to make a phase point move outside the triangle and begin to go away from
the equilibrium position.

Returning to the original problem of the periodic trajectory, we come to
the following conctusions (which, of course, are not proven, since we threw
out terms of degree higher than three, but which can be justified):

1. At the moment of passage through the resonance 3 : 1 a periodic trajectory
generally loses its stability.

2. For values of the parameter close to resonance there is an unstable periodic
trajectory near the periodic trajectory under consideration on the same
energy level manifold. It is closed after making three circulations along
the original trajectory and one revolution around it. For the resonance
value of the parameter, this unstable trajectory merges with the original
one.

3. The distance of this unstable periodic trajectory from the original
decreases, as we approach resonance, to first order in the frequency
deviation (i.e., as the first order of the difference of the parameter from the
resonance value),

4. Through this unstable trajectory on the same three-dimensional energy
level manifold there pass two two-dimensional invariant surfaces,
filled with trajectories approximating this unstable periodic trajectory
as t — 20 on one surface and as t -+ — o0 on the other.

5. The location of the separatrices is such that, by intersecting with a mani-
fold transversal to the original trajectory, we obtain a figure close to the
three sides of an cquilateral triangle and their continuations. The vertices
of the triangle are the points of intersection of the unstable periodic
trajectory with the transversal manifold.

6. For initial conditions inside the triangle formed by the separatrices, a
phase point stays near the original periodic trajectory {at a distance of
order £) for a long time (of order not less than 1/¢), and for initiat conditions
cutside the triangle it goes off quite rapidly to a distance which is large in
comparison with e,
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E Splitting of separatrices

In reality, the separatrices we talked about in statements 4, 5, and 6 above
have a very complicated structure (because of the influence of the terms
of order higher than three which we disregarded in our approximation). In
order to understand the situation, it is convenient to look at a two-dimen-
sional surface transversally inlersecting the original closed trajectory at
some point on it {(and lying entirely in one energy level manifold).!°® Trajec-
tories beginning on this surface intersect it again after a time closc to the
time of circulation around the original closed trajectory. Thus we have a
mapping of a neighborhood of the point of intersection of the closed trajec-
tory with the surface onto a part of the surface. This mapping has a fixed
point (at the point where the closed trajectory intersects the surface) and is
approximately a rotation by 120° around this point, which we take for the
origin in our surface.

We now consider the third power of the mapping indicated above. This
is again a mapping of some neighborhood of the origin to a part of the sur-
face, leaving the origin fixed. But now this mapping is approximately rotation
by 360, i.e, the identity: 1t is realized by the trajectories of our system after
approximately threc periods of our closed trajectory.

The calculations above give nontrivial information about the structure
of this “mapping after three periods.” In fact, by throwing out the terms of
degree four and higher in the hamiitonian function, we change the terms of
degree threc and higher of the mapping. Therefore, the mapping after three
periods which corresponds to the truncated hamiltonian function approxi-
mates {with cubic error) the actual mapping after three periods.

But we know the properties of the mapping after three periods correspond-
ing to the truncated hamiltonian function, since it is the mapping of the
phase flow of the system with hamiitonian function Hy(x,y) after time
6n (the proof is based on the fact that after time 6m our rotating cocordinate
system returns to the original position). We now look at which of these
properties are preserved for perturbations of third-order smallness relative
to the distance from the fixed point, and which are not,

We let A, denote the mapping after three periods for the truncated system,
and A the actual mapping after three periods.

1. The mapping A4, is included in a flow: it is the transformation after time
67 in the phase flow with hamiltonian H,.
There is no reason to think that the mapping A4 is included in a flow,
2. The mapping A, is symmetric under a rotation by 120°: there is a non-
trivial diffeomorphism g for which g = E and which commutes with A,.
There is no reason te think that the mapping 4 commutes with any
nontrivial diffcomorphism g satisfying g*> = E.
"% Here we have the following general phenomenon: it is easier to think about mappings after
a period, and casier to calculate with flows.
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3. The mapping A4, has three unstable fixed points at a distance & from the
origin, approximately the vertices of an equilateral triangle. For sufficiently
small deviations from resonance (i.¢., for sufficiently small &) the mapping
A also has three unstable fixed points near the vertices of an equilateral
triangle. This follows from the implicit function theorem.

4. The separatrices of fixed points of the mapping A4, form, for values of the
parameter close to (but not at) resonance, a figure approximating the
sides and extended sides of an equilateral triangle. If we begin with a
point on one of the sides of the triangle, then after repeated applications
of 4, we obtain a sequence of points on the same side of the triangle
approaching one of the vertices bounding the side, say M. Applying
Ag ', we obtain a sequence approaching the other vertex, which we will
denote by N,.

Each of the three unstable fixed points of the mapping A also has separa-
trices approximating the sides of a triangle (Figure 240). Namely, those points
of the plane which approach the fixed point M afier applying the mappings
A", n = +oc, form a smooth curve I'" invariant under A, passing through
M and, near M, close to the side M, N, of the separatrices of 4,. The points
which approach N after applications of 4", where n -+ — o, form another
smooth invariant curve I'", passing through N and also near M, N, near
No.

Figure 240 Splitting of separatrices

However the two curves I'* and '™, both near the line M, N, are not at
all obligea to coincide. This is the phenomenon of splitting of separatrices,
which accounts for the differing behavior of the trajectories of the truncated
and total systems.

The magnitude of the splitting of separatrices is exponentiaily small for small £ therefore
it is easy to overlook the phenomenon of splitting in calculations in one or another scheme of
“ perturbation theory.™ However, this phenomenon is very important in lundamental questions.
For example. its existence immediately implies the dirergence of the series in numerous versions
of perturbation theory (since il the series converged, there would be no splitting).

In general, the divergence of series in perturbation theory (while a good approximation is
given by a few initial lerms) is usually related to the fact thal we are looking for an object which
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does not exist. ITwe try 1o fit & phenemenon 1o a scheme which actually contradicts the essential
features of the phenomenon, then it is nol surprising that our series diverge,

The Birkhoff series (which are obtained if one continues infinitely (he normalizations of
the initial terms of the Taylor series of the hamiltonian lunction) are one example of a formally
convergent, but actually divergent. scheme of perturbation theory. [f these series converged.
then a general oscillating system with one degree of lreedom with periodic coefficients would be
reduced near an equilibrium position to an autonomous normal form and there would be no
splitting of separatrices in it {whereas in fact there 15).

Returning to the original closed trajectory, we see that the three unstable
fixed points of the mapping A correspond to an unstable closed trajectory
near the original triple. There is a family of trajectories approaching this
unstable trajectory as t+ — + o, and another family of trajectories ap-
proaching the unstable one as t - — =, The points of the trajectones of
each of these families form a smooth surface containing our unstable trajec-
tory.

These two surfaces are also the separatrices we talked abeut in state-
ments 4, 5, and 6 of Section D. By mtersecting them with our transversal
surface we obtain the invariant curves I'* and I'™ of the mapping A. The
intersections of these two curves form a complicated network about which
H. Poincaré, who first discovered the phenomenon of splitting of separatrices,
wrote, “The intersections form a type of lattice, tissue, or grid with infinitely
fine mesh. Neither of the two curves must ¢ver cut across itself again, but
it must bend back upon itself in a very compiex manner in order to cut
across all of the squares in the grid an infinite number of times.

*One will be struck by the complexity of this figure, which 1 shall not even
attempt to draw. Nothing is more suitable for providing us with an idea of
the complex nature of the three-body problem, and of all the problems of
dynamics in general, where there is no uniform integral and where the Bohlin
serics are divergent.” (H. Poincaré, * Les Méthodes Nouvelles de la Mécan-
ique Céleste,” Vol. 111, Dover, 1957, 389.)

We should note that much is still unclear about the picture of intersecting
separatrices.

F Resonances of higher order

Resonances of higher order can also be studied using a normal form. In
this connection, we note that resonances of order higher than 4 do not
usually induce instability, since in the normal form terms of degree 4 appear,
guaranteeing a minimum or maximum of the function H, even at resonance.

In the casc of resonance of order n > 4, the typical development of the
phase portrait of the system with hamiltonian function H, is given by the
formula

Hy = &1 + 20(7) + at™? sin ne,
2e=p*+¢%  «0)= Ll

and consists of the following {(Figure 241).
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Figure 241 Averaged hamiltonian of phase oscillations near resenance 5. 1

For small (of order ¢) deviations of the frequency from resonance, and at
a small (of order ,/|¢|) distance from the equilibrium position at the origin,
the function H, has 2 critical points near the vertices of a regular n-gon
with center at the origin. Half of these critical points are saddle points,
and the other half are maxima if the origin is a minimum or minima if the
origin is a maximum. The saddle points and stable points alternate. All »
saddle points lie on one level of the function H,; their separatrices, con-
necting successive saddle points, form n “islands,” each of which is fitled
with closed phase curves encircling a stable point. The width of the islands
is of order ™42 The closed phase curves inside each island are called
“phase oscillations” (since what varies essentially is the phase of the oscilta-
tions around the origin). The period of the phase oscillations grows with
decreasing frequency deviation & like £~ "4,

Inside the narrow ring formed by the islands, closer to the origin, there are
closed phase curves encir¢ling the origin; outside the ring the phase curves
are closed, but motion along them proceeds in the direction opposite
to that inside the ring. We note that the radius of the ring has order \/ &
independently of the order of resonance, if this order 1s greater than 4. Also,
the ring of islands exists for only one of the two sigas of &.

If we pass from the truncated system with hamiltonian H, to the total
system, the separatrices split in a way similar to that described above for
resonance of order 3. The size of the splitting of the separatrices is expo-
nentially smalfl (or order e~**""), but the splitting is of fundamental im-
portance {or investigating stability, especially in the multi-dimensional case.

Returning to our original closed trajectory, we have the following picture.
As we approach resonance along the ¢ axis from one side,'°” two periodic
trajectories split off from our periodic trajectory: a stable one and an un-
stable one. These new trajectories close up after n circulations along the

original trajectory and lie at a distance of order JI:I from the original
trajectory. Near the stable trajectory there s a zone of slow phase oscillations

17 Unlike resonance of order 3, for which there s an unstable periodic trajectory branching
off rom both sides of the resenance.
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with period of order £~ ™* and amplitude of order n/n in the azimuthal
direction and of order ¢™* 12 in the radial direction. Loss of stability of the
original periodic trajectory at the moment of passage through resonance
does not occur, at least in the approximation which we have considered.

The case of resonance of fourth order 15 somewhat exceptional. [n this case, in the normal
form there are both resonant and non-resonant terms of order 4. The shape of the phase curves
of the truncated system depends on which of these (erms of the normal form dominates. a
resonant one or a non-resonant ane. In the first case the development is the same as for third-
order resonance, except that in place of a triangle there is a square. In the second case the develop-
menlt is the same as for n > 4.

in conclusion, we remark that the given normal form becomes a better
approximation as we get closer to resonance (¢ <€ 1) and as the deviation
of the initial point from the periodic trajectory gets smaller. That is, as the
period of the closed trajectory and the period of oscillation of neighboring
trajectories near it become more exactly commensurable, and as the initial
condition approaches the closed trajectory, the interval of time grows on
which our approximation accurately describes the behavior of the phase
curves.

No conclusion about the behavior of non-closed phase curves on infinite
intervals of 1ime (for example, about the Liapunov stability of the original
periodic trajectory) follows from our arguments, since the terms of higher
order which were thrown out in reducing to normal form can, over an infinite
period of time, completely change the character of the motion. Aciually,
under the conditions considered, the original periodic trajectory 1s Liapunov
stable, but the proof requires substantially new technigues beyond the
Birkhofl normal form (cf. Appendix 8}).
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Appendix 8: Theory of perturbations of conditionally
periodic motion, and Kolmogorov’s theorem

The collection of solvable “integrabie” problems which we have at our
disposal is not large (one-dimensional problems, motion of a point in a
central field, eulerian and lagrangian motions of a rigid body, the problem of
two fixed centers, and motion along geodesics on the ellipsoid). However,
with the help of these “integrable cases,” we can obtain meaningful informa-
tion about motions of many important systems by considering an integrable
problem as a first approximation.

An example of such a situation is the problem of motion of the planets
around the sun under the law of universal gravitation. The mass of the planets
is approximately 0.001 of the mass of the sun, so in a first approximation we
can disregard the interaction of the planets on one another and consider
only the attraction by the sun. As a result, we obtain the exactly integrable
problem of the motion of non-interacting planets around the sun: each planet
will describe its keplerian ellipse independently of the others, and the motion
of the system as a whole will be conditionally periodic. If we now consider the
interactions of the planets on one another, the keplerian motion of each
planet will be slightly changed.

We call upon the theory of perturbations from celestial mechanics to
study this interaction. It is clear that calculations for time of the order of
1,000 years do not present any fundamental difficulties. However, if we want
to study longer intervals of time, and especially if we are interested in qualita-
tive questions about the behavior of exact solutions of the cquations of
motion on an infinite time interval, then such difficulties arise. The ac-
cumulation of perturbations after an interval of time which is large in
comparison to 1,000 years could cause a complete change in the character of
the motion: for example, the planets could fall into the sun, escape from it, or
collide with one another.

Note that the question of the behavior of solutions of the equations of motion on an infinite
time interval has only an indirect relation to the problem of the motion of real plunets. The
reason is that. after intervals of billions of years. small non-conservative elfects not considered
in Newton's equations become important. Thus. the effects of the gravitational interaction of
the planets are of real importance only when they seriously change the picture of motion within a
finite time which is small in companison with the time of development of non-conseryvative
effects,

In caleulating motion over such finite times, computers prove to be very uscful. quickly
determining the motion of the plancts for many thousands of vears in the future or past. How-
ever, we should note that even the application of modern calculating methods may be msufficient
to predict the influence of perturbations if a phase point falls in the zone of exponential in-
stability.

Asymptotic and gqualitative methods have cven greater value for the study of charged
particles in magnetic ficlds, since in this situation & particle outstrips the computer and makes
50 many orbits that mechanical calculation of its Irajectory is impossible even in the absence of
exponential instabiliy.

A whole series of methods has been devised for calculating perturbations
in celestial mechanics. (A detailed analysis of them can be found in the book,
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Appendix 8: Theory of perturbations of conditionally periodic motion

“Les Méthodes Nouvelles de la Mécanique Céleste,” by H. Poincaré,
Dover, 1957.)

A difficulty with all of these methods is that they lead to divergent series
and therefore give no information about the behavior of motion as a whole
over infinite intervals of time. The reason for the divergence of series in the
theory of perturbations 1s “small denominators™: integral linear combina-
tions of frequencies of unperturbed motions by which it is necessary to divide
in calculating the influence of perturbations. For exact resonance (i.c., for
commensurable frequencies) these denominators vanish, and the cor-
responding term of the series in the theory of perturbations becomes in-
finitely large. Close to resonance, this term of the series is very large.

Thus, for example, in their motion around the sun, Jupiter and Saturn, in one day, go through
approximately 299 and 120.5 seconds of are respeetively, Therefore, the denominator 2oy — S
is very small in comparison with cach of their lrequencies. This amounts to a large long-period
perturbution of the planets on one another {its period is about 800 years): the study by Laplace
of this eflcct was ane of the first successes of the theary of perturbations,

We note that the difficulty caused by small denominators is ¢ssential. The
rational numbers form a dense set; thus in the phase space of an unperturbed
problem, initial conditions for which we have resonance and the small
denominators vanish form a dense set. Hence, the functions given by the
series of perturbation theory have a dense set of singular points.

The difficulty mentioned herc is characteristic not only for problems of
celestial mechanics, but for all problems which are close to integrable (for
instance, for the problem of an asymmetrical rigid top under very fast rota-
tion). Poincaré himself called the problem of studying perturbattons of
conditionally-periodic motions in a system given by the hamiltonian

H = H, + ¢H, (I, ¢), £ €1,

in action-angle variables I and ¢, the fundamental problem of dynamics. Here
H, is the hamiltonian of the unperturbed problem, and =, a perturbation
which is a 2n-periodic function of the angle variables ¢, . . ., ¢,. In the unper-
turbed problem (¢ = 0) the angles ¢ change uniformly with constant
frequencies
]
and all the action variables are first integrals.

We must investigate the phase curves of Hamilton’s equations

aH . ©H

o ol

oy

in a phase space which is a direct product of a region in r-dimensional space
with coordinates f and the n-dimensional torus with angular coordinates ¢.

A substantial advance in the study of phase curves of this perturbed
problem was begun in 1954 with the work of A. N. Kolmogorov in “On con-
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servation of conditionally-periodic motions for a small change in Hamilton's
function,” Dokl, Akad. Nauk SSSR 98:4 (1954) 525--530 (Russian), In this
appendix we present the basic results obtained since then in this area. The
proofs can be found in the following works:

V. 1. Arnold, " Small denominators 1, Mapping the circle onta itself” [zv. Akad. Nauk SS5R
Ser. Mat. 25 (19613, 21 §6.

V. L Arnold. *Small denominators [1, Proof of a theorem of AL N. Kolmoegoroy on the preserva-
tion of conditionally periodic motions under a small perturbation of the Hamiltonian,”
Russian Math. Surveys 18:5 {1963).

V. 1. Arnold. " Small denominators TIT. Small denominators and problems of stability of motion
in classical and celestial mechanics.”™ Russian Math. Surveys 18:6 (1963).

V. [ Arnold, A, Avez, Ergodic problems of classical mechanics, New York, Benjamin, 1968.

1. Moser, On invariant curves of area-preserving mappings of an annulus (Nachr. Akad. Wiss,
Gottingen, Math. Phys, KI [la, (1962) 1-20).

L Moser, A rapidly converging iteration method and nonlinear differential equations, {Annali
della Scuola Norm. Sup. di Pisa, (3), 20 {1966), 265-315: (1966), 499-535.

J. Moser, Convergent series cxpansions for quasi-periodic motions, Math, Ann. 169 (1967),
136 176.

. L. Sicgel ). K. Moser. Lectures on Celestial Mechanics, Springer-Verlag, 1971.

S. Sternberg, Celestial Mechanies, 1L 11, New York, Benjamin, 1969,

Before formulating our results, we will briefly discuss the behavior of
phase curves in the unperturbed problem already studied in Chapter 10.

A Unperturbed motion

The system with hamiltonian H,(I) has » first integrals in involution (the n
action variables). Every level set of all these integrals is an n-dimensional
torus in 2n-dimensional phase space. This torus is invariant with respect to
the phase flow of the unperturbed system: every phase curve starting at a
point of our torus remains on it.

The motion of a phase point on the invariant torus I = const is condi-
treonally-periodic. The frequencies of this motion are the derivatives of the
unperturbed hamiltonian with respect to the action variables:

I

¢, = wll), wherew, =

Therefore, the phase curve densely fills a torus whose dimension is equal
to the number of frequencies w, which are arithmetically independent.

We note that the frequencies depend on which torus we are looking at;
L.e., which values of the first integrals we have fixed. A system of » functions
w of n variables I is generally functionally independent; in such a case we
can simply number the tori by their frequencies, choosing the variables o
for coordinates in a neighborhood of the point under consideration in the
space of action variables f.

40}



Appendix 8: Theory of perturbations of conditionaliy periodic motion

The case when the frequencies are functionally independent will be called
the nondegenerate case. The conditions for nondegeneracy have the form

dw ’H,

a1 ort

Thus, in the nondegenerate case, the unperturbed problem determines on the
different invariant tori in phase space conditionally-periodic motions with
different frequencies. In particular, the invariant tori on which the number of
frequencies 1s maximal (i.e., n) form a dense set in phase space; such tori are
called non-resonant tori.

It can be shown that the non-resonant tori form a set of full measure,
ic., the Lebesgue measure of the union of all invariant resonant tori of the
unperturbed non-degenerate system is equal to zero. Nevertheless, invariant
resonant tori exist and are mixed in with the non-resonant tori in such a way
that they too form a dense set. Furthermore, the set of resonant tori with any
nunber of independent frequencies from 1 to n — 1 is dense. In particular,
the invariant tori on which aill phase curves are closed (the number of in-
dependent frequencies is 1) form a dense set. Nevertheless, we note that the
probability of landing on a resonant torus by a random choice of initial
point in the phase space of the unperturbed system, is equal to zero (since the
probability of landing on a rational rumber by a random choice of a real
number is zero). Thus, by disregarding sets of measure zero, we can say that
almost all invariant tori in a nondegenerate unperturbed system arc non-
resonant and have a total set of r arithmetically independent frequencies.

On a non-resonant torus, the trajectory of a conditionally-periodic motion
is dense. Thus, for almost all initial conditions, a phase curve of a non-de-
generate unperturbed system densely fills an invariant torus whose dimension
is equal to the number of degrees of freedom (i.e., half the dimension of the
phase space).

To better understand the whole picture, we consider the case of two
degrees of freedom (n = 2). In this case, the phase space is four-dimensional
so each energy level set is three-dimensional. We fix one such level set. This
three-dimensional manifold, fibered by two-dimensional tori, can be repre-
sented in ordinary three-dimensional space as a family of concentric tori
lying inside one another (Figure 242).

det = det # 0.

Figure 242 Tnvariant tori in a three-dimensional energy level manifold
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Appendix 8: Theory of perturbations of conditionally periodic motion

The phase curves are windings of these tori; both frequencies of circulation
change from torus to torus. In general, not only both frequencies but also
their ratio will change from torus to torus. If the derivative of the ratio of
frequencies with respect to the action variable numbering the tori on the
given level set of the function Hy is not zero, then we say that our system is
isoenergetically nondegenerate. The condition for isoenergetic nondegeneracy
has (as is easy to calculate) the form

*H, éH,
arr
det 5 # 0.
H,
—2 0
o

The conditions for nondegeneracy and iscenergetic nondegeneracy are independent from
one another: i.e., a nondegenerate system could be isoenergetically degencrate, and an iso-
energetically nondegencrate system could be degenerate. [n the many-dimensional case (v > 2)
isoenergetic nondegeneracy means nondegeneracy of the following mapping of the (n — 1)-
dimensional level manifold of the function Hy of » action variables to the projective space of
dimensionn — |:

= (o (D en(dy - m o (N

Now consider an isoenergetically nondegenerate system with two degrees
of freedom. It is easy to construct a two-dimensional plane in the three-
dimentional energy level set transversally intersecting the two-dimensional
tori of our family {(in a family of concentric circles in the model in three-
dimensional euclidean space).

A phase curve beginning in such a plane returns to it after making a
circuit around the torus. As a result we obtain a new point on the same circle
in which the torus intersects the plane. In this way there arises a mapping of
the plane to itself.

This mapping of the plane to itself fixes the concentric meridian circles in
which the plane intersects the invariant tori. Every circle is rotated through
some angle, namely through that fraction of an entire revolution that the
frequency along the meridian constitutes of the frequency along the equator.

If the system is isoenergetically nondegenerate, the angle of revolution of
invariant circles in the plane of intersection changes from one circle to
another. Therefore, on some circles this angle will be commensurable with a
whole revolution, and on others it will be incommensurable. Each of these
classes of circles will form a dense set, but on almost all circles (in the sense of
Lebesgue measure) the angle of rotation will be incommensurable with a
whole revolution.

The commensurability or incommensurability is manifested in the follow-
ing way on the behavior of points of a circle under the mapping of the region
to itself. If the angle of rotation is commensurable with a whole rotation, then
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after several iterations of the mapping the point will return to its initial
position (the number of iterations will be larger as the denominator of the
fraction cxpressing the angle of rotation is larger). If the angle of rotation is
incommensurable with a whole rotation, the successive images of the point
under repetitions of the mapping will densely fill up the meridian circle.

We note further that commensurability corresponds to resonant tori and
incommensurability to non-resonant tori. Also, the existence of resonant
tori implies the following property. Censider some power of the mapping of
our region to itself induced by the phase curves, Let the exponent be the
denominator of the fraction expressing the ratio of the frequencies on one of
the resonant tori. Then the mapping raised to the indicated power has a
whole circle consisting entirely of fixed points (namely, the meridian of the
resonant torus under consideration).

Such behavior of fixed points is unnatural for mappings in any sort of
general form, even canonical mappings {fixed points are usually isolated).
In the given case, a whole circle of fixed points arises because we have con-
sidered an unperturbed integrable system. For arbitrarily small perturbations
of general form, this property of the mapping (having a whole circle of fixed
points) must fail. The circle of fixed points must be dispersed so that only a
finite number remain.

In other words, under small perturbations of our integrable system, we
expect a change in the qualitative picture of the phase curves, if only in the
respect that entire invariant tori filled out by closed phase curves will dis-
integrate so that there remain only a finite number of closed curves, near
those for the unperturbed system, and the remaining phase curves will be
more complicated. We have alrcady encountered such a case in Appendix 7
in investigating phase oscillations near resonance.

We now consider what happens to non-resonant invariant tori under a
small perturbation of a hamiltonian function. Formal application of the
principle of averaging (i.c.,, the first approximation of the classical theory of
perturbations, cf. Section 52) leads us to the conclusion that a non-resonant
torus does not undergo any evolution.

We note that the fact that the perturbations are hamiltonian is cssential, since for non-
canservative perturbations itis clear that the action variables may evolve. [n celestial mechanices,
their evolution means & secular change in the major semi-axes of the keplerian ¢llipses, ie., the
planets falling into the sun, colliding. or escaping to a large distance in a time which is inversely
proportional to the size of the perturbation. If conservative perturbations led to evolutions in
a first approximation, this would manifest itself in the fate of the planets after a time on (he
order of 1,000 years. Fortunately, the order of magnitude ol the non-conservative perturhations
is much less.

The theorem of Kolmogorov, formulated below, furnishes one justification
for the conclusion, drawn from the non-rigorous theory of perturbations,
about the absence of evolution of action variables.
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B Invariant tori in a perturbed system

Theorem. If an unperturbed system is nondegenerate, then for sufficiently
small conservative hamiltonian perturbations, most non-resonant invariant
tori do not vanish, but are only slightly deformed, so that in the phase space
of the perturbed system, too, there are invariant tori densely filled with phase
curves winding around them conditionally-periodically, with a number of
independent frequencies equal to the number of degrees of freedom.

These invariant tori form a majority in the sense that the measure of the
complement of their union is smail when the perturbation is small.,

A. N. Kolmogorov's proof of this theorem is based on the following two
observations.

1. We fix a non-resonance set of frequencies of the unperturbed system so
that the frequencies are not only independent, but do not even approximately
satisfy any resonance conditions of low order. More precisely, we fix a set
of frequencies « for which there exist € and v such that |{w, k)| > C|k|™"
for all integral vectors k # 0.

it can be shown that, if v is sufficiently large (say v = n + 1), then the
measure of the set of such vectors o (lying in a fixed bounded region) for
which the indicated condition of non-resonance is violated, is small when C
is small.

Next, near a non-resonant torus of the unperturbed system corresponding
to a fixed value of the frequencies, we will look for an invariant terus of the
perturbed system on which there is conditionally-periodic motion with
exactly the same frequencies as the ones we fixed, and which necessanly
satisfy the condition of being non-resonant described above.

In this way, instead of the variations of frequency customary in perturba-
tien schemes (consisting of the introduction of frequencies depending on the
perturbation), we must hold constant the non-resonant frequencies, while
selecting initial conditions depending on the perturbation in order to
guarantee motion with the given frequencies. This can be done by a small
(when the perturbation is small) change of initial conditions, because the
frequencies change with the action variables according to the non-degen-
eracy condition.

2. The second observation is that, to find an invariant torus, instcad of
using the usual series expansion in powers of the perturbation parameter, we
can use a rapidly convergent method similar to Newton's method of tangents,

Newton’s method of tangents for finding roots of algebraic equations with
initial error & gives, after n approximations, an error of order &*". Such
super-convergence allows us to paralyze the influence of the small denomin-
ators appearing in every approximation, and in the end succeeds not only in
carrying out an infinitc number of approximations, but also in showing the
convergence of the entire procedure.
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The assumption under which all this can be done is that the unperturbed
hamiltonian function Hy(I)is analytic and nondegenerate, and the perturbing
hamiltonian function eH, (1, ip) is analytic and 2z-periodic in the angle vari-
ables ¢. The presence of the small parameter € is immaterial: it is important
only that the perturbation be sufficiently small in some complex neighbor-
hood of radius p of the real plane of the variables ¢ (less than some positive
function M{p, H,)).

As J. Moser showed, the requirement of analyticity can be changed to
differentiability of sufficiently high order if we combine Newton’s method
with an idea of J. Nash, the application of a smoothing operator at each
approximation.

The resulting conditionally-periodic motions of the perturbed system with
fixed frequencies  turn out to be smooth functions of the parameter & of
perturbation. Therefore, they could have been sought, without Newton’s
method, in the form of a series in powers of & The coeflicients of this series,
called the Lindstedt series, can actually be found ; however, we can prove its
convergence only indirectly, with the help of newtonian approximations.

C Zones of instability

The presence of invariant tori in the phase space of the perturbed problem
means that, for most initial conditions in a system which is nearly integrable,
motion remains conditionally periodic with a maximal set of frequencies.

The guestion naturally arises of what happens to the remaining phase
curves, with initial conditions falling into the gaps betwecen the invariant tori
which replace the resonant invariant tori of the non-perturbed problem.

The disintegration of a resonant torus on which the number of frequencies
15 one less than the maximum is ¢casy to investigate in a first-order perturba-
tion theory. To do this, we must average the perturbation over the (n — 1)-
dimensional invariant tori inte which the resonant invariant torus is
decomposed and which are densely filled out by phase curves of the un-
perturbed system. After averaging, we obtain a conservative system with one
degree of freedom (cf. the investigation of phase oscillations near resonance
in Appendix 7), which is easy to study.

In the approximation under consideration we have, near the n-dimensional
reducible torus, stable and unstable (n — 1)-dimensional tori, with phase
oscillations around the stable ones. The corresponding conditionally-
periodic motions have a fuli set of n frequencies, of which n — 1 are the fast
frequencies of the original oscillations and one is the slow (of order \/E)
frequency of the phase oscillations.

However, one must not conclude that the onty difference between motions
in the unperturbed and perturbed systems is the appearance of “islands”
of phase oscillations. In fact, the actual phenomena are much more compli-
cated than the first approximation described above. One manifestation of
this complicated behavior of the phase curves of the perturbed problem is
the splitting of separatrices discussed in Appendix 7.
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To study motions of a perturbed system outside of the invariant tori we
must distinguish the cases of two and higher degrees of freedom. For two
degrees of frecedom, the dimension of the phase space is four, and an energy
level manifold is three-dimensional. Therefore, the invariant two-dimensional
toti divide ¢ach energy level set. Thus, a phase curve beginning in the gap
between two invariant tori of the perturbed system remains forever confined
between those tort. No matter how complicated this curve appears, it does
not leave its gap, and the correspending action variables remain forever near
their initial conditions.

If the number r of degrees of {reedom is greater than two, the n-dimen-
sional invariant tori do not divide the (2n — 1)-dimensional energy level
manifold but are arranged in it like points on a plane or lines in space. In this
case the “gaps” corresponding to different resonances are connected to one
another, so the invariant tori do not prevent phase curves starting near
resonance from going far away. Hence, there is no reason to expect that the
action variables along such a phase curve will remain close to their initial
values for all time.

In other words, under sufficiently small perturbations of systems with
two degrees of freedom (satisfying the generally fulfilled condition of iso-
energetic nondegencracy), not only do the action variables along a phase
trajectory have no secular perturbations in any approximation of perturba-
tion theory (i.e., they change little in a time interval on the order of (1/£)" for
any N, where ¢ is the magnitude of the perturbation), but these variables
remain forever near their inittal values. This is true, both for non-resonant
phase curves conditionally-periodically filling out two-dimensional tori (and
comprising most of the phase space), and for the remaining initial conditions.

At the same time, there exist systems with more than two degrees of
freedom satisfying all the nondegeneracy conditions, in which, although for
most initial conditions motion is conditionally periodic, for some initial
conditions a slow drift of the action variables away from their initial values
occurs. The average velocity of this drift in known examples'®® is on the
order of e 'v* ie., this velocity decreases faster than any power of the
perturbation parameter. Thus it is not surprising that this drifting away does
not appear in any approximation of perturbation theory. (By average vel-
ocity, we mean the ratic of the increase of action variables to time, so that
we are actually dealing with an increase of order 1 after a time of order ¢/v9).

An upper bound on the average velocity of the drift of the action variables
in general nearly integrable systems of hamiltonian equations with n degrees
of freedom is included in the recent work of N. N. Nekhoroshey.!"*

18 CL V. 1. Arnald. Instability of dynamical systems with many degrees of lreedom. Sowier
Mathematics 5:3 {1964) 581-585

Y% N, N. Nekhoroshev, The behavior of hamillonian systems that are close to integrable ones,
Functional Analysis and Ns Applications, 5:4 (1971): Uspekht Mat. Nauk 32:6 (1977).
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This bound, like the lower bound mentioned above, has the form e~ 1#;
thus the increase of the action variables is small while the time is small in
comparison with e!**, if ¢ < &;. Here ¢ is the magnitude of the perturbation,
and 4 is a number betwecn 0 and 1 defined, like &4, by the properties of the
unperturbed hamiltonian H,. In addition, a nondegeneracy condition is
imposed on the unperturbed hamiltonian (this condition has a long formula-
tion, but is gencrally satisfied; in particular, strong convexity of the un-
perturbed hamiltonian is sufficient, i.e., positive or negative definiteness of
the second differential of H,).

From this upper bound it is clear that secular changes of the action vari-
ables are not detected by any approximation of perturbation theory, since
the average velocity of these changes is exponentially small. We note also
that secular changes of the action variables obviously have no directional
character, but are represented by more or less random wandering in the
resonant regions between the invariant tori. A more detailed discussion of
the questions arising here can be found in the article, “Stochastic instability
of nonlinear oscillations,” by G. M. Zaslavski and B, V. Chirikov, Soviet
Physics Uspekhi, v. 105, no. t (1971}, 3- .39,

D Variants of the theorem on invariant tori

Statements analogous to the theorem on conservation of invariant tori in an
autonomous system have been proved for non-autonomous equations with
periodic coefficients and for symplectic mappings. Analogous statements are
valid in the theory of small oscillations in a neighborhood of an equilibrium
position of an autonomous system or a system with periodic coefficients, as
well as in a neighborhood of a closed phase curve of a phase flow or in a
neighborhood of a fixed point of a symplectic mapping.

The nondegeneracy conditions necessary in the various cases are different.
For reference, we will now give these nondegeneracy conditions. We will
limit ourselves to the simplest requirements of nondegeneracy, which are all
fulfilled by systems in “general position.” In many cases, the requirements
of nondegeneracy can be weakened, but the advantage gained by this 1s offset
by the complication of the formulas.

1. Autonomous systems. The hamiltonian function is

H=Hy+ eH (1, @), feGac R ¢omod2re T

The nondegeneracy condition

ZHO

é
det e

#0

110

guarantees preservation''® of most invariant tori under small perturbations

(e < 1)
Y91 is understood that the tari are slightly deformed under perturbations.
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The condition for iscenergetic nondegeneracy

O*Ho 0H,
at or
det £0
E"."Hn
7

guaraniees the existence on every energy level manifold of a set of invariant
tori whose complement has smail measure. The frequencies on these tori
generally depend on the size of the perturbation, but the ratios of frequencies
are preserved under changes in &.

Ifn = 2, then the condition for isoenergetic nondegeneracy also guarantees
stability of the action variables, in the sense that they remain forever close to
their initial values for sufficiently small perturbations.

2. Periodic systems. The hamiltonian function is

H = Hy(I)+ eH (I, @, 1), feGc R, ¢mod2rneT";

the perturbation is 2z-periodic not onty in ¢, but also in ¢. It is natural to look
at the unperturbed system in the (2# 4+ 1)-dimensional space {(f, @, 1)} =
R* x T"*!. The invariant tori have dimension n + 1. The nondegeneracy
condition

2

8
det Hy

guarantees the preservation of most (r + 1)-dimensional invariant tori under
a small perturbation (¢ < 1).

If » = 1, this nondegeneracy condition also guarantees stability of the
action variable, in the sense that it remains forever near its initial value for
sufficiently small perturbations.

3. Mappings (1, @) — (I, @) of the “2n-dimensional annulus.” The gener-
ating function is

S, @) = So(I) + e8,(I', ), F'eGo R, peT"
The nondegeneracy condition
%8,
or
guarantees the preservation of most invariant tori of the unperturbed map-
ping (I, @) — (I, @ + (8S,/¢I) under small perturbations (¢ < 1).

If n = 1, we obtain an area-preserving mapping of the ordinary annulus to
itself. The unperturbed mapping is represented on each circle / = const as a
rotation, In this case the nondegeneracy condition means that the angle of
rotation changes from one circle to another,

The invariant tori in the case n = | are ordinary circles. In this case, the
theorem guarantees that under iterations of the mapping all the images of a

det #0
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Appendix §: Theory of pertubrations of conditionally periodic motion

point will remain near the circle on which the original point lay, if the
perturbation is sufficiently small.

4, Neighborhoods of equilibrium positions (autonomous case). An equili-
brium position is assumed to be stable in a linear approximation so that n
characteristic frequencies @, . . ., w, are defined. We assume that there are no
resonance relations among the characteristic frequencies, i.e., no relations

kyw, + -+ + k,o, =0 with integers k, such that 0 < ) |k,| < 4.

Then the hamiltonian function can be reduced to the Birkhoff normal form
(cf. Appendix 7)

H=Hyt)+ -,

where Ho(1) = Y @, 5 + 3 Y w7, and the dots denote terms of degree
higher than four with respect to the distance from the equilibrium position.
The nondegeneracy condition

det]|wy| #0

guarantees the existence of a set of invariant tori of almost full measure in a
sufficiently small neighborhood of the equilibrium position.
The condition for isocnergetic nondegeneracy,

Wy Uy

det #= 0,

w, 0

guarantees the existence of such a set of invariant tori on every energy level
set {(sufficiently close to the critical point).

In the case n = 2, the condition for 1soenergetic nondegeneracy is satisfied
if the quadratic part of the function H, is not divisible by the linear part. In
this case, iscenergetic nondegeneracy guarantees Liapunov stability of the
equilibrium position.

5. Neighborhoods of equilibrium positions (periodic case). Here again we
assume stability in a linear approximation, so that n characteristic fre-
quencies @, ..., o, are defined. We assume that there are no resonance
relations

kg + -+ ke, +kg=0 with0 < Y |kl <4

i=1

among the characteristic frequencies and the frequency of the time-depen-
dence of the coeflicients (which we will assume equal to 1).

Then the hamiltonian function can be reduced to a Birkhoff normat form
in the same way as in the autonomous case, but with 2n-periodicity with
respect to time in the remainder term.

The nondegeneracy condition

det]wy| # 0
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Appendix &: Theory of perturbations of conditionally periodic motion

guarantees the existence of (n + 1)-dimensional invariant toriinthe (2n + 1)-
dimensional extended phase space, near the circle © = 0O representing the
equilibrium position.

In the case n = 1 the nondegeneracy condition reduces to the non-vanish-
ing of the derivative of the period of small oscillations with respect to the
square of the amplitude of small oscillations. In this case, nondegeneracy
guarantees that the equilibrium position is Liapunov stable.

6. Fixed points of mappings. Here we assume that all 2n eigenvalues of the
linearization of a canonical mapping at a fixed point have modulus 1 and do
not satisfy any low-order resonance relations of the form:

Adr =1 kgl 4t k<4

(where the 2n eigenvalues are ,, ..., 4,, A;, ..., 4,).
Then if we disregard terms of hugher than third order in the Taylor series
at the fixed point, the mapping can be written in Birkhoff normal form

(z, @) = (1, ¢ + «(1)), where (7} = %j ,

S=Y w1 + 4§ @71 (the usual coordinates in a neighborhood of the

equilibrium position are p; = /27, COS @, g = /27, 5in @)
The nondegeneracy condition

det|wy| # 0

guarantees the existence of #-dimensional invariant tori {close to the ton
t = const}, forming a set of almost full measure in a sufficiently small
neighborhood of the equilibrium position.

If n =1, we have a mapping of the ordinary plane to itself, and the
invariant tori become circles. The nondegeneracy condition means that, for
the normal for =, the derivative of the angle of rotation of a circle with respect
to the area bounded by the circle is not zero (at the fixed point and, therefore,
in some neighborhood of it).

In the case n = 1 the nondegeneracy condition guarantees Liapunov
stability of the fixed point of the mapping. We note that in this case the con-
dition of absence of lower resonance has the form

AP # 1

Thus a fixed point of an area-preserving mapping of the plane to itself is
Liapunov stable if the linear part of the mapping is rotation through an angle
which is not a multiple of 90° or 120° and if the coefficient @, , in the normal
Birkhoff form is not zero (guaranteeing nontrivial dependence of the angle
of rotation on the radius).

We have not gone into the smoothness conditions assumed in these
theorems, The minimal smoothness needed is not known in even one case.
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For example, we point out that the last assertion about stability of fixed
points of a mapping of the plane to itself was first proved by J. Moser under
the assumption of 333-times differentiabitity, and only later (by Moser and
Riissman) was the number of derivatives reduced to 6.

E Applications of the theorem on invariant tori
and its generalizations

There are many mechanical problems to which we can apply the theorem
formulated above. One of the simplest of these problems is the motion of a
pendulum under the action of a periodically changing exterior field or under
the action of vertical oscillations of the point of suspension.

It is well known that, in the absence of parametric resonance, the lower
equilibrium position of a pendulum is stable in the linear approximation. The
stability of this position with regard to nonlinear effects {(under the further
assumption of the absence of resonances of order 3 and 4) can be proved
only with the help of the theorem on invariant tori.

In an analogous way we can use the theorem on invariant tori to investigate
conditionally-periodic motions of a system of interacting nonlinear os-
cillators,

Another example is the geodesic flow on a convex surface close to an
ellipsoid. There are two degrees of freedom in this system, and we can show
that most geodesics on a three-dimensional near-ellipsoidal surface oscillate
between two “caustics” close to the lines of curvature of the surface, densely
filling out the ring between them. At the same time, we can arrive at theorems
on the stability of the two closed geodesics obtained, after deforming the
surface, from the two ellipses containing the middle axis of the ellipsoid (in
the absence of resonances of orders 3 and 4).

As one more example, we can look at closed trajectories on a billiard table
of any convex shape. Among the closed billiard trajectories are those which
are stable in the linear approximation, and we can conclude that in the
general case they are actually stable. An example of such a stable billiard
trajectory is the minor axis of an ellipse; therefore, a closed billiard trajec-
tory, close to the minor axis of an ellipse on a bilhard table which is almost
the ellipse, is stable.

Application of the theorem on invariant tori to the problem of rotations
of an asymmetric heavy rigid body allows us to consider the nonintegrable
case of a rapidly rotating body. The problem of rapid rotation is mathe-
matically equivalent to the problem of motion with moderate velocity in a
weak gravitational field: the essential parameter is the ratio of potential to
kinetic energy. If this parameter 1s small, then we can use eulerian motion of
a rigid body as a first approximation.

By applying the theorem on invariant tori to the problem with two degrees
of freedom obtained after eliminating cyclic coordinates (rotations around
the vertical) we come to the following conclusion about the motion of a
rapidly rotating body: if the kinetic energy of rotation of a body is sufficiently
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large in comparison with the potential energy, then the length of the vector of
angular momentum and its angle with the horizontai remain forever close
to their initial values.

It foliows from this that the motion of the body wil! forever be close to a
combination of Euler-Poinsot motion and azimuthal procession, except in
the case when the initial values of kinetic energy and total momentum are
close to those for which the body can rotate around the middle principal axis.
In this last case, realized only for special initial conditions, the spiitting of
separatrices near the middle axis implies a more complicated undulation
about the middle axis than in Euler-Poinsot motion.

One generalization of the theorem on invariant tori teads to the theorem
on the adiabatic invariance for all time of the action variable in a one-
dimensional oscillating system with periodically changing parameters. Here
we must assume that the rule for changing parameters is given by a fixed
smooth periodic function of “slow time,” and the small parameter of the
problem is the ratio of the period of characteristic oscillations and the period
of change of parameters. Then, if the period of change of parameters is suffi-
ciently large, the change in the adiabatic invariant of a phase point remains
small in the course of an infinite interval of time,

In an analogous way we can prove the adiabatic invariance for all time
of the action variable in the problem of a charged particle in an axially-
symmetric magnetic field. Violatien of axial symmetry in this problem in-
creases the number of degrees of freedom from two to three, so that the
Invariant tori cease to divide the energy level manifolds, and the phase curve
wanders about the resonance zongs,

Finally, applying the theory to the three- (or many-) body problem, we
succeed in finding conditionally periodic motions of “planetary type.” To
describe these motions, we must say a few words about the next approxima-
tion after the keplerian one in the problem of the motion of the planets. For
simplicity we will limit oursclves to the planar problem.

For each keplerian ellipse, consider the vector connecting the focus of the
ellipse (i.e., the sun) to the center of the ellipse. This vector, called the Laplace
vector, characterizes both the magnitude of the eccentricity of the orbit and the
direction to the penthelion.

The interaction of the planets on one another causes the keplerian
ellipse (and therefore the Laplace vector) to change slowly. In addition, there
is an important difference between changes in the major semi-axis and
changes in the Laplace vector. Namely, the major semi-axis has no secular
perturbations, i.., in the first approximation it merely oscillates slightly
around its average value (““Laplace’s theorem™). The Laplace vector, on the
other hand, performs both pericdic oscillations and secular motion. The
secular motion may be obtained if we spread each planet over its orbit
proportionally to the time spent in travelling each piece of the orbit, and
replace the attraction of the planets by the attraction of the rings obtained,
that is, if we average the perturbation over the rapid motions. The true
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motion of the Laplace vector is obtained from the secular one by the addi-
tion of small oscillations; these oscillations are essential if we are interested
in smal! intervals of time (years), but their effect remains small in comparison
to the effect of the secular motion if we consider a large interval of time
(thousands of years).

Calculations (carried cut by Lagrange) show that the secular motion of
the Laplace vector of cach of n planets moving in one plane consists of the
following (if we ignore the squares of the eccentricities of the orbits which
are smail in comparison with the eccentricities themselves). In the orbital
plane of a planet we must arrange » vectors of fixed lengths, each rotating
uniformly with its angular velocity. The Laplace vector is their sum.

This description of the motion of the Laplace vector is obtained because
the hamiltonian system averaged with respect to rapid motions, which
describes the secular motion of the Laplace vector, has an equilibrium posi-
tion corresponding to zere eccentricities. The described motion of the Lap-
lace vector is the decomposition of small oscillations near this equilibrium
position into characteristic oscillations. The angular velocities of the uni-
formly rotating components of the Laplace vector are the characteristic
frequencies, and the lengths of these components determine the amplitudes
of the characteristic oscillations.

We note thal the motion of the Laplace vector of the earth is, apparently. one of the factors
involved in the occurrence of ice ages. The reason is that, when the eccentricity of the earth’s
orbit increases, the time it spends near the sun deereases, while the time it spends (ar from the
sun inereases (by the law of areas): thus the climate becomes more scvere as the eccentricity
increases, The magnitude of this elflect is such that, for example, the amount of solar cnergy
received ina year at the latitude of Leningrad (60 N}y may atlain the vatue which now cotresponds
o the latitudes of Kiev (307N} (for decreased eccentricity) and Taimir (80°N) (for increased
cecentricity). The characteristie time of variation of the eccentricity (tens of thousands of years)
agrees well with the interval between ice ages.

The theorems on invariant tori lead to the conclusion that for planets of
sufficiently small mass, there is, in the phase space of the problem, a set of
positive measure filled with conditionally periodic phase curves such that
the corresponding motion of the planets is nearly motion over slowly
changing ellipses of small eccentricities, and the motioa of the Laplace
vectors is almost that given by the approximation described above. Further-
more, if the masses of the planets are sufficiently small, then motions of this
type fill up most of the region of phase space corresponding in the keplerian
approximation to motions of the planets in the same direction over non-
intersecting ellipses of small eccentricities.

The number of degrees of freedom in the planar problem with n planets
isequal to 2n if we take the sun to be fixed. The integral of angular momentum
allows us to eliminate one cyclic coordinate; however, there are still too
many variables for the invariant tori to divide an energy level manifold {even
if there are only two planets this manifold is five-dimensional, and the tori
are three-dimensional). Therefore, in this problem we cannot draw any con-
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clusions about the preservation of the large semi-axes over an infinite interval
of time for all initial conditions, but only for most initial conditions.

A problem with two degrees of freedom is obtained by further idealization.
We replace one of the twe planets by an “asteroid™ which moves in the field
of the second planet (“Jupiter™), not perturbing its motion.

The problem of the motion of such an asteroid is called the restricted
three-body problem. The planar restricted three-body problem reduces to a
system with two degrees of freedom, periodically depending on time, for the
motion of the asteroid. If, in addition, the orbit of Jupiter is circular, then in a
coordinate system rotating together with it we obtain, for the motion of the
asteroid, an autonomous hamiltonian system with two degrees of freedom —
called the planar restricted circular three-body problem.

In this problem, there is a small parameter—the ratio of the masses of
Jupiter and the sun. The zero value of the parameter corresponds to un-
perturbed keplerian motion of the asteroid, represented in our four-dimen-
sional phase space as a conditionally-periodic motion on a two-dimensional
torus (since the coordinate system is rotating), One of the frequencies of this
conditionaily-periodic motion is equal to 1 for all initial conditions; this is
the angular velocity of the rotating coordinate system, i.e., the frequency of
the revolution of Jupiter around the sun. The second frequency depends on
the initial conditions (this is the frequency of the revolution of the asteroid
around the sun) and is fixed on any fixed three-dimensional level manifold
of the hamiltonian function.

Therefore, the nondegeneracy condition is not fulfilled in our problem, but
the condition for isoenergetic nondegeneracy is fulfilied. Kolmogorov's
theorem applies, and we conclude that most invariant tori with irrational
ratios of frequencies are preserved in the case when the mass of the perturbing
planet (Jupiter) is not zero, but sufficiently small.

Furthermore, the two-dimensional invariant tori divide the three-
dimensional level manifolds of the hamiltonian function. Therefore, the
magnitude of the major semi-axis and the eccentricity of the keplerian
ellipse of the asteroid will remain forever near their initial values if, at the
initial moment, the keplerian ellipse does not intersect the orbit of the
perturbing planet, and if the mass of this planet is sufficiently small.

In addition, in a stationary coordinate system, the keplerian ellipsc of the
asteroid could slowly rotate, since our system is only isoenergetically non-
degenerate. Therefore under perturbations of an invariant torus frequencies
are not preserved, but only their ratios. As a result of a perturbation, the
frequency of azimuthal motion of the perihelion of the asteroid in a stationary
coordinate system could be slightly different from Jupiter’s frequency, and
then in the stationary system the perihelion would slowly rotate.
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Appendix 9: Poincaré’s geometric theorem, its
generalizations and applications

In his study of periodic solutions of problems in celestial mechanics, H.
Poincaré constructed a very simpie model which contains the basic difficulties
of the problem. This model is an area-prescrving mapping of the planar
circular annulus to itself. Mappings of this form arise in the study of dynarn-
ical systems with two degrees of freedom. In fact, a mapping of a two-
dimensional surface of section to itself is defined as follows: each point p of
the surface of section is taken to the next point at which the phase curve
originating at p intersects the surface (¢f. Appendix 7). Thus, a closed phase
curve corresponds to a fixed point of the mapping or of a power of the
mapping. Conversely, every fixed point of the mapping or of a power of
the mapping determines a closed phase curve.

In this way, a question about the existence of periodic solutions of prob-
lems in dynamics is reduced to a question about fixed points of area-pre-
serving mappings of the annulus to uself. In studying such mappings,
Poincaré arrived at the following theorem.

A Fixed points of mappings of the annulus to itself

Theorem. Suppose that we are given an area-preserving homeomorphic mapping
of the planar circular annulus to itself. Assume that the boundary circles of
the annulus are turned in different directions under the mapping. Then this
mapping has at least two fixed points.

The condition that the boundary circles are turned in different directions
means that, if we choose coordinates (x, ¥ mod 2x) on the annulus so that the
boundary circles are x = a and x = b, then the mapping is defined by the
formuta

6 ) = (SO0 vy + glx, )

where the functions f and ¢ are continuous and 2n-periodic m y, with
fla, ) = a, f(b,y) = b,and gla, ¥} < 0, g(h, y) > Ofor all y.

The proof of this theorem, announced by Poincaré not long before his
death, was given only later by G. D. Birkhoff (cf. his book, Dynamical
Systems, Amer. Math. Soc., 1927).

There remain many open questions related to this theorem ; in particular,
attempts to generalize it to higher dimensions are important for the study
of periodic solutions of problems with many degrees of freedom. The argu-
ment Poincaré used to arrive at his theorem applies to a whole series of other
problems. However, the intricate proof given by Birkhoff does not lend itself
o gencralization, Therefore, it is not known whether the conclusions sug-
gested by Poincaré's argument are true beyond the limits of the theorem on
the two-dimensional annulus. The argument in question is the following.
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B The connection between fixed points of a
mapping and critical points of the generating
function

We will define a symplectic diffecomorphism of the annulus

(x,y) = (X, Y)

with the help of the generating function Xy + S(X, y), where the function §
is 2n-periodic in y, For this to be a diffeomorphism we need that éX/dx # 0,
Then

dS = (x — X)y + (Y — pdX,

and, therefore, the fixed points of the diffeomorphism are critical points of
the function F(x, y) = S(X(x, y}, »). This function F can always be constructed
by defining it as the integral of the form (x — X)dy + (Y — y)dX. The
gradient of this function is directed either inside the annulus or outside on
both boundary circles at once (by the condition on rotation in differcnt
directions),

But every smooth function on the annulus whose gradient on both bound-
ary circles is directed inside the annulus {or out from it) has a critical point
{maximum or minimum) inside the annulus, Furthermore, it can be shown
that the number of critical points of such a function on the annulus is at least
two. Thercfore, we could assert that our difftomorphism has at least two
critical points if we were sure that every critical point of F is a fixed point of
the mapping.

Unfortunately, this is true only under the condition that dX/dx # 0, so
that we can express F in terms of X and yp. Thus our argument 15 valid
for mappings which are not too different from the identity. For example, it 1s
sufficient that the derivatives of the generating function § be less than 1.

A refinement of this argument (with a different choiwce of generating
function!!!) shows that it is even sufficient that the eigenvalues of the Jacobi
matrix D{X, Y)/D{x, y) never be equal to —1 at any point, ie., that our
mapping never flips the tangent space at any point. Unfortunately, all such
conditions are violated at some points for mappings far from the identity.
The proof of Poincaré’s theorem in the general case uses entirely different
arguments,

The connection between fixed points of mappings and critical points of
generating functions seems to be a deeper fact than the theorem on mappings
of a two-dimensional annulus into itsclf. Below, we give several examples in
which this connection leads to meaningful conclusions which are true under
some restrictions whose necessity is not obvious.

it X —x Y — v |
dd = :
dX +dx dY + dy

Pl
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C Symplectic diffeomorphisms of the torus

Consider a symplectic diffeomorphism of the torus which fixes the center of
gravily
(x,3) = (x +f(x, ),y + g(x y)} = (X, 1),

where x and y mod 2= are angular coordinates on the torus, “symplectic™
means the Jacobian D(X, Y)/D(x, v} is equal to 1, and the condition on
preserving the center of gravity means that the average values of the functions
f and g are equal to zero.

Theorem. Such a diffeomorphism has at least four fixed points, counting
mudtiplicity, and at least three geometrically different ones, at least under the
assumption that the eigenvalues of the Jacobi matrix are not equal to — 1 at
any point.

The proof is based on consideration of the function on the torus given by
the formula

Ox,3) = 4 [(X = XX@Y + dy) = (V = XX + ),

and on the fact that a smooth function on the torus has at least four critical
points (counting multiplicity) of which at least three are geometrically
different.

Attempis at proving this theorem without restrictions on the eigenvalues
meet with difficulties very similar to those encountered by Poincaré in the
theorem about the annulus.

We note that the theorem about the annulus would follow from the theorem about the torus
if in the latter we could throw out the condition on the gigenvalues. In fact, we can pul together
a torus from (wo copies of our annulus, inserting 2 narrow connecting anhulus along each of
the two boundary circles.

Then we can extend our mapping of the annulus to a symplectic diffeomorphism of the
torus such that: (1) on ¢ach of the two large annuli the diffeomorphism caincides with the
original, {2y on e¢ach of the connecting annuli the diffcomorphism has no fixed points, and (3)
the center of gravity remains fised.

The construction of such a diffeomorphism of the torus uses the property that the boundary
circles rotate in different directions. On cach connecting annubus all points are translated in the
same direction as on both circles bounding (he connecting annulus, Since the translations on
the connecting annuli are in opposite directions, the size of the translations can be chosen 1o
ensure preservation of the center of gravity.

Now out of four fixed points on the torus, two must lic in the original annulus. and we obtain
the theorem on annuli [rom the theorem on tori.

The theorem on tori formulated above can be generalized to other
symplectic manifolds, both two-dimensional and many-dimensional. To
formulate these generalizations, we must first reformulate the condition of
preservation of the center of gravity.
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Let g: M — M be a symplectic diffeomorphism. We say that g is homolo-
gous to the identity if it can be connected to the identity diffeomorphism
by a smooth curve g, consisting of symplectic diffeomorphisms such that
the field of velocities g, at each moment of time ¢ has a single-valued hamil-
tonian function, It can be shown that the symplectic diffeomorphisms homo-
logous to the identity form the commutator subgroup of the connected
component of the identity in the group of all symplectic diffeomorphisms of
the manifold.

In the case when our manifold is the two-dimenstonal torus, the sym-
plectic diffeomorphisms homologous to the identity are exactly those which
preserve the center of gravity.

Thus we come to the following generalization of Poincaré’s theorem.

Theerem. Every symplectic diffeomorphism of a compact symplectic manifold,
homologous to the identity, has at least as many fixed points as a smooth
Junction on this manifold has critical points (at least if this diffeomorphism
is not too far from the identity).!'?

We note that the condition of the mapping being homologous to the
identity is essential, as we see already from the example of a translation on
the torus, which has no fixed potnts at all,

As to the last restriction (that the diffeomorphism be not too far from the
identity), it is not clear whether it is essential.'*?2 In the case that our manifold
is the two-dimensional terus, it is sufficient that nonc of the cigenvalucs of the
Jacobi matrix of the diffeomorphism (in any global symplectic coordinate
system on R%") be cqual to minus one.

A restriction of this sort may be necessary in higher-dimensional problems. It is not im-
possible that Poincare’s theorem is due o an essentially two-dimensional eflect, as is the
following theorem of A. I Shnirel'man and N. A, Nikishin: every area-preserving diffcomorphism
of the two-dimensional sphere to itself has at least 1wo geometrically different fixed points.

The prool of this theorem is based on the fact that the index of the gradient vector field
of a smooth function of two variables at an solated critical point cannot be greater than 1
{although it can be equal to 1,0, —1, —2, — 3, ...} and the sum of the indices of all the fixed
points of an orientation-preserving diffeomorphism of the two-dimensional sphere to itself
isequal to 2. On the other hand. the index of the gradient of a stooth Tunction of a large number
of variables at a critical point can take any mteger value,

D Intersections of lagrangian manifolds

Poincaré’s argument can be given a slightly different form if on every
radius of the annulus we consider the points shifted only radially. There are
such points on every radius, since the boundary circles of the annulus turn

L2 [For a prool, see V. Arneld, Sur les propriétés topologiques des applications globalement
canoniques de la mecanique classique, C. R. Acad. Sci. Paris, 1965 and A. Weinstein, Symplectic
manifolds and their lagrangian submanifolds, Advances in Math. 6 {1971} 329-346.]

122 FRecently, Conley and Zehnder, followed by others, have proved the theorem for tori,
surfaces, and other manifolds, without the restriction ol closeness to the identity.]
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in different directions. Assume that we can makc a smooth curve of radially
shifting points, separating the interior and exterior circles of the annulus.
Then the image of this curve under our mapping must intersect the curve
(since the regions into which the curve divides the annulus are carried to
regions of equal area).

If this curve and its image cach intersect cach radius once, then the points
of intersection of the curve with its image are obviously fixed points of the
mapping.

Part of this argument can be carried out 1n higher dimensions, and this
gives useful results about periodic solutions of problems in dynamics. The
role of the annulus in the many-dimensional case i1s played by the phase
space: the direct product of a region in euclidean space with a torus of the
same dimension {the annuius is the product of an interval with the circle).
A symplectic structure on the phase space 1s defined in the usual way, i.e.,ithas
the formQ = Y dx, » dy,. where the x, are action variables and y, are angle
variables.

It is not difficult to explain which symplectic diffeomorphisms of our
phase space are hemologous to the identity. Namely, a symplectic diffeo-
morphism A is homologous to the identity if it can be obtained from the
identity by a continuous deformation and if

%x dy = Ef; x dy
¥ Ay

v

for any closed contour y (not necessarily homologous to zero). The condition
that the transformation be homologous to the identity prohibits systematic
shifts along the x-direction (*evolution of the action variables™), but permits
shifts along the tori.

We consider one of the n-dimensional tori x = ¢ = const and apply to
it our symplectic diffeomorphism homologous to the identity. It turns out
that the original torus intersects its image in at least 2" points {counting
multiplicities}, of which at least n + | are geometrically different, at least
under the assumption that the image torus has an equation of the form
x = f(y), where f is smooth.

For n = 1, this assertion means that each of the concentric circles con-
stituting the annulus intersects its image in at least two points. This also
follows from the preservation of area, so that the assumption that the image
has equation x = f(y) is not necessary.

Whether or not this assumption is necessary in higher dimensions is not
known, If we make this assumption, the proof proceceds in the following way.

We note that the original torus is a lagrangian submanifold of phase
space. Qur diffeomorphism is symplectic, so the image torus is also lagrang-
ian. Therefore, the 1-form (x — ¢)dy on it is closed. Furthermore, this form
on the torus is the total differential of some single-valued smooth function F,
since our diffeornorphism is homologous to the identity, and therefore for
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any closed contour y we have

§ (x — cyly = ﬁ xdy — EE cdy = ﬁxd}-‘ — jg cdy
Ay Ay Ay ¥ Ay

C fj;fiy —¢ i dy=0.
¥ Ay

Il

We note that points of intersection of the torus with its image are critical
points of the function F (since at them dF = (x — ¢)dy = 0).

From the condition of single-valued projection of the image torus (i.e.,
from the fact that the image torus has cquation x = f(y)) it follows that,
conversely, all critical points of the function F are points of intersection of
our tort. In fact, under these conditions y can be taken for local coordinates
on the torus, and therefore the fact that dF is zero for all vectors tangent to
the image torus imphes x = ¢.

A smooth function on an #-dimensional torus has at least 2" critical points,
counting multiplicities, of which at least n + 1 arc geometnically different
(cf., for exampie, Milnor, “ Morse Theory,” Princeton University Press, 1967).

Therefore, our tori intersect in at least 2" points (counting multiplicities),
and there are at least n + | geometrically different points of intersection.

Exactly the same argument shows that any lagrangian torus intersects
its image in at least 2" points (of which at lcast n + 1 are geometrically
different), under the assumption that both the original torus and its image
project single-valued onto the y-space, ie., are given by equations y = f(x)
and x = g{y), respectively. Besides, this statement reduces to the previous
onc by the canonical transformation {x, v) — (x — f(»), ¥).

E Applications to determining fixed points and periodic solutions

We now consider a symplectic transformation, homolegeus to the identity,
of the special form which arises in integrable problems in dynamics, ie., of
the form

Aplx, ¥y = (x, ¥ + wlx)), wherew = i—
dx

Here x € B" is the action variable and y mod 2z € T" is the angular coordin-
ate.

We assume that on the torus x = x; all the frequencies are commensur-
able:

k.
mixg) = ﬁl 2z with integers &;, N wlx,) # 0,

and that the nondegeneracy condition

T

()

X

det # 0

X0

T

is satisfied.
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Appendix 9: Poincaré's geometric theorem, its generalizations and applications

Theorem, Every symplectic diffeomorphism A homologous to the identity and
sufficiently close 1o A, has, near the torus x = x,, at least 2" periodic
points ¢ of period N (such that AN = &), counting multiplicity.

The proof could be reduced to investipating the intersection of two lugrangian submanifolds
of a dn-dimensional space (R x " x 27 x Ty with Q = dx » dv ~ dX » dY. one of which
is the diagonal {X = x. ¥ = 3} and the other the graph of the mapping 4%

However, it is easier to directly construct a suitable function on the torus, Tn fact. the map-
ping A bas the form

(x. v} — (x, v+ 2. where x(x, ) = 0. det ! :| # 0,

¥y,

By the implicit function theorem, the mapping 4% has, near the torus x = x,. a torus which is
displaced only radially ({x. ¥) — (X. Y} and is given by an equation of the form x = f{):
its irmage is also given by un equation x = g(y} of the sume form. [n this notation, X{f{y). y) =
giyh Yifo =y

Since 4 is homologous Lo the identity, it follows that AY has a single-valued global generating
function of the form Xy ~ S{X. )l where § has period 27 in the variable y.

The function Fiv) - SCXCF(r) ph v has at lease 27 eritical points 3, on the torus, Al the
points £, — { £{x) v} are fixed points for 4™ In fact,

dF = — X)dy + (Y — v dX = (x — X)dy = {f(2) - gy dy.

Therefore, since dF |, — Ut follows that f{v) = gty ). ie. A% = &, as was to be shown.

We turn now to closed orbits of conservative systems, Using the term-
inology of Appendix 8, we can formulate the result as follows.

Corollary. Upon disintegration of an n-dimensional torus, entirely filled up by
closed trajectories of an isoenergetically nondegenerate system, at least
2" ' closed trajectories of the perturbed problem are formed (counting
multiplicities), among which at least n are geometrically distinct, at least
if the perturbation is sufficiently smafl,

The proof is reduced to the preceding theorem with the help of a (2n — 2)-
dimenstonal surface of section. We must first choose angular coordinates y
such that the closed trajectories of the unperturbed problem on the torus
are given by the equations y, = --- = y, = 0, and then define a surface of
section by y, = 0.

In the case of two degrees of freedom we can apply Poincaré’s theorem to
the annuli formed by intersccting invariant tori with a two-dimensional
intersecting surface. We obtain the following result:

In the gap between two two-dimensional invariant tori of a system with
two degrees of freedom there are always at least two closed phase trajectories,
if the ratio of the frequencies of conditionally-periodic motions on these tori
arc different.

in this way we obtain many periodic solutions in all problems with two
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Appendix 9: Poincaré's geometric theorem, its generalizations and applications

degrees of freedom, where invariant tori are found (for example, in the bound-
ed circular three-body problem, in the problem of closed geodesics, etc.).
There is even a conjecture that in hamiltonian systems of * general form™ with
compact phase spaces, the closed phase curves form a dense set.!'? How-
ever, if this is true, the closedness of most of these curves has little importance
since their periods are extremely large.

As an example of applying Poincaré’s methods to systems with more than
two degrees of freedom, we have a theorem of Birkhoff about the existence of
infinitely many periodic solutions close to a given linearly stable periodic
solution of general form (or about the existence of infinitely many periodic
points in a neighborhood of a fixed point of a linearly stable nondegenerate
symplectic mapping of a space to itself). In the proof, the mapping is first
approximated by its normal form, and then the connection between fixed
points of a mapping and critical points of the generating function is used.

Knowing periodic solutions allows us, among other things, to prove the
nonexistence of first integrals (other than the classical ones) in many problems
in dynamics. Assume, for example, that on some level manifold of known
integrals we discover a periodic trajectory which is unstable, Its separatrices,
in general, form a complicated network, which we considered in Appendix 7.
If this phenomenon of splitting of separatrices is discovered, and if we can
show that the separatrices are not contained in any manifold of lower dimen-
sion than the level manifold we are considering, then we can be sure that the
system has no new first integrals.

The complicated behavior of phase curves, which obstructs the cxistence
of first integrals, can often be detected without the help of periodic solutions
by one simple glance at the picture, obtained by a computer, formed by the
intersection of the phase curves with the surface of section.

F Invariance of generating functions

We have already noted the discouraging noninvariance of generating
functions with respect to the choice of a canonical coordinate system on a
symplectic manifold. On the other hand, we repeatedly used the connection
between fixed points of a mapping and critical points of the generating
function.

[t turns out that, although generally the generating function is not in-
variantly associated to the mapping, near a fixed point there is an invariant
connection. More precisely, suppose we are given a symplectic diffeo-
morphism fixing some point. In a neighborhood of this point, we define a
*gencrating function”™

X, —x |
=1 JZ k k kT Yk
dX, + dx, dY, + dyp,
113 4 proof of this density in the C'-lopolegy has been announced by C. Pugh and C. Robinson,
[Editor's note]
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Appendix 9: Poincaré's geomeltric theorem, its gencralizations and applications

with the help of some symplectic coordinatc system (x, y).!'* Using another
symplectic coordinate system (x', ¥), we construct a generating function @'
in the same way.

Theorem. [f the linearization of the symplectic diffeomorphism at the fixed
point has no eigenvalues equal to — 1, then the functions ®© and ¥ are equiva-
lent in a neighborhood of the fixed point, in the sense that there is a diffeo-
morphism g (in general not symplectic) such that

() = D(g(z)) + const.

For the proof see the article: A. Weinstein, The invariance of Poincaré’s
generating function for canonical transformations, Inventiones Mathe-
maticae, 16, No. 3 (1972), 202-214.

It should be noted that two diffeomorphisms with generating functions
which are equivalent in a neighborhood of a fixed point are not necessarily
equivalent in the class of symplectic diffeomorphisms (for example, rotation
and rotation through an angle which depends on the radius, with non-
degenerate quadratic parts of the generating function at zero).

Since the first edition of this book had appeared in 1974, the content of
this Appendix has grown into a new branch of mathematics: symplectic
topology. To describe this development (triggered by the conjectures in this
Appendix, which still remain, for general manifolds, neither proved, nor
disproved) one would need a book longer than the present one,

The interested reader might follow this development using the (incomplete)
bibliography on pages 503-509.

114 The increase of this function along any arc is equal (o the integral of the form defining the
symplectic structure over the band formed by the rectilinear intervals connecting each point
with its image. Therefore, (he lunction ® 15 associated (o the mapping invarianly with respect
to fingar canonical changes of coordinates.
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Appendix 10: Multiplicities of characteristic frequencies,
and ellipsoids depending on parameters

Several times in this course we have encountered families of ellipsoids in
euclidean space. For example, 1n studying the dependence on parameters of
characteristic frequencies of small oscillations, we encountered ¢quipotential
surfaces which were ellipsoids in euclidean space, depending upon the degree
of rigidity of the system, (the metric of the space was defined by the kinetic
energy). Another example was the ellipsoid of inertia of a rigid body (ithe
parameter here was the shape of the rigid body and its distribution of mass).

Here we will consider the general problem of describing the values of the
parameter for which the spectrum of eigenvalues degeneraies, 1.e., the cor-
responding ellipsoid becomes an ellipsoid of revolution. We note that the
eigenvalues of a quadratic form on euclidean space (or the lengths of the axes
of an ellipsoid) change continuously under continuous changes of the
parameters of a system (the coeflicients of the form). It seems natural to
expect that in a system depending on one parameter, under changes of the
parameter, at certain moments one of the cigenvalues would collide with
another, so that for these values of the parameter the system would have a
multiple spectrum.

Suppose, for example, that we want to make the ¢llipsoid of inertia of a
rigid body into an ellipsoid of revolution by movement of an adjustable mass
along an arc rigidly attached to the body so that there 1s one parameter at
our disposal. The three major axes a, b, and ¢ will be continuous functions of
this parameter, and at first glance it seems that for a suitable value of the
parameter (p) we can achieve equality of two of the axes, say a(p) = b(p). It
turns out, however, that this is not so, and that generally we need to attach
at leasr two adjustable masses to make the ellipsoid of inertia an ellipsoid of
revolution.

In general, a multiple spectrum in typical families of quadratic forms is
observed only for two or more parameters, while in one-parameter families
of general form the spectrum s simple for all values of the parameter. Under
a change of parameter in the typical one-parameter family, the eigenvalues
can approach closely, but when they are sufficiently close, it is as if they
begin to repel one another. The eigenvalues again diverge, disappotnting the
person who hoped, by changing the parameter, to achieve a multiple spec-
trum.

In this appendix we consider the reasons for this seemingly strange be-
havior of the eigenvalues, and we discuss briefly analogous questions for
systems with various groups of symmetries.

A The manifold of ellipsoids of revolution

Consider the sct of all possible quadratic forms on the n-dimensional eucli-
dean space R". This set has itscll a natural structure of a vector spacc of
dimension n(r + 1)/2. For example, the quadratic forms on the plane form a
three-dimensional space (a form Ax? + 2Bxy + Cy* has as coordinates the
three numbers 4, B, and C).
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Appendix 10: Multiplicities of characteristic frequencies, and ellipsoids

The positive-definite forms form an open region in this space of all
quadratic forms (for example, in the case of the plane this is the inside of one
nappe of the cone B? = AC of degenerate forms),

Every ellipsoid centered at the origin defines a positive-definite quad-
ratic form, for which it is the level set of {; conversely, the set of level 1 of any
positive-definite quadratic form is an ellipsoid. We can therefore identify the
sets of positive-definite quadratic forms and ellipsoids centered at the origin.
In this way we give the set of ellipsoids with center 0 in R” the structure of a
smooth manifold of dimension r(n + 1)/2 (this manifold is covered by one
chart: a region in the space of quadratic forms).

Now consider the set of all ellipsoids of revolution. We claim that this set
has codimension 2 in the space under consideration, Le., it 1s given by two
independent equations, rather than one as it would seem at first glance. More
precisely, we have

Theorem 1. The set of ellipsoids of revolution is a finite union of smooth sub-
manifolds of codimension 2 and higher in the manifold of all ellipsoids.

The codimension of a manifold is the diffcrence between the dimension
of the ambient space and the dimension of the submanifold.

Proor. We first consider an ellipsoid in n-dimensional space which has two
cqual axes, and whose other axes are distinct. Such an ellipsoid is defined by
the directions of the distinct axes, which gives

(n—1)+(n—-2)+---+2=(£j—1)2(n_g—)

different parameters, and also by the magnitudes of the axes, which gives
n — | parameters, Thus the total number of parameters is

nz—n—2+2ni_2

- 5 ,

which is two less than the dimension of the space of all ellipsoids (which is
n(n + 1)/2). This count of parameters also shows that the set of ellipsoids
with exactly two equal axes is a manifold.

As for ellipsoids with a larger number of equal axes, it is clear that they
form a set of even smaller dimension. A rigorous proof follows from the
following lemma.

Lemma. The set of all ellipsoids with v, double, v, triple, v, four-fold axes, etc.
is & smooth submanifold of the manifold of all ellipsoids, with codimension

vy + Svg 4+ v + o= 30— I+ 2.
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Appendix 10: Multiplicities of characteristic frequencies, and ellipsoids

The proof of this theorem reduces to the same kind of parameter count as
in the special case analyzed above (which corresponds to v, = 1, v, =
vy = --- = 0). The reader can easily carry out this calculation, noting first
that the dimension of the manifold of all k-dimensional subspaces in an n-
dimensional vector space is equal to k(n — k) (since a k-dimensional plane in
general position in an n-dimensional space can be thought of as the graph of
a mapping from a k-dimensional space to an (n — k)-dimensional space, and
such a mapping is given by a rectangutar & x (r — k) matrix).

ExampLE. Consider the case n = 2, i.¢., cllipses in the plane. An ellipse is
determined by three parameters (e.g., the lengths of the two axes and the
angle giving the direction of one of them). Thus the manifold of ellipses in the
plane is three-dimensicnal, as it must be by our formula.

A circle, however, is determined by one parameter {the radius). Thus the
manifold of circles in the space of ellipses is a line in a three-dimensional
space, and not a surface as 1t would seem at first glance.

This ~paradox™ becomes. perhaps, clearer from the following calculation. The quadratic
forms Ax* + 2Bxv + Cx? withdiflerent eigenvalues form u submanifold of the three-dimensional
space with coordinates 4, B, and C. given by one cquation 1, — 4, = 0, where 4, »{A, B. )
are the eigenvalues. However, the lefi-hand side of this equation is (he sum of two squarcs,
43 1s clear from the formuia for the discriminant of the characteristic equation:

A={d+ Y —HAC - B =(4 — CY + 482,

Thus the single equation A = 0 determines a line in the three-dimensional space of quadratic
forms {4 = . 8 = ) and not a surfage.

A simple consequence of the fact that the manifold of ellipsoids of revolu-
tion has codimension 2 is that this manifold does rot divide the space of ail
ellipsoids (and the manifold of quadratic forms with a multiple spectrum does
not divide the space of quadratic forms), as a line does not divide a three-
dimensional space. Therefore, we can assert not only that in an ellipsoid in
“general position™ all the axes share different fengths, but also that any two
such ellipsoids can be connected by a smooth curve in the space of ellipsoids con-
sisting entirely of ellipsoids with axes of different lengths. Furthermore, if two
ellipsoids in general position are connected by a smooth curve in the space
of ellipsoids which contains a point which is an ellipsoid of revolution, then
by an arbitrarily small displacement of the curve we can remove it from the
set of ellipsoids of revolution, so that on the new curve all the points will be
ellipsoids without multiple axes.

One consequence of what we have said is a simple proof of the theorem
that characteristic frequencies increase when the rigidity of a system is
increased. The derivative of a non-multiple eigenvalue of a quadratic form
with respect to a parameter is determined by the derivative of the quadratic
form in the corresponding characteristic direction. If the rigidity is increased,
the potential energy increases in every direction, including the characteristic
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directions. Thus the characteristic frequencies also increase. Hence we
have proved the theorem on the growth of frequencies in the case when it
1s possible to go from the original system to a more rigid system, avoiding
multiple spectra. The prool in the presence of multiple spectrum is now
obtained by a passage to the limit, based on the fact that the interior of the
path from the original system to the more rigid system can be removed by
an arbitrarily small perturbation from the set of systems with multiple
spectra.

In summary, we can say that a typical one-parameter family of ellipsoids
(or quadratic forms in euclidean space) does not contain ellipsoids of revolu-
tion {quadratic forms with multiple spectra). Applying this to an ellipsoid
of inertia we obtain the conclusion above about the necessity for two adjust-
able masses.

We turn now to two-parameter systems. [t follows from our calculations
that, in a typical two-parameter system, ellipsoids of revolution are en-
countered only at isolated points of the parameter plane.

Consider, for example, a convex surface in three-dimensional euclidean space. The second
fundamentul form of the surface determines an ellipse in the tangent spacc a1 every point,
Therelore, we have a two-parameter family of ellipses {which can be translated 10 one plane
by choosing a local coordinate system near a point on the surface). We come to the concluston
that, at every point of the surface except at certain isolated points. the ellipse has axcs ol different
tengths, Therefore, on surfaces of general form, there are two orthogonal fields of directions (the
magor and minor axes of the ellipses) with isolated singular points. In differential geometry
these directions are called the directions of principal curvature, and these singular points are
called umbilicad points. Fur example, on the surfree of an ellipsoid there are four umbilical
paoints: they lie on the ellipse containing the major and minor axes, and two of them are clearly
visible in the picture of the geodesics on an ellipsoid (of. Figure 207).

In exactly the same way, in a typical three-parameter family, ellipsoids of
revolution are encountered only on certain lines in the threc-dimensional
parameter space. For example, if at every point of three-dimensional eucli-
dean space, we are given an ellipsoid (i.e, a symmetric two-index tensor),
then the singularities of the fields of principal axes will be, in general, on
certain lines (where two of the three fields of directions have discontinuities).
These lines, like the umbilical points in the preceding example, are of several
different types. Their classification (for typical fields of ellipscids) can be
obtained from the classification of singularities of lagrangian projections
given in Appendix 12.

In a typical four-parameter family, ellipsoids of revolution occur on two-
dimensional surfaces in the space of parameters. These surfaces have no
singularitics other than transverse intersections at isolated points of the
parameier space; these values of the parameters correspond to ellipsoids
with two (different} pairs of equal axes.

Triple axes appear first for five parameters, at isolated points of the param-
eter space. The values of the parameters corresponding to ellipsoids with a
double axis form a three-dimensional manifold in the five-dimensional
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parameter space with two types of singularities: transversal mtersections of
two branches along some curve and conic singularities at tsolated poeints (not
lying on this curve), i.e., at points of the parameter space corresponding to
¢llipsoids with three equal axes. These conic singularities have the following
structure: by intersecting the three-dimensional manifold of ellipsoids of
revelution with a four-dimensional sphere of small radius with center at the
singular point, we obtain two copies of the projective plane. The resulting em-
beddings of the projective plane in the four-dimensional sphere are diffeo-
morphic to the embedding given by the five spherical harmonics of degree two
on the two-dimensional sphere (five linear combinations of the functiens x; x;,
orthonormal in the space of functions on the sphere x{ + x3 + x§ = 1,
orthogonal to the identity, give an even mapping of $% into §* and, therefore,
an embedding RP? — §4).

[t remains to describe the behavior of the eigenvalues of a quadratic form
in a typical two-parameter family as the parameter approaches a singular
point where the two eigenvalues coincide. A little calculation shows that the
graph of the pair of eigenvalues we are considering has, over the plane of
parameters near the singular point, the form of a two-sheeted cone, whose
vertex corresponds to the singular point, and each of its nappes to one of the
eigenvalues (Figure 243).

-

"~

- ~

e

Figure 243  Characreristic frequencies of one- and two-parameter families of oscil-
lating systems of general form

A typical one-dimensional subfamily of cur two-dimensional family has
the form of a curve in the plane of parameters which does not pass through
any singular points, Every onc-parameter family which contains a singular
point can be removed from it by a small perturbation; the resulting one-
parameter family will be a curve in the space of parameters passing near the
singular point. The graph of the cigenvalues over a curve on the plane of
parameters passing nedr a singular point consists of those points of the cone
which project onto this curve. Therefore, this graph near the singular point is
close to a hyperbola, resembling a pair of intersecting straight lines {a pair of
straight lines would be obtained if our one-parameter family passed through
the singular point),
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This discussion of eigenvalues of two-parameter systems of quadratic
forms explains the strange behavior of characteristic frequencies when a
single parameter is varied: in general (except for completely singular cases),
when a single parameter is varied the characteristic frequencies can approach
one another but cannot collide; after approaching, they must again go off in
different directions.

B Application to the study of oscillations of continuous media

The general argument above has numerous applications in the study of the
dependence on parameters of the characteristic frequencies of various
mechanical systems with finitely many degrees of freedom ; however, the most
interesting applications may be to systems with infinitely many degrees of
freedom, describing oscillations of continuous media. These applications are
based on the fact that the codimensions of manifolds of ellipsoids with given
multiplicities of axes are determined by these multiplicities and do not depend
on the dimension of the space.

For example, the codimension of the set of ellipsoids of revolution in the
manifold of all ellipsoids is equal to two 1n a space of any dimension; there-
fore, it is natural to assume that in the infinite “manifold” of ellipsoids in
infinite-dimensional hilbert space, the sct of ellipsoids of revolution has
codimension 2 {and, in particular, the space of ellipsoids without multiple
axes is connected).

Of course, arguments of this kind need rigorous justification, We will not,
however, occupy ourselves with this, but we will see what conclusions follow
from the argument above if we apply it to the problem of oscillations in
continuous media.

The kinetic energy of a continuocus medium filling a compact region D is
expressed in terms of the deviation u of a point x from equilibrium by the
formula

T=%J.a,2dx.
D

For definiteness, we can take the medium to be a membrane (in this case the
region D is two-dimensional, and the deviation u one-dimensional). The
kinetic encrgy defines a euclidean structure on the configuration space of the
problem (ie., in the space of functions ). The potential energy is given by the
Dirichlet integral

U=3 j(Vu)z dx
D

(from the mathematical point of view these data constitute the definition of
the membrane),

The squares of the characteristic frequencies of the membrane arc the
eigenvalues of the quadratic form U on the configuration space, whose metric
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is defined using the kinetic energy. We assume that a typical membrane cor-
responds to a typical quadratic form (this assumption means transversality of
the manifold of quadratic forms corresponding to different membranes to
the manifold of forms with multiple cigenvalues). If we believe in this prop-
erty of general position, we come to the following conclusions.

1. For membranes in general position, all the characteristic frequencies are
different. We can go from one membrane in general position (o another
by a continuous path consisting entirely of membranes with simple
spectra. Furthermore, a typical path connecting any two membranes does
not contain even one membrane with a multiple spectrum (except,
possibly, the ends of the path).

2. By varying two parameters of the membrane we can make two character-
istic frequencies coincide; te obtain a triple frequency, we must have at
our disposal five independent parameters; for a four-fold frequency we
need ten paramecters, etc.

3. If, by starting from a membrane with a simple spectrum and continuously
deforming it, we pass to another membrane with a simple specirum along
any path in general position, then as a result, the k-th largest characteristic
frequency of the second membrane is always obtained independently of
the path of deformation from the k-th largest characteristic frequency of
the original membrane ; continuations of characteristic functions, however,
do generally depend on the path of deformation (i.e., by changing the path,
the sign of the resulting characteristic function can be changed).

In particular, if by starting from a membrane with a simple spectrum
and deforming it we describe a closed path in the space of membranes and
return to the original membrane, bypassing the sct ol membranes with
multiple spectra (which has codimension 2), then the k-th characteristic
frequency returns to its original value, while the k-th characteristic func-
tion may change sign. [Editor’s note: Conclusions like this have been
proven by K. Uhlenbeck (Amer. J. Math. 98 (1976), 1059-1078).]

C  The effect of symmetries on the multiplicity of the spectrum

A multiple spectrum is the exception in systems of general form, but it
is not removable under small perturbations in cases when the given sysitem
is symmetric and the deformations preserve the symmetry.

Consider, for example, a system of three identical masses at the vertices
of an cquilateral triangle, connected to one another and to the center of the
triangle by identical springs, and capable of moving in the plane of the
triangle. The system has rotational symmetry of order 3. Therefore, there
is a linear operator g acting on the configuration space {which has dimension
6), whose third power 1s egual 10 1 and which leaves invariant both the
euclidean structure of the configuration space and the ellipscid in the con-
figuration space giving the potential energy.

It follows that this ellipsoid must be an cllipsoid of revolution. If we let
g be the indicated operator on the configuration space and £ a vector on the
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major axis of the ellipsoid, then the axis in the direction g¢ is also a major
axis (since the rotation g takes the ellipsoid to itself}.

There are two possibilities for the vector g&: either g€ = ¢, or the vectors
¢ and g¢ are linearly independent. In the second case, the plane spanned by
the vectors £ and g€ consists entircly of major axes. Therefore, the eigenvalues
corresponding 1o these axes are at least double. The space spanned by the
three vectors &, g&, and g*¢ is invariant under g. It is either two dimensional
(in which case g acts by a 120° rotation) or three dimensional {in which case
g acts by the same rotation around & + g& + ¢g>¢ asan axis). In the latter case,
we may choose the direction of this sum for one of the principal axes of the
ellipsoid, with the two other principal axes in the three-dimensional space
perpendicular to it. It is therefore possible to choose the principal axes for an
ellipsoid which is invariant under an orthogonal transformation of order three
(in a space of any number of variables), so that each axis is either fixed under
the transformation or is rotated by 120 in an invariant plane spanned by it
and another axis {orthogenal to it, as well as to all other axes) of the same
length, In what follows, we shall assume that the axes of ellipsoids and the
directions of the corresponding characteristic oscillations have been chosen
in the manner just described.

Our argumcnt shows that characteristic oscillations of a system with
third-order rotational symmetry can be of two types: those invariant under
rotation by 120° (g¢ = &) and those passing under such a rotation to inde-
pendent characteristic oscillations with the same frequency (g¢ and £ indepen-
dent). In the second case, there actually arise three forms of characteristic
oscillations with the same frequency (Z, g&, and g£), but only two of them are
independent:

E+gé+git=0

since the sum of three vectors of equal length on the plane forming angles of
120° is equal to zero.

The number of characteristic oscillations of our system is generally equal
to 6. To find out how many of them are of the first (symmetric) and second
(nonsymmetric) type, we can use the following argument. Consider the
limiting case, when each of the masses oscillates independently from the
others. In this case, we can choose an orthonormal basis of the configura-
tion space consisting of six characteristic oscillations, two for each point, for
which that peint moves and the other two do not. We denote by £, and
n, the characteristic vectors corresponding to the i-th point with charac-
teristic frequencies @ and b, respectively, and let x;, y; be coordinates in the
orthonermal basis &;, ;. Then the potential energy can be written in the
form

U = 4ax2 + b2y?) + Ya?x3 + b?yi) + Ha?x3 + b*y3).
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The symmetry operator g permutes the coordinate axes:

g&y = ¢, gl =&, gés = &y,
am = "z gfs = Ka gns = M-

We can now represent our six-dimensional space as the orthogonal direct
sum of two straight lines and two two-dimensional planes, invariant under
the symmetry operator g. That is, the invariant lines are defined by the
directions of the vectors

Ci+ &+ <&y and ny + 4y + 04,

and the invariant planes are their orthogonal complements in the spaces
spanned by the vectors ¢; and #;, respectively. The first straight line is the
direction of a symmetric characteristic oscillation with frequency g, and the
second the direction of one with frequency b. In exactly the same way, every
vector in the first plane is a direction of characteristic oscillation with fre-
quency a which, under rotation by 120°, goes to an independent oscillation
of the same frequency; for all vectors in the second plane, the oscillation 1s
also not symmetric, with frequency b.

Thus, in this degenerate case of three independent points, there are two
independent characteristic oscillations of symmetric type, and four un-
symmetric, of which the latter are divided into two pairs. In each pair the
oscillations have the same eigenvalue and are obtained from one another by
rotation of the plane of our points by 120°

We now claim that the conclusion above holds true for any law of inter-
action between our points if the interaction is symmetric, i.e., if the potential
energy of the system is preserved under rotation of the plane by 120°.

In fact, decompose the 6-dimensional configuration space into an ortho-
gonal sum of the plane of invariant vectors of g and of its orthogonal comple-
ment. The potential energy will decompose into a sum of two quadratic
forms-—one in two variables, the other in four. Now consider characteristic
oscillations in the two-dimensional and four-dimensional configuration
spaces, with potential energy described above. The four-dimensional space
decomposes into two g-invariant planes, orthogonal in the potential energy
metric. We have obtained a system of six characteristic oscillations having
the required properties.

Thus, in a system in general form of three points in the plane with rotational
symmetry of order 3, there are four different characteristic frequencies, two
of which are simple and two double. Each of the simple characteristic fre-
quencies corresponds to a symmetric characteristic oscillation, and each of
the double ones to three characteristic oscillations obtained {rom one another
by rotation by 120° and summing to zero (so that only two of them are
independent).
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Appendix 10 Multiplicities of characteristic frequencies, and ellipsoids

ProBLEM. Classily the characteristic oscillations of a system with the symmetries of an equilateral
triangle (allowing not only rotation by 1207, but also reflection through the altitude of the
triangle).

ProprEM, Classily the characleristic oscillations of a system whose group ol symmetries 15 the
group of 24 rotations of the cube.

AnswEiR . The oscillattons will be of five types. By rotations, [rom each oscillation one can obtain
systems of 8, or 6, or 4, or 2, or | independent oscillations (in the last case the oscillations are
entirely symmetric).

Remuark. To classify oscillations in systems with any group ol symmetrics, a special apparatos
has becn developed (the so-called theory of group representations). Cf, for example. Michael
Tinkham, Group Theory and Quuntum Mechanics, McGraw-Hill, 1964,

D The behavior of frequencies of a symmetric system under a
variation of parameters preserving the symmetry

We assume now that our symmetric system depends in a general way on some
number of parameters, and that the symmetry is not disturbed when the
parameters are varied. Then the characteristic frequencies of various multi-
plicities will also depend on the parameters, and the question arises of when
the characteristic frequencies will collide. We will confine ourselves to
formulating a result for the simplest case of systems with third-order rota-
tional symmetry {for rotational symmetry of any order n = 3, the answer is
the same). The details can be found in the following articles: V. 1. Arnold,
Modes and quasi-modes, Functional Analysis and [ts Applications, 6:2
(1972), 94-101; V. N. Karpushkin, The asymptotic behavior of the eigen-
vaiues of symmetric manifolds and the * most probable” representations of
finite groups, Moscow Univ. Math. Bull. 29 (1974), no. 2, 136-139.

Characteristic oscillations of any system with rotational symmetry of
order 3 are divided into two types: symmetric oscillations, and oscillations
carried by rotation by 120° into independent ones. For a general system with
third-order rotational symmetry (without, in particular, any additional
symmetry) all the characteristic frequencies of the first type are simple, and
of the second, double. In addition, it turns out that if a system depends in a
general way on one parameter and is symmetric for all values of the param-
eter, then under variation of the parameter, the characteristic frequencies of
symmetric oscillations do not collide with one another, and the double
characteristic frequencies of asymmetric oscillations do not split. In addition,
the double characteristic frequencies of asymmetric oscillations do not
collide with one another under a change of parameters. However, the char-
acteristic frequencies of symmetric and asymmetric oscillations move under
changes of parameter independently from one another, so that for discrete
values of the parameter the characteristic frequency of a symmetric oscilla-
tion and the (double) characteristic frequency of an asymmetric oscillation
can collide (and pass through one another).
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Appendix 10: Multiplicities of characteristic frequencies, and ellipsoids

In order to make two charactenistic frequencies of symmetric oscillations
collide, we must vary at least two parameters; and to make two characteristic
frequencies of asymmetric oscillations collide we must vary at least three.

In general, in the typical lamily of systems with third-order rotational
symmetry, for the collision of i simple characteristic frequencies (i symmetric
oscillations) and j double frequencies (j unsymmetric oscillations) to occur,
the number of parameters of the [amily must be at least

i-i+2

2
We apply this to oscillations of symmetric membranes, Here we will
assume that the membrane is of general form, admits rotation by 120°, and
corresponds to an ellipsoid of general form in the space of ellipsoids of the

configuration space admitting the transformation of the configuration space
induced by the rotation of the membrane.

The exact formulation of this assumption is that, for all membranes cxcept a sel of infinite
codimension, the mapping from the space of symmetric membranes into the space of symmetric
ellipsoids is transverse to each of the manifolds of ¢llipsoids with a given number of multiple
axes,

If we agree to this assumption, we come (o the following conclusions about
oscillations of symmetric membranes,

I. For membranes of general form admitting rotation by 120°, asymp-
totically one-third of the characteristic frequencies (counting them with
multiplicities) are simple, and the corresponding characteristic oscilla-
tions admit rotation by 120°. The remaining characteristic frequencies are
double; each double characteristic frequency corresponds to three eigen-
functions whose sum is zero and which are taken to one another under
rotation by 120°.

2. In general onec-parameter families of such symmetric membranes,
for isolated values of the parameters there are collisions of a single fre-
quency with a double frequency, but there are no collisions of single
frequencies with one another or collisions of double frequencies with one
another.

3. The minimal number of parameters of a family of membranes for which
more complicated collisiens of characteristic frequencies are realized
(stably with respect to small perturbations preserving the symmetry) is

given by the formula
-1
[ B AL J,]
Ly

where v;; is the number of points of collision of i single and j double
frequencies.
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In particular, for a typical small deformation of a circular membrane
preserving rotational symmetry of order 3, a third of the eigenvalues
(corresponding to eigenfunctions with azimuthal part cos 3k¢ and
sin 3k¢) immediately disperse. Under further one-parameter deforma-
tion the simple and double characteristic frequencies can pass through one
another, but two simple or two double frequencies cannot collide with one
another.

E Discussion

The value of the concepts of general position and symmetry lies, in particular,
in the fact that they allow us to obtain some information in those cases
where we cansnot find an exact solution of a problem. In particutar, for
almost no membranes do we know the forms of the characteristic oscillations.
Nevertheless, [rom general arguments we can say something, for example,
about the multiplicities of eigenvalues.

The study of high-frequency oscitlations of continuous media is very
important in many fields (optics, acoustics, etc.), and special metheds have
been developed for approximate determination of the form of character-
istic oscillations. One of these methods (called the method of quasi-classical
asymptotics) consists of seeking an oscillation which is locally close to a
simple harmonic wave of short length, but which changes its amplitude and
the direction of its front from point to point.

Analysis (which we will not go into here) shows that in some cases we
can construct approximate solutions, with the indicated properties, of the
equation for eigenfunctions. They are approximate solutions in the sense
that they almost satisfy the equation for eigenfunctions (not in the sense that
they are close to real eigenfunctions).

In particular, if the membrane has the form of an equilateral triangle with
smoothed and strongly blunted corners, then we ¢an construct an approxi-
mate solution of the type described which differs appreciably from zero only
in a neighborhood of one of the altitudes of the triangle. (Physicists call this
approximate solution the wave analogue of a beam moving along the altitude
of the triangle; this beam is a stable’ !* trajectory on a billiard table having
the shape of our membrane; cf. the following appendix on short wave
asymptotics).

It follows from symmetry and general position arguments that typical
membranes with rotational symmetry of third order have no real character-
istic oscillatiors of the type described. Assume that one of the characteristic

115 The condition for linear stability of a billiard trajectory has the form
(r| +r; - !'}(fl — D(P‘} - !') » 0,
where [ is the length of the interval of the trajectory and 7, and r; are the radii of curvature of

the walls at its ends.
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oscillations of the membrane is concentrated near an altitude (but not near
the center of the membrane). Then, rotating it by 120° and 240° we obtain
three characteristic oscillations with the same characteristic frequency. These
three oscillations are independent (this follows from the fact that their sum
1s not zero). Therefore, the charactenistic frequency has multiplicity 3, which
does not occur in typical systems with third-order rotational symmetry.

From this argument it is clear that attempting to construct rigorous high-
frequency asymptotics for eigenfunctions is a rather hopeless task ; what we
can hope to do is to obtain approximate formulas for almost characteristic
oscillations. Such an almost characteristic oscillation can differ very strongly
from real characteristic osctllations, but if we give the membrane the inttial
condition corresponding to it, then for a long time the oscillation will resemble
a standing wave {(characteristic oscillation).

An example of an almost characteristic oscillation is the motion of one
of two identical pendulums connected by a very weak spring. I, at the initial
moment, we set the first pendulum in motion and leave the second fixed, then
for a long time it will appear that only the first pendulum is oscillating, and
the oscitlation will be almost characteristic. For true characteristic oscilla-
tions, both pendulums oscillate with the same amplitude.

The problem of connecting the geometry of a membrane with the properties of its character-
1stic oscillations has been intensively studied in recent years by many authors {including H. Weyl,
S. Minakshisundaram and A. Pleijel, A. Sclberg, J. Milnor, M. Kac. [ Singer, H. McKean,
M. Berger, Y. Colin de Verdiére, J. Chazarain, J. §. Duistermaat. V. F. Lazutkin, A, I. Shnirc'man,
and 5. A. Molchanov),

To the simplest question, “Can you hear the shape of a drum?™ the answer turns out to be
negative: there exist nen-isometric riemannian manifolds with the same spectrum. On Lhe
other hand, several properties of a manifold can be recovered from the cigenvalues of the laplacian
and (rom the properties of eigenfunctions (for example, the complete set of lkengihs of closed
geodesics can be recovered).
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From the point of view of physical optics, the description of the propagation
of light in geometric optics, using rays (i.e., Hamilton’s canonical equations)
or wave fronts (i.e., the Hamilton-Jacobi equation), is only an approximation.
According to the ideas of physical optics, light is electromagnetic waves,
and geometric optics is a first approximation, a good description of
phenomena only when the length of the waves is small compared to the size
of the objects being considered.

A mathematical version of these physical 1dcas consists of asymptotic
formulas for solving the corresponding differential equations formulas
which give better approximations for higher-frequency oscillations (ie., for
shorter waves). These asymptotic forimulas can be written in terms of rays
(i.e., motions in some hamiltonian dynamical system) or fronts (i.e., solutions
of the Hamilton-Jacobi equation).

Similar short wave asymptotics exist for solutions of many equations in
mathematical physics, describing all wave processes. In different areas of
physics and mathematics they are connected with different names. For
example, in quantum mechanics, short wave asymptotics are catled quasi-
classical approximations; they are determined by the so-called WKBJ method
(Wentzel, Kramers, Brillouin, Jeffreys), although these approximations were
used much earlier by Liouville, Green, Stokes, Rayleigh and others.

The construction of short wave asymptotics is based on the idea that,
locally, a series of almost strictly sinuscidal waves is observed at each place,
although the amplitudes of these waves and the directions of their fronts
change slowly from point to point. Formal substitution of a function of this
form into the partial differential equations describing the wave process
reduces us {in a first approximation for waves of small length) to the
Hamilton-Jacobi equation for wave fronts, The higher-order approximations
allow us to determine as well the dependence of the amplitude of oscillation
on the point.

Of course, the entire procedure requires a mathematical foundation. The
exact formulation and proof of the corresponding theorems are not at all easy.
Particular difficulty i1s introduced by “caustics™ (i.e., focal or conjugate
points, or turning points).

Caustics are envelopes of families of rays; they can be seen on a wall
illuminated by rays reflected from some smooth curved surface. I the rays
orthogonal to the wave fronts intersect and form caustics, then near the
caustics the formulas for short wave asymptotics must be slightly changed.
Namely, the phase of oscillations along each ray undergoes a standard dis-
continuity (one-fourth of a wave)} upon cach passage of the ray through a
caustic.

A precise description of all these phenomena may be conveniently devel-
oped in terms of the geometry of lagrangian submanifolds of the correspond-
ing phase space and their projections onto the configuration space. Here,
caustics are interpreted as singularities of the projection, from phase space
to configuration space, of that lagrangian manifold which represents a
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family of rays. Thus, the normal forms of singularities of lagrangian pro-
jections intreduced in Appendix 12 supply a classification of singularities of
caustics formed by systems of rays in “general position.”

In this appendix we introduce (without proof) the simpiest formulas of
short wave asymptotics for the Schridinger equation of quantum mechanics.
A more detailed exposition can be found in the following places:

J. Heading, Introduciion to phase integral methods, Methuen Co. Ltd.. 1962, (Cf. especially
Appendix 11 (by V. P, Maslov) in the Russian translation of Heading’s book, Moscow 19635),

V. P. Maslov. Théorie des perturbations el méthodes asymptotiques, Pairs, Duned, 1972 (Russian
edition: Moscow University, 1965).

V.1 Arnold, On 2 characteristic ¢lass entering into conditions of quantization, Functional Analy-
sis and its Applications, v, [ {1967}
L. Hormander. Fourier integral operators. Acta Math, 127 (19713, 79- 183,

A Quasi-classical approximation for solutions
of Schrodinger’s eguation

Schridinger’s equation for a particle in a field with potential energy U in
euclidean space is an equation for a complex-valued function ¥(q, t):

A
i

hZ
—_— U " .
ar 2Aw+ (@, qeRteR

Here, h is some real constant which is also a small parameter of the problem
being considered, and A is the Laplace operator.
We assume that the initial condition has the short wave form

W0 = p(q)e™™,

where the smooth function ¢ is nonzero only inside some bounded region.
We will find below an asymptotic (as & — 0) formula for the soiution of
Schrédinger’s equation with such an initial condition,

First of all, we consider the motion of a classical particle in the field with
potential energy U, ie., we consider Hamilton’s equations

. OH \ oH
=3, pz—a, where H = 1p® + U(g)

in 2n-dimensional phase space. The solutions of these equations determine
a phase flow (under some conditions on the potential, which we assume ful-
filled; these conditions prevent the particle from going off to infinity in a
finite time).

We associate to our short wave initial condition 4 lagrangian submanifold
of the phase space (i.e., a manifold whose dimension is equal to the dimension
of the configuration space and on which the 2-form dp » dq defining the sym-
plectic structure on the phase space is identically zero). Namely, we define
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the “momentum™ corresponding to our initial condition as the gradient of
the phase, i.e., we set
‘8
plq) = a
Lemma. For any smooth function s, the graph of the function p(gq) constructed
by it in the phase space R*" = {(p, ¢)} is a lagrangian manifold. Conversely,
if a lagrangian manifold projects diffeomorphically onto the g-space (ie., it
is a graph), then it is given by some generating function s, according to the
Jformula above.

We denote the lagrangian manifoeld constructed from the initial condition
(with the function s) by M. After time t the phase flow g‘ carries the manifold
M to another manifold ¢'M. This new manifold is also lagrangian, since the
phase flow preserves the symplectic structure.

For small ¢, the new lagrangian manifold, like the old, projects diffeo-
morphically onto the configuration space. Howcver, for large + this is vot
necessarily true (Figure 244).

7

tf

Figure 244 Transformation of lagrangian manifolds by the phase flow

In other words, several points of the new lagrangian manifold may project
to one point @ of the configuration space. We assume that there are only
finitely many of these points and that they are all nondegencrate (i.e., that at
each of the points of the new lagrangian manifold which project onto Q, the
derivative of the projection mapping onto the configuration space is non-
degenerate).

The nondegencracy condition is satislied for almost all poinis Q. Those exceptional points
for which it is not satisfied form a set of measure zero in the configuration space. In the general
case, this set is a surface whose dimension is onc less (han the dimension of the configuration
space. This surface, playing the role of a cavstic in our problem. can usell have complicared
singularities.
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The points of the new lagrangian manifold projecting to the point Q arose
under the phase flow transformation from several points of the original
lagrangian manifold (constructed from the initial condition). In other words,
after time t, several trajectories of classical particles, with initial conditions
belonging to the original lagrangian manifold, arrive at Q.

We et (p;, ;) denote these initial points in the phase space, and §; the
action along the trajectories of the phase flow coming from the point (p;, q;).
More precisely, we set

S£0.1) = s(q) + J:L de,

-2
where L = £ — U(g) and ¢°(p;. 4,) = (p(0), a(6))

Then, as h — 0, the solution of Schrédinger’s equation with the oscillating
initial conditiort given by the functions s and ¢ has asymptotic form

DQ

Dg;

- 1;2
PALLIA T R LT T + O(h).,

W@, 1) =} ola)

where y; is an integer (the Morse index) which wiil be defined below.

In order to explain this formula, we first consider the case when the time
interval ¢ is small. In this case, the sum is reduced to a single term, since the
lagrangian manifold obtained from the original lagrangian manifold by the
phase flow transformation after small time projects diffeomorphically onto
the configuration space. In other words, of the family of particies correspond-
ing to the initial condition for Schrédinger’s equation, only one arrives at Q
after the small time t.

For small t, the Morse index is equal to zero (as we will see below from its
definition). In this way the function y(Q, ¢) has, like the initiai condition, a
rapidly oscillating form. Thus, the function S defining the wave fronts at time
¢ is none other than the value at time ¢ of the solution of the Hamilton-Jacobi
equation, the initial condition for which is given by the function s defining
the wave front at the initial moment. The amplitude of the wave at time ¢ at
the point Q is obtained from the amplitudes, at the initial moment at the
original point, of the trajectories coming to Q multiplied by a certain factor.
This factor is chosen so that, under motions of the particles corresponding
to our initial conditions, the integral of the square of the modulus of the
function i, over a region of configuration space filled with particles, does not
change with time. (Here we assume that at the initial moment, some region in
the configuration space has been selected; then the phase points on the
original lagrangian manifold are selected whosc projections onto the con-
figuration space lic in this region; their images under the action of the phase
flow after time ¢ are found; finally, the projections of these images onte the
configuration space form the region “filled with particles at time 1.7}

441



Appendix 11: Short wave asymptotics

B The Morse and Maslov indices

The number y; is defined as the number of focal points to the manifold M
on the interval [0, £] of the phase curve starting out at the point (p;, g;).

Focal points to the manifeld M are defined as follows. We chose the point
Q so that, under projection of the lagrangian manifold obtained from M at
time ¢, a nondegeneracy condition is satisfied at this point. However, if we
consider the entire phase curve coming from the point (p;, ¢;), then at some
moments of time # between 0 and ¢, the nondegeneracy condition may not be
satisfied at the point (p(0), g(0)) of the lagrangian manifold g°M. Such points
are called focal points to the manifold M along this phase curve.

We note that the definitions of focal peints to M and the Morse index do not depend on
Schrodinger’s equation. but relate simply to the geometry of the phase flow in the cotangent
bundle to the configuration space (or to the calculus of variations, which is the same thing}.

[n particular, as our lagrangian manifold M we may take the fiber of the cotangent bundle
passing through the point (pg. ¢,) (given by the condition ¢ — g,). In this case a focal point 10
M on the phase curve going out froun (py, 4.} is called confugate to the original point (morc
precisely, the projection of this focal point onto the configuration space is said 1o be conjugate
1o the point ¢, along the extremal in the configuration space starting at ¢, with momentum py).
[n the even more special case of motion along a geodesic on a ricmannian manifold. a focal
point o a fiber of the cotangent bundle is cailed conjugate to the initial point of the geodesic
along this geodesic. For example, the south pole of a sphere is conjugale 1o the north pole along
any meridian.

The Morse index of an interval of a peodesic. cqual to the number of points conjugate 10 the
initial point, plays an important tole in the ¢aloulus of vartations. Namely, we consider the
second differential of the action as a quadratic form on the space of variations (with fixed end-
points) of the geodesic we are studying, Then the index of inertia of this quadratic form is equal
10 the Morse index (ef., for instance. J. Milnor, Morse Theory, Princeton University Press, 1967).

Thus the geodesic, up to the first conjugate point. is a minimum of the action, which justifies
the name “ principle of least action™ for various variational principles of mechanics.

We note that in calculating the Morse index, the focal points must be
counted with multiplicity (the multiplicity of a focal point in general position
is equal to ).

The Morse index 1s a particular case of the so-called Maslov index, which
is defined independently of the phase flow for any curve on a lagrangian mani-
fold of the cotangent bundle over the configuration space.

Consider the projection of our n-dimensional lagrangian manifold onto
the n-dimensional configuration space. This is a smooth mapping of mani-
folds of the same dimension. It can have singular points, i.e., points at which
the rank of the derivative mapping drops, and in a neighborhood of which
the projection is not a diffeomorphism.

It turns out that in general the set of singular points has dimension # — 1
and consists of the union of a smooth manifold of dimension s — | made up of
simple singular points al which the rank drops to 1, and a finite set of mani-
folds whose dimensions are # — 3 and smaller. Here, *in general” means that
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these propertics can be attained by an arbitrarily small perturbation of the
lagrangian manifold, vnder which it remains lagrangian.

We should point out that, among the pieces of various ranks into which the set of singular
points is divided, there is no piece of dimension n — 2. After the simplest singular points, forming
a manifold of dimension n — 1, there are the points where the rank drops by two; they form a
manifold of dtmension # — 3. The projection of the set of singular points onto the configuration
space (the caustic) consists, in general, of pieces of all dimensions from 0 to # — 1 without
omissions.

Furthermore, it turns out that the (n — 1)}-dimensional manifold of the
simplest singular points is two-sided in the lagrangian manifold; that is, we
can coordinate the crientations of the normais at all points in the following
way.

Consider some simple singular point on the lagrangian manifold. We take
a system of coordinates g, . .., g, in a neighborhood of the projection of this
point onto the configuration space. Let py, ..., p, be corresponding coordi-
nates in the fiber of the cotangent bundle. In a neighborhood of our singular
point, we can consider the lagrangian manifold as the graph of the vector
function (g, ps, . . ., pa) of the variables (p, q;, .. ., g,) (or a vector function
of an analogous form in which the role of the distinguished coordinate is
played not by the first coordinate but by any of the remaining coordinates).

Singular points near the given one are then defined by the condition
dq,/8p, = 0. For lagrangian manifolds in general position, this derivative
changes sign upon passing from one side of the manifold of singular points to
the other in our neighborhood of the simple singular point. We will call the
side where this derivative is positive the positive side,

We note that it is necessary to prove that the definitions of positive direction near different
points agree with one another. Furthermore, it must be shown that the positive direction near
one point is well defined, ie., does not depend on the coordinate system. All this can be done by
direct calculations (cf. the article cited above in “Functiona! Analysis™). For further development
of these ideas, see V. I. Arnold, Sturm theorems and symplectic geometry, Funct. Anal. Appl.
19 (1985).

Now the Maslov index of an oriented curve on a lagrangian manifold is
defined as the number of passages from the negative side of the manifold of
singularities to the positive side, minus the number of passages in the other
direction. In this we assume that the ends of the curve are nonsingular and
that the curve intersects only the manifeld of simple singular points and only
with nonzero angles. Having defined the index for such curves, we can define
it for an arbitrary curve connecting two nonsingular points: to do this it is
sufficient to approximate the curve by onc which intersects only the manifold
of simple singular points and only with nonzero angles. It can be shown that
the index does not depend on the choice of the approximating curve.,

ProsrLem. Find the index of the circle p=cosy, ¢ =sint orented by the parameter ¢,
0 <t < 2x, in the lagrangian manifold p? + g° = | of the phase plane.

ANSWER. + 2,
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Finally, the Morse index of a phasc curve in R*" can now be dcfined as the
Maslov index of a curve in an (n + 1)-dimensional lagrangian manifold in a
suitable (2n + 2)-dimensional phase space. As coordinates in this space we
will take (py. P; go. g) (where (p, ) € R*"). f we set g, = tand p, = — H(p. q),
and let the point (p, ¢) range over the n-dimensional lagrangian manifold in
R2" pbtained from the original after time ¢ by the action of the phase flow,
then under change of ¢ the points in R*"*? form an (# + 1)-dimensional
lagrangian manifold. The graph of the motion of a phase point under the
action of the phase flow can be considered as a curve on this (n + 1)-dimen-
sional lagrangian manifold. We can verify that the Maslov index of this graph
agrees with the Morse index of the original phase curve.

C Indices of closed curves

The indices of closed curves on lagrangian submanifolds of a linear phase
space can also be calculated with the help of a complex structure. In addition
to the symplectic structure dp A dg on the linear phase space R*" = {(p, )},
we introduce a euclidean structure (with scalar square p* + ¢?) and a
complex structure, in which multiplication by i 1s

LR*™R™  Hpg)=(—gqp) z=p+ig C"={z}
All three structures are connected by the relation

[x, ¥] = (Ix, y),

where the square brackets denote the skew-scalar product.

Linear transformations of the phase space preserving any two (and,
therefore, all three) structures are called unitary transformations. Such trans-
formations take lagrangian planes to lagrangian planes.

Every lagrangian plane can be obtained from any other (e.g., from the
real plane R" given by the equation g = 0) by a unitary transformation. In
addition, any two unitary transformations 4 and B carrying the real plane
to the same lagrangian plang differ by a unitary transformation which is a
real orthogonal transformation:

B = AC, where CR" = R".

Conversely, any preliminary orthogonal transformation does not change the
image of the plane under the action of a unitary transformation.

We now note that the determinant of an orthogonal transformation is
equal to + 1. Therefore the square of the determinant of a unitary transforma-
tion carrying the real plane to a given lagrangian plane depends only on the
lagrangian plane itself and does not depend at all on the choice of unitary
transformation.

After these preliminary remarks we return to our lagrangian manifold
and closed oriented curve lying in it. At every point of the curve, there 1s a
plane tangent to the lagrangian manifold in the symplectic vector space. The
square of the determinant of the unitary transformation carrying the real
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plane to this tangent plane is a complex number with modulus one. As a
point moves along our closed curve, this complex number changes. After an
entire circuit of the curve, the square of the determinant makes some integral
number of rotations around the origin on the plane of complex variables,
oriented from 1 to i. This integer is the index of the closed curve.

The indices of closed curves enter into asymptotic formulas for stationary
probiems (characteristic oscillations). Assume that the phase flow cor-
responding to the potential U has an invariant lagrangian manifold lying on
the energy level H = E. Then the equation

Ay = A(Ug) — Ey

has a series of eigenvalues Ay -+ o¢ with asymptotic form iy = puy + Ouz )
if, for every closed contour y on the lagrangian manifold, we have the con-
gruence

2 _

N b p dg = ind y (mod 4),

oy
In the one-dimensional case, the lagrangian manifold is a circle, its index

1s equal to 2, and the formula above reduces to the so-called *quantization
condition™

i §p dy = 2n(N + }).
T

The eigenfunctions corresponding Lo these cigenvalues are also associaled with lagrangian
manifolds, but this association is not so simple. In fact, we cannot write down asymptotic
formulas for eigenfunctions, but only for lunctions approximately satisfying the equations of
characteristic lunctions. These functions turn out ta be small outside the projection of the lagran-
gian manifold onto the configuration space. The asymptotic formulas have singularities near
the caustics formed by the projection.

The actual eigenfunctions, however. can behave entirely differently, at least if the cigen-
value is multiple or if there are eigenvalues close to it {ef. Appendix 10).
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Lagrangian singularities are singularities of projections of lagrangian mani-
folds onto configuration space. Such singularities are encountered in
investigating global solutions to the Hamilton-Jacobi equation, in studying
caustics, focal or conjugate points, in analyzing the propagation of dis-
continuities and shock waves in the mechanics of a solid medium, and also in
problems of short wave asymptotics {cf. Appendix 11).

in order to describe lagrangian singularities we must first say a few words
about singularities of smooth mappings in general. We begin with the
simplest examples.

A Singularities of smooth mappings of a surface onto a plane

The mapping projecting a sphere onto a plane is singular on the equatorial
circle (at points of the equator the rank of the derivative drops to one). As a
result, a curve is formed on the plane of projection (the so-called apparent
contour) bounding regions in which points have different numbers of pre-
images: ¢very point of the plane inside the apparent contour has two
pre-images, and every point outside has none.

In more complicated cases of “apparent contours” there can be more
complicated singularities. Consider, for example, the surface given in three-
dimensional space with coordinates (x, y, £} by the equation (Figure 243)

x=yz— 2
and the mapping of projection parallel to the z-axis onte the plane with
coordinates (x, y}.

The singular points of the projection form a smooth curve on the surface
(with equation 3z° = y). However, the image of this curve on the (x, y) plane
is not a smooth curve. This image is a semi-cubical parabola with a cusp at
the point (0, 0) with equation

27x? = 4)7.

Such a curve divides the plane into two parts: a smaller parl (inside the
cusp) and a larger part (outside). Over each point of the smaller part there
are three points of our surface, and over each point of the larger part there is
only one.

We now consider any small deformation of our surface. It turns out that,
under projection of any surface close to ours, the apparent contour will
always have a similar singularity (semi-cubical cusp) at some point close 1o
the singularity of the apparent contour of the original surface. In other words,
this singularity is not removabie by a small perturbation of the surface.

Furthermore, in place of a deformation of the surface, we can arbitrarily
deform the mapping itself of the surface to the plane (no longer caring
whether it 1s a projection), as long as it remains smooth and the deformation
1s small. It turns out that, for these deformations too, the cusp docs not dis-
appear but is only slightly deformed.

The examples presented here exhaust all typical singularities of mappings
of a surface to the plane. It can be shown that ail more complicated singu-
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Figure 245 Whitney's tuck

farities are removable by a small perturbatton. Therefore, by slightly de-
forming any smooth mapping, we can always arrange that in a neighborhood
of any point of the surface, the mapping will be either nonsingular, or
structurally similar to the projection mapping of a spher¢ onto a plane near
the equator, or structurally similar to the projection mapping of the surface
considered above with a cubic cusp on the apparent contour.,

The words “structurally similar to™ mean that, on the pre-image surface
and the image plane, we can choose local coordinates (in a neighborhood of
our point and its image) such that in these coordinates the mapping will be
written in a special way, Namely, the normal forms to which the mapping
of the surface 1o the plane will be reduced in a neighborhood of points of the
three types indicated above will be

¥ = X; Yo =X (nonsingular point)

¥, = xi ¥z = X3 (a fold, as on the equator of the sphere)

XX; = X3 ¥y =2x;  (a“tuck” with a cusp on the apparent
contour)

n

Here (x,, x,) are the local coordinates in the pre-image, and (p,, y,) are the
local coordinates in the image.

The proof of this theorem (it is due to H. Whitney) and its multidimen-
sional generalizations can be found in works on the theory of singularities of
smooth maps, such as

V. 1. Amold, Singularities of smooth mappings, Russian Math. Surveys 23:1 (1968) 1-44,

Symposium on Singularities of Smooth Manifolds and Maps, Univ. of Liverpool, 196970,
Proceedings. Springer, 1971, See especially the article of R. Thom and H. Levine.

Golubitsky and Guillemin, Stable Mappings and Their Singularitics, Springer-Verlag, 1973,
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B Singularivies of projection of lagrangian manifolds

We now consider an n-dimensional configuration manifeld, the correspond-
ing 2n-dimensional phase space, and an n-dimensional lagrangian submani-
fold (ic., an n-dimensional submanifold on which the 2-form giving the
symplectic structure of the phase space is identically zero).

By projecting the lagrangian manifold onto the configuration space, we
obtain a mapping of one smooth n-dimensional manifold to another. At most
points, this mapping is a local diffeomorphism, but at some points of the
lagrangian manifold the rank of the differential drops. These points are said
to be singular. Under projection of the set of singular points to the configura-
tion space an “apparent contour™ is formed, which is called a caustic in the
lagrangian case.

Caustics can have comphcated singularities: however, as in the usual
theory of singularities of smooth maps, we can get rid of singularities which
are too complicated by a small perturbation (here, by a small perturbation,
we mean a small deformation of a lagrangian manifold in phase space under
which this manifold remains lagrangian).

After this there remain only the simplest unremovable singulanities, for
which we can write out normat forms and which we can study once and for all.
When considering problems in general position which do not satisfy any
special properties of symmetry, it 1s natural to expect that only these simple
unremovable singularities will appear.

Consider, for example, the caustics formed on a wall by light from a point
source reflected from some smooth curved surface (here the four-dimensional
phase space is formed by straight lines intersecting the surface of the wall in
all possible directions, and the lagrangian submanifold by the rays of light
coming from the source as they intersect the wall). By moving the source, we
can see that generally the caustics have only simple singularities (semi-
cubical cusps), while more complicated singularitics appear only for special,
exceptional positions of the source.

We will give below, for n < 5, normal forms for singularities of the pro-
Jjection of an n-dimensional lagrangian submanifold of 2n-dimensional phase
space onto an »-dimensional configuration space. There are a finite number
of these normal forms, and their classification is related {in a rather mysteri-
ous way) with the classifications of simple Lie groups, simple degenerate
critical points of functions, regular polyhedra, and many other objects. For
n = 6, the normal forms of some singularitics must inevitably contain
parameters. For further details the reader is referred to the articles:

V. 1. Arnold, Normal forms for functions near degenerute critical points, the Weyl groups of
Ay P Epoand lagrangian singularities. Functional Analysis and [ts Applications 6:4(1972)
154 272

V. & Arnold, Critical points of smooth functions and their normal forms, Uspekhi Mat. Nauk
3005 (1975).
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C Tables of normal forms of typical singularities
of projections of lagrangian manifolds of
dimension n < 5

We will use the following notation:
(¢,,-..,4,)are coordinates on the configuration space,
(p,. ..., p,) are the corresponding impulses,

so that p and ¢ together form a symplectic coordinate system in the phase
space.

We will give a lagrangian manifold with the help of a generating function
F by the formulas

oF aF
4= p=-7-
ap; ! g,
where the index i runs over some subsct of {1, ..., #} and j runs over the re-
mainder of {1,...,n}. Thatis,i = 1,j > 1 for singularities denoted in the list

by A, and i = 1, 2, j > 2 for singularities denoted by D, and E,.

With this notation, one and the same expression F(p,, g;) can be con-
sidered as giving a lagrangian manifold in spaces of a different number of
dimensions: we can add arbitrarily many arguments ¢;, on which F does not
actually depend.

The Iist of normal forms of typicul singularities is now as follows: for
n=1

AGF=pt Ay F = 4p}:
for 1 = 2, in addition to the two above, there is
Ay F = 4pt + qyp7;
for n = 3, in addition to the three preceding, there ure

Ay F

1ol + 30} + dapi,
Dy F = 1pip; £ p3 + 503
for n = 4, in addition to the five preceding, there are
AstF = 97 + qupl + 4287 + 4204,
Ds:F = 1pipy + p3 + qap3 + a5p3:
for n = 5, in addition to the seven preceding, therc are
Ae: F = £p + g5p} + -+ + 21,
Dy F = +pipy + p3 + 4sp3 + dabi + 43p3,
Eg:F = 4p] + 05+ 953 + daliPs + 4373
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D Discussion of the normal forms

A point of type A, is nonsingular. A singularity of type 4, is a fold singularity.
If we take (p,, g3, ---, ga) 28 coordinates on the lagrangian manifold, then
the projection mapping may be written as

(p]s gz, -H&q»)_' (_+._3p%’ g2, "'9qn)‘

A singularity of type 4, is a tuck with a semi-cubical cusp on the visible
contour. To convince ourselves of this, it is enough to wriie cut the cor-
responding mapping of the two-dimensional lagrangian manifold to the
plane:

(1. G2) = (£4p1 + 24,p4, 42).

A singularity of type A, first appears in the three-dimensional case, and
the corresponding caustic is represented by a surface in three-dimensional
space (Figure 246) with a singularity called a swallowtail (we already en-
countered this in Section 46),

The caustic of a singularity of type D, in three-dimensional space is
represented as a surface with three cuspidal edges (of type 4,), tangent at
one pomt; two of these cuspidal edges can be imaginary, so that there are
two versions of the caustic of D,

Az

Figure 246 Typical singularities of caustics in three-dimensional spacc

E Lagrangian equivalence

We must now say in what sense the examples mentioned are normal forms of

typical singularities of projections of lagrangian manifolds. First of all, we

will define which singularities we will consider to have the “same structure.”
A projection mapping of a lagrangian manifold onto configuration space

will be called a lagrangian mapping for short. Suppose that we are given two

450



Appendix 12: Lagrangian singularities

lagrangian mappings of manifelds of the same dimension » (the correspond-
ing n-dimensional lagrangian manifoids lie, in general, in different phase
spaces which are cotangent bundles of two different configuration spaces). We
say that two such lagrangian mappings are lagrangian equivalent if there is a
symplectic diffeomorphism of the first phase space to the second, taking
fibers of the first cotangent bundle to fibers of the second, and taking the first
lagrangian manifold to the second. The symplectic diffeomorphism itself is
then called a lagrangian equivalence mapping.

We note that two lagrangian equivalent lagrangian mappings are taken
one to the other with the help of diffeomorphisms in the pre-image space and
the image space (or, as they say in analysis, are carried to one another by a
change of coordinates in the pre-image and in the image). In fact, our sym-
ptectic diffeomorphism restricted to the lagrangian manifeld gives a difleo-
morphism of the pre-images; a diffeomorphism of the configuration-space
images arises because fibers are carried to fibers.

In particular, the caustics of the two lagrangian equivalent mappings are
diffeomorphic, hence a classification up to lagrangian equivalence implies a
classification of caustics. However, the classification up to lagrangian equiv-
alence is finer than the classification of caustics, since a difeomorphism of
caustics does not in general give rise to a lagrangian equivalence of the map-
pings. Furthermore, the classification up to lagrangian e¢quivalence 15 finer
then the classification up to diffeomorphisms of the pre-image and image,
since not every such pair of diffeomorphisms is realized by a symplectic
diffeomorphism of the phase space.

A lagrangian mapping considered in a neighborhood of some chosen point
is called lagrangian equivalent at that point to another lagrangian mapping
(also with a chosen point), if there is a lagrangian equivalence of the first
mapping in some neighborhood of the first point onto the second in some
neighborhood of the second point, carrying the first point to the second.

We can now formulate a classification theorem for singularities of
lagrangian mappings in dimensions n < 5,

Theorem. Every n-dimensional lugrangian manifold (n < 35) can, by an arbi-
trarily small perturbation in the class of lagrangiun manifolds, be made into
one such that the projection mapping onto the configuration space will be
lagrangian equivalent at every point to one of the lagrangian mappings in
the list above.

In particular, a two-dimensional lagrangian manifold can be put in
“general position” by an arbitrarily small perturbation in the class of
lagrangian manifolds, so that the projection mapping onto the configuration
space (two-dimensional) will not have singularities other than folds (which
can be reduced by a lagrangian equivalence to the normal form 4;) or tucks
(which can be reduced by a lagrangian equivalence to the normal form A,).
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We note that this assertion about two-dimensional lagrangian mappings does not follow
from the classification theorem for general (non-lagrangian) mappings. In the first place.
lagrangian mappings make up a very resiricted class among all smooth mappings, and therefore
they can {and actually do for n > 2} have as typical. singularities which are not typical lor
mappings ol general form. Secondly. the possibility of reducing a mapping to normal form by
diffeomorphisms of the pre-image and image does not imply that this can be done using a
lagrangian eguivalence.

in this way, the caustics of a two-dimensional lagrangian manifeld in
general position have as singularities only semi-cubical cusps (and points of
transversal intersection}. All more complicated singularities break up under
a small perturbation of the lagrangian manifold, the resulting cusps and sell-
intersection points of caustics are unremovable by small perturbations, and
are only slightly deformed.

Normal forms of the singularities A,, D, , ... can be used in a similar way
for studying the caustics of lagrangian manifolds of higher dimensions, and
also for studying the development of caustics of low-dimensional lagrangian
manifolds, when parameters on which the manifold depends are varied.''®

Other applications of the lormulas of this section can be lound in the theory of Legendre
singularities, 1.e., singularities of wave fronts. Legendre transforms, envelopes, and convex hulls
{cl. Appendix 4). The theories of lagrangian and Legendre singularities have direct application,
not only in geometric optics and the theory of asymptotics of oscillaling integrals, but also in
the calculus of variations, in the theory of discontinuous solutions ol ronlinear partial differential
cquations, in optimization problems, pursuit probtems. ctc. R. Thom has suggested the general
name catastrophe theory [or the theory of singularitics, the theory of bifurcations, and their
applications.

116 See, e.g., ¥. Arnold, Evolution of wavefronts and equivariant Morse lemma. Comm. Pure
Appl. Math., 1976, No. 6.
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Not all first integrals of equations in classical mechanics are explained by
obvious symmetries of a problem (examples are specific integrals of Kepler’s
problem, the problem of geodesics on an ellipsoid, etc.). In such cases, we
speak of “hidden symmetry.”!!”

Interesting examples of such hidden symmetry are furnished by the
Korteweg-de Vries equation

(1) o, = O, — U, ..

This nonlinear partial differential equation first arose in the theory of
waves in shallow water; later it turned out that this equation is encountered
in a whole sertes of problems in mathematical physics.

As a result of a scries of numerical experiments, remarkable properties
of solutions of this equation with zero boundary conditions at infinity were
discovered: as t — oo and t -+ — o these solutions decompose into “soli-
tons " —waves of definite form moving with different velocities.

To obtain o solilon moving with velocity ¢, it is sufficient 1o substitute the function
w={x ¢t} ino cquation (1) Then we obtain the cquation ¢” = 39 + co + o for ¢
(i 15 a parameler). This is Newton's equation with 4 cubic potential. There 1s 4 saddle on (he
phase space (¢, ¢'). The separatrix going from this saddle to the saddle for which ¢ = 0 de-
termines 4 solution ¢ tending to 0 as x — + w0 ;itis a soliton.

When solitons collide, there is a complicated nonlinear interaction.
However, numerical experiments showed that the sizes and velocities of the
solitons do not change as a result of collision. And, in fact, Kruskal, Zabusky,
Lax, Gardner, Green, and Miura succeeded in finding a whole series of first
integrals for the Korteweg-de Vries equation. These integrals have the form
I, = { Pfu, ..., u")dx, where P_is a polynomial. For example, it is easy to
verify that the following are first integrals of equation (1):

12
I, = fu dx I, = J-uz dx I, = J‘(uz + u3)ﬂ'x,
u? 5 5
I, = J(T - zuzu" + Eu“)dx.

The appearance of an infinite series of first integrals is easily explained by
the following theorem of Lax.’'® We will denote the operator of multiplica-
tion by a function of x by the symbol for the function itself, and the operator
of differentiation with respect to x by the symbel 4. Consider the Sturm-
Liouville operator L = — ¢ + u depending on a function u(x). We verify
directly:

Theorem, The Korteweg-de Vries equation (1} 1s equivalent to the equation
=1, A],where A = 43* — 3u d + o).

U7 The term “accidental symmetry ™ is frequently used in English. [Trans. note.]

Y8 [ax, P. D, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure
Appl. Math, 21 (1968) 467 490.
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Directly from this theorem of Lax, we have

Corollary. The operators L constructed from a solution of equation (1) are
unitarily equivalent for all t; in particular, each of the eigenvalues 4 of the
Sturm-Lionvitle problem Lf = Af with zero boundary conditions at infinity
is a first integral of the Korteweg—de Vries equation.

Gurdner, V. E. Zakharov and L. D. Faddeev noted that equation (1) is a
completely integrable infinite-dimensional hamiltonian system, and found
the corresponding action-angle variables.''® A symplectic structure on the
space of functions vanishing at infinity is given by the skew-scalar product
(8w, év) = 3 | (w dv — v Aw)dx, and the hamiltonian of equation (1) is the
integral f,. In other words, equation (1) can be written in the form of Hamil-
ton’s equation in the functional space of functions of x, & = (d/dx)} b1, /6u).

Every integral I, gives in this way a “higher Korteweg-de Vries equation™
u = Q[u], where Q, = (d/dx) (8] /du) is a polynomial in the derivatives
u,u,. .., u*" Theintegrals I, are in involution, and the flows corresponding
to them on the functional space commute.

The explicit form of the polynomials P, and @, and also the explicit form of the action-
angle variables (and thercfore of solutions of equation {1)). is deseribed in terms of solutions of
the direct and inverse problems of scattering theory with potential e

The explicit form of the pelynomials ¢, can also be obtained from the following thecorem of
Gardner, generalizing Lax’s theorem. In the space of functions of x. we consider a differential
operator of the form 4 = Zp,-ﬁ"’ L where p, = 1. and the remaining coeflicients p, are poly-
nomials in w and the derivatives of w with respect w . Tt tuens out that, for any s there is
an operator 4, of order 25 + 1 such that its commutator with the Sturm Liouvitle operator L
is the operator of multiplication by a function [L, 4,] - Q..

The operator A, is defined by these conditions uniquely up to the addition of linear combina-
tions of the 4, with v < 5:in the same way, the polynomials £, are determined up to the addition
ol linear combinations of the preceding 9,7,

V. E. Zakharov, A. B. Shabat, L. D. Faddeev, and others, using Lax’s
method and techniques of inverse scattering theory, have studied a whole
series of physically important equations, including the equations u,, — u
sinuand iy, + ¥ + Yyl =0

Investigation of the problem with periodic boundary conditions for the
Korteweg-de Vries equation led S. P. Novikov!2° to the discovery of an
interesting class of completely integrable systems with a finite number of
degrees of freedom. These systems are constructed in the following way.

Consider any finite linear combination of first integrals, J =Y ¢;f,_;,
and let ¢, = 1. The set of stationary points of the flow with hamiltonian {

x =

1% Zakharov, V. E. and Faddecv, L. D.. The Korteweg: de Vries equation is a compietely
integrabte hamiltonian system. Functional Analysis and Its Applications, 5:4 (1971) 280--287.

120 Novikov, §. P., The periodic problem for the Korteweg de Vries equation. Functional
Analysis and [ts Applications, 8:3 (1974) 236 246,
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on the functional space is invariant under the phase flows with hamiltonians
i, including the phase flow of equation (1).

On the other hand, these stationary points are deterrmined from the
equations (d/dx)di/0u) = 0, or 3f/du = d. The second equation is the
Euler-Lagrange equation for the functional I — df_, involving derivatives
of order n. Therefore, it has order 2r and can be written as a hamiltonian
system of equations in 2n-dimensional cuclidean space.

It turns out that this hamilloman system with »# degrees of freedom has »
integrals in involution and can be integrated completely with the help of
suitable action-angle coordinatcs. In this way, we obtain a finite-dimensional
family of particular solutions of the Korteweg-de Vries equation depending
on 3n + 1 parameters (21 phase coordinates and 1 + 1 further parameters
Claeeey Caid)

These solutions have, as Novikov showed, remarkable properties: for
example, in the periodic problem they give functions u(x) for which the lingar
differential cquation with periodic coefficients

— X"+ u(x)X = AX

has a finite number of zones of parametric resonance (cf. Section 25) on the
A-axis.

After this book was written, much work was done on the subjects dis-
cussed in this appendix, in particular by Novikov, Dubrovin, Krichever,
Manakov, Matveev, Its, Dikii, Manin, Drinfeld, Gelfand, Lax, Moser,
McKean, Van Moerbeke, Adler, Perelomov, Olshanetskii, and many others,
Among other things, Manakov solved the Euler equations of a rigid body in
" for arbitrary n: these are completely integrable. For more details see the
forthcoming book by Novikov and his collaborators. (Note added by author
in translation.)
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Along with the classical Poisson bracket of functions, one also encounters
more generai (degenerate) brackets. A typical example is the Poisson bracket
of functions of the components M, of the angular momentum vector:
{F, G} = Y (OF/eMMEG/aM) M, M;}. Such degenerate brackets may be
considered as families of ordinary Poisson brackets or families of sympletic
manifolds. These families gencrally have singularities (they are not foliations):
they consist of symplectic manifolds (leaves) of different dimensions, related
to one another by the condition of smoothness for the given degencrate
Poisson bracket structure on the ambient space. (In the angular momentum
example above, the leaves are concentric spheres and their center at the
origin.)

In this appendix, we shall present the simplest elementary properties of
Poisson structures on finite-dimensional manifolds. One should keep in mind,
though, that in applications (especially to the mathematical physics of con-
tinuous media) one frequently encounters Poisson structures on infinite-
dimensional manifolds. In these cases, the symplectic leaves often (but not
always) have finite dimension or codimension.

A Poisson manifolds

A Poisson structure on a manifold is a Lic algebra structurc on its space
of smooth functions (i.e., a bilincar skew-symmetric operation of “Poisson
bracket” on functions, satisfving the Jacobi identity) such that the operator
ad, = {a, } (contraction of the Poisson bracket with any fixed function a) is
an operator of differentiation by some vector ficld 8,. The vector field 6, is then
called the hamiltonian vector field with hamiltonian function ¢. The mapping
ar— 68, gives a homomorphism from the Lie algebra of functions to the Lie
algebra of vector fields. A manifold with a given Poisson structure is called a
Poisson manifold.

Two points on a Poisson manifold are called eguivalent if they can be joined
by a path consisting of segments of integral curves of hamiltonian vector fields.
The equivalence classes under this relation are catled the leaves of the Poisson
manifold. The values of all possible hamiltonian vector fields at a given point
of a Poisson manifold form a linear space which is just the tangent space of
the leaf through that poini. Thus the leaves ar¢ smooth manifolds, but they
are in general not closed, and they have different dimensions.

The classical (explicitly described by 8. Lie in 1890, but essentially con-
sidered already by Jacobi) example of a Poisson manifold is the dual space of
a (finite-dimensionai) Lie algebra. The elements of the algebra itself may be
considered as linear functions on this space. The Poisson structure is defined
as an extension of the Lie algebra structure from this finite-dimensional sub-
space to the entire space of smooth functions on the dual of the original Lie
algebra. Such an extension ¢xists and is unique: if w4, ..., w, is a basis of the
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original Lie algebra, then
{ﬂ, b}?oisson = Z (aaflla(ﬂi] (abifaw;) [wi, wj]l..ic'

In this example, the leaves are the orbits of the co-adjoint representation of
the underlying Lie group in the dual of its Lie algebra.

Every leaf of a Poisson manifold carries a natural symplectic structure
{closed nondegenerate 2-form), defined in the following way. Consider the
values of two hamiltonian vector ficlds at a point of the leaf. The value of the
2-form on this pair of vectors is defined to be the value of the Poisson bracket
of the hamiltonian functions at the given point (this value depends only on the
two vectors and not on the choice of hamiltenian functions). The fact that the
form is closed on the leaf follows from the Jacobi identity; nondegeneracy
comes from the fact that, if the derivative of every function by a given tangent
vector is zero, then the vector itself must be zero. The phase flow of every
hamiltonian vector field preserves the symplectic structures on the leaves.

Thus, the leaves of a Poisson manifold are even dimensional, and the
manifold may be considered as a union of sympletic manifolds (generaily of
different dimensions), whose symplectic structures are coordinated by the
condition that the Potsson bracket on the ambient space be smooth.

For example, the co-adjoint orbits of SO(3) (spheres centered at the origin)
may be organized according to local Darboux coordinates: in the neighbor-
hood of any nonzero point, the Poisson structure in suitable local coordinates
takesthe form {x, y} = 1, {x,z} = { ¥z} = 0. This normal form for the Poisson
structure on the space of angular momenta is convenient in carrying out the
process of elimination of the nodes in the many-body problem (see Section
IIL5.5 of the paper: V. L. Arnol'd, Small denominators and problems of
stability of motion in classical and celestial mechanics, Russian Math. Surveys
18, No. 6 (1963), 85 191).

Jacobi realized that the (classical} Poisson brackets of the first integrals
of any hamiltonian system could be considered as a Poisson structure (this
structure is discussed in Section Y1.1.3 of the author’s paper cited above).

The construction of a Poisson structure on the dual space of a Lie algebra
leads to a new Lie algebra. This construction may then be repeated, leading
to a whole series of new (infinite-dimensional) Poisson structures. More gen-
erally, suppose that one is given any Poisson structure on a manifold. Then
the space of functions on that manifold carries the structure of a Lie algebra.
This implies that the dual space of this function space carries its own Poisson
structure. Elements of this dual space may be interpreted as distribution den-
sities on the original manifold. Thus, the space of distributions on a Poisson
manifold (for example, on a symplectic phase space) has a natural Poisson
structure. This structure makes it possible to apply the hamiltonian formalism
to equations of Viasov type, which describe the evolution of distributions of
particles in phase space under the action of a field which is consistent with the
particles themselves.
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B Poisson mappings

A mapping from one Poisson manifold to another is called a Poisson mapping
if it is consistent with the Poisson structures, ie., if for any two functions
on the second manifold, the Poisson bracket of their puilbacks to the first
manifold coincides with the pullback of their Poisson brackets. For example,
the embedding of each symplectic leaf in a Poisson manifold is a Poisson
mapping.

The cartesian product of two Poisson manifolds has a natural Poisson
structure, for which the projection on each factor 1s a Poisson mapping (the
Poisson bracket of functions puiled back from different factors is zero).

S. Lic showed that every Poisson manifold is locally (in the neighborhood
of a point where the dimension of the symplectic leaves is locally constant, for
example, in the neighborhood of a generic point, where the rank is locally
maximal) decomposible into the product of a symplectic leaf and a comple-
mentary space on which all Poisson brackets are zero.

On such a neighborhood, one may introduce coordinates p,, g;, ¢; such that
p and ¢ have the usual symplectic Poisson brackets, while the Poisson bracket
of each ¢; with any function is equal to zero. In physics, the coordinates p; and
g; are called Clebsch variables,’*! while the ¢'s are called Casimir functions.
Clebsch introduced his variables for the hamiltonian description of the hydro-
dynamics of ideal fluids, while Casimir considered the center of the Lie algebra
of functions on the dual space of a given Lie algebra.

The dimension of the symplectic leaf through a nongeneric point of a
Poisson manifold is less than that for nearby generic points. In the neighbor-
hood of such a point, the Poisson manifold may still be represented as the
product of a neighborhood of the point in its symplectic leaf and a neighbor-
hood of a distinguished point in some Peisson manifold of complementary
dimensicon. In other words, on a minimal transverse manifold to a symplectic
leaf there arises a (unique up to diffeomorphism}local Poisson structure—the
so-called transverse Poisson structure (cf. A. Weinstein, The local structure of
Poisson manifolds, J. Diff. Geom. 18 (1983), 523-557)."%? In the transverse
structure, the Poisson brackets of all functions are zero at the distinguished
point (which may be taken as the origin of a coordinate system). The Taylor
series for these brackets begin with

{xnx;} =Yl + o,

121 Translator's note: The term Clebsch varinbles is also used to refer 1o canonical coordinates
on a symplectic manifold which projects onto {rather than embeds into) a Poissen manifold.

122 Warning: As A. B. Givental’ has noted, Theorem 3.1 in this paper is incorrect. (Translator’s
note; For further discussion, see A, Weinstein, Lie algebras and Polsson structures, Astérisque,
hors série (1985), 257 271)
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where c,—"_j are the structure constants of a finite-dimensional Lic algebra (the
linearized transverse structure).

A natural guestion ariscs: Is it possible to annihilate the higher order terms
in the Taylor series by a suitable change of coordinates?

The question of the form of transverse structures was already raised by the
author in Section V1.1.3 of the previously cited article.

If the linearized algebra is semisimple and the Poisson structure is analytic,
then one can eliminate the higher order terms of the Taylor serics by an
analytic change of coordinates: J. Conn, Linearization of analytic Poisson
structures, Annals of Math. 119 (1984), 577-601. An analogous result is true
for the C* case, when the linearized algebra is of compact type: J. Conn,
Lincarization of C* Poisson structures, Annals of Math. (1985).

A. Weinstein, along with his earlier proof of an analogous resuit for formal
series, expressed the conjecture that semisimplicity was a necessary condition
for the annihilation of nonlinear terms. The study of singularities of Poisson
structures in the plane (or, more generally, structures with symplectic leaves
of codimension 2) leads, however, to a different conclusion.

C Poisson structures in the plane

From the point of view of differential geometry, a Poisson structure is given
by a smooth bivector field on a manifold. In fact, the Poisson brackets at each
point associate a number to each pair of cotangent vectors. Therefore they
define a section of the sccond exterior power of the tangent bundle, ic., a
bivector field.

The Jacobi identity expresses a sort of “closedness™ of this bivector fieid,
On a two-dimensional manifold, this closedness condition is automatically
satisfied everywhere, so that every smooth bivector field on the planc gives a
Poisson structure. This circumstance allows one to apply to the classification
of Poissen structures in the plane the usual considerations of general position
(transversality, etc.). In terms of coordinates x, y, a bivector field may be
expressed in the form f(é, A 6,), where f is a smooth function. The corre-
sponding Poisson structure is defined by the condition

{n {xp) = flx, ).

A Poisson structure on the plane may also be given by a differential 2-form
dx » dy/f. This form, like the bivector field, is invariantly connected with the
Poisson structure; however, unlike the bivector field, it has pole singuiarities
along the curve f = 0. The leaves in this case are the points of the curve f = 0
and the connected components of the complement of this curve in the plane.
Points of the curve f = 0 are called singular points of the Poisson structure,
In the neighborhoed of a nonsingular point, any Poisson structure in the plane
may be put into the normal form {x, y} = 1.

The following diagram shows the beginning of the hierarchy of singularities
of Potsson structures on the plane in the neighborhood of a singular point.
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Eé‘__EE; — ES‘

Each letter in the diagram represents a Poisson structure which, in suitable
local coordinates with origin at the singular point under consideration, can
be written in the form {x, y} = f, where the function f is given by Table 1.

Table 1
Ag An Ix-1 D
2 2k 2., k-1
yoooxd 4yl xty xyty
1+ ay*™! 1 +ax + by*
D1 Eq ES E,
2 T 3 3
Xy + X7+ x
Yty x4y Y x4y
!+ ax L+ ay?

Theorem. Given a Poisson structure on a two-dimensional manifold, it is either
reducible in a neighborhood of each point to one of the normal forms in Table
1, or it belongs to a set of codimension 8 in the space of Poisson struciures.

Thus, a generic Poisson structure may be reduced in a neighborhood of
each point to the normal form {x, y} = 1 (nonsingular point) or {x, y} = y
(point of type Ag). In a generic one-parameter family, one encounters for
special values of the parameter structures of the type 4,: {x, y} = b(x* £ y?),
b # 0; in two-parameter families one finds A, etc.

Remark 1. In the two-dimensional case, the set of all Poisson structures
forms a linear space, so that one may speak of a generic structure or family of
structures (having in mind a structure [family] belonging to some open dense
subset of the space of structures [families]). The problem of classifying generic
Poisson structures in three or more dimensions is not uniquely posed, since
the set of all such structures does not form a single manifold (one may find
components of “different dimensions,” as in the classification of Lie algebras).

Remark 2. The structure {x, y} = y of type 4, is the standard Poisson
structure on the dual space of the Lie algebra of the group of affine transforma-
tions of the line. This structure was considered in 1965, in connection with the
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study of the Euler equations for left-invariant metrics on groups (in this
case—the Lobachevskii metric on a half-plane), at which time it was already
rcalized that the structure is stable and is locally equivalent to any structure
oftheform {x, y} = ¥ + -+, where the dots designate higher order terms. This
{evident} observation contradicts the previously mentioned conjecture of A.
Weinstein, according to which the possibility of removing any higher order
terms by a formal change of coordinates was characteristic of the linear
Poisson structures on the dual spaces of semisimple Lie algebras.

Remark 3. The parameters a, b in the table above arc moduli (invariants
depending continuously on the structure). More precisely, structures equivalent
to a given one are found only a finite number of times as the parameters are
varied.

The rational functions in Table 1 may be replaced by polynomials, but it
is not very convenient to do so. The number of moduli in the numerator is
one less than the number of irreducible components of the curve f = 0. This is
not merely a coincidence. One invariant of a Poisson structure on the plane
is the residue constructed from the form dx A dy/f (initiaily, one constructs
a residue-form on each component, then its residue at the origin). The sum of
the residues corresponding to all the components is zero. Therefore the
number of moduli is 1 less than the number of components.

D Powers of volume forms

The classification of Poisson structures on the piane may be considered as
the classification of differential forms of the type fidx A dy)™!, where [ is
a smooth (or holomorphic) function. More generally, it is natural to consider
forms of the type

2) Sldxy = fxy,..ox)(dx, A A dx,),

where « is a fixed number, generally complex. The classification of such forms
and their deformations in the one-dimensional case, recently carried out by
V. P. Kostov, revealed the role of resonance values of x (certain negative
rational numbers).

For example, the resonance case n = 1, x = — | corresponds to the classi-
fication of the singularities and their bifurcations for vector fields on the line,
i.e., singular points of differential equations X = u(x} and their bifurcations in
finite-parameter families. A generic one-parameter family may be reduced by
a smooth (holomorphic) change of the parameter and a smooth (holomorphic)
change of the variable x, depending smoothly (holomorphically) on the
parameter, to the form x = x? + ¢ + c(g}x*. (For k parameters, the corre-
sponding form is ¥ = x**1 4 g x* ! + - + 5 + ()}

The nonresonance case was studied by S. Lando for all n and «: he showed
that almost every versal deformation of the function f defines, after multiplica-
tion by (dx)*, a versal deformation of the form, as long as « is not a resonance
value.
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The case « = — 1, which is interesting in connection with Poisson structures,
is generally a resonance case. Instead of powers of volume forms, as in (2),
we may consider the differential forms

(3) fPdx,  B=1/a,

whose classification is obviously equivalent.

The hypersurface f = 0 is invariantly connected with the form (3). The
classification therefore begins with the reduction to normal form of the singu-
larity manifold f = 0. The beginning of the hierarchy of singuiar points of
hypersurfaces is known. In suitable local coordinates, a hypersurface is given
by one of the equations in the following list:

ekt =0, pu20

=t

xix, +xE X3+ xE =0, u=4

+

Ego xi+xi+xit-—£x1=0;

Ll

Ey xi+xx3txi+-+xi=0

Eg: xi+xi+xi+--+x2=0.

H

After we have brought the hypersurface into normal form, the classification
of the forms (2) or (3) comes down to classifying forms of the type

(4} fPhixy,....x,) dx, h{0) # 0,

where f = 0 is the given equation of the singularity hypersurface and k is
a smooth (holomorphic} function which remains to be put in normal form.

E The quasi-homogeneous case

We shall consider here the case in which the singularity hypersurface f = O is
quasi-homogeneous (this condition holds for the cases A4, D, E).

Definition. A function [ is called quasi-homogeneous of weight p, with weights
w; attached to the variables x,, if it is an eigenfunction with eigenvalue p for
the quasi-homogeneous Euler vector field ¢ (or is zero):

¢ = pf, where e = w,x;(/dx,).

A quasi-homogeneous polynomial is called nondegenerate if the critical point
0 has finite muitiplicity (i.e., it is C isclated). From here on, we will take the
weights w, to be positive numbers.

Theorem. Let f be a nondegenerate guasi-homogeneous polynomial of weight 1.
Then the differential form f#h dx (where dx =dx, A+~ dx, and h is a holo-
morphic function on a neighborhood of 0) may be rediced by a biholomorphic
coordinate change in a neighborhood of zero to the form f*(1 + ¢) dx, where
& is a quasi-homogeneous polynomial of weight —f — 0,6 = w; + - + w,.
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The weight of ¢ is chosen so that the weight of the form f#¢ dx is zero.
An analogous theorem is true for smooth i (and smooth coordinate changes),
except that in the real case one must replace 1 + ¢ by +1 + 4.

ExampLe 1. If § is positive, then ¢ = 0, so that the complex form reduces
to f# dx.

More gencrally, ¢ = 0 if the (possibly complex) number § is not a negative
rational number: in this case, a nonzero quasi-homogeneous polynomial of
weight —f — ¢ docs not appear. If the polynomial f (or just tts quasi-
homogeneity type w) is fixed, then the resonance values of § form a finite set
of arithmetic progressions in the negative rationals (for the remaining £,
f#h dx reduces to the form f# dx).

ExaMmpPLE 2. If § = — 1, then the monomials occurring in ¢ may be enumerated
by the interior integral points of the Newton diagram of f. The monomial
x™ = x...x; " corresponds to the point (m, + 1,...,m, + 1) of the diagram
(i.e., the exponent of the form x™ dx).

ExampLE 3. Suppose that f = — 1,n = 3,and fis onc of the A, D, E polynomials
introduced above, defining a simple singularity. Calculating weights, we find
that — 8 — o < 0; therefore ¢ = @, from which we obtain;

Corollary 1. The form with pole singuiarity

hix, y, 2)dx ~ dy A dz
Sx, 3, 2)

where [ is one of the polynomials A, D, E, may be reduced to the form
dx ~ dy » dz/f by a holomorphic (smooth) change of coordinates.

, hi(0) # 0,

In exactly the same way for any n > 3, a factor A{x,, ..., x,) which does not
vanish at the ongin can be converted to unity.

Corollary 2. A simple form (i.e., one not having moduli) of the typedx, A -+ A
dx, /fix,,...,x,), where [ is a holomorphic (smooth) function near the origin
and n > 2, may be reduced by a coordinate change in a neighborhood of the
origin to a normal formin which [ is either 1 or one of the A, D, E polynomials.

Corollary 3. 4 simple (not having moduli) n-vector field in n-dimensional space
(n > 2) is locally equivalent to a normal form f-{d, A -+ A é,), where f is
either | or one of the A, D, E polynomials; &, = é/ix,.

Corollary 4. For | < 6, in generic I-parameter families of n-vector fields on
n-dimensional space (n > 2), the field in a neighborhood of each point and for
each value of the parameters is equivalent to one of the simple fields in the
preceding coroliary.
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Corollary 5. For [ < 6, in generic I-parameter families of forms dx ~ dy A dz/
f{x, y, 2), one finds only forms which in the neighborhood of each point are
locally equivalent to one of the following 24 types:

de ndy ndz dx A dy A dz dx ndy A dz dx ady A dz

1 ’ < : x2+y2i22’ -x_3+y2-i__-22°
dy A dy A dz dx n dy ~ dz dx ndy n dz dx A dy A dz
x* 2t Fry 2 Xyt Xyt
dx ~dy A dz dx ndy A dz dx ~ dy » dz dx ndy A dz

My eyt X ayiaz xlyy ezt eyt
Forn = 2 and f{ = — [, the theorem may be¢ applied in the following way.

Carollary 6. Let [ be a nondegenerate quasi-homageneous polynomial of weight
1 with argument weights w,, wy. Then the form

hix, yydx ~ dy
fx. )
where h is a smooth (holomorphic) function in a neighborhood of 0, can be
reduced by a suitable smooth (holomorphic) coordinate change to a form in
which h = +1 + ¢, where ¢ is @ quasi-homogeneous polynomial of weight
T

. h(0, 0} # 0,

Correspondingly, bivector fields and Poisson structures may be locally
reduced to the form
‘f(xa }’] (ax A E)} I Jr[x-s ,'-’)
z ! s Ix,y} = —
T1+¢lx y)

1+ g(x, )

Calculating the weights of the simple singularity types A, D, E for functions
of two variables, we obtain Tabie 1 [rom the last corollary. For example, for
A, we have w, = w, = 1, the weight of ¢ equals 0, and so ¢ is constant.

The dimension of the space of equivalence classes of forms hdx A dy/f,
where h(0) # 0 and [ is a fixed nondegenerate quasi-homogeneous polynomial,
equals the dimension of the space of quasi-homogeneous polynomials of weight o.

F Varchenko's theorem

A. N. Varchenko has proven a series of generalizations of the preceding
theorem. Herc we shall describe the simplest of these.

1. Let f be a quasi-homogeneous polynomial of weight 1 in the variables
Xy...., %, with weights w,, ..., w,. Suppose that, for some set [ of muiti-indices,
the residue classes of the monomials x” generate (as a vector space) the factor
algebra of the algebra of formal power serics

Cilxis....x J1ff Ex,, ... 8fféx,).
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Theorem. Every germ [Ph dx is equivalent 1o a germ of the form fP(1 +
Y A X"y dx, where the I's are nonnegative integers and the m's are ele-
ments of I such that the weight of each form fPx™f dx is equal to zero.

2. We define the degree of non-quasi-homogeneity of the germ f to be the
dimension of the factor space (f, &f/dx,,....f/éx,)/(éf/éx,,...,6f1éx,).

Theorem. For almost all i, the number of moduli of the form fPhdx, A - A dx,
(for fixed B and [ and arbitrary h, h(Q} £ Q) is equal to the degree of
non-quasi-homogeneity of the germ f. The exceptional (resonance) values of
B consist of a finite number of arithmetic progressions of negative rational
numbers, with difference — 1. In particular, for any B = 0, the number of
moduli equals the degree of non-quasi-homogeneity.

3. ExaMpLE. For f§ = 0, we obtain:

Corollary. The number of moduli of the form hdx (h(0} # 0), relative to the
group of diffeomorphisms preserving the germ of f, equals the degree of
non-gquasi-homogeneity of [ (equal to zero, if the germ of { is equivalent to a
quasi-homogeneous one).

4. In the resonance cases, the result is more complicated.
ExaMmpLE. Let n = 2, fi = — | {Poisson structures in the plane).

Theorem. The number of moduli for a germ of a Poisson structure with given
singular curve [ = 0 equals the degree of non-quasi-homogeneity of the germ
of [ augmented by one less than the number of irreducible components of the
germ of the curve [ = 0.

In resonance cases, the number of moduli behaves in a rather regular
way along each anthmetic progression with difference — 1. Namely, when
decreases by 1 the number of moduli increases (not necessarily strictiy), but
its maximal value does not exceed (for any § > — 1) the "nonrescnant” value
(ie., the degree of non-quasi-hemogeneity of f) by morc than the number
of Jordan blocks associated with the eigenvalue e*™* of the monodromy
operator of the function f.

G Poisson structures and period mappings

An intercsting source of Poisson structures is provided by the period mappings
of critical points of holemorphic functions (A. N. Varchenko and A. B.
Givental’, Mapping of periods and intersection form, Funct. Anal. Appl. 16,
(1982), 83-93).

Period mappings allow one to transfer to the base of a fibre bundie certain
structures which live on the (co)homology spaces of the fibres. A Poisson
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structure on the base arises in this way from the intersection form in the
middle-dimensional homology of the fibres, when this form is skew-symmetric.

Period mappings are defined by the following construction. Suppose that
one is given a locally trivial fibration. Associated to such a fibration are the
bundles (over the same base) of homology and cohomology of the fibres with
complex coefficients. These bundies are not only locally trivial, but they are
locally trivialized in a canonical way (the integer cycles in a fibre are uniquely
identifiable with integer cycles in the nearby homology fibres). A period
mapping is defined as a section of the cohomology bundle.

Suppose now that one is given, on the total space of a differentiable fibre
bundle, a differential form which is closed on each fibre. The period mapping
of this form associates to cach point of the base the cohomology class of the
form on the fibre over this point.

If one is given a vector field on the base of the fibration, then any {smooth)
period mapping may be differentiated along this vector field, and the derivative
is again a period mapping. In fact, neighboring fibres of the cohomology
bundie are identified with one another by the above-mentioned “integer” local
trivialization, so a section may be considered {(locally) as a map into one fibre
and may be differentiated as an ordinary (vector-valued) function.

Supposc now that the base is a complex manifold having the same complex
dimension as the fibres of the cohomology bundie. A period mapping is called
nondegenerate i its derivatives along any C-independent vectors at cach
point arc linearly independent. In other words, a period mapping is non-
degenerate if the corresponding local maps from the base to typical fibres are
diffeomorphisms.

The derivative of a nondegencrate period mapping thus allows us to map
the tangent bundie of the base isomorphically onto the cohomology bundle.
The dual isomorphism goes from the homology bundie to the cotangent
bundle of the base. This isomorphism transfers to the base any additional
structures carried by the homology groups.

Suppose that the fibres of our original bundle are (real) oriented even
dimensional manifolds, and consider their homology in the middle dimension.
In this case, the homology of each fibre carries a hilinear form: the index of
intersection. This form is symmetric if the dimension of the fibre is a multiple
of 4; otherwise, it is skew-symmetric. The form is nondegenerate if the fibre is
closed (i.e., compact and without boundary); otherwise, it may be degenerate.
We shall suppose below that we are in the situation where the form is
skew-symmetric.

In this sitvation a nondegenerate period mapping induces a Poisson structure
on the base. In fact, the isomorphism described above, between the cotangent
spaces of the base and the homology groups of the fibres (carrying their
skew-symmetric intersection forms), defines a skew-symmetric bilinear form
on pairs of cotangent vectors. The Poisson bracket of two functions on the
base is defined as the value of this form on the differentials of the functions.

This bracket defines a Poisson structure (of constant rank) on the basc.
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Figure 247 Poisson structure and the swallowtail

This is obvious from the fact that the local identification of the base with
the cohomaology of the typical fibre, given by the period mapping, provides the
base with local coordinates whose Poisson brackets are constant.!??

Varchenko and Givental’ observed that if one constructs, in the way just
described, using a generic 1-form, a Poissen structure on the compiement of
the discriminant locus in the base of a versal deformation of a critical point
of a function of two variables, then this structure may be holomorphically
extended across the discriminant locus. (One may replace the discriminant
locus above by the wave front of a typical singularity.) We shall limit ourselves
here to the simplest examples of Poisson structures arising in this way,

Consider the three-dimensional space of polynomials C* = {x* + 4,x* +
A;x 4+ A3} with coordinates /.. The polynomials with multiple roots form
therein the discriminant surface (a swallowtail; see Figure 247).

The Poisson structures arising from period mappings may be reduced
(by diffeomorphisms preserving the swallowtail) to the following form: the
symplectic leaves are the planes 4, = const., and their symplectic structures
are of the form di, A diy.

The fibration of interest here is formed by the complex curves {(x, )
y' = x* + 4,x% 4+ A,x + 23}, and the period mapping is given by, for example,
the form ydx. (See V. I Arnold, A. N. Varchenko, S. M. Gusein-Zade,
“Singularities of Differentiable Mappings,” Vol. 2: Monodromy and the
Asymptotics of Integrals, Birkhiuser, 1988, §15, or Uspekhi Mat, Nauk 40,
no. 5 (1985).)

'23 1n the case where the intersection form is symmetric, the analogous construction defines on
the base a flat pseudo-riemannian (possibly degencrate) metric.
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The Poisson structures on the swallowtail space which arise from period
mappings may be characterized locally among all generic structures by the
following property: the line of self-intersections of the tail lies entirely in one
symplectic leaf. The required genericity condition is that the tangent planes at
the origin to the symplectic leaf and the swallowtail do not coincide. Every
smooth function which is constant along the line of self-intersections of the
tail, and whose derivative along the symplectic leaf at the origin is nonzero,
may be reduced in a neighborhood of the origin, by a diffeomorphism preserv-
ing the tail, to the form 4, + const,; also, a family of holomorphic symplectic
structures in the planes i, = const. may be reduced to the form di, A di,
by a holomorphic local diffcomorphism of three-dimensional space which
preserves the swallowtail as well as the foliation by the planes.

One may conjecture mere generally that those Poisson (in particular,
sympiectic) structures on the base of a versal deformation of a singularity, in-
duced from the intersection form by an infinitesimally stable period mapping,
may be characterized (up to diffemorphisms preserving the bifurcation set) by
a natural condition on the rank of the restricted Poisson structure to the strata
of the discriminant locus. The “natural condition™ in the three-dimensional
example above is that the line of self-intersections of the swallowtail be
contained in a symplectic leaf. In four-dimensional space, an analogous role
would apparently be played by the condition that a certain submanifold be
lagrangian, namely, the manifold of polynomials having two critical points
with critical value zero in the symplectic space of polynomials x° + i, x* +
A,x% 4 A3x + A4 (the ranks of the symplectic structure on the tangent spaces
to the other strata may also be important).
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A system of Jacobi's elliptic coordinates is associated to each ellipsoid in
euclidean space. These coordinates make it possible to integrate the equations
of geodesics on the given ellipsoid, as well as certain other equations, such as
the cquations of motion for a point on a sphere under the influence of a force
with quadratic potential, or for & point on a paraboloid under the influence
of a uniform gravitational field.

These facts suggest that, even on an infinite-dimensional Hilbert space,
there should be a class of integrable systems associated to each symmetric
operator. To study these systems, it is necessary to extend the theory of elliptic
coordinates to the infinite-dimensional case. To do this, it is first necessary to
express the finite-dimensional theory of confocal quadric surfaces in coordinate
free form.

In the transition to the infinite-dimensional case, symmetric operators on
finite-dimensional euclidean spaces must be replaced by self-adjoint operators
on Hilbert spaces. Since the elliptic coordinates are not really connected with
the operator itself, but rather with its resolvent, the unboundedness of the
onginal operator {(which nught be, for cxample, a differential operator} does
not present a serious cbstacle.

In some cases, the elliptic coordinates on Hilbert space obtained from a
self-adjoint operator form a countable sequence; however, when the operator
has a continuous spectrum, the coordinates form a continuous family. In this
casg, the transformation from the ornginal peint of the Hilbert space (thought
of as a function space} to the continuous family of ¢liiptic coordinates of the
point may be considered as a nonlinear mapping between function spaces.
This mapping, by analogy with the Fourier transform, might be called the
Jacobi transform: the original function is transformed into a function which
expresses the clliptic coordinates in terms of some continuous “index.” (More
precisely, the result of the transform is 2 measure on the spectral parametcr
axis.) The study of the functional analytic properties and the inversion of the
Jacobi transform will probably be accomplished before too long.

Following an exposition of the general theory of elliptic coordinates, we
shall describe below some of the applications of these coordinates to potential
theory.

This appendix is based on the following papers by the author.

Some remarks on elliptic coordinates, Notes of the LOMI Seminar (volume
dedicated to L. D. Faddeev on his 50th birthday), 133 (1984), 38-50.

Integrability of hamiltonian systems associated with quadrics (after 1.
Moser), Uspekhi 34, no. 5, 214,

Some algebro-geometrical aspects of the Newton attraction theory, Pro-
gress in Math. {I. R. Shafarevich volume), 36 (1983), 1-4.

Magnetic analogues of the theorem of Newton and Ivory, Uspekhi 38,
no. 5 (1983), 145-14e.

Further details on background material for the results in this appendix may
be found in the following papers.
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R. B. Melrose, Equivalence of glancing hypersurfaces, Invent. Math. 37
(1976), 165-191.

J. Moser, Various aspects of integrable Hamiltonian systems, in: J. Gucken-
heimer and 8. E. Newhouse, eds. “Dynamical systems”, CIME Lectures,
Bressanonc, Italy, June 1978, Cambridge, Mass., Birkhduser, Boston, 1980,
pp- 233-289.

V. 1. Arnold, Lagrangian manifolds with singularities, asymptotical of rays,
and unfoldings of the swallowtail, Funct. Anal. Appl. 15 (1981),

V. I. Arnold, Singularities in variational calculus, J. Sovict Mathematics 27
(1984), 2679-2713.

A. B. Givental', Polynomial electrostatic potentials (Seminar report, in
Russian), Uspekhi Mat. Nauk 39, no. 5 (1984), 253-254.

V. 1. Arneld, On the Newtonian potential of hyperbolic layers, Selecta
Math. Sovietica 4 (1985), 103-106.

A. D. Vainshtein and B. Z. Shapiro, Higher-dimensional analogs of the
theorem of Newton and Ivory, Funct. Anal. Appl. 19 (1985), 17-20.

A Elliptic coordinates and confocal quadrics

Elliptic coordinates in euclidean space are defined with the aid of confocal
quadrics (surfaces of degree two). The geometry of these quadrics is obtained
from the geometry of pencils of quadratic forms in euclidean space (i.e., from
the theory of principal axes of ellipsoids or from the theory of smail oscillations)
by a passage to the dual space.

Definition 1. A eucildean pencit of quadrics (resp. quadratic forms)in a euclidean
vector space V is a one-parameter family of surfaces of degree two

%(Aj.xa x) = l
(resp. forms A,), where

A, =4~ 1E (E = “identity™),
and where A is a symmetric operator
A: V>V, A¥ = A.

Definition 2. A confocal family of quadrics in a euclidean space W is a family
of quadrics dual to the quadrics of a euclidean pencil in W*:

HATIE Ly =1

Thus, quadrics which are confocal te one another form a one-parameter
family, but the quadratic forms defining the family do not depend linearly on
the parameter.

ExaMpLE. The family of plane curves which are confocal to a given ellipse
consists of all thosc ellipses and hyperbolas with the same foci. In Figure 248,
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Figure 248 A confocal family and the corresponding euclidean pencil

the curves of a confocal family are shown on the left, and the curves of the
corresponding euclidean pencil are shown on the right.

The elliptic coordinates of a point are the value of the parameter 2 for which
the corresponding quadrics of a fixed confocal family pass through the point.
We fix an ellipsoid in cucildean spacc with all its axes of different lengths,

Theorem 1 (Jacobi). Through each point of an n-dimensional euclidean space
there pass n quadrics confocal to a given ellipsoid. Smooth confucal guadrics
intersect at right angles.

ProoF. Each point other than 0 in our space corresponds to an affine hyper-
plane in the dual space, consisting of thosc linear functionals whose value is
I at the given point. In terms of the dual space, Theorem | means that every
hyperplane not passing through 0 in an n-dimensional euclidean space is
tangent to precisely n of the quadrics in a euclidean pencil, and the vectors
from O to the points of tangency are pairwise orthogonal (Figure 248, right).

The proof of the property of euclidean pencils just stated is based on the
fact that the aforementioned vectors define the principal axes of the qua-
dratic forms B = 1{Ax, x} — (4, x)?, where (I, x) = 1 is the equation of the
hyperplane.

As a matter of fact, on a principal axis of any quadratic form B, corre-
sponding to the proper value £, the form B — AE reduces to 0 along with its
gradient. The vanishing of this form at the point of intersection of the
principal axis and the hyperplane means that the point of intersection lics on
the quadric 3{Ax, x) = 1, while the vanishing of the gradient means that the
quadric and the hyperplane are tangent at the point. O

Theorem 2 {Chasles}. Given a family of confocal quadrics in n-dimensional
euclidean space, a line in general position is tangent ton — 1 different quadrics
in the fumily, and the planes tangent to the guadrics at the points of tangency
are pairwise orthogonal,
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ProoF. We project the quadrics in the confocal family along a pencil of parallel
lines onto the hyperplane perpendicular to the pencil. Each quadric defines an
apparent contour (the set of critical values of the projection of the quadric).
For a projection whose direction is in general position, the apparent contour
is a quadric (i.e., a surface of degree two) in the image hyperplane.

Here we need a lemma.

Lemma. The upparent contours of the guadrics in a confocal family form
themselves a confocal family of guadrics.

Proo¥r. On passage to the dual, sections become projections and vice versa.
The apparent contours of the projections of confocal quadrics along a pencil
of parallel lines are therefore dual to the sections of the dual quadrics by a
hyperplane passing through the origin.

The sections of the quadrics in a euclidean pencil by a hyperplane through
0 form a euclidean pencil of quadrics in the hyperplane. The lemma now
follows by duality. O

Returning to the proof of Theorem 2, we apply the lemma above to the
projections along the line in the statement of the theorem. According to the
lemma, the apparent contours of the projections of the confocal quadrics in
Theorem 2 form a confocal family of quadrics in a hyperplane. By Theorem 1,
n — 1 of these apparent contours pass through each point, where they intersect
at right angles. This completes the proof of Theorem 2. 0J

Theorem 3 (Jacobi and Chasles). Given a geodesic en a quadric @ in n-
dimensional space, there is u set of n — 2 quadrics confocal to @ such that all
the tangent lines to the geodesic are also tangent to the quadrics in the set.

Proor (Beginning). We consider the manifold of oriented lines in euclidean
space. This manifold has a naturai symplectic structure as the manifold of
characteristics in the hypersurface p? = 1 in the phase space of a {ree particle
moving under its own inertia in our euclidean space.

(The characteristics on a hypersurface in a symplectic manifold are the
integral curves of the field of characteristic directions, i.¢., the field of directions
which are skew-orthogonal to the tangent spaces of the hypersurface. In other
words, the characteristics of the hypersurface are the phase curves for any
hamiltonian flow whose hamiltonian function vanishes to first order on the
hypersurface.

The symplectic structure on the manifold of characteristics on a hyper-
surface in a sympiectic manifold is defined in such a way that the skew-scalar
product of any two vectors tangent to the hypersurface is equal to the skew-
scalar product of their projections in the manifoid of characteristics.

Note, finally, that the notion of characteristics is equally well defined for
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any submanifold of a symplectic manifold on which the induced 2-form has
constant nullity. The characteristics then have dimension equal to that nullity,
and the manifold of characteristics stili inherits a symplectic structure.) [

Lemma A. Each characteristic of the manifold of lines tangent to a given
hypersurface in euclidean space consists of all the lines tangent to a single
geodesic on the hypersurface.

Prooe or Lemma A. For efliciency of expression, we will identify the cotangent
vectors to euclidean space with tangent vectors by using the euclidean structure,
so that our original phase space 15 represented as the space of vectors based
at poiats of cucildean space (1.e, momenta are identified with velocities). The
urtit veetors to the given hypersurface form a submanifold of odd codimension
{equal to 3} in phase space. The characteristics of this submanifold define the
geodesic flow on the hypersurface.

The map which assigns to each vector the line in which it lies takes the
codimension 3 submanifold just described to the manifold of lines tangent
to the hypersurface, Under this mapping, characteristics are transformed to
characteristics (with respect to the symplectic structure on the space of lines).
This proves the lemma. .

[Remark. The preceding argument may be easily extended to the following
general situation, first considered by Melrose. Let Y and Z be a pair of hy-
persurfaces in a symplectic manifold X which intersect transversally along a
submanifold W. We consider the manifolds of characteristics B and C of the hy-
persurfaces ¥ and Z together with the canonical quotient fibrations ¥ —» B
and % —— C; the manifolds B and C inherit symplectic structures from X,

In the intersection W, there is a distinguished hypersurface (of codimension
3 in X} consisting of points at which the restriction to W of the symplectic
structure on X is degenerate. This hypersurface £ in W may also be defined
as the set of critical points of the composed mapping WY —B (or
Wes Z o C if one wishes). These objects form the following commutative
diagram:

The analogue to Lemma A in this situation is the assertion that the
characteristics on the images of the mappings £ — Band £ — C are the images
of one and the same curve on X (namely, the characteristics of £ considered
as a submanifold of the symplectic manifold X).

Lemma A itself is the special case of the assertion above in which X = R?"
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(the phase space of a free particle in R"), the bypersurface Y consists of the unit
vectors {given by the condition p* = 1, i.e., a level surface of the hamiltonian
for a free particle), and the hypersurface Z consists of those vectors which are
based at the points of the given hypersurface in R". In this case, B is the
manifold of all oriented lines in euclidean space, and Z is the manifold of unit
vectors tangent to the hypersurface. The mapping £ — B assigns to each unit
vector the line which contains it. The manifold C is the {cojtangent bundle of
the given hypersurface. £ — C is the embedding into this bundle of its unit
sphere bundle (in other words, the embedding of a level surface of the kinetic
energy, i.e., the hamiltonian for motion constrained to the hypersurface).

It is always useful to keep the diagram above in mind when one 1s dealing
with constraints in symplectic geometry.]

ProoF oF THEOREM 3 (Middle). We suppose given a smooth function on
euclidean {configuration) space whose restriction to a certain line has a non-
degenerate critical point. In this situation, the function will also have a critical
point when restricted to each nearby line; ie., on each nearby ling, there will
be a nearby point where the line is tangent to a level surface of the function.
The value of the function at the critical point is thus a function (defined locally)
on the space of lines. We call this function of lines the induced line function
(from the original point function). dJ

Lemma B, If two point functions in euclidean space are such that the tangent
planes to their level surfaces are orthogonal at the points where a given line
is tangent to these surfaces (these points being in general different for the
two functions), then the Poisson bracket of the induced line functions is zero
at the given line (considered as a point in the space of lines).

ProOOF OF LEMMa B. We calculate the derivative of the second induced line
function along the phase flow whose hamiltonian is the first induced function.
The phase curves for the first induced function, which lie on its level surfaces,
are the characteristics of those surfaces. A level surface for the first induced
function consists of those lines which are tangent to a single level surface of
the first point function. Each charactenstic of this surface, according to
Lemma A, consists of the lines which are tangent to a single geodesic on the
level surface of the first point function.

For ap infinitesimally small displacement of a point on a geodesic in
a surface, the tangent line to the geodesic rotates {up to infinitesimal quantities
of higher order} in the plane spanned by the original tangent and the normal
to the surfacc, By hypothesis, the tangent plane to the level surface of the
second function at the point where thus surface is tangent to our line is
perpendicular to the tangent plane of the level surface of the first function.
Therefore, under the above-mentioned infinitesimally small rotation, the ling
remains tangent to the same level surface of the second function (up to
infinitesimals of higher erder). It follows that the rate of change of the second
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induced function under the action of the phase flow given by the first is zero
at the element in question of the space of lines, which proves Lemma B. [J

Proor oF THEOREM 3 (End). We fix a line in general position in R". According
to Theorem 2, this line is tangent to n — 1 quadrics in the confocal family, at
n — 1 points. We construct in the neighborhood of each of these points a
smooth function, without critical points, whose level surfaces are the quadrics
of our confocal family.

We fix one of these quadrics (the “first™) and consider the hamiltonian
system on the space of lines whose hamiltonian function is the first induced
iine function. Each of its phase curves on a fixed level surface of the ham-
iltonian function consists of the tangent lines to one geodesic of that quadric
(Lemma A). The remaining induced functions have zero Poisson bracket with
the hamiltonian, by Lemma B (since the planes tangent to the confocal
surfaces at the points where they touch one line are orthogonal, by Theorem 2).

Thus ail the induced functions are first integrals for the hamiltonian system
generated by any one of them. Since the lines tangent to a geodesic on the first
quadric form a phase curve of the first system, all the induced functions take
constant values on this curve. That proves Theorem 3, as well as the following
result. O

Theorem 4. The geodesic flow on a central surface of degree 2 in euclidean space
is a completely integrable system in the sense of Liouville (i.e., it has as many
independent integrals in involution as it has degrees of freedom).

Remark. Strictly speaking, we proved Theorem 3 only for lines in general
position, but the result extends by continuity to the exceptional cases (in
particular, to asymptotic lines of our quadrics). In the same way, Theorem 4
was initially proved just for quadrics with unequal principal axes, but passage
to a limit extends the result to more symmetric quadrics of revolution (as well
as to noncentral “paraboloids™).

B Magnetic analogues of the theorems of Newton and fvory

Elliptic coordinates make it possiblc to extend Newton’s well-known theorem
on the gravitational attraction of a sphere to the case of attraction by an
ellipsoid.

Definition. A homeoidal density on the surface of an ¢llipsoid E is the density
of a layer between E and an infinitely nearby ellipsoid which is homothetic
to E (with the same center).

The following is a well-known result.

Ivory’s Theorem. A finite mass, distributed on the surfoce of an ellipsoid with
homeoidal density, does not attract any internal point; it attracts every
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external point the same way as if the mass were distributed with homeoidal
density on the surface of a smaller confocal ellipsoid.

The attraction in Ivory’s theorem is defined by the law of Newton or
Coulomb: in n-dimensional space, the force is proportional to r!™" (as pre-
scribed by the fundamental solution of Laplace’s equation).

Newton's theorem on the (non)attraction of an internal point carries over
to the case of a hyperbolic homeoidal layer and to the case of an attracting
mass distributed on a level hypersurface of a hyperbolic polynomial of any
degree. (A polynomial of degree m, f(x,,...,x,) is called hyperbolic if its
restriction to any line through the origin has all its roots real.)

A homeoidal charge density on the zero hypersurface f = 0 of a hyperbolic
polynomial is defined as the density of a homogeneous infinitesimalty thin
layer between the hypersurfaces f = 0 and f = & — 0{the signs of the charges
being chosen so that successive ovaloids have opposite charges).

[ 4 homeoidal charge does not attract the origin (nor any other point within
the innermost ovaloid), and this property is preserved if the charge density is
multiplied by any polynomial of degree at most m — 2.

Generalization: [f a homecidal charge density is multiplied by any polynomial
of degreem — 2 + r, then the potential inside the innermost ovaloid is a harmonic
polvnomial of degree r (A. B. Givental’, 1983).]

When one attempts to find a version for hyperboleids of Ivory’s theorem
on the attraction of confocal ellipsoids, it turns out that an essential role is
played by the topology of the hyperboloids. When passing to hyperboloids
of different signatures, one must consider, instead of homeoidal densities,
harmonic forms of different degrees, and instcad of the Newton or Coulomb
potential, the corresponding generalized forms-potentials given by the Biot-
Savart law,

In the simplest nontrivial case of a hyperboloid of one sheet in three-
dimensional euclidean space, the result is as follows.

The hyperboloid divides space into two parts: “internal” and “external.”
the latter being nonsimply connected. We consider elliptic coordinate curves
from the system whose level surfaces are the quadrics confocal to the given
hyperboloid.

The elliptic coordinate curves on our hyperboloid, which are obtained
by intersecting with the confocal ellipsoids (closed lines of curvature on
the hyperboloid), are called the parallels of the hyperboloid. The orthogonal
curves, obtained by intersection with the two-sheeted hyperboloids, are called
the meridians.

Although the elliptic coordinate system has singularities (on each symmetry
plane of the quadrics in the family), the hyperboloid is smocthly fibred by
the parallels {diffeomorphic to the circle) and meridians (diffeomorphic to
the line),

The region inside the hyperboloidal tube is also smoothly fibred by meri-
dians (orthogonal to the ellipsoids in the confocal family), while the annular
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Figure 24% Magnetic fields generalizing the theorems of Newton and Ivory

region outside the hyperboloid is smoothiy fibred by parallels (orthogonal to
the hyperboloids of two sheets).

Theorem. A current with a suitable density, flowing along the meridians of a
hyperboloid, produces a magnetic field which is zero inside the hyperboloidal
tube, while the field in the annular exterior region is directed along the
parallels. A current with a suitable density, flowing along the parallels of a
hyperboloid, produces a magnetic field which is zero in the exterior annular
region, while the field inside the hyperboloidal tube is directed along the
meridians. (See Figure 249.)

The current densities giving rise to such magnetic fields, which generalize
the homeoidal charge densities on ellipsoids, may be described in the following
way. There are associated to each family of confocal quadrics in three-
dimensional euclidean space two “focal curves™ an cllipse and a hyperbola.
(See Figure 250.) The focal ellipse is the boundary of the limiting ellipsoid of
the family in which the shortest axis shrinks to zero; the focal hyperbola arises
in a similar way from the hyperboloids of one or two sheets.

Figure 250 Focal ellipse and focal hyperbola
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We define 4 homcoidal density on a focal ellipse in the following way. To
begin we consider any nonplanar paraliel, defined as the nonplanar inter-
section of an eilipsoid with a hyperboloid of onc sheet. A homeoidal density
on this parallel is defined as the density on an infinitesimally thin “wire.”
obtained by intersecting the layer between the given ellipsoid and a homothetic
one infinitesimally nearby with the layer between the given hyperboloid and
a homothetic one infinitesimally close by, both homotheties being taken with
respect to the center of the confocal family. We normalize this homeoidal
density on the parallel in such a way that the mass of the entire parallel is equal
to 1.

Now we consider the focal ellipse as 1 limit of nonplanar parallels. It turns
out that the normalized homeoidal densities on the parallels have a well-
defined limit as the parallels approach the focal ellipse. This limiting density
is cailed the homeoidal density on the focal ellipse.

The homeoidal density on a focal hyperbola is defined in an analogous way.

We may now describe the current densities referred to as “suitable” in the
theorem above on magnetic fields. The surface of a hyperboloid of one sheet
is fibred over the focal eflipse (the fibre over a point is the meridian which lies
on the same hyperboloid of two sheets as that point).

The flux of the meridianal current suitable for the theorem, through any curve
on the hyperboloid, equals the integral of the homeoidal density form on the
Jocal ellipse over the projection of that curve onto the focal eliipse (along the
hyperboloids of two sheers).

The density of the flow along the parallels is induced in an analogous way
from the homeoidal density on the focal hyperbola.

Remark. The magnetic field of the parallel flow with the indicated density,
inside the hyperboloidal tube, coincides outside cach confolal ellipsoid (up to
sign) with the newtonian or coulombian field produced by a charge which is
distributed with homeoidal density on that ellipsoid.!2#

In exactly the same way, the magnetic field in the annular domain outside
the hyperboloid of cne sheet coincides {up to sign), in the region between the
sheets of each confocal hyperboloid of two sheets, with the coulombian field
produced by two equal charges with opposite signs distributed on the two
sheets of the hyperboioid with homeoidal density (O. P. Shcherbak).

The results formulated above have recently been extended by B. Z. Shapiro
and A. D. Vainshtein to hyperboloids in euclidean spaces of any number of
dimensions. For a hyperboloid in R”, diffeomorphic to § x R/, a harmonic
k-form is constructed on the exterior region (diffecomorphic to the product of
S* with a half-space) and a harmonic !-form is constructed on the interior.

The corresponding homeoidal densities are defined on the focal ellipsoid
with codimension & and the focal hyperboioid of two sheets with codimension

124 This is actually the density with which a charge will distribute self on the surface of a
conducting ¢llipsoid.

478



Appendix 15 On elliptic coordinates

I by the same limiting procedure that we described above for k=1=1,
using the intersections of layers between infinitesimally close and homothetic
quadrics.

Noncomputational proofs of these geometric theorems are unknown, even
for the special case of magnetic fields in three-dimensional space.

Remark. The presence of distinguished harmonic forms on hyperboloids
and in their complementary domains suggests that one might try to find
filtrations, analogous to those arising in the theory of mixed Hodge structures,
in spaces of differential forms on nencompact (and possibly even singuiar)
algebraic and semialgebraic real manifolds.

479



Appendix 16: Singularities of ray systems

The simplest example of a ray system is the system of normals to a surface in
euclidean space.

In a neighborhood of a smooth surface, its normals form a smooth fibration,
but at some distance from the surface various normals begin to intersect one
another (Figure 251). The complicated figures which are thereby formed were
already investigated by Archimedes, but their full details were not revealed
until the discovery in 1972 of the relation between singularities of ray systems
and the theory of groups generated by reflections.

This relation, for which there is no evident a priori reason (and which is as
surprising as, say, the relation between the problems of tangents and areas),
has turned out to be a powerful instrument for the study of critical points of
functions. By 1978, it had become clear that the theory of reflection groups
also governs the singularities of the Huygens evolvents.

Huygens (1654) discovered that the eveivent of a piane curve has a cusp
singuilarity at each point where it meets the curve (Figure 252). Evolents of
plane curves and their higher-dimensional generalizations are wave fronts
on marifolds with boundary. Singularitics of wave fronts, like those of ray
systems, are classified in terms of reflection groups.

While rays and fronts on manifolds without boundary are related to the
Weyl groups in the A, D, and E series, singularities of evolvents are described
by the groups of types B, C, and F (the ones with double connections in their
Dynkin diagrams).

The remaining reflection groups (I,{p), H,, H,) continued for some time to
have no visible relation to the theory of singularities. This situation changed
in the fall of 1982 when it was discovered that the symmetry group H, of the
icosahedron governs the singularities of evolvent systems in the neighborhoed
of inflection points of planc curves.

The appearance of the icosahedron at an inflection point of a curve looks
as mystical as the icosahedron in Kepler's law of planetary distances. But the
presence of the icosahedron here is not an accident: upon the investigation in
1984 of more complicated systems of rays and fronts, the remaining group H,
appeared.

We shall give in this appendix a brief description of the theory of singularities
of ray systems. Further details may be found in the following references:

V. 1. Arnold, Singularitics of ray systems, Russian Math. Surveys 38 (1983).

V. 1. Arnold, Singularities in variational calculus, J. Soviet Math. 27
(1984), 2679-2713.

Q. V. Lyashko, Classification of critical points of functions on a manifold
with singular boundary, Funct. Anal. Appl. 17 (1983), 187-193.

O. P, Shcherbak, Singularities of families of evolvents in the neighborhood
of an inflection point of the curve, and the group H;, gencrated by relections,
Funct. Anal. Appl. 17 (1983), 301 303,

A. N. Varchenko and S. V. Chmutov, Finite irreducible groups, generated
by relections, are monodromy groups of suitable singularities, Funct, Anal.
Appl. 18 (1984), 171 183.
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Figure 251 A caustic as the envelope of rays

Figure 252  An evolvent of a curve

V. . Arnold, Singularities of sclutions of variational problems (Seminar
report, in Russian), Uspekhi Mat. Nauk 39, no. 5 (1984), 256.

O. P. Shcherbak, Wave fronts and reflection groups. Russian Math. Surveys,
43, no. 3 (1988).

Ttogi Nauki i Tekhniki, Sovremennye Problemy matcmatiki, Noveishie
dostijenia, Moscow, VINITI, vel. 33 {1988). English transiation: J. Sov. Math.
27 {1984),

Many of the results which we will describe concern such simple geometric
objects that it is surprising that they were not already known in classical times.
For instance, the local classification of projections of generic surfaces in
three-dimensionai space was not discovered until 1981, The number of equi-
valence classcs of germs of projections turned out to be finite—namely 14
neighborhoods of points on generic surfaces can have that many different
appearances when viewed from different points in space.

A Symplectic manifolds and ray systems

1. The space of oriented lines in euclidean space may be identified with
the (co)tangent bundle of the sphere (Figure 253), and it thereby obtains a
sympicctic structure.

2. More generally, we consider any hypersurface in a symplectic manifold.
The skew-orthogonal complement 1o its tangent space at each point is called
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Figure 253 The space of oriented lines in euclidean space

the characteristic direction. The integral curves of the field of characteristic
directions on a hypersurface are called characteristics. The manifold of char-
acteristics inherits a symplectic structure {rom the original manifold.

3. In particular, the manifold of extremals of a general variational problem
carrics a symplectic structure.

4. We consider the space of binary forms (homogeneous polynomials in
two variables) of a particular odd degree. The group of linear transformations
of the plane acts on this even dimensional linear space. Up to multiplication
by a constant, there is a unique nondegenerate skew-symmetric form on this
space which is invariant under the action of the group SL{(2) of linear trans-
formations with determinant equal to L. This form gives a natural symplectic
structure on the manifold of binary forms of each odd degree.

5. The binary forms in x and y for which the coefficient of x**** is unity
form a hypersurface in the space of alt forms. The manifold of characteristics of
this hypersurface is naturaily identified with the manifold of monic polynomials
of even degree x** + --- in x. We have thereby defined a natural symplectic
structure on this space of polynomials.

6. The one-parameter group of translations along the x-axis preserves the
symplectic structure just introduced. The hamiltonian function for this group
is a quadratic polynomial (found already by Hilbert (1893)). The manifold
of characteristics for any level surface of this hamiltonian function may be
identified with the manifold of monic pelynomals of degree 2k — 1 in x for which
the sum of the roots is zero. Thus we have a natural symplectic structure on
this space of polynomials.

B Submanifolds of symplectic manifolds

The restriction of a symplectic structure to a submanifold is a closed 2-form,
but it is not necessarily nondegenerate. For submanifolds in euclidean space
there is, in addition 1o the intrinsic geometry, an extensive theory of extrinsic
curvatures. In symplectic geometry, the situation is simpler:
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Theorem (A. B. Givental’, 1981). The restriction of the symplectic form to a
germ of a submanifold in o symplectic manifold determines the germ up to a
symplectic diffeomorphism of the ambient manifold.

An intermediate theorem, in which one uses the values of the symplectic
form at all vectors based on the submanifold, not just those tangent to it, was
proved earlier by A. Weinstein (1971). Unlike Weinstein's theorem, Givental’s
theorem makes it possible to classify generic submanifold germs in symplectic
manifolds: it is sufficient to use the classification of degenerate symplectic
structures obtained by J. Martinet (1970) and his successors.

ExampLes. 1. A generic two-dimensional surface in symplectic space is sym-
plectically diffeomorphic in a neighborhood of each point with the surface
P, = p3, p3 = g3 = --- = 0 (in Darboux coordinates). 2. On four-dimensional
submanifolds, one finds stable curves of elliptic and hyperbolic Martinet
singular points with normal forms

P2=P193i‘11%+qgma p: =0, Pa=¢gy="=0

[The ellipticity or hyperbolicity of a singular point is determined by the
naturc of the dynamical system invariantly attached to the submanifold. The
divergence-free vector fields in three-dimensional space which arise have
entire curves of singular points. The classification of singular lines turns out
to be less pathological than the classification of singular points (which is
almost as difficult as ail of celestial mechanics).]

This concludes a description of the first steps in the theory of sympiectic
singularities on smocth manifolds.

C Lagrangian submanifolds in the theory of ray systems

We recall that a lagrangian submanifold is a submanifold of symplectic space
on which the symplectic structure pulls back to zero and which has the highest
possible dimension consistent with this property (equal to half the dimension
of the ambient manifold).

ExaMPLES. 1. Each fibre of a cotangent bundle is lagrangian. 2. The manifold of
all oriented normals to a smooth submanifold {of any dimension) in euclidean
space is a lagrangian submanifold of the space of lines. 3. The manifold of all
polynomials x2™ + -+ divisible by x™ is lagrangian,

A lagrangian fibration is a fibration all of whose fibres are lagrangian.

ExaMmpLES. 1. The cotangent fibration is lagrangian. 2. The Gauss fibration
from the space of lines in euclidean space to the unit sphere of directions is
lagrangian.
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All lagrangian fibrations of a fixed dimension are locally (on a neighbor-
hood of a point in the total space) symplectically diffeomorphic.

A lagrangian mapping is the projection of a lagrangian submanifold to the
base of a lagrangian fibration, i.e., a triple V — E - B, where the first arrow
is an immersion onto a Jagrangian manifold and the second arrow is a
lagrangian fibration.

ExAMPLES. |. A gradient mapping ¢+ 85/0q is lagrangian. 2. The normal
mapping which maps each normal vector of a submanifold in euclidean space
to its tip is lagrangian. 3. The Gauss mapping which takes each point of a
transversely oriented hypersurface in cuclidean space to the unit vector at
the origin in the direction of the normal is lagrangian. (The corresponding
lagrangian manifold consists of the normals themselves.)

An equivalence of lagrangian mappings is a fibre-preserving symplectic
diffeomorphism of the total spaces of the fibrations which takes the first
lagrangian manifold to the second.

The sct of critical values of a lagrangian mapping is called a caustic. The
caustics of equivalent mappings are diffeomorphic.

ExaMpI1E. The caustic of the normal mapping of a surface is the envelope of
the family of normals, i.e., the focal surface (surface of centers of curvature).

Every lagrangian mapping is locally equivalent to a gradient (or normal,
or Gauss) mapping. The singularities of generic gradient (or normal, or Gauss)
mappings are the same as those for arbitrary generic lagrangian mappings.
The simplest of these are classified by the reflection groups A,, Dy, Eg, £+, Ey
(see Appendix 12).

ExaMPLE. We consider a medium of dust particles moving inertially, with
their initial velocities forming a potential field. After time ¢, the particle at x
moves Lo x + 1(2S/éx). We thereby obtain a one-parameter family of smooth
mappings R - R*.

These mappings are lagrangian, In fact, a potential field of velocities gives
a lagrangian section of the cotangent bundle. The phase flow of Newton's
equations preserves the lagrangian property. For large i, though, our lagrangian
manifold is no longer a section: its projection on the base develops singular-
ities. The caustics of the corresponding lagrangian mappings are places where
the density of particles has become infinite.! **> According to Ya. B. Zel'dovich
(1970) an analogous model (taking into account gravity and the cxpansion of

125 The relation between caustics and dust-like media was first discovered by Lifshitz, Sudakov.
and Khalatnikow: see the survey by E. M. Lifshitz and I M. Khalatnikov, Investigations in
relativistic cosmology, Adv. Phys. 12 {1963), 185,
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Figure 255 Perestroikas of caustics in 3-space
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the universe} describes the formation of large scale nonhomogeneities in the
distribution of matter in the universe.

According to the theory of Lagrange singularities, the newborn caustics
have the form of elliptic saucers (Figure 254) (after time ¢ from the moment of
birth, a saucer has length of order : 2, depth of order r, and thickness of order
t*?). The birth of a saucer corresponds to 4. The metamorphoses of caustics
which occur in generic one-parameter familics of lagrangian mappings are
shown in Figure 255 (V. I. Arnold, Wave fronts evolution and equivariant
Morse femma, Comm. Pure Appl. Math. 6 (1976}, 319-335).

Theorem (1972). The germs at each point of generic lagrangian mappings
between manifelds of dimension <35 are simple (i.e., having no moduli) and
stable. The simple stable germs of lagrangian mappings are classified by the
reflection groups A, D, E, in a way which will be explained below.

D Contact geometry and systems of rays and wave fronts

We recall that a contact structure on an odd-dimensional smooth manifoid
is a nondegencrate field of tangent hyperplanes. The specific condition of
nondegencracy is inessential here, since near generic points, all gencric hy-
perplane fields on manifolds of a fixed odd dimension are diffeomorphic
{(Darboux’s theorem for contact structures, Appendix 4).

ExaMpLES. 1. The manifold of contact elements of a smooth manifold consists
of all its tangent hyperplanes. The rate of change of a contact element belongs
to the contact structure if and only if the rate of change of the point of contact
(i.e., the point where the hyperplane is tangent to the manifold) belongs to the
contact element itself. 2. The manifold of 1-jeis of functions y = fix) has a
contact structure dy = p dx {p = &f/éx for the 1-jet of a function f).

The extrinsic geometry of a submanifold of contact space is locally deter-
mined by the intrinsic geometry (Givental’s theorem on contact structures).

Integral submanifelds of a contact structure are called Legendre (or
legendrian) submanifolds if they have the largest possible dimension.

ExaMpLEs. 1. The set of ali contact elements tangent to a fixed submanifold
(of any dimension) is a Legendre submanifold. 2. In particular, ail contact
¢lements at a given point form a Legendre submanifold (a fibre of the bundle
of contact elements). 3. The set of all the [-jets of a single function is a Legendre
submanifold in the space of 1-jets.

A fibration is called a Legendre fibration if its fibres arc Legendre
submanifolds.

ExampLEs. {. The projective cotangent fibration (attaching cach contact ele-
ment to its point of contact) is Legendre. 2. The fibration of 1-jets of functions
over the O-jets (forgetting the derivative) is Legendre.
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Appendix t6: Singularities of ray systems

All Legendre fibrations of a fixed dimension are locally contact diffeo-
morphic (in a neighborhood of a point in the total space of the fibration).

The projection of a Legendre submanifold on the base of a Legendre
fibration is calied a Legendre mapping. The image of a Legendre mapping is
called its front.

ExampLES. 1. The Legendre transformation: A hypersurface in projective space
may be lifted to the space of contact elements of projective space as a Legendre
submanifoid. The manifeld of contact clements of projective space is also
fibred over the dual projective space. (The fibration assigns to each contact
element the plane containing it.) This is a Legendre fibration, The projection
of the lifted Legendre submanifold maps it onto the hypersurface which is
projectively dual to the original one. Thus, the projective dual of a smooth
hypersurface is the front of a Legendre mapping. 2. Frontal mappings: Laying
out a segment of length ¢ on each normal to a hypersurface in euclidean space,
we obtain a Legendre mapping whose front is equidistant from the given
hypersurface.

Every Legendre mapping is locally equivalent to a Legendre transforma-
tion, as well as to a frontal mapping. The theory of Legendre singularities thus
coincides ¢xactly with the theory of singularities of Legendre transformations
and of frontal mappings. Equivalence, stability, and simplicity of Legendre
mappings arc defined just as the lagrangian case.

Theorem (1973). The germs, at all points, of generic Legendre mappings between
manifolds of dimension <5 are simple and stable. The simple and stable
germs of Legendre mappings are classified by the groups A, D, E: their fronts
are locally diffeomorphic (in the complex domain) to the manifolds of non-
regular orbits of the corresponding reflection groups.

ExampLE. The only singularities of a typical wave front in three-dimensional
space are (semicubic) cuspidal curves {4 ,) and “swallowtails™ (A4, Figure 256;
near such a point, the front is diffeomorphic to the surface formed by the poly-
nomials with multiple roots in the space of polynomials x* + ax? + bx + ).

]

A- ~Z

Figure 256 Singularities of wave fronts
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Appendix t6: Singularities of ray systerns

Of course, there may also be transverse intersections of branches of fronts of
the types just described.

Remark. The real forms of simple singuiarities of fronts may also be described
in terms of reflection groups. E. Looijenga has shown that the real components
in the compiement of a simple germ of a front may be identified with the
conjugacy classes of involutions (elements of order 2) in the normalizer of
the reflection group, conjugacy being taken with respect to the reflection
group itself. (See E. Looijenga, The discriminant of a real simple singularity,
Compositio Math. 37 (1978), 51-62.)

E Applications of contact geometry to symplectic geomeiry

All lagrangian singularities may be obtained from Legendre singularities, if
one reaiizes the iatter by projections of Legendre submanifolds of the space
of 1-jets of functions onto the space of O-jets. If one forgets the value of each
function, the space of 1-jets is projected onto phase space (i.e., the cotangent
bundle); a Legendre submanifold in the first space projects to a lagrangian
submanifold in the second. In particular, the caustic of a lagrangian mapping
is the image of the cuspidal edge of the front of a Legendre mapping under a
projection with one-dimensional fibres.

Theorem (Q. V. Lyashko, 1979). Ail holomorphic vector fields transverse ro the
Jront of a simple singularity are locally equivalent under holomorphic diffes-
morphisms preserving the froni.

ExaMPLE. A generic vector field in the neighborhood of the most singular
point of a swallowtail {x* + ax? + bx + ¢ = (x + d)*...} is equivalent, by
a holomorphic diffeomorphism preserving the swallowtail, to the normal form
¢/¢c (Figure 237).

The reduction of various objects to normal form, by a diffeomorphism
preserving a wave front or caustic, is a basic technique for studying the
geometry of systems of rays and fronts. For instance, the study of the meta-

Figure 257 The normal form of a vector field at the swallowtail
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‘@@®
@

Figure 258 Perestroikas of wave fronts

morphoses of moving wave {ronts is based on the following result, which is
“dual” to the previous one.

Theorem (1976). Al generic holomorphic functions equal to zere at the most
singular point of a simple singularity of a front are locally equivalent under
holomorphic diffeomorphisms which preserve the front.

ExaMpLE. In a neighborhood of the most singular point of a swallowtail, a
generic function may be reduced, by a diffeomorphism preserving the swaliow-
tail, to the normali form a.

This theorem is a special case of the equivariant Morse lemma. It is applied
in the following way. The instantaneous wave fronts together form a “large
front” in space—time. “Time” is a function on space-time. We reduce this
function to normal form by a diffeomorphism which preserves the front, and
we thereby obtain a normal form for the metamorphoses of the instantaneous
fronts. The metamorphoses of fronts in R* are shown in Figure 258. The
problem of describing the metamorphoses of caustics in generic one-parameter
families (Figure 255) is solved in exactly the same way. In this case, the time
function is reduced to normal form by a transformation of space—time which
preserves the “large caustic.” If the dimension of space—time is no larger than
4, then all the singularitics of the large caustic are of types A and D.

The caustics of lagrangian singularities in the A series differ from the wave
fronts in the A series only by a shift of 1 unit in the index. The same is therefore
true for their metamorphoses.

The caustics in the D series are not the same as the fronts. The normal forms
for a generic time function in the neighborhood of a caustic singularity of type
D were found by V. M. Zakalyukin {1975). The topological normal forms for
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the time function ar¢ ¢cspecially simple:

Caustic Real case Complex case
n; Ayt Ay Ay + Ay
Dy Ayt Ag, A+ Ay Ay + Ay
D2k+1 i)‘I ;"1
Dy k=3 it A A+ Ag

Here, the large caustic D, is the sct of / for which #(-, i) has a degenerate
critical point, where

} 1 _ A _ )
Flx, Ay= £x3x, + i CexiTh LR Aoy + 24,%, (42 ).

1 pw—2

The reduction to normal form of the germ of the time function is accom-
plished by a local homeomorphism of the space B*~! (C*~!), which preserves
the large caustic and which is smooth everywhere except at O (V. 1. Bakhtin,
1984).

J. Nye (1984} has noticed that not all metamorphoses of caustics and fronts
may be realized by the motion of a front under an equation of eikonal (or
Hamilton-Jacobi) type. For example, the caustic of a ray system cannot have
the form of “lips™ with two cusps (although this is possible for lagrangian
caustics), The point is that the inclusion of a lagrangian or Legendre manifold
in the hypersurface given by a Hamilton Jacobi or cikonai equation imposes
topological restrictions on the coexistence, and thus on the metamorphoses,
of singularities, even though the individual singularities may be realized on
hypersurfaces. This is namely the case when the level surface of the hamiltenian
is locally nondegenerately convex in the momentum variables.

The vector ficlds generating the diffeomorphisms preserving a front are
those which are tangent to it. The study of these vector fields leads to an
unusual “convolution™ operation on the invariants of a reflection group.
To a pair of invariants (functions on the orbit space) we associate a new
invariant- -the scalar product of the gradicnts of the functions {puiled back
from the orbit space to the original euclidean space).

The linearization of this operation defines a symmetric bilinear mapping
from each cotangent space of the orbit space into itself.

Theorem (1979). The linearized convolution of invariants of a reflection group
is isomorphic as a bilinear operation to the operation on the local algebra of
the corresponding singularity given by the formula (p, q)— S(p- ). where
S =D+ (2/hE, D is Euler's quasi-homogeneous derivation, and h is the
Coxeter number.

In 1981, A. N. Varchenko and A. B. Givental' (who also proved the theorem
above for the exceptional groups) found a far-reaching gencralization of this
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resuit. They replaced the euclidean structure by the intersection form of
the underlying period mapping, which arises from a family of holomorphic
differential forms on the fibres of the Miinor fibration of a versal family of
functions. A nondegenerate intersectior form defines (depending on the parity
of the number of variables) either a locally flat pseudo-cuclidean metric with
a standard singularity on the Legendre front or a symplectic structure which
extends holomorphically to the front.

ExaMPLE. The space of monic polynomials with odd degree and sum of the
roots equal to zero acquires yet another symplectic structure. Relative to this
structure, the submanifold of polynomials with the maximal number of double
roots turns out to be lagrangian.

When the intersection form is indefinite, the symplectic structure is replaced
by a Poisson structure (see Appendix 14).

F Tangential singularities

The first applications of the theory of lagrangian and Legendre singularities,
around which the theory itself developed (~ 1966), concerned short wave
asymptotics in the form of the asymptotics of oscillatory integrals. A survey
of these applications (including the determination of uniform estimates for
oscillatory integrals when saddle points meet, the calculation of asymptotics
using Newton polyhedra, the construction of mixed Hodge structures, appli-
cations to number theory and the theory of convex polyhedra, and cstimates
of the index of singular points of vector fields and the number of singular
points of algebraic surfaces) may be found in the book:

V. 1. Arnold, A. N. Varchenko, and 8. M. Gusein-Zade, “ Singularities of
Differentiable Mappings,” Vol. 2, Monodromy and Asymptotics of [ntegrals,
Moscow, Nauka, 1984, English translation: Birkhiuser, 1988.

and in the paper

VY. 1. Arncid, Singularities of ray systems, Proceedings of the International
Congress of Mathematicians, August 16- 24, 1983, Warsaw.

Here we shall present other applications of the theory of lagrangian and
Legendre singularitics to the study of the configurations of projective mani-
folds and tangential planes of various dimenstons. One is led to such problems
from variational problems with one-sided constraints (such as the obstacle
problem), as well as from the study of Nekhoreshev's exponent of roughness
for unperturbed hamiftonian functions (see Appendix 8).

We consider a generic surface in three-dimensional projective space (Figure
259). The curve of parabolic points (p) divides the surface into a domain of
¢iliptic points {¢) and a demain of hyperbolic points (h); the latter domain
contains the curve of inflection points of the asymptotic lines ([}, with its
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S s
Figure 25% Projective classification of points of a surface

points of biinflection (b), self-intersection (¢}, and tangency to the parabolic
curve (),

From this classification of points, one may derive both estimates of curva-
ture exponents and the following classification of projections.

Theorem {O. A. Platonova and O. P. Shcherbak, 1981). Every projection from
a point outside a generic surface in RP? is locally equivalent at each point of
the surface to the projection along lines parallel to the x-axis of a surface
z = f{x, )), where f is one of the following 14 functions:

x, X3, x4 xp, x4+ xyh o + xyd, x4 xy,

x4+ xty+ xph Xt £ 3y + xy 7 oot xt x4+ xp?, x5+

By a projection we mean here a diagram V — E — B consisting of an
embedding and a fibration; an equivalence of projections is then a 3 x 2
commutative dizgram whose vertical arrows are diffecomorphisms.

The only singularities of the projection from a generic center are folds and
Whitney tucks, The tucks appear when the projection is along an asymptotic
direction. The remaining singularities are visible only from special points. The
finiteness of the number of singularities of projections (and therefore the number
of singularities of apparent contours} was not obvious before the result above
was obtained, since there is a continuum of inequivalent singularities for
generic three-parameter families of mappings from a surface to the plane.

The regions of space from which the generic surface has a different appear-
ance, as well as the corresponding views of the surface, are shown in Figure 260
(for the most complicated cases).

The hierarchy of tangential singularities becomes more comprehensible
when it is reformulated in terms of symplectic and contact geometry. R.
Melrose {1976} observed that the rays tangent to a surface are described by
a pair of hypersurfaces in symplectic phase space: one of them, p2 =1, is
defined by the metric; the other is defined by the surface.

A significant part of the geometry of asymptotic lines may be reformulated
in terms of this pair of hypersurfaces. In this way, we may transfer concepts
from the geometry of surfaces 10 the more general case of arbitrary pairs of

492



Appendix 16: Singularities of ray systems

G

af /7

e
W
-

$20EJINS JO SINOJUDI HGiSia A1 Jo seyonsaiad ayl 097 N8

493



Appendix 16: Singularities of ray systems

hypersurfaces in symplectic space, and thereby use the geometric intuition
gained from surface theory to study general variations problems with one-
sided phase constraints.

Let ¥ and Z be hypersurfaces in the symplectic space X which intersect
transversely along a submanifold W. Projecting Y and Z onto their manifolds
of characteristics, we obtain the hexagonal diagram

o Ko,
Y\)L/Z

l w !
P
U\;/,V

in which X is the common manifold of critical points for the projections of W
on U and V.

ExamPLE. Let X be the {4, p} phasc space for a free particle in euclidean space
(g is the position of the particle, p its momentum). ¥ is the manifold of unit
vectors (p? = 1). Z is the manifold of vectors at the boundary (g belongs to
a hypersurface I'), Then U is the manifold of rays, V is the tangent bundle of
the boundary I, W is the manifold of unit vectors at the boundary, and X is
the unit tangent bundle of the boundary.

If a unit tangent vector to the boundary is not asymptotic, then both of the
projections W — U/ and W — V have fold singularities at this point. Each of
them defines an involution on W which fixes .

ExampLE. There are two involutions, ¢ and t, on the manifold of tangent
vectors along a convex plane curve W (Figure 261). Their product is Birkhoff’s
billiard mapping (1927).

Using pairs of involutions, Melrose found a local normal form for pairs of

hypersurfaces in symplectic space which are in the situation just described.
(This was for the C* case; in the analytic case, one usually obtains divergent

Figurc 261 The two invelutions generating the billiard mapping
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series, just as in the theory of Ecalle {1975) and VYoronin (1981) on resonant
dynamical systems.)

For more complicated singularities {for example, near asymptotic direc-
tions), pairs of hypersurfaces have moduli. For the two simplest singularity
types after the fold, it is possible to put in normal form (at least for-
mally) the pair consisting of the first hypersurface and its intersection with
the second. This allows us to study, in a4 neighborhood of an asymptotic or
biasymptotic unit tangent vector to the boundary, the mapping which assigns
the ray containing it to each unit vector at the boundary. The critical values
of this mapping in the sympiectic space of lines are described by the following
result, since the manifold of tangent rays is locally diffeomorphic near a
biasymptotic ray to the product of a swailowtail and a line.

Theorem (1981). 4ll the generic symplectic structures in the neighborhood of a
point in the direct product of a swallowtail and a linear space are formally
diffeomorphic by local diffeomorphisms preserving the product structure.

G The obstacle problem

We consider an obstacle bounded by a smooth surface in euclidean space.
The obstacle problem consists of the study of the singularities of the function
defined outside the obstaclec whose value at cach point is the length of the
shortest path remaining outside the obstacle and joining the point to a fixed
initial set. This variational problem on a manifold with boundary is unsolved
even in three-dimenstonal space.

Each minimizing path consists of segments of straight lines and segments
of geodesics on the surface of the obstacle (Figure 262). We consider therefore
a system of gcodesics on the surface of the obstacle, erthogonal to a fixed front.
The system of ali rays tangent to these geodesics forms a lagrangian variety
in the sympiectic space of lines, just as any system of extremals for a varia-
tional problem. But while in an ordinary variational problem this lagrangian
variety is a smooth manifold (even at caustics), the lagrangian variety arising
in the obstacle problem has singularities. From the last theorem (in the
previous section), on¢ obtains:

/

Figure 262  An extremal of the obstacle problem
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Figure 263 The open (“unfurled™) swallowtail

Corollary {1981). The lagrangian variety of rays in a generic obstacle problem
has a semicubic cuspidal edge along each asymprotic ray and a singularity
diffeomorphic to an open swallowtail at each biasymptotic ray.

The open swallowtail is the surface in the four-dimensional space of monic
polynomials x> + Ax* + Bx? + Cx + D formed by the polynomials with
tripte roots. Differentiation of the polynomials turns the open swallowtail into
an ordinary one; when the swallowtail is opened, the cuspidal edge is retained,
but the self-intersection disappears (Figure 263).

Theorem (1981). {n the generic motion of a wave front, the cuspidal edges of
the instantaneous fronts sweep out an open swallowtail in four-dimensional
space—time (over the usual swallowtail caustic).

Theorem (O. P. Shcherbak, 1982). Consider a generic one-parameter family of
space curves and suppose that, for some value of the parameter (time), one of
the curves has a point of double flatness (of type 1, 2, 5). Then the projective
duals of these curves form a surface in space-time which is locally diffeo-
morphic to the open swallowtail.

The open swallowtail is the first member of a whole series of singularities.
Consider, in the space of monic polynomials x” + 4, x"™! 4+ +++ + i _,, the set
of polynomials with a root of fixed comultiplicity &, (x — )" *(x* + ---).
Differentiation of polynomials preserves the comultiplicity of roots.

Theorem (A. B. Givental’, 1981). The sequence of sets of polynomials of fixed
comultiplicity becomes stabilized as the degree grows, beginning with degree
rn =2k + 1 (i.e., when the self-intersections are eliminated).

ExaMpLE. The open swallowtail 1s the first stable variety over the ordinary
swallowtait.

The appearance of swallowtails in the obstacle problem was axiomatized
by Givental’ {1982} in his theory of triads.
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Definition. A symplectic triad (H, L, Iy consists of a smooth hypersurface H in
a symplectic manifold and a lagrangian submanifold L. which is tangent to H
to first order along a hypersurface { of L.

The lagrangian variety generaied by the rriad is the image of L in the
manifold of characteristics of the hypersurface H.

ExawmpPLE 1. Consider, in the problem of bypassing an obstacle with boundary
[ = R" the distance along geodesics from an initial front as a function
s: [ — R. The manifold L consisting of all extensions of the t-form ds from I'
to R", together with the hypersurface H: p? = 1, forms a triad. The lagrangian
variety generated by this triad is precisely the variety of rays tangent to the
geodesics in our system of extremals on I,

ExampLE 2. In the symplectic manifold of monic polynomials % = x? +
Ax®t 4o 4 4, with even degree d = 2m, the polynomials divisible by x™
form a lagrangian submanifold L.

Consider the hamiltonian for translation along the x-axis. [ This polynonial
in ~ is equal to

h=S(-PFOFY, 4 j=d FO=dF/dx

The hypersurface h = 0 is tangent te the lagrangian submanifold L along
the subspace ! of polynomials divisible by x™*!, thus forming a triad. The
lagrangian variety generated by this triad is an open swallowtail of dimension
m — 1 (the set of polynomials x*~' + a,x*"* +--- + a,_, having a root of
multiplicity greater than half the degree).]

Theorem (A. B. Givental’, 1982). The triads in Example 2 are stable. Every germ
of a generic triad is diffeomorphic to a germ of a triad in Example 2.

Corollary. The variety of rays tangent to the geodesics in the system of extremals
of a generic obstacle problem is locally symplectically diffeomorphic to a
lagrangian open swallowtail.

In contact geometry, there are two kinds of Legendre varieties associated
to obstacle problems: varieties of contact elements of fronts and varieties
of 1-jets of time functions. The first of these are diffeomorphic to lagrangian
open swallowtails; the second are diffeomorphic to cylinders over the
first.

ExaMPLE. Consider the problem of bypassing an obstacle in the plane which
is bounded by a curve with an inflection point. The fronts, which are the
evolvents of the curve, bave two kinds of singularities: ordinary cusps (of order
3/2) on the curve itself and singularities of order 5/2 on the tangent line
through the inflection point (Figure 264). Over points of the boundary curve,
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Figure 264 The evolvents of a cubical parabola

the Legendre variety is nonsingular, while over points on the tangent line
through the inflection point it has a cuspidal edge of order 3/2.

Theorem (1978). In the space of contact elements to the plane, fibered over the
plane itself, the surface consisting of the contact elements of the evolvents of
a generic curve near a point of inflection is locally equivalent by a fiber-
preserving diffeomorphism to the surfuce consisting of all polynomials with
multiple roots in the space of polyromials x* + ax® + bx + ¢, fibered into
lines parallel to the b-axis.

This surface {Figure 263), together with the surface ¢ = 0 representing the
contact elements along the boundary curve, forms a variety which is diffeo-
morphic to the set of irregular orbits for the reflection group B, This observa-
tion led to the theory of boundary singularities (1978).

ExampLE (I. GG. Shcherbak, 1982). Consider a generic curve on a surface in
three-dimensional euclidean space. At certain points, the direction of the curve
coincides with principal curvature directions of the surface. It follows from
the theory of lagrangian boundary singularities that the Weyl group F, is

CUrve

tangent through the
inflection point

Figure 265 The surface of contact elements of the evolvents
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Figure 266 The caustic singularity F,

connected with each such point: the focal points of the surface (A,), focal
points of the curve (A43), and normals to the surface at points of the curve (B,)
together form an F, caustic near the center of curvature (Figure 266).

We will not dwell here on the theory of boundary singularities, but it is
worth mentioning the “Lagrange duality” relating a function and its restric-
tion to the boundary {up to stable equivalence): this may be thought of as
a medern version of the Lagrange muitiplicr rule (I. G. Shcherbak, 1982),

Returning to inflection peints of plane curves, we consider the graph of the
multiple-valued time function in an obstacle problem. The level curves of this
function are the evolvents of the obstacle boundary. Therefore, the graph of
this function has the form (shown in Figure 267) of a surface with two cuspidal
edges (of orders 3/2 and 5/2). When I showed this surface to A. B. Givental’,
he recognized O. V. Lyashko’s drawing of the singular orbit T of the group
H; (symmetries of the icosahedren). Givental’s conjecture was soon verified:

Figure 267 The discriminant of H,
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Theorem (O. P. Shcherbak, 1982). The graph of the (multiple-valued) time
function in the problem of bypassing an ebstacle bounded by a generic plane
curve is formally diffeomorphic near an inflection point of the curve to the
variety .

The proof of this theorem uses:

Theorem (O. V. Lyashko, 1981), The variety T is diffeomorphic to the variety
of polynomials x° + ax* + bx? + ¢ having a multiple root.

[.yashko's theorem describes the variety of singular orbits for the group H;
as the union of the tangents to the curve (¢, £7, £*}, while Shcherbak’s theorem
applies to any curve of the form (¢ + o(f), £* + o{t?), £* + o{t”)).

The same singularity appears on a generic front at the point of tangency of
a asymptotic ray with the bounding surface of an obstacle in R*.

Finally, we describe a variational probiem leading to the singularity H,
{after O. P. Shcherbak).

The group H, consists of the symmetries of a regular poiyhedron in R*. Tts
120 vertices lic on §? &~ SU(2) and form the binary icosahedral group (the
binary group being the inverse image of the symmetry group of the icosahedron
under the double covering $2 - SO(3)).

Consider the problem of bypassing an obstacle bounded by a smocth
surface in three-dimensional euclidean space. The extremals beginning at a
fixed point outside the obstacle generate a pencil (one-parameter family} of
geodesics on the surface. A time function is the distance from a fixed initial
manifold (e.g., a point} along stationary (not necessarily minimizing} paths
consisting of arcs of geodesics and their tangents, considered as a (multiple-
valued) function of the terminal point in space (solution of the Hamilton—Jacobi
equation).

Theorem (O. P. Shcherbak, 1984). For a generic obstacle, the graph of the time
function at a point which is focal for the pencil along an asymptotic tangent
at a parabolic point of the surface is locaily diffeomorphic to the variety  of
singular orbits of the group H,.

An explicit parametrization of L is:

(a, %12 + ac, c}2 + ab?, b3/5 + c*/3 + abe).

The group H, is related to a four-dimensional subspace of the base space
of the versal deformation of E, (this connection is cxplained in Remark 7, §9
of the paper by V. I. Arnold, Indices of singular points of 1-forms on mani-
folds with boundary, convelution of invariants of reflection groups, and
singular projections of smooth surfaces, Russian Math. Surveys 34:2 (1979),
1-42).
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Figure 269 The front perestroika H,
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Corresponding to this four-dimensional subspace, there is an embedding
of the local algebra D, into the local algebra E,, which induces on the former
the same grading which is given by the convolution of invariants of H,.
O. P. Shcherbak has shown that this relationship establishes yet another
description of the variety of singular orbits of H,:

Theorem. Consider those values of i for which the curve x° + y* + i, x%y +
iyxd + Ayy + Ay = 0 is singular. One of the irreducible components of this
three-dimensional hypersurface in A-space is diffeomorphic to the variety of
singular orbits of the group H,.

The caustic and three typical sections of the variety of singular orbits of H,

are shown in Figures 268 and 269. Sce Q. P. Shcherbak, Wavefronts and
reflection groups, Russian Math. Surveys, 43 (1988).

502



Bibliography of Symplectic Topology

Arnold, V.. Sur unc propriété topologique des applications globalement canoniques
de la mécanique classique. C.R. Acad. Sci. Paris 261 {1965), 3719-3722.

Arnold, V.I. On a characteristic class eniering the quantization conditions. Funet. Anal.
Appd. 1:1 (1967), 1-14,

Arnold, V.I. A comment on “Sur un théoréme de géométric”. In: fzbrannyve trudy A
Puankaré. Moscow, Nauka, 1972, vol. 2, pp. 987-989.

Amold. V.I. Lagrange and Legendre cobordisms. Funct. Anaf. Appl. 14:3 (1980), 1-13;
14:4 (1980, 8-17.

Arnold. VI. The Sturm theorems and symplectic geometry. Funcr. Anal. Appl. 19
(1985}, 251-259.

Arnold. V.I. First steps in symplectic topology. Russian Marh, Survey 41:6 (1986),
1-21.

Arnold, V.I. On functions with mild singularitics. Funer. Anal. Appl. 23:3 (1989), 1-10.

Arnold, V.1., and Givental, A.B. Symplectic geometry. In: Dyaamical Sysrems IV (Enc.
of Math. Sc. vol. 4). Berlin-Heidelberg-New York, Springer, 1990, pp. 1-136.

Arnold, V.I. Sur les propriétés topologiques des projections lagrangiennes en géo-
métrie symplectique des caustiques. Preprint 9320, CEREMADE, Université Paris-
Dauphine, 1993, pp. 1-9 {Cahiers de Mathématiques de la Déciston, 14/6/93).

Amold, V.I. Some remarks on symplectic monodromy of Milnor fibration. In: Progress
in Math., A Floer Memoriaf Volmne. Base)-Boston, Birkhiuser, 1993,

Arnold, V.1 Invariants and perestroikas of plane fronts. Trudy (Proceedings)} Steklov
Marh. Inst., Russ. Acad. of Sc., Vol. 209, 1985.

Arnold. V.I. On topological properties of Legendre projections in contact geometry
of wave fronts. Algebra and Analysis. 5. Perersbourg Math. J. 6:3 (1994).

Arnold, V.I. Symplectic geometry and topology. In: Trends and Perspectives in Modern
Mathematics. Cambridge Univ. Press, to appear (Preprint MIT, 1993, 68 pp).

Arnold, V.1. Topological Invariants of Plane Curves and Caustics. J.B. Lewis Memorial
Lecrures, Rutgers, 1993, 106 pp; AMS University Lecture Series, Vol. §, Providence,
AMS, 1994, 60 pp.

Arnold. VL, ed. Singularities and Curves (Advances in Sov. Math.), Providence, AMS,
1994,

303



Bibliography of Symplectic Tepology

Atiyah, M. New invariants of 3- and 4-mantfolds. 1n: The Marhematical Heritage of
H. Weyl Durham, NC, 1987 (Sympos. Pure Math., vol. 48) Providence. AMS, 1988,
pp. 285-289.

Audin, M. Quelgues calculs en cobordisme lagrangien. Amn st Fourier 353 (1983),
159 194

Audin, M. Cobordismes d'immersions lagrangiennes et legendriennes (Ttavaux en Cours,
vol. 20}. Hermann, 1987, 203 pp.

Audin, M. Fibrés normaux d'immersion en dimension double, points doubles d'immer-
sions lagrangiennes et plongements totalement réeis. Comm. Math. Helvet. 63(1988),
593--623.

Audin, M. Hamiltonicns périodiques sur les variétes symplectiques compactes de
dimension 4. In: Lect. Notes in Math, 1416, Berlin-Heidelberg-New York, Springer,
1990, pp. 1 25

Audin, M. The Topology of Torus Actions on Symplectic Manifolds. Basel, Birkhiiuser,
1991.

Banyaga, A. Sur la structure du groupe des diffeomorphismes qui préservent une
forme symplectique. Comm. Math. Hele, 53 (1978). 174 227,

Bennequin, . Entrelacements et équations de Pfaff. dstérisque 107—-108 (1983), 83—
161.

Bennequin, D). Quelques remarques simples sur la rigidité symplectique. In: Géométrie
Symplectique ef de Contace: Aurour du Théoréme de Poincard-Birkhoff. P. Dazord
and N. Desolneux-Moulis, eds. Paris, Herman, 1984, pp. [ -50.

Bialy, M.L., and Polterovich, L.V. Lagrangian singularities of invariant tori of hamil-
tonian systems with two degrees of freedom. farenr. Math 972 {1989}, 291-303.
Bialy, M., and Polterovich, L. Hamiltonian diffeomorphisms and Lagrangran distribu-

vions. Geom. Funct. Anal 2(1992), 173-21.

Biaiy, M., and Polterovich, L. Optical Hamiltoman functions, Preprint 1992, 26 p.

Boothby, W.M.. and Wang, H.C. On contact manifolds. Ann. Math, 68 (1938), 721
734.

Calabi, E. On the group of automorphisms of a symplectic manifold. In: Problems
in Analysis (Symposium in honour of S. Bochner). Princeton Univ. Press, 1970,
1-26.

Chaperon, M. Quelgues guestions de géométrie symplectique [d'aprés, entre autres,
Poincare, Arnold, Conley et Zehnder]. Sémnaire Bourbaki 1982 83, Astérisque
105-106 (1983), 231 249.

Chaperon, M. Une idée du type "géodésiques brisées™ pour les systémes hamiltoniens.
C.R. Acad. Sci. Paris 298 (1984), 293 296

Chaperon. M. An elementary proof of the Conley-Zehnder theorem in symplectic
geometry. In: Dynamical Systems and Bifurcarions, B.L.J. Braaksma, HW. Broer. F.
Takens, eds. (Lecture Notes in Math, 1125) Berlin-Heidelberg-New York, Springer,
1585, 1-8.

Chaperon, M. Familles génératrices. Cours a I'école d’été Erasmus dc Samos (1990),
Publication Erasmus, 1993,

Chekanov, Yu.V. Lejandrova teoriya Morsa. Uspekhi Mar. Nauk 42:4(1987), 139-141.

Chekanov, Yu.V. Caustics in geometrical oplics. Funct. Anal. Appl. 20(1386), 223-226.

Chekanov, Yu.V. Lagrangian tori in a symplectic vector space and global symplec-
tomorphisms. Bochum Preprint 169, 1993, 13 p (to appear in Math. Z).

Conley, C., and Zehnder, E. The Birkhoff-Lewis fixed point theorem and a conjecture
of V.I. Arnold. Invent. Math. 73 (1983), 33 45

504



Bibliography of Symplectic Topology

Duistermaat, J.J. On the Morse index in variational calculus. Adv. Math. 21 (1976),
173-195.

Duistermaat, 1.J. On global action-angle variables. Comm. Pure Appl. Math. 33 (1980),
687706,

Ekeland, 1., and Hofer, H. Symplectic topology and Hamiltonian dynamics. Math. Z.
200 (1988), 355-378.

Ekeland, I, and Hofer, H. Symplectic topology and Hamiltonian dynamics I1. Math.
Z. 203 (1990), 553-567.

Eliashberg, Y. Rigidity of symplectic and contact structures, Preprint, 1981.

Eliashberg, Y. Cobordisme des solutions de relations différentielles. In: Sem. Sud-
Rhodanien de Géom., tome 1, P. Dazord and N, Desolneux-Moulis, eds. Hermann,
1984, pp. 17-32.

Eliashberg, Y. The complexification of contact structures on a 3-manifold. Uspekhi
Mat. Nauk 6:40 (1985), 161-162.

Eliashberg, Y. Classification of overtwisted contact structures on 3-manifolds. Invent.
Math. 98 (1989), 623—637.

Eliashberg, Y. Filling by holomorphic discs and its applications. In: Geometry of Low-
Dimensional Manifolds, Vol. 2, SK. Donaldson and C.B. Thomas, eds. (London
Math. Soc. Lect. Notes Ser. 151) Cambridge Univ. Press, 1990, pp. 45-67.

Eliashberg, Y., and Gromov, M. Convex symplectic manifolds. Proceedings of Sympo-
sig in Pure Mathematics, E. Bedford et al. {eds), 52:2 (1991), 135-162,

Eliashberg, Y.. and Polterovich, L. Bi-invariant metrics on the group of Hamiltonian
diffeomorphisms. Preprint, 1991,

Eliashberg, Y. New invariants of open symplectic and contact manifolds. J. Amer.
Math. Soc. 4(1991), 513-520.

Eliashberg, Y., and Ratiu, T. The diameter of the symplectomorphism group is infinite.
Invenr. Math. 103 (1991), 327-340.

Eliashberg, Y. On symplectic manifolds with some contact properties. J. Diff. Geometry
33(1991), 233-238.

Eliashberg, Y., and Hofer, H. Unseen symplectic boundaries. Preprint, 1992, 16 pp.

Eliashberg, Y., and Polterovich, L. Unknottedness of Lagrangian surfaces in sym-
plectic 4-manifolds. Preprint, 1892, 9 pp.

Eliashberg, Y., and Polterovich, L. New applications of Luttinger’s surgery. Preprint,
1992, 12 pp.

Eliashberg, Y. Contact 3-manifolds twenty years since J. Martinet’s work. Ann. Inst.
Fourier 42 (1992), 165-191.

Eliashberg, Y., and Hofer, H. An energy-capacity inequality for the symplectic
holonomy of hypersurfaces flat at infinity. Preprint, 1992, 8§ pp.

Eliashberg, Y. Topology of 2-knots in R* and symplectic geometry. In; Progress in
Math.. A. Floer Memorial Volume. Boston-Basel, Birkhéuser, 1993,

Eliashberg, Y. Legendrian and transversal knots in tight contact 3-manifolds. In:
Topological Methods in Modern Mathematics. Houston, Publish or Perish, 1993,
pp. 171-193.

Eliashberg, Y. Classification of contact structures on R®. Duke Math. J. Intern. Math.
Res. Notes N°3 (1993), 87-91,

Eliashberg, Y., and Hofer, H. Towards the definition of symplectic boundary. Preprint,
1993,

Floer, A. Proof of the Arnold conjecture and generalizations to certain Kachler
manifolds. Duke Math. J. 53 (1986), 1. 32

505



Bibliography of Symplectic Topelogy

Floer, A. Morse theory for Lagrangian intersections. J. Diff. Geom. 28 (1988), 513-
547.

Floer, A. The unregularized gradient flow for the symplectic action. Comm. Pure Appl.
Math. 41 (1988), 775-813.

Floer, A. A relative Morse index for the symplectic action. Comm. Pure Appl. Math.
41 (1988), 393407,

Floer, A. An instanton invariant for 3-manifolds. Comm, Math. Phys. 118:2 (1988),
215-240,

Floer, A. Witten's complex in infinite dimensional Morse theory. J. Diff. Geom. 30
(1989), 207-221.

Floer, A. Cuplength estimates for Lagrangian intersections. Comm. Pure Appl. Math.
42 (1989), 335-356,

Floer, A. Symplectic fixed points and holomorphic spheres. Comm. Math. Phys. 120
(1989), 575-611.

Floer, A, and Hofer, H. Symplectic homology LI open sets in C”. Preprint, 1992,

Floer, A., Hofer, H., and Wysocki, K. Applications of symplectic homology 1. Preprint,
1592,

Fortune, B, and Weinstein, A. A symplectic fixed point theorem for complex projective
spaces. Bull. Am. Marh, Soc. 12:1 (1985), 128-130.

Fuchs, D.B. Maslov-Arnold characteristic classes, Sov. Math. Dokl 9 (1968), 96-99.

Ginzburg, V.L. Caleulation of contact and symplectic cobordism groups. Topology
31:4 (1992), 757-762.

Ginzburg, V.L., and Khesin, B.A, Steady fluid flows and symplectic geometry. Preprint
IHES, October 1992, 20 pp. (to appear in: J. Geom. Phys.).

Giroux, E. Convexité en topelogie de contact. Comm. Math. Helvet. 66 (1991), 637-
677.

Givental, A.B. Lagrangian embeddings of surfaces and the open Whitney umbrella.
Funct. Anal. Appl. 20:3 {1986), 35-41.

Givental, A.B. Periodic mappings in symplectic topology. Funct. Anal. Appl. 23:4
(1989), 287-300.

Givental, A.B. Nonlinear generalization of the Maslov index. In: Singularity Theory
and Its Applications, ¥. Arnold, ed. (Advances in Soviet Math., vol. 1), Providence,
AMS, 1990, pp. 71-103.

Givental, A.B. A symplectic fixed point theorem for toric manifolds. In: Progress in
Math., A. Floer Memorial Volume. Boston-Basel, Birkhduser, 1993,

Gray, JW. Some global properties of contact structures. Ann. Math. 69 (1959), 421-
450,

Gromov. M. Partial Differential Relations. Berlin-Heidelberg-New York, Springer,
1996,

Gromov, M. Pseude holomorphic curves in symplectic manifolds. Invent. Math. 82
(1985), 307 347.

Guillemin, V., and Sternberg, S. Birational equivalence in symplectic catcgory. Invent.
Math. 97 (1989), 485-522,

Harlamov, V., and Eliashberg, Y. On the number of complex points of a real surface
in & complex surface, Proc, LITC-82 (1982), 143-148.

Hofer, H., and Zehnder, E. A new capacity for symplectic manifolds. In: Analysis Et
Cetera, Boston, Academic Press, 1990, 405-428.

Hofer, H. On the topological properties of symplectic maps. Proc. Roy. Soc.
Edinburgh, Ser. A. 115 (1990), 25-38.

306



Bibliography of Symplectic Tepology

Hofer, H. Symplectic Invariants. In: Proceedings {CM Kyoto 1990. Berlin-Heidelberg—
New York, Springer, 1991,

Hofer, H. Symplectic capacities. In: Durham Conferences, S K. Donaldson and C.B.
Thomas, eds. London Math. Scc., 1992,

Hofer, H.,, and Salamon, D. Floer homology and Novikov rings. Preprint, 1992,
39 pp.

Hofer, H. Estimates for the energy of a symplectic map. Comm, Math. Helver. 68
{1993), 48-72.

Kazarian, M.E. Umbilical characteristic number of Lagrangian mappings of 3-
dimensional pseudo-optical manifolds. Preprint, Ruhr-Univ. Bochum, 1993, 12 pp.
Kuksin, S. Infintte-dimensional symplectic capacities and a squeezing theorem for
Hamiltonian PDE’s. Preprint Forschungsinstitut fur Mathematik ETH Ziirich,

August 25, 1993,

Lalonde, F., and Sikorav, L-C. Sous-variétés lagrangicnnes exactes des fibrés cotan-
gents. Comm. Math. Helver. (1991), 18-33.

Lalonde, F. Isotopy of symplectic balls, Gromov's radius and the structure of ruled
symplectic 4-manifolds. Preprint, 1992,

Lalonde, F., and McDuff, D. The geometry of symplectic energy. Preprint # 1993/6
IMS SUNY Stony Brook, June 1993, 26 pp.

Laudenbach, F., and Sikorav, J.-C. Persistence d'intersection avec la section nulle
au cours d'une isotopie hamiltonienne dans un fibré cotangent. Invent. Math. 82:2
(1985), 349-358.

Laudenbach, F., and Sikoray, J.C. Disjonction hamiltonienne et limites de sous-variétés
lagrangiennes. Preprint, Centre de Math., Ecole Polytechnique, septembre 1993,
Lee, Yng-Ing. Nonlagrangian limits of Lagrangian discs. Duke Math. J. Intern. Math,

Res. Notes, N°2, 1993,

Luttinger, K. Lagrangian tori in R*. Preprint, 1992,

Lutz, R. Structures de contact sur les fibrés principaux en cercles de dimension 3. Ann.
Inst. Fourier 3(1971N, 1-15.

Martinet, J. Formes de contact sur les variétés de dimension 3. In: Lect. Notes in Math.
209, Berlin-Heidelberg-New York, Springer, 1971, pp. 142-163.

Meckert, C. Formes de contact sur la source connexe de deux variétés de contact.
IRMA, Strasbourg, 1980.

McDuff, D. The structure of rational and ruled symplectic 4-manifolds. JAMS 31
(1990}, 679-712.

McDuff, D. Elliptic methods in symplectic geometry. Bull. Amer. Math. Soc. 23 (1990),
311-358.

McDuff, D. Symplectic manifolds with contact-type boundaries. Invent. Math. 103
(1991), 651-671.

McDuff, D. Blow-ups and symplectic embeddings in dimension 4. Topology 30 (1991),
409-421.

McDuff, D. Singularities of J-holomorphic curves. J. Geom. Anal. 3 {1992), 249-
266.

McDuff, D. Notes on ruled symplectic 4-manifolds. Preprint, 1992 (to appear in Trans.
Amer. Math. Soc.).

McDuff, D, and Polterovich, L. Symplectic packing and algebraic geometry. Preprint,
1992,

McDuff, D. Remarks on the uniqueness of symplectic blowing-up. Proceedings of 1990
Warwick Symposium, Cambridge Univ, Press, 1993,

507



Bibliography of Symplectic Topology

McDuff, D, and Salamon, D. Notes on J-holomorphic curves. Stony Broek preprint,
1993,

McDuff, D., and Traynor, L. The 4-dimensional symplectic camel and related results.
{London Math. Soc. Lect. Notes Series). Cambridge Univ, Press (1o appear).

McDuff, D, and Salamon, D. Symplectic Topology (in preparation).

Moscr, J. On the volume clements on a manifold. Trans. Amer. Math. Soc. 120 (1965),
286--294,

Oh, Y.-G. A symplectic fixed point theorem on T2 x CPX Math. Z. 203:4 (1990),
535-552,

Polterovich, L. New invariants of embedded totally real tori and one problem of
Hamiltoniun mechanics. In: Methods of Qualitative Theory and the Theory of
Bifurcations, Gorki, 1988, pp. 84 90.

Polterovich, L. Strongly optical Lagrange manifolds. Math. Notes Ac. Sc. USSR 45
(1989), 152-138,

Polteravich, L. Symplectic displacement energy for Lagrangian submanifolds. Pre-
print, 1991.

Polterovich, L. The surgery of Lagrange submanifolds. Geom. Funct. Aral. 2 (1991),
213-246,

Polterovich, L. The Maslov class of Lagrange surfaces and Gremov's pseudoholomor-
phic curves. Trans. Amer. Math. Soc. 325 (1991), 241-248.

Rabinowitz, P. Critical points of indefinite functionals and periedic solutions of
differential equations. In: Proceedings ICM Helsinki 1978. Acad. Sci. Fennica,
Helsinki, 1980, pp. 791 796.

Sato, H. Remarks concerning contact manifolds. Téhoku Math. J. 29(1977), 577-584.

Siegel. C.L. Symplectic geometry. Amer. J. Math, 65:1 (1943).

Sikorav, J.C. Problémes d’intersections et de points fixes en géométrie hamiltonienne,
Comm. Math. Helvet. 62:1 (1987), 62-73.

Sikorav, J.-C. Rigidité symplectique dans le cotangent de T™. Duke Math. J. 59 (1989),
227-231.

Stkorav, J.-C. Systémes hamiltoniens et topologie symplectigue. Pisa, ETS Editrice, 1990.

Sikorav, J.-C. Quelques proprictés des plongements lagrangiens. Preprint, 1990

Tabachnikov, 8.L. Calculation of the generalized Benneguin invariant of a Legendrian
curve from the geometry of its front. Funcr. Anal. Appl. 22:3 (1988), 246-248.

Tabachnikov, 8. Around four vertices. Russian Math. Surveys 45:1 (1990), 229-230.

Tabachnikov, 8. Geometry of Lagrangian and Legendrian 2-web. Preprint, Arkansas
Univ., 1992, 22 pp.

Traynor, L. Symplectic embedding trees for generalized camel spaces. Preprint 034-93
MSRI Berkeley, January 1993, 19 pp.

Traynor, L. Symplectic packing constructions. Preprint, October 1993, 20 pp.

Vasil'ev, Y.A. Characteristic classes of Lagrangian and Legendre manifolds dual to
singularities of caustics and wave fronts. Funct. Anal. Appl. 15(1981), 164-173.

Yasil'ev, V.A. Self-intersections of wave fronts and Legendre (Lagrangian) charactristic
numbers. Funct. Anal. Appl. 16 (1982), 131 -133.

Vassilyev, V.A. Lagrange and Legendre Characteristic Classes. New York, Gordon and
Breach, 1988,

Vasil'ev, V.A. Topology of spaces of functions having no complicated singularities.
Funct. Anal. Appl. 23:4 (1989), 24-36.

Viterbo, C. Capucités symplectiques et applications. Séminaire Bourbaki, n"714,
Astérisque 177178 (1989), 345-362.

508



Bibliography of Symplectic Topology

Viterbo, C. A new obstructicn to embedding Lagrangian tori. fnvent. Math. 100 {1990),
301-320.

Yiterbo, C. Plongement lagrangiens et capacités symplectiques des tores dans R, C.R.
Acad. Sci. Paris, Sér. I, Math. 311 (1990), 487-490.

Vitcrbo, C. Symplectic topology as the geometry of generating functions. Math. Ann.
292 {1992), 685 710.

Weinstein, A. Lectures on symplectic manifolds. C.B.M.S. Regional Conf. Ser. in Math.
vol. 29, Providence, AMS, 1977.

Weinstein, A. Pertodic orbits for convex hamiltonian systems. Ann. Mark. 108 (1978),
507 518,

Weinstein, A. On the hypotheses of Rabinowitz's periodic orbit theorems. J. Diff. Eq.
33 (1979), 353-358.

Weinstein, A. Contact surgeries and symplectic handlebodies. Hokkaide Math. J. 20
(1991), 241-251.

Weinstein, A. Symplectic manifolds and their lagrangian submanifolds. Adv. Math. 6
{1971}, 329-346.

309



Index

Acceleration 7 Characteristic 235, 256, 369, 472

Action 60 path length 312

Action-angle variables 280 Chart 77

Action function 253 Charts, compatibility of 78

Action variables 280, 281, 283 Chasles’ theoremn 471

Adiabatic invariant 297, 413 Chebyshev polynomial 27

Adjoint representation of a group 320  Circulation 187

Affine space 4 Closed form 196

Angular momentum 30, 46, 323, 328 Closed system 44
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Hamiltonian
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Index
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Hamilton's principle of least action 59
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function 60
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singularity 446

system 83

system, non-autonomous 86
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singularity 367
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One-parameter group of
diffeomorphisms 21, 208
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phase 397

small 102
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Parametric resonance 119, 225
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Phase
curve 16
flow 21, 68
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recurrence theorem 71
relative integral invariant 238

Poinsot's theorem 145

Point of contact 354, 356

Poisson
action of a Lie group 372
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Potential energy 11, 15, 48, 84

Precession 133, 138
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eigenvalues of 381

Quadric 470
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Ray 251
Rayleigh’s theorem 336
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Relative equilibrium 379
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Riemannian
curvature 304
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Right translation 214

Index

Rigid body 133
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Rotation 124

Scalar product 5§
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lagrangian 446
Legendre 367
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vectors 219
Skew-scalar product 219, 375
Soliton 453
Space average 286
Space of simultaneous events 3
Splitting of separatrices 394
Stability 99
Liapunov 115
strong 117
Stationary
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flow 33}
group 273
rotation 145, 328
Steinec’s theorem 141
Stokes’ formula 192
Stokes” lemma 233
multidimensional 234
Stream function 333
Subalgebra 217
Swallowtail 258, 368, 450, 467, 487,
495
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group 221
linear transformation 221, 225
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lincar transformation. strongly
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structure 201
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structure of spaces of

polynomials 482

triad 497

veclor space 219
Symplectification

of a contact manifold 356

of a contact vector field 361
System

closed 44

isoenergetic integrable 403

mechanical 7

natural 84

nondegenerate integrable 290

with one degree of freedom 13

with two degrees of freedom 22

Tangent
bundle 81
space 80

vector to a manifold 81
Theorem on the averages 286
Three-body problem. restricted

415

Time 5
average 286
interval 5§

Top
fast 155

Lagrange's 148
rapidly thrown 138
sleeping 154
symmetric 148
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