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Foreword

When k = C is the field of complex numbers, a classification of the maximal connected
algebraic subgroups of the Cremona group Bir(P3) has been stated by Enriques and Fano in
[EF98] and achieved by Umemura in a series of four papers [Ume80, Ume82a, Ume82b, Ume85].
In more than 150 pages, detailed arguments are given and a finite list of families is precisely
established. The proof of Umemura uses a result of Lie that gives a classification of analytic
actions on complex threefolds (see [Ume80, Theorem 1.12]) to derive a finite list of algebraic
groups acting rationally on P3.

Umemura, together with Mukai, studied then in [MU83, Ume88] the minimal smooth rational
projective threefolds (a smooth projective varietyX is calledminimal if any birational morphism
X → X ′ with X ′ smooth is an isomorphism). For each subgroup G ⊆ Bir(P3) of the list of
maximal connected algebraic subgroups of Bir(P3), they determine the minimal smooth rational
projective threefolds X such that φ−1Gφ = Aut○(X) for some birational map φ∶ X ⇢ P3; this
gives a detailed story of 95 additional pages to Umemura’s classification.

With Blanc and Fanelli we followed in [BFT21, BFT23] a different approach and did not
use the long work of Umemura or any analytic method. We rather used another strategy to
recover both the maximal connected algebraic subgroups of Bir(P3) and the minimal (possibly
singular) rational projective threefolds on which they act, based on the minimal model program
(or MMP for short).

The goal of this mini-course is to provide some guidelines for the proof of the classification
of connected algebraic subgroups of the Cremona group of rank 3 following [BFT21, BFT23].
The plan is as follows:

● Lecture 1 (90 min): We will recall the definition of a Mori fibration, introduce the notion of
algebraic subgroups of the Cremona group, and explain how the study of connected algebraic
subgroups of the Cremona group can be reduced to the study of automorphism groups of
rational Mori fiber spaces. To illustrate this approach, we will examine the conjugacy classes
of tori and of the additive group in the Cremona group.

● Lecture 2 (90 min): We will study the automorphism groups of conic bundles over rational
surfaces and show how this study can be reduced to the case of P1-bundles over minimal
smooth rational surfaces.

● Lecture 3 (60 min): We will study the automorphism groups of Mori del Pezzo fibrations
over P1 of degree ≠ 8 and explain why only automorphism groups of P2-bundles over P1

appear among the maximal connected algebraic subgroups of the Cremona group of rank 3.

● Lecture 4 (60 min): We will focus on a particular family of quadric fibrations over P1,
namely the Umemura quadric fibration. These have several interesting geometric features
and give rise to the unique continuous family of maximal conjugacy classes in the Cremona
group of rank 3.
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1. Lecture 1: Mori fibrations and algebraic subgroups of the Cremona group

We work over an algebraically closed base field k of arbitrary characteristic (unless stated
otherwise). The main important result of this first lecture is Theorem 1.10.

1.1. Mori fibrations and Blanchard’s lemma. In this section we recall some notions from
the Mori theory / MMP; see [KM98, Mat02, Kol13] for more details.

Recall that the Minimal Model Program (MMP) is a central framework in birational algebraic
geometry that aims to classify projective varieties by constructing canonical representatives
within each birational equivalence class. Given a smooth projective variety, the goal is to
perform a sequence of birational transformations—divisorial contractions and flips—guided by
the negativity of extremal rays in the cone of curves, to produce either a minimal model (whose
canonical divisor is nef) or a Mori fibration, depending on the Kodaira dimension of the input.

Definition 1.1. ● A normal projective Gorenstein variety Z defined over an arbitrary field is
called Fano if the anticanonical bundle ω∨Z of Z is ample. A del Pezzo surface is a surface
that is a Fano variety.

● Let π∶X → Y be a dominant projective morphism of normal projective varieties. Then π is
called a Mori fibration, and the variety X a Mori fiber space, if the following conditions are
satisfied:

a) X is Q-factorial with terminal singularities;
b) π∗(OX) = OY and dim(Y ) < dim(X); and
c) ω∨X is π-ample and the relative Picard rank ρ(X/Y ) = ρ(X) − ρ(Y ) is one.

In the rest of these notes, we will consider only the case where X is a rational threefold in
which case the output of an MMP is always a Mori fibration. The MMP for smooth projective
threefolds has been established over a field of characteristic zero in [Mor82] and more recently
over a field of characteristic ≥ 5 (see for instance [HX15, CTX15, Bir16, BW17, HW22]). Con-
sequently, if X is a smooth rational threefold and char(k) = 0 or ≥ 5, then we can run an MMP
to produce a Mori fibration.

If X is a rational threefold and X → Y is a Mori fibration, then we distinguish between three
cases according to the dimension of the basis Y .
● dim(Y ) = 2. The Mori fibration π is a Mori conic bundle, that is, a Mori fibration whose a
general fiber is isomorphic to P1 (hence the generic fiber is a geometrically irreducible conic).
Also, the surface Y is rational with only du Val singularities.

● dim(Y ) = 1. The Mori fibration π is a del Pezzo fibration, that is, a Mori fibration whose a
general fiber is a del Pezzo surface (which is smooth if char(k) = 0, but can be singular in
low characteristic). Also, the curve Y is isomorphic to P1.

● dim(Y ) = 0. The Mori fibration is trivial and X is a rational Fano threefold with Picard
rank 1 and terminal singularities. (E.g. the projective space P3, the smooth quadric Q ⊂ P4,
the quintic del Pezzo threefold Y5, the Mukai–Umemura threefold XMU

12 , and the weighted
projective spaces P(1,1,1,2) and P(1,1,2,3).)

We recall a result due to Blanchard [Bla56] in the setting of complex geometry, whose proof
has been adapted by Brion-Samuel-Uma in [BSU13, Proposition 4.2.1] to the setting of algebraic
geometry.

Proposition 1.2. (Blanchard’s lemma) Let f ∶X → Y be a proper morphism between projective
varieties such that f∗(OX) = OY . If a connected algebraic group G acts regularly on X, then
there exists a unique regular action of G on Y such that f is G-equivariant.

Example 1.3. Let f ∶X → Y be a divisorial contraction between projective varieties and let
G be a connected algebraic group acting on X. By Proposition 1.2, G acts on Y and f is
G-equivariant.
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Remark 1.4. Let G be a connected algebraic group. It follows from Proposition 1.2 that an
MMP applied to a smooth projective G-variety is automatically G-equivariant. Indeed, any
contraction morphism ϕ∶X → Y associated with an extremal ray of NE(X)KX<0 satisfies the
assumptions of Proposition 1.2, hence is G-equivariant. Moreover, the finite type OY -algebra
A ∶= ⊕m≥0 ϕ∗OX(mKX) is canonically a G-equivariant sheaf (see [Sta25, Tag 03LE] for the
definition), hence the variety X+ ∶= Proj(A) is endowed with a G-action and the birational map
X+ ⇢X is G-equivariant.

Let us note that, if X is a projective variety, then Aut○(X) is a connected algebraic group
(see [MO67]). Let now π∶X → Y be a Mori fibration. By Proposition 1.2, the algebraic group
G ∶= Aut○(X) acts on Y and π is G-equivariant. To study G = Aut○(X), it can be useful to
consider the exact sequence

(1) 1→ Aut○(X)Y → Aut○(X)→H → 1,

where H is the image of the natural homomorphism Aut○(X)→ Aut○(Y ), and Aut○(X)Y is the
(possibly disconnected) subgroup scheme of Aut○(X) which preserves every fiber of the Mori
fibration π.

1.2. Algebraic subgroups of Bir(X) and reduction to automorphisms of MFS. The
group of birational transformations Bir(X) of a variety X does not, in general, carry the
structure of an algebraic group, or even of an ind-algebraic group. For instance, when X is
a rational variety of positive dimension, the corresponding functor is not representable by an
algebraic group—this follows from the work of Demazure (see [Dem70]). In fact, as shown
in [BF13, Theorem 1], it is not even representable by an ind-variety (i.e., an inductive limit of
algebraic varieties); the same non-representability result holds if one replaces ind-varieties with
ind-stacks.

Nevertheless, it still makes sense to speak of algebraic subgroups of Bir(X), as we now explain.

Definition 1.5. Let X be a variety and let S be a k-scheme. An S-family of birational trans-
formations of X is a birational transformation S ×X ⇢ S ×X such that the following diagram
commutes:

S ×X φ //

p1
""

S ×X

p1
||

S

where p1∶S ×X → S is the projection onto the first factor. Moreover, φ induces an isomorphism

U
∼Ð→ V , where U,V ⊆ S ×X are schematically dense open subsets such that p1(U) = p1(V ) = S.
Every S-family of birational transformations of X induces a map from S (more precisely,

from the k-points of S) to Bir(X); this map

ρ∶S → Bir(X)
is called a morphism from S to Bir(X).

If S is moreover an algebraic group and ρ is a group homomorphism, then the rational map

S ×X ⇢X, (s, x)↦ p2(φ(s, x))
(where p2∶S ×X → X is the projection onto the second factor) is called a rational action of S
on X. When S acts faithfully on X, the pair (S, ρ) is called an algebraic subgroup of Bir(X).

We now give an alternative definition of an algebraic subgroup of Bir(X). There is a natural
contravariant functor, denoted BirX , from the category of k-schemes to the category of groups.
It is defined on objects by

BirX(S) = {S-families of birational transformations of X}.
This group functor may not be representable, but it contains representable subgroup functors,
such as Aut○(X) when X is projective. If G is an algebraic group representing a subgroup
functor ι∶G↪BirX , then (G, ι) is called an algebraic subgroup of Bir(X).
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Exercise 1.6. Check that these two definitions of an algebraic subgroup of Bir(X) are equiva-
lent.

Remark 1.7. An algebraic group G with G(k) ⊆ Bir(X) is not necessarily an algebraic subgroup
of Bir(X). For instance, the map (x, y)↦ (x, y+p(x)), with p ∈ C[t], defines an injective group
homomorphism from Gn

a(C) into Bir(P2) for all n ≥ 1 (since C[t] ≃ Cn as Q-vector spaces).
However, this copy of Gn

a is not an algebraic subgroup of Bir(P2).
We now put together the notion of algebraic subgroups of Bir(X) with the results on Mori

fibrations of Section 1.1.

Theorem 1.8. (see [Wei55, Theorem], or [Zai95, Kra] for a modern proof) Let G be an algebraic
group acting rationally on a variety V . Then there exists a variety W birational to V such that
the rational action of G on W obtained by conjugation is regular.

Therefore, for every algebraic subgroup G ⊆ Bir(Pn), there exists a birational map Pn ⇢ X,
where X is a (smooth, otherwise remove the singular locus) rational variety, which conjugates
G to an algebraic subgroup of Aut(X). The following fact is well-known by the specialists but
worth being mentioned (see [BFT21, Lemma 2.4.2] or [BF13, Remark 2.21]).

Lemma 1.9. Let X be a rationally connected variety (two general points of X are connected
by a rational curve). Then every algebraic subgroup G ⊆ Bir(X) is a linear algebraic group.

Proof. Since an algebraic group is linear if and only if its neutral component is linear, we
can replace G by G○ and assume that G is connected. By Theorem 1.8, there is a variety Y
birational to X such that G identifies with a subgroup of Aut(Y ). As X is rationally connected,
so is Y . As before, we may assume that Y is smooth. Let αY ∶ Y → A(Y ) be the Albanese
morphism, that is, the universal morphism to an abelian variety [Ser59]. Then G acts on
A(Y ) by translations, compatibly with its action on Y , and the Nishi-Matsumura theorem
(see [Mat63, Bri10]) asserts that the induced homomorphism G → A(Y ) factors through a
homomorphism A(G) → A(Y ) with finite kernel. However, since Y is rationally connected,
A(Y ), and then A(G) are trivial. Hence, G is linear by the Chevalley’s structure theorem; see
for instance [BSU13, Theorem 1.1.1]. □

Under the extra assumption that char(k) = 0, which ensures the existence of an equivariant
resolution of singularities (see [Kol07, Proposition 3.9.1]), we have the following more precise
result very useful to study the algebraic subgroups of Bir(Pn); see [BFT21, Theorem 2.4.4].

Theorem 1.10. Assume that char(k) = 0. Every connected algebraic subgroup G ⊆ Bir(Pn) is
conjugated to an algebraic subgroup of Aut○(X), where X is an n-dimensional rational Mori
fiber space.

Proof. By Lemma 1.9 the group G is linear, and by Theorem 1.8, the group G is conjugated
to a subgroup of Aut(X ′), where X ′ is a smooth rational variety. By [Sum74, Lemma 8] the
variety X ′ has an open covering that consists of G-invariant quasi-projective open subsets of
X ′. Replacing X ′ by one of these G-invariant quasi-projective open subsets, we can assume that
X ′ is quasi-projective. Taking a G-equivariant projective compactification [Sum74, Theorem 1]
and then a G-equivariant resolution of singularities [Kol07, Proposition 3.9.1], we may assume
that the rational variety X ′ is smooth and projective. Then we can run an MMP to X ′ (see
[BCHM10, Corollary 1.3.2]) and check that this one is G-equivariant as G is connected (see
Remark 1.4). We obtain a Mori fiber space X birational to Pn on which G acts faithfully. □

Remark 1.11. ● It is not known whether an equivariant desingularization always exists for
threefolds in positive characteristic. This issue is crucial in the proof of Theorem 1.10.

● A similar result can be obtained when G is a (possibly disconnected) algebraic subgroup of
Bir(Pn) by replacing the MMP with an MMP equivariant under the action of the group of
connected components π0(G) = G/G○. A classification of the connected algebraic subgroups
of Bir(P2) using such an equivariant MMP was carried out by Blanc over the complex
numbers in [Bla09].
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1.3. Tori and additive groups in the Cremona groups. In this section we prove that two
tori of the same dimension resp. two additive groups are conjugate in Bir(P3). This section is
based on [BFT21, Section 2.5], where all the results and their proofs can be found. We recall
that an algebraic torus of Bir(Pn) is of dimension at most n (see [Dem70]).

Lemma 1.12. Let G be a torus Gd
m or the additive group Ga, and let X be a variety with a

faithful action of G. Then there exists a G-invariant affine dense open subset X ′ ⊆X which is a
G-cylinder, that is, a G-variety G-isomorphic to G×U , where G acts on itself by multiplication
and U is a smooth affine variety on which G acts trivially.

Proof. We first assume that G = Gd
m is a torus. We follow the proof given by Brion in [SB00,

Part II, §I.5, Proposition 9]. By [Sum74, Corollary 2], the variety X is covered by G-invariant
affine open subsets, and thus we may assume that X is affine.

EmbeddingX equivariantly into a finite-dimensional T -module, we see that the set of isotropy
subgroups for the T -action on X is finite. In particular, the generic isotropy is trivial. Let
X ′ ⊂ X be the dense open subset where the T -action is free. Using again Sumihiro’s theorem,
we can assume furthermore that X ′ is affine.

Let x ∈ X ′, and consider the closed orbit T ⋅ x ≃ T of X ′. It induces a surjective T -algebra
morphism

k[X ′]→ k[T ⋅ x] ≃ k[T ] ≃ ⊕
χ∈X∨(T )

Cχ,

where X∨(T ) = Homgr(T,Gm) is the character group of T , which is a lattice of rank d, and Cχ
is the one-dimensional T -representation associated with χ ∈X∨(T ).

Fix a basis {χ1, . . . , χd} of X∨(T ) and extend each χi∶T → k∗ to a regular function fi∶X ′ → k
with weight χi. Let X0 ⊂X ′ be the dense open subset where none of the fi vanish. The map

f ∶X0 → (k∗)d, x↦ (f1(x), . . . , fd(x))

is T -equivariant. Let Z be the fiber of f over the point (1, . . . ,1). Then the two morphisms

T ×Z →X0, (t, z)↦ t ⋅ z, and X0 → T ×Z, x↦ (f(x), f(x)−1 ⋅ x)

are isomorphisms inverse from each other.

We now assume that G = Ga, and let X be a variety with a Ga-action. Let us suppose
that char(k) = 0 to simplify the argument. By Rosenlicht’s theorem there exists a Ga-invariant
dense open subset V ⊆ X that admits a geometric quotient q ∶ V → V /Ga. Since Ga has no
non-trivial subgroup in characteristic zero, q is in fact a Ga-torsor. Then the existence of an
affine Ga-cylinder inside X follows from the fact that Ga is a special group [Gro58, §3]. (Recall
that a linear algebraic group G is called special if every G-torsor is Zariski locally trivial.) □

Proposition 1.13. Let X be a rationally connected variety of dimension n and let G be an
algebraic group of dimension d, which is a torus or the additive group.
We have a bijection

⎧⎪⎪⎪⎨⎪⎪⎪⎩

birational classes of
varieties Y such that

Y × Pd is birational to X

⎫⎪⎪⎪⎬⎪⎪⎪⎭
→
⎧⎪⎪⎪⎨⎪⎪⎪⎩

conjugacy classes of algebraic
subgroups of Bir(X)
isomorphic to G

⎫⎪⎪⎪⎬⎪⎪⎪⎭
that sends Y onto the subgroup of Bir(X) obtained by conjugating the action of G on G×Y (by
left multiplication on G and trivially on Y ) via a birational map G × Y ⇢X.

Proof. ● Well-definedness: Let Y and Y ′ be two varieties such that Y × Pd and Y ′ × Pd are
birational to X. If Y is birational to Y ′, then the actions of G on Y × G and Y ′ × G are
conjugate via a birational map. Hence, they yield the same conjugacy class in Bir(X).

● Injectivity: Suppose the actions are conjugate; then there exists a G-equivariant birational
map φ∶Y ×G⇢ Y ′ ×G. Since the fibers of the projections πY ∶Y ×G→ Y and πY ′ ∶Y ′ ×G→
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Y ′ are the G-orbits, we obtain a birational map ψ∶Y ⇢ Y ′ making the following diagram
commute:

Y ×G φ //

πY ��

Y ′ ×G
πY ′��

Y
ψ // Y ′

● Surjectivity: Let K ≃ G be an algebraic subgroup of Bir(X). By Lemma 1.12, there exists
a dense open subset of X that is K-isomorphic to K × Y , so the birational class of Y maps
onto the conjugacy class of T in Bir(X).

□

Corollary 1.14. (i) For each n ≥ 1 and each d ∈ {n,n − 1, n − 2}, two tori of dimension d in
the Cremona group Bir(Pn) are conjugate.

(ii) For each n ∈ {1,2,3}, two additive groups are conjugate in the Cremona group Bir(Pn).
(iii) For each d ≥ 3, there exist two d-dimensional tori in Bir(Pd+3C ) which are not conjugate.

Proof. (i) and (ii): We consider a case by case analysis.
● If d = n, then Y must be a point.
● If d = n − 1, then Y must be a rational curve.
● If d = n − 1, then Y × Pn−2 birational to Pn implies that Y is a rational surface (see [BFT23,
Proposition 2.5.6 (1)]).

In all three cases, there is a unique birational class of varieties Y such that Y × Pd is rational.
Therefore the result follows from Proposition 1.13.

(iii): In [BCTSSD85] an example is given of a complex variety Y of dimension 3 which is not
rational but such that Y ×P3 is rational. The result then follows from Proposition 1.13, applied
to Y and P3. □

In particular, Corollary 1.14 implies that an algebraic group isomorphic to Gd
m or Ga is always

conjugate to a strict subgroup of Aut(P3) = PGL4.

Note that we have also the following result, well-known to specialists (see [BL15, Proposition
4.1] for a similar argument), but that we did not see written explicitly in the following form.

Corollary 1.15. Suppose that char(k) = 0 and let X be a rationally connected threefold, which
is not rational (for instance a smooth projective cubic threefold, or more generally every non-
rational Fano threefold). Then every connected algebraic subgroup of Bir(X) is trivial. In
particular, Aut○(X) is trivial.

Proof. By Lemma 1.9 every algebraic subgroup of Bir(X) is linear. The Jordan-Chevalley de-
composition implies that any connected linear algebraic group is generated by tori and unipotent
subgroups. Let G be a connected linear algebraic subgroup of Bir(X). To prove the statement
it suffices then to show that G contains no non-trivial tori and no additive groups. Assume that
H is a subgroup of G that is a non-trivial torus or an additive group. Then by Lemma 1.12, the
variety X is birational to H ×Y , where Y is a rationally connected variety of dimension at most
2. If dim(Y ) = 1, Luröth theorem implies that Y is rational. If dim(Y ) = 2, since char(k) = 0,
Castelnuovo’s theorem implies that Y is rational (see [B0̆1, Theorem 13.27]). So X must be
rational which is false by assumption. Therefore, G does not contain a non-trivial torus or an
additive group, and so G must be trivial. □
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2. Lecture 2: Automorphism groups of conic bundles over rational surfaces

We work over an algebraically closed base field k of characteristic ≠ 2 (unless stated otherwise).
This section is based on [BFT21, Section 3], where all the results and their proofs can be found.
The main important result of this second lecture is the following:

Theorem 2.1 ([BFT21, Theorem C]). Assume that char(k) ≠ 2. Let X be a normal rational
threefold, and let π∶X → S be a Mori conic bundle.
(i) If the generic fiber of π is not isomorphic to P1

k(S), then Aut○(X) is a torus.

(ii) If the generic fiber of π is isomorphic to P1
k(S), then there is an Aut○(X)-equivariant com-

mutative diagram

X̂
ψ //

π̂ ��

X
π��

Ŝ
η // S

where ψ and η are a birational maps, Ŝ is a smooth projective surface with no (−1)-curve,
and the morphism π̂∶ X̂ → Ŝ is a P1-bundle.

2.1. Standard conic bundles. To study the automorphism group of a conic bundle over a
surface we can reduce to the case of a standard conic bundle, which is a Mori conic bundle with
nice geometric features. In this section we explain this reduction and some consequences.

Definition 2.2. A morphism π∶X → S is called standard conic bundle if
(i) The varieties X and S are smooth projective, and dim(X) = 1 + dim(S).
(ii) The morphism π is induced by the inclusion of X (given by an equation of degree 2) in a

P2-bundle over S. The discriminant divisor ∆ ⊆ S is reduced, and all its components are
smooth and intersect in normal crossings (i.e. ∆ is an SNC divisor). For each p ∈ S, the
rank of the 3 × 3-matrix corresponding the quadric equation is 3, 2, 1 respectively when
p ∉∆, p ∈∆ ∖ sing(∆), p ∈ sing(∆).

(iii) The relative Picard rank is ρ(X/S) = 1.

Remark 2.3. ● We may observe that the P2-bundle over S that appears in the definition of a
standard conic bundle is unique; indeed, it is given by PS(π∗ω−1X ) (see [Bea77, Proposition 1.2]
in the case S = P2).

● A standard conic bundle is always a Mori fibration. Indeed, the only non-trivial condition
to check is that π∗OX = OS , but this follows from [Sta25, Tag 0AY8], since the generic fiber
of π is assumed to be geometrically reduced.

The following result, without the connected algebraic group action, is due to Sarkisov [Sar82].
It was generalised in the equivariant setting for finite group actions by Avilov [Avi14]. The
assumption char(k) ≠ 2 is assumed in [Sar82] and needed at different steps of the proof, as it
deals with conics and symmetric matrices.

Theorem 2.4 ([BFT21, Theorem 3.1.4]). Let S be a surface, let X be a normal variety, let
π∶X → S be a conic bundle, and let G = Aut○(X). Then there is a G-equivariant commutative
diagram

X̂
ψ //

π̂ ��

X
π��

Ŝ η
// S

where ψ is a birational map, η is a birational morphism, and the morphism π̂∶ X̂ → Ŝ is a
standard conic bundle.

Proof. We follow the proof of [Sar82, Theorem 1.13], and simply check that all steps are G-
equivariant; see the proof of [BFT21, Theorem 3.1.4] for details. □
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Example 2.5. Let X ⊂ P2
x,y,z × P2

u,v,w be the hypersurface defined by the equation

xu2 + yv2 + zw2 = 0.

The projection onto the first factor,

π∶X → P2, ([x ∶ y ∶ z], [u ∶ v ∶ w])↦ [x ∶ y ∶ z],

defines a standard conic bundle. Moreover, the discriminant divisor ∆ ⊂ P2 consists of the locus
over which the conic fibre degenerates. It is given by the vanishing of the determinant of the
associated quadratic form:

∆ = {xyz = 0} ⊂ P2,

i.e., the union of the three coordinate lines. Thus, ∆ is a simple normal crossings divisor.

The following result is well-known by experts (see for instance [Bea77, Proposition 1.2],
[Sar82] or [Isk87, Lemma 1] for similar results).

Lemma 2.6 ([BFT21, Lemma 3.1.5]). Let S be a smooth projective rational surface, let π∶X →
S be a standard conic bundle (as in Definition 2.2), let ∆ ⊆ S be the discriminant curve, and
let K ∶= k(S). Then the following are equivalent:
(i) X is a P1-bundle over S;
(ii) the generic fiber XK is isomorphic to P1

K ;
(iii) π has a rational section; and
(iv) ∆ = ∅.
Moreover, if ∆ is non-empty and reducible, then each rational irreducible component C of ∆
intersects the complement ∆ ∖C into at least two distinct points. If ∆ is non-empty and irre-
ducible, then g(∆) ≥ 1.

Proposition 2.7. Let X be a normal rational threefold, and let π∶X → S be a Mori conic
bundle. If the generic fiber of π is isomorphic to P1

k(S), then there is an Aut○(X)-equivariant
commutative diagram

X̂
ψ //

π̂ ��

X
π��

Ŝ
η // S

where ψ and η are a birational maps, Ŝ is a smooth projective surface with no (−1)-curve, and
the morphism π̂∶ X̂ → Ŝ is a P1-bundle.

Proof. The same statement, with Ŝ a smooth projective surface (without the minimality as-
sumption), follows directly from Theorem 2.4 combined with Lemma 2.6.

If we additionally require Ŝ to be minimal, we must apply a descent lemma. Specifically,
[BFT23, Lemma 2.3.2] shows that one can contract the (−1)-curves on the smooth projective
surface, along with the corresponding fibers over these (−1)-curves, in an equivariant manner,
to obtain a P1-bundle. □

2.2. Conic bundles whose generic fiber is not P1. Let π∶X → S be a standard conic
bundle (see Definition 2.2). In this section we study the case where the generic fiber of π is not
isomorphic to P1 and prove that G = Aut○(X) is a torus of dimension ≤ 2.

Recall that, by Blanchard’s lemma (Proposition 1.2), there is a short exact sequence

(2) 1→ Aut○(X)S → Aut○(X)→H → 1,

where H is the image of the natural homomorphism Aut○(X) → Aut○(S), and Aut○(X)S =
{φ ∈ Aut○(X) ∣ π ○ φ = π} is the (possibly disconnected) subgroup scheme of Aut○(X) which
preserves every fiber of the Mori fibration π.
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Lemma 2.8. (see [BFT21, Corollary 3.2.2]) Let K be a infinite field of characteristic /= 2 such
that −1 ∈ K is a square. Let Γ ⊆ P2 be a geometrically irreducible conic defined over K, with
no K-rational point, and let g ∈ Aut(Γ) be a non-trivial K-automorphism of Γ. Then, up to a
K-automorphism of P2, the equation of Γ is given by

λx2 + y2 − µz2

for some λ,µ ∈K∗ that are not squares, and g is given by

[x ∶ y ∶ z]↦ [x ∶ ay + cµz ∶ cy + az] or [x ∶ y ∶ z]↦ [x ∶ ay − cµz ∶ cy − az],
for some a, c ∈K satisfying 1 = a2 − c2µ.
Proposition 2.9 ([BFT21, Proposition 3.2.3]). Let π∶X → S be a morphism of projective
varieties whose generic fiber is a smooth conic in P2

k(S), not isomorphic to P1
k(S). Then

Aut○(X)S ⊆ (Z/2Z)r, for some r ∈ {0,1,2}.
Proof. Let G = Aut○(X)S . The generic fiber Xk(S) is a smooth conic in P2

k(S) that is not

isomorphic to P1
k(S), and therefore has no k(S)-rational points. The group G acts on Xk(S),

yielding an injective homomorphism G↪ Aut(Xk(S)). Since Aut(Xk(S)) is isomorphic to PGL2

over the algebraic closure k(S), it suffices to show that every non-trivial element g ∈ G has order
2.

By Lemma 2.8, there exists an S-birational map X ⇢ Y , where Y ⊆ P2 × S is defined by
an equation of the form λx2 + y2 − µz2 = 0, for some λ,µ ∈ k(S)∗ that are not squares. The
automorphism g then corresponds to a map on Y of the form

ha,c∶ [x ∶ y ∶ z]↦ [x ∶ ay + cµz ∶ cy + az] or h′a,c∶ [x ∶ y ∶ z]↦ [x ∶ ay − cµz ∶ cy − az],
where a, c ∈ k(S) satisfy a2 − c2µ = 1. Since (h′a,c)2 = id, we may restrict attention to elements
of the form ha,c.

These automorphisms form a subgroup

H = {ha,c ∣ a2 − c2µ = 1} ⊆ Bir(Y /S),
which is isomorphic to a subgroup of the multiplicative group (k(S)[√µ])∗ via ha,c ↦ a+ c√µ.
Thus, H is abelian, and its elements of finite order must lie in k∗ ⊆ (k(S)[√µ])∗. Therefore,
the only finite-order elements in H are h1,0 and h−1,0, of order 2.

To conclude, we must show that g is not of infinite order. Let G0 ⊆ G be the smallest algebraic

group containing g, given by G0 = ⟨g⟩. This is an abelian algebraic subgroup of G.

The field extension k(S)[√µ]/k(S) corresponds to a double cover Ŝ → S. Since g acts

trivially on S, its action lifts to the fiberd product Z = Y ×S Ŝ, acting trivially on Ŝ. Thus, g
defines an algebraic birational automorphism ĝ ∈ Bir(Z).

Locally, Z is given by

{([x ∶ y ∶ z], s) ∈ P2 × Ŝ ∣ λ(s)x2 + y2 − κ(s)2z2 = 0},
where κ ∈ k(Ŝ) satisfies κ2 = µ. The variety Z is birational to P1 × Ŝ via the map ([x ∶ y ∶
z], s)↦ ([x ∶ y + κ(s)z], s). Under this map, the automorphism ĝ becomes

([u ∶ v], s)↦ ([u ∶ (a(s) + c(s)κ(s))v], s).
Since ĝ is algebraic, one can check (see [BFT21, Lemma 2.3.11]) that the function a+ cκ ∈ k(Ŝ)
actually lies in k ⊆ k(S), implying c = 0 and a ∈ k. Since a2 = 1, we conclude that a = ±1, and
thus g has order 2. □

Proposition 2.10. ([BFT21, Proposition 3.2.5]) Let S be a smooth projective rational surface,
and let ∆ be an effective reduced divisor on S with at least two irreducible components. Assume
that all components are smooth and meet transversely (i.e., ∆ is an SNC divisor), and that each
rational component C of ∆ meets the rest of ∆ in at least two points. Then

Aut○(S,∆) = {g ∈ Aut○(S) ∣ g(∆) =∆}
10



is a torus of dimension at most 2.

Remark 2.11. In Proposition 2.10 the two-dimensional tori do appear by taking for S any smooth
projective toric surface and choosing for ∆ the complement of the two-dimensional torus.

Corollary 2.12 (see the proof of [BFT21, Theorem C]). Let X be a normal rational threefold,
and let π∶X → S be a Mori conic bundle. If the generic fiber of π is not isomorphic to P1

k(S),
then Aut○(X) is a torus of dimension at most two.

Proof. We begin by applying Theorem 2.4, which allows us to assume that π∶X → S is a
standard conic bundle. In particular, the discriminant divisor ∆ ⊂ S is non-empty and has
simple normal crossings (SNC).

Consider the short exact sequence of algebraic groups:

1→ Aut○(X)S → Aut○(X)→H → 1,

where Aut○(X)S = {φ ∈ Aut○(X) ∣ π ○ φ = π} is the group of fibre-preserving automorphisms,
and H is the image of the natural map Aut○(X)→ Aut○(S).

By Proposition 2.9, the group Aut○(X)S is finite and isomorphic to (Z/2Z)r for some r ∈
{0,1,2}. We now analyze the possibilities for H.

● Case 1: ∆ is irreducible. Then, by Lemma 2.6, its geometric genus satisfies g(∆) ≥ 1. Since
H acts on S and preserves ∆, we get an injective homomorphism H ↪ Aut(∆). But Aut(∆)
has no nontrivial connected algebraic subgroups when g(∆) ≥ 1, so H is trivial. Hence,
Aut○(X) is finite, isomorphic to a subgroup of (Z/2Z)2.

● Case 2: ∆ is reducible. Then, by Lemma 2.6, each rational component of ∆ intersects the
rest of the divisor in at least two distinct points. Proposition 2.10 then implies that H is a
torus of dimension at most 2.

Since Aut○(X) is a linear algebraic group and H is a quotient of it, it follows from [Bor91,
IV.11.14, Corollary 1] that Aut○(X) also contains a torus of the same dimension. Therefore,
Aut○(X) is itself a torus of dimension at most 2.

□

2.3. What comes next. We have shown that for any Mori conic bundle π∶X ′ → S over a
rational surface, one of the following holds:
● Aut○(X ′) is a torus, and by Corollary 1.14, it is conjugate to a strict subgroup of Aut(P3);
● or Aut○(X ′) is conjugate to a subgroup of the automorphism group of a P1-bundle X → S,
where S is a minimal smooth rational projective surface (i.e., S ≅ P2, P1×P1, or a Hirzebruch
surface Fn with n ≥ 2).
It remains to study the automorphism groups of P1-bundles over these minimal surfaces.

This analysis has been carried out in [BFT23]. Recall that a decomposable P1-bundle T → S is
one obtained as the projectivization of the direct sum of two line bundles over S.

The overall strategy is as follows:

(i) Over P1 × P1: Let X → P1 × P1 be a P1-bundle. Then we show that either X is decom-
posable, or Aut○(X) is conjugate to a strict subgroup of Aut○(X ′), where X ′ → P1 × P1

is decomposable. Hence, it suffices to study the automorphism groups of decomposable
P1-bundles over P1 × P1, which is relatively straightforward.

(ii) Over Hirzebruch surfaces Fn (n ≥ 1): Let X → Fn be a P1-bundle. Then we show that
Aut○(X) is conjugate to a subgroup of the automorphism group of either a decomposable
P1-bundle or of an Umemura P1-bundle over Fn. See [BFT23, Section 3.6] for a detailed
discussion of these special P1-bundles.

(iii) Over P2: Let X → P2 be a P1-bundle. If the image of Aut○(X) in Aut(P2) fixes a point,
then blowing up this point and the corresponding fibre reduces the situation to a P1-bundle
over F1. Otherwise, the image H = Im(Aut○(X)→ Aut(P2)) is either:

11



● H = PGL3, in which case X is either a decomposable bundle or the projectivization of
the tangent bundle over P2; or

● H = Aut(P2,Γ) ≃ PGL2, for a smooth conic Γ ⊂ P2, in which case X is a Schwarzenberger
bundle. See [BFT23, Section 4.2] for further details on these P1-bundles.
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3. Lecture 3: Automorphism groups of Mori del Pezzo fibrations over P1

From now on, we work over an algebraically closed base field k of characteristic zero. This
section is based on [BFT21, Sections 4.2 and 4.3], where all the results and their proofs can be
found. We recall that a smooth del Pezzo surface defined over k is isomorphic to P2 (degree
9), P1 × P1 (degree 8) or to the blow-up of a set of r points in P2, with 1 ≤ r ≤ 8, in general
position (degree 9 − r); see for instance [Dol12, Corollary 8.1.14]. We can associate a degree
d ∈ {1, . . . ,9} with any del Pezzo fibration, defined as the degree of the (geometric) generic fiber
and this degree coincides with the degree of a general fiber. We also recall that a Mori del Pezzo
fibration over P1 is a Mori fibration π∶X → P1 whose general fibers are del Pezzo surfaces.

The main important result of this third lecture is the following:

Theorem 3.1 ([BFT21, Theorem D]). Assume that char(k) = 0. Let πX ∶X → P1 be a Mori del
Pezzo fibration of degree d ∈ {1, . . . ,9}. Then d ≠ 7, and the following statements hold:
(i) If d ≤ 5 (resp. d = 6), then Aut○(X) is a torus of dimension at most 1 (resp. at most 3).
(ii) If d = 9, then there exists an Aut○(X)-equivariant commutative diagram

X
ψ //

πX ''

Y

πYww
P1

such that ψ is a birational map, Aut○(X) acts regularly on Y , and πY ∶Y → P1 is a (decom-
posable) P2-bundle.

As a consequence of this result, if we aim to classify the automorphism groups of rational
Mori del Pezzo fibrations X → P1, we observe the following:
● If the degree of the generic fiber is ≤ 7, then Aut○(X) is a torus, and hence conjugate to a
strict subgroup of Aut(P3) by Corollary 1.14.

● If the degree of the generic fiber is 9, it suffices to study the automorphism groups of (de-
composable) P2-bundles over P1, which is relatively straightforward.

● If the degree of the generic fiber is 8, then we will see that X → P1 is necessarily a quadric
fibration (i.e. a Mori del Pezzo fibration whose generic fiber is a smooth quadric surface).
We will address this case in the next lecture!

3.1. Mori del Pezzo fibrations of small degree. In this section we prove that if X →
P1 is a Mori del Pezzo fibration of degree ≤ 7, then Aut○(X) is a torus of dimension ≤ 3
(Proposition 3.4).

The next result is classical in Mori theory (see e.g. [Mor82, Theorem 3.5] for the smooth case
and [CFST15] for the case of terminal singularities, when k = C). We recall the proof due to a
lack of a precise reference.

Lemma 3.2 ([BFT21, Lemma 4.2.1]). Let π∶X → P1 be a Mori del Pezzo fibration of degree d.
Then either d ∈ {1,2,3,4,5,6,9}, or d = 8 and π is a Mori quadric fibration.

Proof. If d ∉ {7,8}, there is nothing to prove, so we may assume that d ∈ {7,8}. Let K = k(P1)
be the function field of the base, and let XK → Spec(K) be the generic fiber of π. Let K be an
algebraic closure of K. Denote by Γ = Gal(K/K) the corresponding Galois group. As X → P1

is a Mori fibration, we have ρ(XK) = 1, which implies that ρ(XK)Γ = 1 (see [Kol96, Chapter II,
Proposition 4.3]).

Assume first that d = 8. Then XK is isomorphic either to P1
K
×P1

K
, or to the blow-up of a point

in P2
K
. We claim that the latter case is impossible. Indeed, the Picard group Pic(XK) ≅ Z2 is

generated by the exceptional (−1)-curve E (arising from the blow-up) and the pull-back of a
line ℓ in P2 not intersecting E. Since Γ preserves both E and the canonical class −3ℓ + E, it
follows that rkPic(XK)Γ = 2, contradicting the fact that ρ(XK)Γ = 1. Therefore, XK ≅ P1 ×P1,
and π is a Mori quadric fibration.
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Now assume that d = 7. Then XK is isomorphic to the blow-up of two distinct points

p1, p2 ∈ P2
K
, and hence Pic(XK) ≅ Z3 is generated by:

● the two (−1)-curves E1 and E2 contracted to p1 and p2, and
● the strict transform ℓ of the line in P2 passing through p1 and p2.

These are the only (−1)-curves on XK , and since ℓ is the only one intersecting both E1 and E2,
it must be Γ-invariant. Consequently, the set {E1,E2} is also Γ-invariant, which implies that
rkPic(XK)Γ ≥ 2, again contradicting the condition ρ(XK)Γ = 1.

We conclude that d = 7 cannot occur, and the statement follows. □

Let π∶X → P1 be a Mori del Pezzo fibration. Recall that, by Blanchard’s lemma (Proposition
1.2), there is a short exact sequence

(3) 1→ Aut○(X)P1 → Aut○(X)→H → 1,

whereH is the image of the natural homomorphism Aut○(X)→ Aut(P1) = PGL2, and Aut○(X)P1

is the (possibly disconnected) subgroup scheme of Aut○(X) which preserves every fiber of the
Mori fibration π.

Lemma 3.3 ([BFT21, Lemma 4.2.2]). Let π∶X → P1 be a del Pezzo fibration of degree d ≤ 8
and let H ⊆ Aut(P1) be the image of the natural homomorphism Aut○(X)→ Aut(P1). Then H
is trivial or isomorphic to Gm.

Proof. Let K = k(P1), and let XK denote the generic fiber of π, which is a del Pezzo surface
with ρ(XK) = 1. Let K be an algebraic closure of K. Then ρ(XK) = 1 < 10 − d = ρ(XK).

Let L ⊆K be the minimal field extension K ⊆ L ⊆K such that ρ(XL) = ρ(XK)—equivalently,
all extremal rays of NE(XK) are defined over L. Let Γ ∶= Gal(L/K) denote its Galois group.
Since ρ(XL) = ρ(XK) > 1 and ρ(XK) = 1, the Galois group Γ must be non-trivial.

This implies that the (unique) cover τ ∶C → P1 corresponding to the field extension L/K is
non-trivial. Moreover, the branch locus of τ is preserved by the group H. By Hurwitz’s formula
[Har77, Corollary IV.2.4], it follows that H ⊂ PGL2 must preserve at least two points of P1.
This concludes the proof. □

Proposition 3.4 ([BFT21, Proposition 4.2.3]). If π∶X → P1 is a Mori del Pezzo fibration of
degree d ≤ 5 (resp. d = 6), then G = Aut○(X) is a torus of dimension ≤ 1 (resp. ≤ 3).

Proof. Let K = k(P1), and let K be an algebraic closure of K. Observe that there is an injective
group homomorphism

G0 ∶= Aut○(X)P1 ↪ Aut(XK),
whereXK is the generic fiber of π∶X → P1. Moreover, there is an injective group homomorphism

Aut(XK)↪ Aut(XK).
We will now show that Aut(XK) is a finite group when d ≤ 5. This implies that G0 is finite,

and hence that Aut○(X) is an extension of a finite group by a torus of dimension at most 1 (by
Lemma 3.3). Therefore, Aut○(X) is itself a torus of dimension ≤ 1.

To prove finiteness of Aut(XK) when d ≤ 5, we note that the del Pezzo surface XK is

isomorphic to the blow-up of 9 − d ≥ 4 points in P2
K
. The group Aut(XK) acts on the finite

set of (−1)-curves on XK . The kernel H ⊆ Aut(XK) of this action is the lift of the group of

automorphisms of P2
K

fixing the 9 − d ≥ 4 points blown up. Since XK is a del Pezzo surface, no

three of the points are collinear, and so H is trivial. It follows that Aut(XK) is finite.
Now consider the case d = 6. Then XK is isomorphic to the blow-up of three non-collinear

points in P2. Choose a finite field extension K ⊆ L such that all six (−1)-curves on XK are

defined over L, and let C → P1 be the corresponding finite morphism of curves. Then the
G0-action on X lifts to a G0-action on Y ∶=X ×P1 C, where G0 acts trivially on C. The generic
fiber of Y → C is a del Pezzo surface of degree 6 over k(C), with all six (−1)-curves defined over
k(C). Hence, Y is birational to S × C, where S is the blow-up of three general points in P2,
and G0 embeds into an algebraic subgroup of Aut(S) ≃ Aut(S ×C)C . Since Aut(S) = G2

m ⋊D6
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(see [Dol12, Theorem 8.4.2]), we conclude that the neutral component of G0 is a torus T of
dimension at most 2.

Recall the classical fact that if there is a non-constant morphism from a one-dimensional
connected linear algebraic group J to Gm, then J ≃ Gm. Indeed, the only one-dimensional
connected linear algebraic groups are Gm and Ga, and there are no non-trivial morphisms
Ga → Gm.

Now, consider the exact sequence (3). Modding out G0 and G by T , we find that G/T is an
extension of a finite group by a torus of dimension ≤ 1. From the preceding paragraph, G/T is
either Gm or the trivial group. Since there are no non-trivial extensions of algebraic tori (see
[Bor91, §11.14, Corollary 1]), it follows that G must be a torus of dimension ≤ 3. □

3.2. P2-fibrations over P1. Let now π∶X → P1 be a Mori del Pezzo fibration of degree 9, that
is, a P2-fibration with terminal singularities, and let G = Aut○(X). In this section we prove that
there is a P2-bundle τ ∶ Y → P1 and a G-equivariant commutative diagram

X
φ //

π **

Y

τttP1

where φ is a G-equivariant birational map (Proposition 3.7). This will conclude the proof of
Theorem 3.1.

Lemma 3.5. Let π∶X → P1 be a Mori del Pezzo fibration of degree 9. Then the generic fiber
XK is isomorphic to P2

K , where K = k(P1).

Proof. Let K = k(P1), let XK be the generic fiber, and let K be an algebraic closure. By
assumption, XK is isomorphic to P2

K
. Hence, to show that XK is isomorphic to P2

K , it suffices

to show that the Brauer group of K is trivial (see e.g. [GS06, Theorem 5.2.1]). This follows
from Tsen’s theorem as K = k(P1); see [Sta25, Tag 03RF]. □

With Lemma 3.5, it is then natural to ask whether a Mori del Pezzo fibration X → P1 whose
generic fiber is isomorphic to P2 is necessary a P2-bundle. The answer is unfortunately negative
as the next example shows. But we will see with Proposition 3.7 that we can always reduce to
the case of P2-bundles.

Example 3.6. Let σ ∈ Aut(P2) be an involution and let C be a smooth projective curve with
a µ2-action such that C/µ2 = P1. Let X = (P2 × C)/µ2, where µ2 = {±1} acts on P2 via the
involution σ. Then the induced morphism π∶X → P1 is a Mori del Pezzo fibration of degree 9
(the only singularities of X are double points). But π is not a P2-bundle as µ2 acts on C with
at least two fixed points (by Hurwitz’s formula) and over a fixed point a fiber of π is generically
non-reduced.

Proposition 3.7 ([BFT21, Proposition 4.3.5]). Let π∶X → P1 be a morphism whose generic
fiber is isomorphic to P2 (this is for instance the case when π is a Mori del Pezzo fibration of
degree 9 by Lemma 3.5). There is a regular action of Aut○(X) on a P2-bundle τ ∶Y → P1, and
an Aut○(X)-equivariant birational map φ∶X ⇢ Y such that τ ○ φ = π.
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4. Lecture 4: Umemura quadric fibrations over P1

As in the previous lecture, we work over an algebraically closed field k of characteristic zero.
This section is based on [BFT21, Section 4.4] and [TZ24, Section 4.8], where all the results and
their proofs can be found.

In this fourth lecture, we introduce the Umemura quadric fibrations πg ∶Qg → P1 which is
a special family of Mori quadric fibrations over P1. Our motivation stems from the following
key-result ([BFT21, Theorem D]):

Theorem 4.1 ([BFT21, Theorem D]). Let πX ∶X → P1 be a Mori quadric fibration. Assume
that Aut○(X) is not a torus. Then there exists an Aut○(X)-equivariant commutative diagram

X
ψ //

πX ''

Y

πYww
P1

where ψ is a birational map, Aut○(X) acts regularly on Y , and one of the following holds:
(i) πY ∶Y → P1 is a P2-bundle; or
(ii) there exists a square-free homogeneous polynomial g ∈ k[u0, u1] of degree 2n (with n ≥ 1)

such that (Y,πY ) = (Qg, πg).
Hence, to classify the maximal connected algebraic subgroups of the Cremona group Bir(P3)

that arise from Mori quadric fibrations over P1, it suffices to consider the automorphism groups
of the Umemura quadric fibrations πg ∶Qg → P1 and those of decomposable P2-bundles over P1.

It turns out that the Cremona group Bir(P3) contains a unique continuous family of maximal
connected algebraic subgroups, which are isomorphic to PGL2, namely the groups Aut○(Qg),
where g ∈ k[u0, u1] is a homogeneous polynomial of even degree with at least four roots of odd
multiplicity.

Remark 4.2. Let us mention that the study of the automorphism groups of certain higher
dimensional Mori quadric fibrations over P1 was initiated by Blanc-Floris in [BF22] and by
Floris-Zikas in [FZ24].

4.1. Definition of the Umemura quadric fibrations and first properties.

Definition 4.3. Let n ≥ 0 and let g ∈ k[u0, u1] be a homogeneous polynomial of degree 2n. We
denote by Qg the projective threefold given by

{[x0 ∶ x1 ∶ x2 ∶ x3;u0 ∶ u1] ∈ P(O⊕3P1 ⊕OP1(n)) ∣ x20 − x1x2 − g(u0, u1)x23 = 0}.
and we denote by πg ∶Qg → P1 the morphism [x0 ∶ x1 ∶ x2 ∶ x3;u0 ∶ u1]↦ [u0 ∶ u1].
Note that X = P(O⊕3P1 ⊕OP1(n)) is the quotient of (A4 ∖ {0}) × (A2 ∖ {0}) by the action of G2

m

given by

G2
m × (A4 ∖ {0}) × (A2 ∖ {0}) → (A4 ∖ {0}) × (A2 ∖ {0})

((λ,µ), (x0, x1, x2, x3, u0, u1)) ↦ (µx0, µx1, µx2, ρ−nµx3, ρu0, ρu1).
The following lemma provides some foundational properties of the variety Qg. In particular,

when g is not a square, Lemma 4.4(iii) yields a structure of Mori quadric fibration πg ∶Qg → P1;
we refer to such a fibration as an Umemura quadric fibration.

Lemma 4.4 ([BFT21, Lemma 4.4.3]). Let g ∈ k[u0, u1] be a non-zero homogeneous polynomial
of degree 2n, for some n ≥ 0. Denote by H,F ⊆ Qg the hypersurfaces defined respectively by
x3 = 0 and u1 = 0.
(i) The variety Qg is an irreducible, normal, rational projective threefold with terminal singu-

larities. Each singularity is Zariski locally of the form

{(x, y, z, t) ∈ A4
k ∣ x2 − yz − tmp(t) = 0},

for some m ≥ 2 and a polynomial p(t) with p(0) ≠ 0. Moreover, Qg is Q-factorial if and
only if g is not a square or g ∈ k∗, and it is smooth if and only if g is square-free.

16



(ii) If g is not a square, then Pic(Qg) = ZH⊕ZF . The cone of curves is generated by the curves
f =H ∩ F and h ⊆H, where h is given by x0 = x1 = x3 = 0.

(iii) The morphism

πg ∶ Qg → P1

[x0 ∶ x1 ∶ x2 ∶ x3;u0 ∶ u1] ↦ [u0 ∶ u1]
is a Mori quadric fibration (i.e., a Mori fibration whose generic fiber is a smooth quadric)
if and only if g is not a square.

Proof. For i = 0, . . . ,3, let Hi ∶= Qg ∩ {xi = 0} and let Fi ∶= Qg ∩ {ui = 0}; in particular, F = F1

and H =H3. We observe that F0 ∼ F1 = F and H0 ∼H1 ∼H2 ∼H3 + nF0 =H + nF .
Each fiber of πg ∶Qg → P1 is a quadric surface, and F0, F1 are irreducible. The surface H2

is irreducible if and only if g is not a square. Since Qg ∖ (H2 ∪ F ) ≅ A3 via (x, y, z) ↦ [x ∶
x2 − g(1, z)y2 ∶ 1 ∶ y; z ∶ 1], the Picard group is generated by the irreducible components of H2

and F . The same holds with H1 replacing H2, showing that Qg is irreducible and rational.
When g is not a square, Pic(Qg) is generated by H and F .

The singular locus consists of the finite (possibly empty) set

{x0 = x1 = x2 = 0, g(u0, u1) =
∂g

∂u0
= ∂g

∂u1
= 0} .

Hence, Qg is smooth if and only if g is square-free. Locally at a singular point q = [0 ∶0 ∶0 ∶1;u0 ∶
u1], Qg is given by

{(x, y, z, t) ∈ A4
k ∣ x2 − yz − tmp(t) = 0},

where m ≥ 2 is the multiplicity of [u0 ∶ u1] as a root of g and p(t) ∈ k[t] with p(0) ≠ 0.
This defines a normal cA1 singularity, which is terminal; see [Kol13, §1.42]. The singularity is
factorial if and only if x2 − tmp(t) is irreducible [JK13, (13.2)], which happens precisely when
tmp(t) is not a square.

Note that H = H3 ≅ P1 × P1, with rulings given by f = H ∩ F and h = H ∩H0 ∩H1. Since
h ⋅ F = 1 and h ⋅H2 = 0, we compute

h ⋅H = h ⋅ (H2 − nF ) = −n.
Also, f ⋅ F = 0 and f ⋅H = 1. This implies that if g is not a square, then Pic(Qg) = ZH ⊕ ZF ,
and every irreducible curve c ⊆ Qg is numerically equivalent to ah + bf for some a, b ∈ Q, with
c ⋅F = a and c ⋅H = b − an. To conclude (ii), we verify a, b ≥ 0: this is evident if c ⊆H, as h and
f generate the cone of curves of H ≅ P1 × P1; if c /⊆H, then 0 ≤ c ⋅H = b − an and a = c ⋅ F ≥ 0.

It remains to prove (iii). The morphism πg is projective and dominant between normal
varieties. We check the Mori fibration conditions from Definition 1.1:
b): As πg has connected fibers, the condition f∗OX = OY holds by Stein factorization [Har77,

Cor. III.11.5].
a): Already shown in (i).
c): If g is a square, then [BFT21, Lemma 4.4.1] gives ρ((Qg)k(P1)) = ρ(P1 × P1) = 2, so πg is

not a Mori fibration. If g is not a square, then (ii) implies ρ(Qg) = 2, completing the proof. □

Remark 4.5. Suppose that n = 0. If g = 0, then Q0 ≃ P2 × P1. If g ≠ 0, then the equation
x20 − x1x2 − gx23 = 0 defines a smooth quadric in P3 and Qg ≃ (P1)3 is well-understood. Hence,
from now on, we will always assume that n ≥ 1.

4.2. Full automorphism group. When g is not a square and n ≥ 1, the algebraic group
Aut○(Qg) is described in [BFT21, Corollary 4.4.7]: it is isomorphic to PGL2 ×Gm if g has only
two roots, and isomorphic to PGL2 if g has at least three roots. We now compute the whole
automorphism group Aut(Qg).

We recall that over an algebraically closed field K with char(K) ≠ 2,3, finite subgroups of
PGL2(K) are (up to conjugacy):
● Cyclic groups: Z/tZ
● Dihedral groups: Dm (order 2m)
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● Tetrahedral group: A4 (order 12)
● Octahedral group: S4 (order 24)
● Icosahedral group: A5 (order 60)

Proposition 4.6 ([TZ24, Proposition 4.15]). Let g ∈ k[u0, u1] be a homogeneous polynomial,
which is not a square and is of degree deg(g) = 2n for some n ≥ 1. Then Aut(Qg) acts on P1

and πg ∶Qg → P1 is Aut(Qg)-equivariant. Then Aut(Qg) fits into a short exact sequence

(4) 1→ Aut(Qg)P1 → Aut(Qg)→ F → 1,

where F is an algebraic subgroup of PGL2 and Aut(Qg)P1 ≃ PGL2×Z/2Z acts on Qg as follows:
● for every [a b

c d
] ∈ PGL2(k), we have

[a b
c d
] ⋅ [x0 ∶ x1 ∶ x2 ∶ x3;u0 ∶ u1] =

[(ad + bc)x0 + acx1 + bdx2 ∶ 2abx0 + a2x1 + b2x2 ∶
2cdx0 + c2x1 + d2x2 ∶ (ad − bc)x3;u0 ∶ u1]

;

● the nontrivial element of Z/2Z acts on Qg as the biregular involution

[x0 ∶ x1 ∶ x2 ∶ x3;u0 ∶ u1]↦ [x0 ∶ x1 ∶ x2 ∶ −x3;u0 ∶ u1].

Moreover, the following hold:
● If g has at least three distinct roots, then F is finite. If furthermore n is even, then the short
exact sequence (4) splits and Aut(Qg) ≃ Aut(Qg)P1 × F .

● If g has exactly two distinct roots with the same multiplicities, then F ≃ Gm⋊Z/2Z, where the
generator of Z/2Z exchanges the two roots of g; otherwise, when the roots of g have different
multiplicities, F ≃ Gm.

Proof. By [BFT21, Lemma 4.4.3] and its proof, the cone of effective curves onQg is generated by
two curves f and h that satisfy KQg ⋅f = −2 and KQg ⋅h = n−2 ≥ −1. Since the contraction of the

extremal ray generated by f yields the structure morphism πg ∶Qg → P1, we obtain that Aut(Qg)
acts on P1 and πg ∶Qg → P1 is Aut(Qg)-equivariant. The fact that Aut(Qg)P1 ≃ PGL2 × Z/2Z
follows from [BFT21, Lemmas 4.4.4 and 4.4.5].

Let F ∶= Im(Aut(Qg)→ PGL2). The identity component F 0 must fix each root of g. Assume
first that g has at least three distinct roots. Then F 0 must be trivial and hence F is a finite
subgroup of PGL2. If n is furthermore even, then the natural SL2-action on P(O⊕3P1 ⊕OP1(n))
defined by

[a b
c d
] ⋅ [x0 ∶ x1 ∶ x2 ∶ x3;u0 ∶ u1] ∶= [x0 ∶ x1 ∶ x2 ∶ x3;au0 + bu1 ∶ cu0 + du1]

induces a PGL2-action on P(O⊕3P1 ⊕OP1(n)) that restricts to an F -action on Qg. This F -action
commutes with the Aut(Qg)P1-action, and thus Aut(Qg) ≃ Aut(Qg)P1 × F .

Assume now that g has exactly two distinct roots. Up to a linear change of coordinates, we
can assume that g = ua0ub1 for some odd a, b ≥ 1 (because g is not a square). Then a direct
computation (see [BFT21, Example 4.4.6]) yields that either F ≃ Gm ⋊Z/2Z when a = b, where
the generator of Z/2Z exchanges the two roots of g, or F ≃ Gm when a ≠ b. □

Remark 4.7. Every finite subgroup of PGL2 can occur as F in Proposition 4.6. Indeed, fix H
a finite subgroup of PGL2 and denote by H̃ the inverse image of H in SL2. It suffices then to

take g ∈ k[u0, u1]H̃ , and g not contained in the invariant algebra of a finite subgroup of SL2

containing H̃ as a strict subgroup, to have F =H in Proposition 4.6.
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